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a-Repetition/Modulation and Blind Second-Order
|dentification

Philippe Ciblat, Antoine Chevreuil, and Philippe Loubatdember, IEEE

Abstract—in the context of redundant filter-bank precoders second-order identification methods with which these precoders
for blind second-order equalization, we consider thea-repeti- gre associated are shown to be robust to the channel; indeed, an

tion/modulation scheme. Although it is theoretically possible, the 5 qaprajc result states that the channel can be recovegead-
identification of a bandlimited communication channel suffers .
lessof the channel zero location.

from numerical problems if « is beyond a boundIf « is below . .
this bound, simulation examples illustrate the robustness of the ~ The so-calledy-repetition/modulation precoder (the param-
channel estimate. eterw is a real number if0, (1/2)]) is a particular redundant

precoder combining repetition and modulation and was intro-
|. INTRODUCTION duced in [17]. As soon as fulfills a certain nonrestrictive con-

_ . dition, the channel can be estimated by a structured subspace
HE TRANSMISSION of data aver a dispersive unknowr}nethod. Contrary to the approach proposed in [14] and [26] in

channel is considered. In many equalization procedur?ﬁe context of a modulation of the symbols, the algorithm ex-

the channel needs to be estimated. A standard solution con ?‘ttﬁts the appealing property called “deterministic.” However,

in sending penqdlcally a tram_mg sequence. HO\_/vever, the the context of communication, bandlimited channel-poor per-
crease of capacity to which this approach leads is unaffordal €mances are noticed for big's (close tol /2). The contribu-

when_ th(_a channel yar|at|ons are fas_t. In _ th_'s respect, MAWns of the paper are 1) to explain this undesirable behavior and
contributions deal with the problem of identifying the unknow

. i ) : . 2) to find the values ofy for which this behavior collapses.
channel resorting exclusively to the received signal (“blin

thods). Consistent with the fast . . i The o-RM transmitter is analyzed in Section II. Section IlI
metho .S)' onsistent wi € fast varying environment CoRe ., cerned with a blind second-order based estimate of the
straint, in this paper, we focus on the second-order metho

. . . . annel by means of a noise subspace method. The extraction
since the covariance coefficients are known to be reliab

) the one-dimensional (1-D) kernel of a certain matgy is
estmated by means of .few samples. Thanks tq [1]_[6]‘. tI%‘l:ﬁown to provide the channel up to a constant. As soom as
fractional sampling receiver can apparently provide solutlo%%

. . e i h f the ch l,i
to the blind second-order identification problem, at least Wh?g‘gﬁg\?v?]dtﬁatgugih?;?: gq‘lrr:gr:gritcz,,sfeﬁﬂzrocf) ; d?n?er?;gi t

the channel exhibits an unusual condition on its zero locatiQf}, ...« more than one which is spanned by spheroidal wave se-
All the approaches, however, fail to provide a robust estlmai% nces (see Section 1V). This claim is essentially based on a

of the channel as far as communication channels are concer%‘e ristic analysis because it is difficult to study analytically the

Indegd, the '”.‘p"c't cyclostationarity on which these methp ehavior of (quasi) bandlimited FIR transfer functions. Section
rely is numerically weak due to the small excess bandW|d§/

factors used in most communication contexts [7], [8]. For
instance, such a popular algorithm as the subspace method [9]
shows undesirable numerical behaviors [10]. Il. DESCRIPTION OF-RM

To avoid such problems, an idea consists of increasing thgp, he sequel{s,} denotes a unit variance zero-mean i.i.d.

strength of the cyclospectra at the receiver. This can be achie@ﬁnbm sequence with baud rat¢Z,. The analog impulse re-

by passing, at the emitter, the symbol sequence into & P&flonse of the channel is denoted hoy(t); it stems actually

odic precoder; the artificial cyclostationarity to which these prery, the conjugate effects of a pulse shaping filter (in general,

coders lead is referred to as transmitter induced CyCIOStati%équare-root raised cosine designed for transmissiby) and

arity (TIC). This idea was introduced by Tsatsanis and Giagp, nknown channel due for instance to multipaths. We assume

nakis, who first argued in favor of a repetition of the symbol§e channel to be static, in regard to the duration of observa-

In [12]-{14], and [26], a modulation of the symbols is showlgon \without any restriction, we assume thatt) is causal and

to provide good channel estimates. In [15] and [16], a genefa} jimited. As the transmission is confined within a given fre-

formalism using redundant filterbanks is introduced. The bllr‘t_(f[Jency range, the frequency response of the channel is approx-

imately bandlimited, and the frequency support is denoted by
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where {w,(¢)} is modeled as a white Gaussian noise Witly,, 7,41 ¢~ 2™, Atlagsn = L, ---, M — 1, {Y,,} can
double-sided power density,/2. In contrast tp this standardbe expressed as

transmission, the TIC approach proposes to transmit a trans-
formed version of the symbol sequence—see the filterbank
framework given in [15]. Precisely, the symbols are passed
through a precoder. Lét/ and P be two integers; the output of

L
Yo =30 HY sy + Wo = [Ha(2))sn + W (4)
k=0

the precodefw, } is given by where
h(z)
Unpr 1
SnM H (7) —_ =
« \/Q 2w
UnP41 SnpL h{ze®™)
= K

andW,, = (wp,wnyn e~ 2™ is such thatE[W,,,. W]
= %6, 1. In the sequel, the length of a burkf is supposed
s to be big compared with the length of the channel: in real
nM+M—1 .
Unpr+pr-1 systems M typically represents the number of symbols to be
transmitted over a slot on which the channel can be assumed to
be constant (e.g44 = 146 for the European GSM system).

T, = (MT_S/_P)' In order to ensure the retrieval ({tg’f} Therefore, there is no restriction in the following to just exploit
from {v,.}, it is assumed thak is a tall full-rank matrix \ otorsy form = L. ... M — 1
n - ) 7 .

normalized in such a way that the emitted (or received) POWErTha model (4) states that theRM artificially creates a kind

is fixed. The received signal can be written as of diversity. This diversity is unusual since the two components

of the unknown array,, (=) are deduced one from the other
valt) = Z Un halt =nTy) + wa(t). 2) by a shift in the freqtﬁn((:y)domain. Intuitively, — 0 makes

" the two components become closer, thereby making the diver-

Itis worth mentioning that the required bandwidth is the samegﬁy vanish; in some sense, the paramet&ontrols the diver-

in the single carrier case; this is due to the fact that the spect@y;, and the choice of: is crucial. In the following sections,

density of} ", vy ha(t — nT%) is proportional to the square ofthe blind second-order identification @, (z) and, hence, of

the modulus of the Fourier transform &f(¢). As far as the p(»), is addressed. The bivariate model (4) is similar, up to the

a-RMis concerned, the precoding matrixis/ x M, meaning structure, to the one encountered in classical diversity contexts;

that the baud rate dfv,, } is twice the baud rate dfs,. }. Inthis  therefore, it is natural to investigate the identification problem

Notice that the time between two successivg is

paper,K is the matrix defined by blocks as adapting the famous noise subspace method of [9].

1 In IIl. BLIND IDENTIFICATION

K= 3) .
V2 Dy (o) A. Structured Noise Subspace Approach
‘ ‘ Let L be an estimate ak, which is the channel order. In the

with Dy(a) = diag(l, ¥, ..., XM -De) The re- sequel, it is assumed thét > L, i.e., the model is possibly
ceived signal as given in (2) is sampled(af7,) = (2/1;); overdetermined. We propose to take into accountithe- I,
we, of course, assume that prior to this sampling(t) samples’(n)forn = L, ---, M — 1in order to estimate the

is lowpass filtered in the band-(1/T), (1/7;)]. Letting channel. TakeV < M — L. We consider the big vectd,, =
Un = Ya(n(L3/2)), wn = wa(n(13/2)), ha = ha(k(L3/2)), (YT, Y., -, Y, )" forthelagse = N+ L, ---, M —1.

andh(z) = Y r_, hez"*, we get It is readily seen that
L g gl gl g 0
y(n) = Z P Unio + wn [h(2)]on + Wy 0 ! t
k=0 - o H® H® ... H®

As {w,, } is stillwhite, we denote by? its variance; hence;? =
(No/Ts). Consider the transmission of a burst/gf symbols
{5n }n=0, m—1, thus corresponding to a burst 8/ pseudo- R o H® H ... H®

symbolsw,,; owing to (3), a burst is split into two consecutive T(}; )

bursts of lengthM: the first one being the burst of symbols

and the second a modulated version of this latter. Up to border “Sn A+ Wa

effects, the received data can also be split into two pgrihe WheresS, = (s, sn_1 -+, snn_r)T, andW, = (W7,

first one is the filtered version of th& -length burst of symbols, .+ PSRN :
andii) the second one is the filtered version of the modulateg;"—l’ o Wiy )T T(Ho) iSthe2(N +1) < (L+ N+ 1)

. o . - Ivester matrix associated with the filteH.(z). The
symbols. Consider the bivariate process, } given byY, = (N + 1)-dimensional covariance matrix dfY,} is simply

Iwhich imposes thaP > M or equivalently thafl’, < 7. R =T(H)T(Hy)" +O—2_[2(]\T+1).
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We chooseV such that the matrif (H,,) is tall, namely, one We estimate the projectat by I1, which is the orthogonal pro-
choosed +1 < N < M—L. Thisimplies tha (H,)7 (H,)* jector onto the space generated by the eigenvectors associated
=R- aQIQ(NH) is a singular matrix. Denote ky the orthog- with the smallest eigenvalues &f. The quadratic matrik)., is
onal projector onto its kernel. Takz) = > +_ frz* to be €stimated by
a genericL-order polynomial, and denote W, (z) = (1/v/2)

(f(2), f(ze®™)NT its associated bivariate structured polyno-
mial. The subspace method consists in investigating the Mapry the channdl by?

(o = P*DL Dy P

ping X
hr = argmin f*Q.f.
f— Tracell7 (F,)7 (F,)*II*). lFll=1
This is a quadratic form in the coefficient§f;). Let- Notice thatin the noise-free case, the estinfats simply
ting f = (fo, fl,---,fi)T, the subspace mapping _—
can be written asf*Q,f for a certain (L + 1)-dimen- R =T(H.) <l Z 5n5*> T(H,)"
sional positive Hermitian matrixQ,. We decomposél as T —= "

II =1, ---, IIx], where each matrikly, is2(N + 1) x 2. If _ _ )
I(c%™f) = Ef—o IL,e=2i7*/  the matrixQ., is expressed as and the extraction of the projectfir can be done exactly with

a finite number of samples. Hende; andh coincide uptoa
Qo = P*D};DyP (5) constant;the algorithmis called deterministic. This is in contrast
with the structured subspace algorithm used in [14] and [26] in
where the context of modulation TIC precoders.

Dy = / i W D%(e”’ff) @II(¥~ydf (6) C. Statistical Performances
—1/2 It is standard (see [18]) thatT (ks — h) converges weakly

and P is a block-diagonal structure matrix, which is thth t0 azero mean normal random vector with covariance matrix
2 x 1 block given by(P); = [1, e~2*]T_ For any integer
k, the directional vector of ordek is defined asDj(e?™f)
=1, T2 emHTROT The theorem below gives a con~here()# stands for the pseudoinverse, s a certain non-
dition on « for the channel to be retrieved up to constant frorﬁegative matrix.
Q.. We now have the following theorem.

Theorem 1 (Identifiability): Supposex is rational, namely, p. Existence of an Undesired Numerical Kernel
a = (p/q) with p andq coprime. If¢ > L, the kernel of the
matrix 2, is a 1-D subspace spanned by the channel vector

C = Q¥P*DyXDuPQY @)

In the context of communication channels, it has been no-
ticed that for certain choices of, Q. exhibits a 1-D kernel, as

h=(ho, hi, -+, h1, 0, - O)T. expected from Theorem 1, but also has eigenvectors associated
’ - with “small” eigenvalues. Of course, such a phenonenon pre-
L—=L vents the subspace algorithm from showing good performances;
In others words, the structured noise subspace method alldideed, because the exact kernetof and its numerical kernel
identification of the filterh (=) up to a scalar. are difficult to separate, the estimdie is likely to belong to

This algebraic result is proved in [12]-[14], and [26] and de? corrupted version of the numerical k_ernel@;. Moreover,
voted to the modulation TIC precoder. Notice that in contrafem (7). the existence of these small eigenvalues makes the co-
with the classical nonstructured subspace method, the unknd(@iance matrix huge in the direction of the associated eigenvec-
filter is recovered irrespective of the channel zero location at@fS- This phenonenon is now specified.
whatever the overdetermination factor.

Remark: For sake of clarity, we suppose in the sequel thatV: EXISTENCE AND ANALYSIS OF THE NUMERICAL KERNEL
L = L. Moreover, it is implicitly assumed that fulfills the OF Qa

condition of Theorem 1. A. A Qualitative Remark

In the following, we denote byl /2) < 8 < 1 the bandwidth
) o ) of the channel sampled ay7.. This quantity is related to the
In practice, a finite number of data is collected, and the matrix cess pandwidth parameter singe= ((1 + v)/2) (see Fig.
R is estimated from these data. We denotelby M — L the 1) we assume, for sake of clarity, a noiseless case. Denote by
number of available samplé&$,; for simplification, we reindex S(¢**/) the spectrum of the bivariate proces, }. As {s,}
the data and denote them BY), },—o, 1. From these data, i \white. we have
one has to estimate the Toeplitz matRxand then the projector

I1. Consider the matrix Sy = Hy (™Y H, (™), (8)

B. Estimate of the Channel

R 1 2This is not a proper definition since this the phase indetermination remains.
R== Z W5 This problem is out of the scope of the paper, as we aim to identify the channel
up to a constant.
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The statistical information is contained in the componeni&he linear space spanned by the true chahraid the smallest
(1,1) and (1,2) of S(c?7F), i.e., in |h(e?**f)|2 and spheroidal wave sequences of length- 1 of the intervat We¢
h(e2™ (2™ (+ay : as h(e27f) is bandlimited, the term belong to the numerical kernel 63,,. As a consequence, the
h(e? ) h(e~(f+2))* is all the less relevant as is close asymptotic covariance of the subspace estimate is huge in the
to 1/2 (“big” «'s); in this case, the (numerical) supports oband.

h(e?7F) andh(e2~(f+2))* have a narrow intersection, making A justification is proposed in the Appendix.

their product small. For instance, if the excess bandwidth

is zero (in this casey = 0 and3 = 1/2), the quantity D. Consequence

h(e?)h(e~UFe)r s null for « = 1/2. The spectral  within this section, it is assumed that > /2. Let s be
density S(c"*™/) thus provides onlyh(c"*™/)|?, which is, of 5 = int((L + 1)(2a — 3)). Consider a vectdrof the numerical
course, not sufficient to identifji(¢***/). The closerx is to  kernel of Q,—recall that the channel estimate is likely to be
1/2, the more numerical problems are expected. Thshiould ¢lose to such a vector. According to Claimiimay be a linear
be upper bounded is now specified. combination ofk and some of the smallest spheroidal wave
sequences of the baii, which are denoted bk ;) ;—o, s—1;

in the frequency domain, this implies that
The orderL + 1 spheroidal wave sequences ([19]) on an

B. Short Review on Spheroidal Wave Sequences

interval Z are the (unit norm) eigenvectofgk;};—o, ;, asso- J(ei2mly = (g2t h(ein
ciated with the eigenvalues, < --- < A of the positive (™) = ZO Tk (€7) + ()
3=

(L+1) x (L + 1) Toeplitz matrixKz_, which is defined as

‘ for some complex-valued constafits). Howeverk; (¢?7/) ~
Kz, L :/ Dy (2=l \DT (¥ df. 0 when f € We, but this is not the case if € W. In other
7 words, the subspace cannot provide a reliable estimate of the
They play an important role in various problems involvinghannel (up to a constant) in the barvid The second part of
implicitly bandlimited signals, for instance, in bandlimitedClaim 1 gives an insightful consequence of the existence of a
spectral estimation [20]), broadband source localization [2Xumerical kernel on a statistical point of view. Indeed, due the
array beam-forming ([22]), etc. The matrikz,;, is known termsQ# in (7), the asymptotic covariance matiixis prone
to be ill conditioned, and its “numerical” rank is equal tao exploding in the directions of the spheroidal wave sequences
int((L + 1)|Z]), where inf.) stands for the integer part ¢f) (k;);—o s 1. Consider the quantity
and where|Z| represents the size &. In the following, we )
denote by the dimension of the numerical kernel/6t .. For |E(ei2wf)|2 - TE ‘;}T(ei%f) — h(e??7)
agivenk; = (k; o, ---, k; r), we let the associated transfer
function bek;(z) = 3., kj 127" As KKz, rk;isgivenby which represents the localization in the frequency domain of
the mean square error. We have, for laffie|E(e??™7)|? ~
KKz, pk; = / |]ﬂ}j(62iﬁf)|2 df tracé CDr.(¢27F) DT (¢271)). We consider the average of the
z mean square error on the inter¥&l. It can be shown to verify
the existence of a numerical kernel &f;, ;, implies that for
j<s / | B df = tracd Cow, 1)
w

(2T i L L
ki(e™™) =0 it fel. As C may be explosive in the directions of the sequences

In others words, the FIR filters; (¢27/ ) for j = 0, s—1 associ- (kj)j=0, s—1, the mean square error is thus likely to be huge in

ated with thes so-called “smallest” spheroidal wave sequencége bandV; the estimate is not reliable in this band of frequen-
of Z are nearly bandlimited, and their support coincides with tHe€S-

complementary set & in [—(1/2), (1/2)]. Remark 2: Conversely, the condition < (3/2) does not
’ ensure that the numerical kernel is reduced to the spdn of
C. Numerical Kernel o), however, the previous bandwidth considerations cannot prove

the contrary. The simulation evidence (see Section V) illustrates

In this section, we justify, by means of heuristic argument . . .
that ¢, may exhibit, in addition to its natural 1-D kernel, aﬁjiat the conditiony < (/3/2) is sufficient to ensure that the

‘ . . . ' “numerical kernel is 1-D in a typical transmission context. Of
undesired numerical kernel. This is proved to occur whes .
; . : coursegq should not be taken too close from 0 in order to ensure
too big. We claim the following.

Claim 1: If o > (53/2), Q. exhibits a numerical kernel of a good diversity between the two component’f

dimension more than 1; actually E. Fractional Sampling (FS) and-RM

dim Ker(Q,) Z 1+ int((L + 1) (2a — 3)). The FS receiver consists in sampling the signal given by (1)

) _ at the baud-raté/T,. The discrete (noiseless) time series is
In this case, denote by the interval

ul? = [h(2)]-3,

S denotes the complementary sebofin [—(1/2), (1/2)].
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LT T TN T TABLE |
: : : : MULTIPATH REALIZATION

Attenuations | -0.65+1.52i | 2.81-0.08i | -0.42+0.47i | -0.59-0.47i | -1.33+1.31i | 2.03 + 0.56i

Delays (xTs) 0 0.16 113 181 2.04 2.48

Fig. 1. Power transfer functio (e*27/)|%.

whereh(z) andw,, are the same as in-RM. This time,{s,,}
is the series obtained by inserting a zero between two consecu:
tive symbols. The proces;ébfs) is periodically correlated since ) 2 4 6 8 10
the autocorrelation functio®R(n, 7) = [Ey,(fifzy,gfs)* is peri-
odic of period 2 in the variable. The cyclocorrelation coef-
ficients of y$'* are defined asi©@(r) = (1/2)(R(0, 7) +

Fig. 2. Non-null eigenvalues @2 )o=0.1s,0.42 andQ@ ;, in decibels.

TABLE I

R(1, 7)) andR(l)'(T)‘ = (.1/2)(R(.07 T) — R(l,_ 7)). The jth SPHEROIDAL EFFECT
cyclpspectrunﬂ(ﬂ)(e””f ) is the discrete Fourier transform of
(RY)(1)),. Gather the second-order statistics into the spect FS RM (o = 0.42)
matrix Dimension of the extra numerical kernel 4 2
‘ 5(0) (e27F) S (e 1) {k;Qk;, j=0,...,5 -1} 0.0018 0.0028 0.0080 0.0619 | 0.004 0.025
S(CZQﬁf) —

S(l)(eiwa)* S(O)(eiwa)
to an excess bandwidth facter= 0.2 (i.e., 3 = 0.6) and to a
It is straightforward thas(c¢*?/) is expressed as multipath realization given in Table I. The complete impulse re-
i2mfy i2 f 2 o sponse is truncated such that 1% of the total energy is removed.
S(e) = Hypa(e"™ ) Hy o (€))7 This makesh(z) be a degred. = 11 polynomial.
All the nonnull eigenvalues af),, for « € (0.18, 0.42) and
Q)+ are represented in Fig. 2. Notice that ter= 0.42 and
for the FS case, the existence of a numerical kernel is clearly
exhibited; this is coherent with the analysis led in Section IV, in
Wéﬂch the existence of a numerical kernel is proved to occur as
oon asy > /2, i.e.,« > 0.3. More precisely, the dimension
the numerical kernel af.,, for « = 0.42, is givenin Table Il.
urthermore, the valudﬁj(Qa)a:OAij are computed for all
gﬂ% smallest spheroidal wave sequenkgselative to the “cor-
rupted” band—0.12, 0.12]. The same quantities are computed
ﬁgr Q., for which this interval i§—0.2, 0.2]. The results cor-
roborate our analysis since ttl; ) ,—o, .—1 belong clearly to the
numerical kernel (indeed; Q. k; andk’Q ssk; are small).
Consider the case of = 0.42. The excess bandwidth varies
from 20% to 100%. The analysis in Section IV shows that sphe-
roidal effects are expected to occur as soofH2) < «. As
8 = (14 v)/2), this givesy < 0.68. In Fig. 3, the smallest
We consider the matrig s, of [9], which was evoked in Sec- non-null eigenvalue of)., is represented as a functionofRe-
tion IV-E, as a point of comparison. markably, the case Z 0.68 corresponds to a good conditioning

) ) ) of @, whereas this conditioning is all the worsejyedecreases,
A. On the Existence of a Numerical Kernel and its Structure g5 expected by our heuristic analysis.

A subspace method lying on this set of statistics can b(?
used to extract the channel [23], [24] if and onlyHf /2(») 0
is nonzeré for all = (including «<). In this case, the orthog-
onal projector is precisely the one encounteredwRM for
«a = 1/2, hence making the quadratic subspace matrix coinci
with @Q;,2. Hence, the analysis of Section IV holds for this
spectral factorization method: The estimate is not reliable
the band of frequencids-((1 — 3)/2), ((1 — 3)/2)]. As far as
the standard approach of [9] is concerned, denote the quadr
matrix by Q; unfortunatly, the link betweer), ,, and Q,
is not easily seen. However, as is shown in [10] and [25], t
smallest spheroidal sequenceg-ef(1 — 3)/2), ((1—73)/2)]°
also belong to the numerical kernel @f;., thereby creating a
link betweenl/2-RM and FS.

V. NUMERICAL |LLUSTRATIONS

Consider the communication channel the power transfer func-
tion of which is represented in Fig. 1; this channel corresponBs Impact of the Numerical Kernel on the Statistical

. L . . Performance
4This condition is equivalent to the condition that the two polyphase compo-

nents ofk(z) have no common zeros. Within this section, the SNR is 30 dB.
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» ! ! f ! '

Fig. 3. Smallest non-null eigenvalue (in decibels) &, ) =0.42 Versus roll
off.

15 e S I RM (6= 0.42)

10F - R R Aeay ARt SRR ....... (R P AEEETED eees -

Fig. 6. Mean square error (in decibles) versus SNR.

performance; indeed, the interval is never empty, whatever

Fig. 4. TE|hr(e2i™!) —h(e2*)|2 in decibels for “largeT". 0<~ <1
As a conclusion, all these illustrations confirm the results of
Channel 1 is considered (recall that = 0.2). In the our heuristic approach.

frequency domain, let us now represefftE|hy(c?2~/)
—h(c?7F))? for large T; we considered the FS and theRM  C. Simulation Results

forda Ec(oﬁ& 0';112) casiles. T2h?c anzlysgs?iVQen in Secti%ns IV Once again, we consider ChannelL £ 0.2). The exper-
and IlI-C shows thai’ E eI —h(e®™ is expected to ; L 3
be huge in the band of|fr€((]uenc)|lé$ V\Shen t21|is interF\)/aI is not imental mean square errér ) ., |z« n h-k|2 for FS and
X . s a-RM, « € (0.18, 0.42) are represented in Fig. 6. The number
empty, - J:or the FQS ?nQd = 0.42.In Fig. 4, the functions ¢ yhqervations ig” = 300. The number of Monte Carlo trials is
T[EV,LT(GZ ™) —h(e=*)|" are plotted in the cases aboveloo_ The SNR varies from 5-50 dB. Notice the (expected) im-
specified. provement of performance in the case= 0.18 over the other
* FScaseW = [-0.2, 0.2]; indeed, the covariance is hugecases (FS and = 0.42).
within this range.
e a = 042: W = [-0.12, 0.12]; the covariance is big
within this band of frequencies.
* o = 0.18: W = {). The covariance is approximatly con- |n this paper, thex-repetition/modulation precoder is inves-
stant. The estimate is reliable. tigated on the blind second-order identification point of view.
Last, we consider once again the excess bandwidth as a vave have proved that the estimate of the unknown channel, re-
able. It is proposed to evaluate tré€g, which represent§” lying on a structured subspace method, can show poor perfor-
times the mean square enE)rELO |]A7,T7k — hy|? for different mance if the channel is bandlimited te(3/2), (3/2)]. More
values ofy. The results are put in Fig. 5. This shows that thprecisely, whenx > (/3/2), the estimate is likely to be the de-
casex = 0.18 is not sensitive to a variation ef whereas in the sired channel superimposed with undesired bandlimited sphe-
case wherer = 0.42, one should have more than a threshold roidal sequences. If the conditien< (3/2), no such bandlim-
in order to ensure a good behavior (the analysis giv€s0.68, ited effect can be exhibited, and indeedRM is then an ap-
and in fact, one should not choose< 0.4). As far as the FS pealing precoder in the sense that it allows a high-performance
system is concerned, one should chopse 1 to ensure a good estimation of the unknown channel.

VI. CONCLUSION
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APPENDIX
JUSTIFICATION OF CLAIM 1
Recall that we address the problem of the conditioning@ of
in the noiseless case, i.&(c*™/) is given by (8).
In the sequel, we call;, = [—(3/2), (5/2)]° the comple-
mentary interval, inf—(1/2), (1/2)], of [—(5/2), (3/2)], so
that

W y~0 i fez. . b

Recall also thaf; = Z; — «; we have

h (62”<f+a>) ~0 if fels

LetZ, = (Z1 UZs)° andZy = Z; N Z3 In order to examine the
numerical kernel of),, we propose to show the consequences
of the bandlimited character &fc*2*/) on the orthogonal pro-
jectorlIl. This projector is such that

[IRII* = 0. 9

. . L . : . Fig. 7. Case lo > 1 — g ando < (3/2).
This equation simplifies accounting for the following relation: 9 ase o = #ande < (5/2)

R — / Dn (2N Dy (¢27F)" @ §(e>) df. Lemma 1: As h(c*?"F) = 0 for eachf € Z;, the orthogonal
—(1/2), (1/2)] projectorIl is such that
Indeed, (9) can be written as (7N I (™) =0 if f eI\, (12)

/ (27 S(2 (2 Y df =0 (10)
[-(/2), (1/2)] (2™ Iy (e?™ )y ~0 it feZi\T,. (13)
wherell(c*?*7) is a2(N +1) x 2 polynomial directly obtained
from II (see Section Ill). RewritingL(¢™f) = (II; (e2~f),
I1»(e*?77)) and accounting for (8), the subspace equation (1

We now examine the consequences of Lemma 1 on the nu-
&erical kernel of),,. For this, we introduce the set

gives, in particular [take the trace of (10)] W= (Zy Uy U(Zy + a))°.
/ < |h(ei27ff)|2 I (P27 Y 1L (27 We have the following result.
[—(1/2), (1/2)] Lemma 2: If o« < (3/2), we haveW = (0. On the contrary,

if « > (8/2), W = [(#/2) — o, o — (/2)] The proof is
simple. We provide, in Figs. 7-10, an illustration of the different

‘ 2 ‘ ‘
[ (2t Ty )*HQ(e%‘A”ff)) df = 0.
configurations.

In particular Suppose now thaty @, which, according to Lemma 2,
2nfy |2 2 fr i f means thatr > (/3/2). Considetk; as one of the smallest sphe-
/I1 <|h(‘3 )| I (") T () roidal wave sequence of the interyal®. There are
< 2 ‘ 4 .
+ ‘h (ezQW(f-I—oz))‘ HQ(GZQWf)*HQ(eZQWf)> df = 0. s = |nt((2a — /3) (L + 1))

such sequences. We have, from Section I1V-B

2 kj(@mrf) ~0
h (eiQﬂ'(f+oz))‘ (2 Y My (™) df 0. (11)

On the other handy(¢?**f) ~ 0 for f € Z;; hence
if feWweand0 < 5 < s— 1. We aim at proving thak;

A
belongs to the numerical Kernel 6¢f,; we therefore consider

In general, notice that(¢'*~(/+)) is nonzero inZ; except if e quantityk? Q.k;, which, accounting for (5) and (6), can be
I, = I;\Zs is not an empty set, i.e., if > 1 — 3 (see Figs. 7 expressed as

and 8). Equation (11) then implies
2PV (627 2 0 k;Qok; = / k(270 Y ke (2D
o (=™ Ty(e“™ ) = 0 if fe 1\ J J /2. (1/2)] ( 3 J ( ) )

A symmetrical analysis, this time considering the restriction of

the integral (10) to the interval;, shows that ki (&)

.H(eiQﬂ'f)*H(eiQﬂ-f) (k (JiQﬂ—(f—'—a))) df (14)
5 \C

We have proven the lemma. The integral (14) may be cut into several ones.

Hl(eﬂﬂ—f)*ﬂl(@mwf) ~0 |if f < 13\14.
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Fig. 8. Case 2w > 1— ganda > (8/2). Fig. 10. Case 4o < 1— 3 anda > (3/2).
! « OnZ; = I; N I3, bothk;(¢27/) and k; (e?2™(f+2)) are

approximately null, indicating that the integral (14) is nu-
merically null onZ,.

» Equation (14) remains to be inspectedZn Notice that
this term depends both dn(c?7/) andk; (e?7/+*)) for
f €L Ask;(e®™ ) = 0for f € W D To U(Zr +a), it
yields that bothk; (¢'?™/) andk;(¢?~(/**)) are approx-
imately null onZs; hence, the component of integral (14)
onZ, is numerically null.

This resultis proven for anfk, ) ,=o. s—1. One could consider

s—1

1=>"rik;+rsh (15)

i=0

It similarly yields

"Q.l~0

thus showing that any vectdrsuch that (15) holds, belongs to
the numerical kernel of),,.

We have therefore exhibited a linear space spanned by the
true channek and some spheroidal wave functions on which the
guadratic subspace matiix, is almost null. This says th&},,
exhibits a so-called numerical kernel. Moreover, this numerical
/ |]§j(ei2ﬂ—f)|2 I (7)) I (277 df. kernel is shown to bet least s + 1dimensional. O

Ti\Zs Remark 3: The matrixR may be ill conditioned for certain
values ofa: owing to the bandlimited character bfc?~/) (see
L?]). In this case;R has a numerical kernel that is difficult to
separate from the effective kernel. In other words, the malrix
should be replaced Hy, which is the projection matrix onto the
extended kernel. This implies to chan@e, in Q.. However,
it is easy to prove that our analysis remains unchanged when
replacing@., by Q..

Fig. 9. Case3un < 1— 3 anda < (3/2).

e Letus inspec‘tle\ 7,- By Lemmal, this integral equals

On the other hands;(c*?™/) ~ 0 on this intervalZ; \Z4,
and hence, the integral (14) is approximately null in th
SetL\I4.

* Similarly, the integral or¥3\Z4 equals

\/Ig \I4

and hence, ag;(¢?*(/+2)) ~ 0 on this interval, the re- REFERENCES
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. 2 . .
kj (CzQW(f+a))‘ HQ(CZQWf)*HQ(CZQWf) df
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