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�-Repetition/Modulation and Blind Second-Order
Identification

Philippe Ciblat, Antoine Chevreuil, and Philippe Loubaton, Member, IEEE

Abstract—In the context of redundant filter-bank precoders
for blind second-order equalization, we consider the -repeti-
tion/modulation scheme. Although it is theoretically possible, the
identification of a bandlimited communication channel suffers
from numerical problems if is beyond a bound. If is below
this bound, simulation examples illustrate the robustness of the
channel estimate.

I. INTRODUCTION

T HE TRANSMISSION of data over a dispersive unknown
channel is considered. In many equalization procedures,

the channel needs to be estimated. A standard solution consists
in sending periodically a training sequence. However, the de-
crease of capacity to which this approach leads is unaffordable
when the channel variations are fast. In this respect, many
contributions deal with the problem of identifying the unknown
channel resorting exclusively to the received signal (“blind”
methods). Consistent with the fast varying environment con-
straint, in this paper, we focus on the second-order methods
since the covariance coefficients are known to be reliably
estimated by means of few samples. Thanks to [1]–[6], the
fractional sampling receiver can apparently provide solutions
to the blind second-order identification problem, at least when
the channel exhibits an unusual condition on its zero location.
All the approaches, however, fail to provide a robust estimate
of the channel as far as communication channels are concerned.
Indeed, the implicit cyclostationarity on which these methods
rely is numerically weak due to the small excess bandwidth
factors used in most communication contexts [7], [8]. For
instance, such a popular algorithm as the subspace method [9]
shows undesirable numerical behaviors [10].

To avoid such problems, an idea consists of increasing the
strength of the cyclospectra at the receiver. This can be achieved
by passing, at the emitter, the symbol sequence into a peri-
odic precoder; the artificial cyclostationarity to which these pre-
coders lead is referred to as transmitter induced cyclostation-
arity (TIC). This idea was introduced by Tsatsanis and Gian-
nakis, who first argued in favor of a repetition of the symbols.
In [12]–[14], and [26], a modulation of the symbols is shown
to provide good channel estimates. In [15] and [16], a general
formalism using redundant filterbanks is introduced. The blind
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second-order identification methods with which these precoders
are associated are shown to be robust to the channel; indeed, an
algebraic result states that the channel can be recoveredregard-
lessof the channel zero location.

The so-called -repetition/modulation precoder (the param-
eter is a real number in ) is a particular redundant
precoder combining repetition and modulation and was intro-
duced in [17]. As soon as fulfills a certain nonrestrictive con-
dition, the channel can be estimated by a structured subspace
method. Contrary to the approach proposed in [14] and [26] in
the context of a modulation of the symbols, the algorithm ex-
hibits the appealing property called “deterministic.” However,
in the context of communication, bandlimited channel-poor per-
formances are noticed for big’s (close to ). The contribu-
tions of the paper are 1) to explain this undesirable behavior and
2) to find the values of for which this behavior collapses.

The -RM transmitter is analyzed in Section II. Section III
is concerned with a blind second-order based estimate of the
channel by means of a noise subspace method. The extraction
of the one-dimensional (1-D) kernel of a certain matrix is
shown to provide the channel up to a constant. As soon as
is beyond a bound depending on the support of the channel, it
is shown that exhibits a “numerical” kernel of a dimension
where more than one which is spanned by spheroidal wave se-
quences (see Section IV). This claim is essentially based on a
heuristic analysis because it is difficult to study analytically the
behavior of (quasi) bandlimited FIR transfer functions. Section
V is devoted to numerical illustrations.

II. DESCRIPTION OF -RM

In the sequel, denotes a unit variance zero-mean i.i.d.
symbol sequence with baud rate . The analog impulse re-
sponse of the channel is denoted by ; it stems actually
from the conjugate effects of a pulse shaping filter (in general,
a square-root raised cosine designed for transmission at) and
an unknown channel due for instance to multipaths. We assume
the channel to be static, in regard to the duration of observa-
tion. Without any restriction, we assume that is causal and
time limited. As the transmission is confined within a given fre-
quency range, the frequency response of the channel is approx-
imately bandlimited, and the frequency support is denoted by

, where is called
the excess bandwidth. As far as a classical single carrier system
is concerned, the received signal is simply written as

(1)
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where is modeled as a white Gaussian noise with
double-sided power density . In contrast tp this standard
transmission, the TIC approach proposes to transmit a trans-
formed version of the symbol sequence—see the filterbank
framework given in [15]. Precisely, the symbols are passed
through a precoder. Let and be two integers; the output of
the precoder is given by

... ...

Notice that the time between two successive is
. In order to ensure the retrieval of

from , it is assumed that is a tall full-rank matrix1

normalized in such a way that the emitted (or received) power
is fixed. The received signal can be written as

(2)

It is worth mentioning that the required bandwidth is the same as
in the single carrier case; this is due to the fact that the spectral
density of is proportional to the square of
the modulus of the Fourier transform of . As far as the

-RM is concerned, the precoding matrix is , meaning
that the baud rate of is twice the baud rate of . In this
paper, is the matrix defined by blocks as

(3)

with diag . The re-
ceived signal as given in (2) is sampled at ;
we, of course, assume that prior to this sampling,
is lowpass filtered in the band . Letting

, , ,
and , we get

As is still white, we denote by its variance; hence,
. Consider the transmission of a burst of symbols

, thus corresponding to a burst of pseudo-
symbols ; owing to (3), a burst is split into two consecutive
bursts of length : the first one being the burst of symbols
and the second a modulated version of this latter. Up to border
effects, the received data can also be split into two parts:i) The
first one is the filtered version of the -length burst of symbols,
and ii ) the second one is the filtered version of the modulated
symbols. Consider the bivariate process given by

1which imposes thatP � M or equivalently thatT � T .

. At lags , can
be expressed as

(4)

where

and is such that
. In the sequel, the length of a burst is supposed

to be big compared with the length of the channel: in real
systems, typically represents the number of symbols to be
transmitted over a slot on which the channel can be assumed to
be constant (e.g., for the European GSM system).
Therefore, there is no restriction in the following to just exploit
vectors for .

The model (4) states that the-RM artificially creates a kind
of diversity. This diversity is unusual since the two components
of the unknown array are deduced one from the other
by a shift in the frequency domain. Intuitively, makes
the two components become closer, thereby making the diver-
sity vanish; in some sense, the parametercontrols the diver-
sity, and the choice of is crucial. In the following sections,
the blind second-order identification of and, hence, of

, is addressed. The bivariate model (4) is similar, up to the
structure, to the one encountered in classical diversity contexts;
therefore, it is natural to investigate the identification problem
adapting the famous noise subspace method of [9].

III. B LIND IDENTIFICATION

A. Structured Noise Subspace Approach

Let be an estimate of , which is the channel order. In the
sequel, it is assumed that , i.e., the model is possibly
overdetermined. We propose to take into account the
samples for in order to estimate the
channel. Take . We consider the big vector

for the lags .
It is readily seen that

...
...

...

where , and
, . is the

Sylvester matrix associated with the filter . The
-dimensional covariance matrix of is simply

.
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We choose such that the matrix is tall, namely, one
chooses . This implies that

is a singular matrix. Denote by the orthog-

onal projector onto its kernel. Take to be
a generic -order polynomial, and denote by

its associated bivariate structured polyno-
mial. The subspace method consists in investigating the map-
ping

Trace

This is a quadratic form in the coefficients . Let-
ting , the subspace mapping
can be written as for a certain -dimen-
sional positive Hermitian matrix . We decompose as

, where each matrix is . If
, the matrix is expressed as

(5)

where

(6)

and is a block-diagonal structure matrix, which is theth
block given by . For any integer

, the directional vector of order is defined as
. The theorem below gives a con-

dition on for the channel to be retrieved up to constant from
. We now have the following theorem.

Theorem 1 (Identifiability):Suppose is rational, namely,
with and coprime. If , the kernel of the

matrix is a 1-D subspace spanned by the channel vector

In others words, the structured noise subspace method allows
identification of the filter up to a scalar.

This algebraic result is proved in [12]–[14], and [26] and de-
voted to the modulation TIC precoder. Notice that in contrast
with the classical nonstructured subspace method, the unknown
filter is recovered irrespective of the channel zero location and
whatever the overdetermination factor.

Remark: For sake of clarity, we suppose in the sequel that
. Moreover, it is implicitly assumed that fulfills the

condition of Theorem 1.

B. Estimate of the Channel

In practice, a finite number of data is collected, and the matrix
is estimated from these data. We denote by the

number of available samples ; for simplification, we reindex
the data and denote them by . From these data,
one has to estimate the Toeplitz matrixand then the projector

. Consider the matrix

We estimate the projector by , which is the orthogonal pro-
jector onto the space generated by the eigenvectors associated
with the smallest eigenvalues of. The quadratic matrix is
estimated by

and the channel by2

Notice that in the noise-free case, the estimateis simply

and the extraction of the projector can be done exactly with
a finite number of samples. Hence, and coincide up to a
constant; the algorithm is called deterministic. This is in contrast
with the structured subspace algorithm used in [14] and [26] in
the context of modulation TIC precoders.

C. Statistical Performances

It is standard (see [18]) that converges weakly
to a zero mean normal random vector with covariance matrix

(7)

where stands for the pseudoinverse, andis a certain non-
negative matrix.

D. Existence of an Undesired Numerical Kernel

In the context of communication channels, it has been no-
ticed that for certain choices of, exhibits a 1-D kernel, as
expected from Theorem 1, but also has eigenvectors associated
with “small” eigenvalues. Of course, such a phenonenon pre-
vents the subspace algorithm from showing good performances;
indeed, because the exact kernel of and its numerical kernel
are difficult to separate, the estimate is likely to belong to
a corrupted version of the numerical kernel of . Moreover,
from (7), the existence of these small eigenvalues makes the co-
variance matrix huge in the direction of the associated eigenvec-
tors. This phenonenon is now specified.

IV. EXISTENCE AND ANALYSIS OF THE NUMERICAL KERNEL

OF

A. A Qualitative Remark

In the following, we denote by the bandwidth
of the channel sampled at . This quantity is related to the
excess bandwidth parameter since (see Fig.
1). We assume, for sake of clarity, a noiseless case. Denote by

the spectrum of the bivariate process . As
is white, we have

(8)

2This is not a proper definition since this the phase indetermination remains.
This problem is out of the scope of the paper, as we aim to identify the channel
up to a constant.
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The statistical information is contained in the components
and of , i.e., in and

; as is bandlimited, the term
is all the less relevant as is close

to (“big” ’s); in this case, the (numerical) supports of
and have a narrow intersection, making

their product small. For instance, if the excess bandwidth
is zero (in this case, and ), the quantity

is null for . The spectral
density thus provides only , which is, of
course, not sufficient to identify . The closer is to

, the more numerical problems are expected. Thatshould
be upper bounded is now specified.

B. Short Review on Spheroidal Wave Sequences

The order spheroidal wave sequences ([19]) on an
interval are the (unit norm) eigenvectors asso-
ciated with the eigenvalues of the positive

Toeplitz matrix , which is defined as

They play an important role in various problems involving
implicitly bandlimited signals, for instance, in bandlimited
spectral estimation [20]), broadband source localization [21],
array beam-forming ([22]), etc. The matrix is known
to be ill conditioned, and its “numerical” rank is equal to
int , where int stands for the integer part of
and where represents the size of. In the following, we
denote by the dimension of the numerical kernel of . For
a given , we let the associated transfer
function be . As is given by

the existence of a numerical kernel of implies that for

if

In others words, the FIR filters for associ-
ated with the so-called “smallest” spheroidal wave sequences
of are nearly bandlimited, and their support coincides with the
complementary set of in .

C. Numerical Kernel of

In this section, we justify, by means of heuristic arguments,
that may exhibit, in addition to its natural 1-D kernel, a
undesired numerical kernel. This is proved to occur whenis
too big. We claim the following.

Claim 1: If , exhibits a numerical kernel of
dimension more than 1; actually

Ker int

In this case, denote by the interval

The linear space spanned by the true channeland the smallest
spheroidal wave sequences of length of the interval3

belong to the numerical kernel of . As a consequence, the
asymptotic covariance of the subspace estimate is huge in the
band .

A justification is proposed in the Appendix.

D. Consequence

Within this section, it is assumed that . Let be
int . Consider a vectorof the numerical

kernel of —recall that the channel estimate is likely to be
close to such a vector. According to Claim 1,may be a linear
combination of and some of the smallest spheroidal wave
sequences of the band , which are denoted by ;
in the frequency domain, this implies that

for some complex-valued constants . However,
when , but this is not the case if . In other

words, the subspace cannot provide a reliable estimate of the
channel (up to a constant) in the band. The second part of
Claim 1 gives an insightful consequence of the existence of a
numerical kernel on a statistical point of view. Indeed, due the
terms in (7), the asymptotic covariance matrix is prone
to exploding in the directions of the spheroidal wave sequences

. Consider the quantity

which represents the localization in the frequency domain of
the mean square error. We have, for large,
trace . We consider the average of the
mean square error on the interval. It can be shown to verify

trace

As may be explosive in the directions of the sequences
, the mean square error is thus likely to be huge in

the band ; the estimate is not reliable in this band of frequen-
cies.

Remark 2: Conversely, the condition does not
ensure that the numerical kernel is reduced to the span of;
however, the previous bandwidth considerations cannot prove
the contrary. The simulation evidence (see Section V) illustrates
that the condition is sufficient to ensure that the
numerical kernel is 1-D in a typical transmission context. Of
course, should not be taken too close from 0 in order to ensure
a good diversity between the two components of.

E. Fractional Sampling (FS) and-RM

The FS receiver consists in sampling the signal given by (1)
at the baud-rate . The discrete (noiseless) time series is

3W denotes the complementary set ofW in [�(1=2); (1=2)].
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Fig. 1. Power transfer functionjh(e )j .

where and are the same as in-RM. This time,
is the series obtained by inserting a zero between two consecu-
tive symbols. The process is periodically correlated since
the autocorrelation function is peri-
odic of period 2 in the variable. The cyclocorrelation coef-
ficients of are defined as

and . The th
cyclospectrum is the discrete Fourier transform of

. Gather the second-order statistics into the spectral
matrix

It is straightforward that is expressed as

A subspace method lying on this set of statistics can be
used to extract the channel [23], [24] if and only if
is nonzero4 for all (including ). In this case, the orthog-
onal projector is precisely the one encountered in-RM for

, hence making the quadratic subspace matrix coincide
with . Hence, the analysis of Section IV holds for this
spectral factorization method: The estimate is not reliable in
the band of frequencies . As far as
the standard approach of [9] is concerned, denote the quadratic
matrix by ; unfortunatly, the link between and
is not easily seen. However, as is shown in [10] and [25], the
smallest spheroidal sequences of
also belong to the numerical kernel of , thereby creating a
link between -RM and FS.

V. NUMERICAL ILLUSTRATIONS

We consider the matrix of [9], which was evoked in Sec-
tion IV-E, as a point of comparison.

A. On the Existence of a Numerical Kernel and its Structure

Consider the communication channel the power transfer func-
tion of which is represented in Fig. 1; this channel corresponds

4This condition is equivalent to the condition that the two polyphase compo-
nents ofh(z) have no common zeros.

TABLE I
MULTIPATH REALIZATION

Fig. 2. Non-null eigenvalues of(Q ) andQ in decibels.

TABLE II
SPHEROIDAL EFFECT

to an excess bandwidth factor (i.e., ) and to a
multipath realization given in Table I. The complete impulse re-
sponse is truncated such that 1% of the total energy is removed.
This makes be a degree polynomial.

All the nonnull eigenvalues of for and
of are represented in Fig. 2. Notice that for and
for the FS case, the existence of a numerical kernel is clearly
exhibited; this is coherent with the analysis led in Section IV, in
which the existence of a numerical kernel is proved to occur as
soon as , i.e., . More precisely, the dimension
of the numerical kernel of , for , is given in Table II.
Furthermore, the values are computed for all
the smallest spheroidal wave sequencesrelative to the “cor-
rupted” band . The same quantities are computed
for , for which this interval is . The results cor-
roborate our analysis since the belong clearly to the
numerical kernel (indeed, and are small).

Consider the case of . The excess bandwidth varies
from 20% to 100%. The analysis in Section IV shows that sphe-
roidal effects are expected to occur as soon as . As

, this gives . In Fig. 3, the smallest
non-null eigenvalue of is represented as a function of. Re-
markably, the case corresponds to a good conditioning
of , whereas this conditioning is all the worse asdecreases,
as expected by our heuristic analysis.

B. Impact of the Numerical Kernel on the Statistical
Performance

Within this section, the SNR is 30 dB.
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Fig. 3. Smallest non-null eigenvalue (in decibels) of(Q ) versus roll
off.

Fig. 4. T jĥ (e ) �h(e )j in decibels for “large”T .

Channel 1 is considered (recall that ). In the
frequency domain, let us now represent

for large ; we considered the FS and the-RM
for cases. The analysis given in Sections IV
and III-C shows that is expected to
be huge in the band of frequencies when this interval is not
empty, i.e., for the FS and . In Fig. 4, the functions

are plotted in the cases above
specified.

• FS case: ; indeed, the covariance is huge
within this range.

• : ; the covariance is big
within this band of frequencies.

• : . The covariance is approximatly con-
stant. The estimate is reliable.

Last, we consider once again the excess bandwidth as a vari-
able. It is proposed to evaluate trace, which represents
times the mean square error for different
values of . The results are put in Fig. 5. This shows that the
case is not sensitive to a variation of, whereas in the
case where , one should have more than a threshold
in order to ensure a good behavior (the analysis gives ,
and in fact, one should not choose ). As far as the FS
system is concerned, one should choose to ensure a good

Fig. 5. Trace(C) (in decibels) versus roll off.

Fig. 6. Mean square error (in decibles) versus SNR.

performance; indeed, the interval is never empty, whatever
.

As a conclusion, all these illustrations confirm the results of
our heuristic approach.

C. Simulation Results

Once again, we consider Channel 1 ( ). The exper-
imental mean square error for FS and

-RM, are represented in Fig. 6. The number
of observations is . The number of Monte Carlo trials is
100. The SNR varies from 5–50 dB. Notice the (expected) im-
provement of performance in the case over the other
cases (FS and ).

VI. CONCLUSION

In this paper, the -repetition/modulation precoder is inves-
tigated on the blind second-order identification point of view.
We have proved that the estimate of the unknown channel, re-
lying on a structured subspace method, can show poor perfor-
mance if the channel is bandlimited to . More
precisely, when , the estimate is likely to be the de-
sired channel superimposed with undesired bandlimited sphe-
roidal sequences. If the condition , no such bandlim-
ited effect can be exhibited, and indeed,-RM is then an ap-
pealing precoder in the sense that it allows a high-performance
estimation of the unknown channel.
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APPENDIX

JUSTIFICATION OF CLAIM 1

Recall that we address the problem of the conditioning of
in the noiseless case, i.e., is given by (8).

In the sequel, we call the comple-
mentary interval, in , of , so
that

if

Recall also that ; we have

if

Let and In order to examine the
numerical kernel of , we propose to show the consequences
of the bandlimited character of on the orthogonal pro-
jector . This projector is such that

(9)

This equation simplifies accounting for the following relation:

Indeed, (9) can be written as

(10)

where is a polynomial directly obtained
from (see Section III). Rewriting ,

and accounting for (8), the subspace equation (10)
gives, in particular [take the trace of (10)]

In particular

On the other hand, for ; hence

(11)

In general, notice that is nonzero in except if
is not an empty set, i.e., if (see Figs. 7

and 8). Equation (11) then implies

if

A symmetrical analysis, this time considering the restriction of
the integral (10) to the interval , shows that

if

We have proven the lemma.

Fig. 7. Case 1:� � 1� � and� � (�=2).

Lemma 1: As for each , the orthogonal
projector is such that

if (12)

if (13)

We now examine the consequences of Lemma 1 on the nu-
merical kernel of . For this, we introduce the set

We have the following result.
Lemma 2: If , we have . On the contrary,

if , The proof is
simple. We provide, in Figs. 7–10, an illustration of the different
configurations.

Suppose now that , which, according to Lemma 2,
means that . Consider as one of the smallest sphe-
roidal wave sequence of the interval . There are

int

such sequences. We have, from Section IV-B

if and . We aim at proving that
belongs to the numerical Kernel of ; we therefore consider
the quantity , which, accounting for (5) and (6), can be
expressed as

(14)

The integral (14) may be cut into several ones.
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Fig. 8. Case 2:� � 1� � and� > (�=2).

Fig. 9. Case 3:� � 1� � and� � (�=2).

• Let us inspect . By Lemma 1, this integral equals

On the other hand, on this interval ,
and hence, the integral (14) is approximately null in the
set .

• Similarly, the integral on equals

and hence, as on this interval, the re-
striction of integral (14) on is also approximately
null.

Fig. 10. Case 4:� � 1� � and� > (�=2).

• On , both and are
approximately null, indicating that the integral (14) is nu-
merically null on .

• Equation (14) remains to be inspected on. Notice that
this term depends both on and for

. As for , it
yields that both and are approx-
imately null on ; hence, the component of integral (14)
on is numerically null.

This result is proven for any . One could consider

(15)

It similarly yields

thus showing that any vector, such that (15) holds, belongs to
the numerical kernel of .

We have therefore exhibited a linear space spanned by the
true channel and some spheroidal wave functions on which the
quadratic subspace matrix is almost null. This says that
exhibits a so-called numerical kernel. Moreover, this numerical
kernel is shown to be,at least, dimensional.

Remark 3: The matrix may be ill conditioned for certain
values of owing to the bandlimited character of (see
[7]). In this case, has a numerical kernel that is difficult to
separate from the effective kernel. In other words, the matrix
should be replaced by, which is the projection matrix onto the
extended kernel. This implies to change in . However,
it is easy to prove that our analysis remains unchanged when
replacing by .
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