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Performance Analysis of Blind Carrier Frequency
Offset Estimators for Noncircular Transmissions
Through Frequency-Selective Channels

Philippe Ciblat, Philippe Loubatoiember, IEEEErchin Serpedin, and Georgios B. Giannakisllow, IEEE

Abstract—This paper deals with the problem of blind estimation  offset estimators for channels affected by unknown ISl effects
of the carrier frequency offset of a linearly modulated noncircular  gappears as an important problem.

transmission through an unknown frequency-selective channel. A In this paper, it is assumed that a linearly-modulated signal is

frequency estimator is developed based on the unique conjugatet itted th h K f lecti h |
cyclic frequency of the received signal, which is equal to twice the ransmitte rough an unknown irequency-selective channel.

frequency offset. Consistency and asymptotic normality of the fre- The continuous-time received wavefomy(t) is supposed to
quency estimator together with a closed-form expression for its be affected by a carrier frequency offset and/or Doppler ghift
asymptotic variance are also established. The closed-form expres-and is given by the following equation:

sion of the asymptotic variance enables analysis of the performance

of the proposed frequency offset estimator as a function of the oo

number of estimated cyclic correlation coefficients used. Itis shown _ _ 2im Fot

that optimum is obtained if the number of correlation coefficients Ya(t) = <kz skha (¢ kTS)) ¢ +wa(t) (1)
=—00

taken into account coincides with the degree of the channel. Nu-

merical simulations are provided and confirm the conclusion of the .
theoretical asymptotic analysis. where F, represents the carrier frequency offset, angl}

denotes the independently and identically distributed (i.i.d.)
symbol sequence, which is assumed of zero mean, unit vari-
ance, andnoncircularly distributed (i.e.,IE[s;] # 0). The
additive noisew, (¢) is assumed normally distributed, the baud
. INTRODUCTION rate of the transmitter is denoted hy7,, and h,(t) stands

LIND estimation of the carrier frequency offset and/ofor the convolution of the transmit and receive filters with a
B Doppler shifts is well motivated when it comes to comgenerally unknown multipath channel. Without any restriction,
pensate the local oscillator drifts and Doppler shifts induced e channeh,(t) is assumed causal and time limited.
the relative motion of mobiles in wireless communication sys- n order to retrieve the symbols, from a sampled version of
tems. Traditionally, channel estimation and synchronization refye observation, it is necessary to estimate and compensate the
on the use of a set of known symbols (sync word), whose tefultiplicative noise effect introduced by the carrier frequency
poral position is acquired at the receiver by cross correlatiféfset and the additive ISI effects due to the frequency-selective
the received signal with a prestored sync word. However, tif annel. Channel and residual carrier frequency offset estima-
acquisition is very difficult to perform, if not impossible, fortion is usually performed by transmitting periodically a known
frequency-selective channels affected by frequency offset [24pining sequence. However, such an approach reduces the ef-
Data-aided techniques are not particularly useful for Compef,qe_ctive transmission rate and is not feasible in many applications
sating the unknown intersymbol interference (1SI) effects in tHfgiCh as multipoint or distributed communication networks and
presence of residual frequency-offset [24]. Therefore, devallitary interception systems. It is therefore useful to explore

oping fast-converging blind or nondata-aided carrier frequenbjnd solutions for estimating and compensating the carrier fre-
guency offset. Thus far, only a few works have addressed the

joint blind estimation/equalization of the channel in the pres-
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the unknown channel. For this, it is possible to use the welince for eachr, 7(()>( ) = 0whena # «p, the conjugate
known fact that2F. is the unique conjugate cyclic frequencycyclic correlation coefficients enable to retrievg(f.) as fol-
of the received signal (see, e.g., [8]-[11]). The purpose of thisys:

paper is to establish and analyze the statistical performance of

the corresponding estimation schemes and to evaluate the lossin =~ ag =arg max J(a), J(a)= ‘
performance relative to the scenario when the frequency offset 2€(=05,0-5)

is estimated from the equalized output of the channel, assumw%z (a) = [r (a)( M),. 7(?)>( )T and2M + 1 de-

y(e)
perfect channel knowledge and ideal IS cancelation. noting the number of conjugate cyclic correlation lags consid-

ered. In practice, the unknown set of correlatui)f;%)> is esti-
mated using the following consistent estimate (see, e.g., [20]):

Lo

Il. CARRIER FREQUENCY OFFSETESTIMATOR AND RELATED

WORKS
N-1
Denote byy(n) the discrete-time signal obtained by sampling plo Z v (n)e=2iman

the continuous-time waveform,(¢) at the symbol raté /7: vo.N TN
y(n) := y,(nTs). From (1), the following discrete-time channel
model is obtained: where

L ‘ y2(n) = [y(n — M)y(n),....y(n+ My(n)]".  (3)

Z h emeen + w(n) - . .

=0 Hence,«p can be estimated using the estimator

= ([h(2)] - 5n) ™" + w(n) ) 2

ple)
Ly N

(4)

YN = arg a. ] 7 ] 7
Gy =arg  max (@), JIn(a)=

whereh(z) := Zleo he(IT,)~—* denotes the sampled version
of h,(t) at the baud rate/T5, L is the degree of the polynomial The statistical performance of this estimator was studied exten-
h(z), andw(n) := w,(nTs). The discrete-time equivalent fre-sively in [8]-[11] but only in the casé/ = 0. As it will be
guency offset is defined ag. := F.T, mod1. The estimation shown later, the choicd/ = 0 is quite relevant if the multi-

of f. is thus equivalent to that of estimatitg. plicative noisea(n) is white. If a(n) is colored, as is the case
Equation (2) can be rewritten as follows: in the present context, it is reasonable to expect that choosing
M > 0 leads to better performance.
y(n) = a(n)e® ™" 4 an(n) In this paper, we prove the consistency and asymptotic nor-
mality of estimateivy for M > 0. We show that the rate of
with convergence ofiy is O(1/N3/?) and provides a closed-form

expression for its asymptotic variance defined by

a(n) = [h(2)] - sp.

Thereforey(n) can be interpreted as a complex sinusoid cor-

rupted by the additive noise(n) and thecoloredmultiplica- e rely on this expression to discuss the choiceMdf In

tive noisea(n). Frequency estimation of harmonics corruptefarticular, we show that if\/ is greater than the channel
by additive and multiplicative noise was already studied by seiremory L, then the asymptotic variance is proportional to the
eral authors (see, e.g., [8]-[11]). These estimators exploit tgiance of the additive noise and, thus, converges to 0 when
common feature thato = 2. is the unique conjugate cyclic the signal-to-noise ratio (SNR) increases. By chooging- L,
frequency of the discrete-time signgln). Indeed, the conju- jt is shown that in presence of an unknown frequency-selective
gate autocorrelation function,«, (n,7) := E[y(n + 7)y(n)] channel of arbitrary memory, the asymptotic variance of the
of y(n) can be expressed as frequency offset estimator achieves almost the same asymptotic
variance as the frequency offset estimator in the presence of a
flat-fading channel, i.e., an ideally pre-equalized channel with
no ISI effects.

Wherer;‘(% () stands for the conjugate cyclic correlation of The starting point of the technical part of our work is the ob-
y(n) at lag7 and conjugate cyclic frequeneyand is obtained servation that the multivariate signal(n) can be interpreted as

as the generalized Fourier series (FS) coefficient of the time{multivariate) complex sinusoid of frequeney corrupted by

v= lim NE [(aN - ao)ﬂ . (5)

ryo (m,7) = 03 (r)etimeen

varying correlationr, . (n, 7): a nonstationary additive noise and that the cost funclig(x)
is equivalent to a periodogram [8], [10], [12]. The standard ap-
@) Nl girem proach to perform the asymptotic analysis of the periodogram
Tyte) () : Alﬂgo— Z Ef[y(n + 7)y(n)]e estimates is to introduce an auxiliary nonlinear least-squares

problem [13]-[16]. However, calculating the variance df
(e — hsrhy = 6 (0 — (ap) by t.hIS approach necessﬂate; complicated and tedious manip-
(o = Z ter i (&= o) "y (7). ulations that do not lead to interpretable and closed-form ex-

pressions whed/ > 0. We show that the auxiliary nonlinear
1The expressioh moda stands for the value df moduloa. By convention,
it belongs to the following intervaH a/2, a/2]. 2The superscript denotes transposition.

l=—0c0
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least-squares criterion is not necessary. We establish the asyhpaever, in the present paper, we deal with a more general
totic properties ofy - by using an alternative approach and obproblem. The main differences between the present context and
tain a closed-form expression for the asymptotic varianée\aof the previously mentioned works are twofold.

This paper is organized as follows. Section I1l establishes the j) e(n) is not stationary but cyclostationary.
link between the carrier frequency offset estimation problem jj) y2(n) is a multivariate process.

andthe probl_em of estimati_ng the_f_reque_ncy of aconstant a_mFPJI-cwever, most of the results in [13], [14], and [16] can be gen-
tude harmonic embedded in additive noise. The asymptotic kgajized to the present context. It is thus possible to adapt the
havior ofy and the closed-form expression for its asymptotignnroach of [13], [14], and [16] based on the introduction of the

variance are established in Section IV. In Section V, a theorggjiowing nonlinear least-squares estimation (NLSE) problem:
ical analysis of the influence of the parameldrand the filter
(K

h(z) on the asymptotic performance of the frequency offset esti- [ém . } = arg min Kn(8,a)
mator is conducted. In Section VI, practical issues regarding the «€(=0.5,0.5),0€C2M+1
calculation ofa y are addressed, and numerical simulations a\%ereKN(e, «) is the cost function defined by
performed in order to study the relevance of the conclusion pro-

vided by the asymptotic analysis. Finally, a conclusion is drawn 1 V=t ‘ y
in Section VII. Kn(8,a) = ~ Z [2(n) — 62|
n=0

[1l. HARMONIC RETRIEVAL LINKS (see, e.g., [9], [11], and [12] for the cas¢ = 0). Consistency

. . . 24
In order to show the equivalence between the present car@@d asymptotic normality of the NLS-estimat§"’ are rather
frequency offset estimation problem and the problem of esf22Y to obtain. Moreover, it can be shown that the estimates
mating a constant amplitude harmonic embedded in noise, e ~ anddy are asymptotically equivalent, i.e., both have the

first remark that same asymptotic variance. The evaluation ?f the asymptotic
] variance oféayy is thus equivalent to that afcg\,‘). However,
E [y2 (71)] — r(‘z‘o))GQzﬂ'(yon. (6) . . . fK) . ) L
yle calculating the asymptotic variance 4t ’ is quite difficult

because it requires the asymptotic covariance matrix of the
e

Consider the zero-mea&/ + 1)-dimensional vectoe(n) de- . o . . e
1) () vector-valued estimaty, &N‘)]T. Using this approach, it is

fined b
y quite difficult, not to say impossible, to obtain an interpretable
e(n) :==ya(n) — E[y2(n)]. (7) closed-form expression for the asymptotic varianceaaf
) whenM > 0. More precisely, ifM > L, it is difficult to show
From (6) and (7), it follows that that the variance ofiy converges to zero when the additive
_ plao) 2iragn noise variance converges to zero.
y2(n) Ty © +e(n). ® In the next section, we will develop a quite different approach

Thereforey(n) can be interpreted as a multidimensional hay generalizing the results shortly sketched in [15] whén=
monic of frequencyy, corrupted by the additive noisgn). 0, ande(n) is a stationary process.

Moreover, the criterio/ y («) in (4) is a periodogram because
IV. ASYMPTOTIC ANALYSIS

In(@) = 1 Z ¥ (n)e—2imen © In the _sequ_el, an overbar  will be used to denote com-
N o plex conjugation. Ifxy,...,x, are random vectors, the nota-
) . tion cuny, (xq, ..., xr) will stand for theLth—order cumulant
Itis easy to check that the autocorrelation funclg(n, 7) :=  (ansor of the vectors, ..., xz. As the filter h(z) in (2) is

Efe(n + 7)e"(n)] depends only on the lag (Re(n,7) = F|R e(n) satisfies the following mixing condition assuming

R.(7)) so thate(n) is stationary with respect to its autocor—Very mild standard mixing assumptions aftn) [22, p. 8, pp.

relation function. On the contrary, its conjugate autocorrelati%_ﬂ]_

functionR . (n, 1) := E[e(n + 7)e(n)] depends om as well Condition 1: If e@(n) = e(n) andeV(n) = e(n), then
asn. we have the equation at the bottom of the page.
R (n,7) = R(?SO)(,’,)CQiﬂ'Qagn. _ Essentially, the mixing Condition 1 re_fers_to thg fact that suffi-
€ ciently separated samples are approximatively independent and
Thus,e(n) is not a stationary process. is satisfied by all the finite memory signals encountered in prac-

Thus far, numerous works have been devoted to the probléne. Condition 1 appears useful in establishing the asymptotic
of retrieving the parameters of a number of harmonics erehavior of the proposed frequency offset estimator. Using Con-
bedded in noise by means of a periodogram estimator [13]—[18ition 1, it is possible to prove the following key lemma.

VL,3Mp < o0, ¥n, V(.. € {0,130 Y chmL (e(”l)(nl), . .,e(”L)(nL))H < M.
(n2,~~~,nr,)€zL71
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Lemma 1: Let Theorem 4: Assuming the mixing Condition 1, it follows that
N32(an — ap) = N(0, ) in distribution asV — oo where
S(A) Z 2i7ran v = ’721’713,721 is given by
N T le-l—l :
I{(?g) (}I{(?o)
Thert 1= % (13)
R
Y

VK €N, sup “s%()(a)
acCl0,1]

and

This result extends the main lemma introduced in [15] to any (a0) _ rg‘(lO))

multivariate nonstationary process that satisfies Condition 1. RJ(> - plao) |7 G = - T
The proof of [15] can be generalized to our context. For more Ty
details on the technical details, see [17] and [18]. This result i

[})/?atr icesT' and I'® denote the unconjugated/conjugated

important because it shows, in some sense, that the contri &ﬂ‘< o) ~lao)
tion of the additive noise(n) in the periodogranyx () (9) of ~2SYMPIOtiC covariance matricesddf . := F, ) y — Ty
va(n )(is vanishing asymptotically while the harmonic compo=~"
nentr, e?™on produces a nonzero contribution. (20)  calan)
Usmg Lemma 1, one can show the following theorem. ]\lgréo NE [& @, 0y, N}
Theorem 1:Under the mixing Condition 14y satisfies e — hm NIE [51“(?@)1\,51“(?3))T,}-
an — a2 0 andN(ay — o) 2250 asN — oo. vt
Proof: See Appendix AQ'A . , u Proof: See Appendix E. m
We now establish thaV3/2 4,y is asymptotically Gaussian. We have thus proved the asymptotic normality\s¥ 2 (é y —
For this, we note that ap) and that the convergence rate (@fy — ) is N¥/2, as
dIx () encountered in standard constant amplitude harmonic retrieval
=0. problems.
do .
a=aN
Using a first-order Taylor expansion of the derivative/gf(«) V. INFLUENCE OF M AND A(z)
aroundag, we obtain that Although it is possible to evaluate in closed-form in the
general noncircular case, we only focus in the following on the
N32(an — ap) = —AY' By (10) behavior of the estimator whef,,},, _ is real valued. This
is because the most powerful result of this section only holds
where in the real-valued case. In practice, this limitation is not very

restrictive because the noncircular constellations are very often

Anx _ 1 2y (e) (11) realvalued.
N2 de? | s In order to analyze the influence of the paramet€ron -,
1 din(c) we first have to derive the closed-form expressions of matrices
By “J/N  da s (12) 1 andr®. For this, we first introduce the following notations.

We denote byS, (exp (2iw f)) and S,,(exp (2in f)) the spec-

and wherex belongs to o, & ] OF [én, . In order to an-  tral densities ofy(n) andw(n), respectively. Ifo? represents

alyze the asymptotic properties 8%/2(an — ao), we have to the variance of the noise§,,(exp (2irf)) can be expressed

study the asymptotic behavior ofy and By. The following as Sw(exp (2inf)) = 2|9(e><P(2L7Rf))|2 for some function

two theorems are proved in Appendices B and C, respectively{exp (2i7 f)) satlsfylngf 2 lg(exp (2im f))|?df = 1. Note
Theorem 2: Assuming the mixing Condition 1, the following that

lationship holds: «
relationship holds: S, (A1) = h (Gin(f—(ao/Q))) 3 (Gin(f—(ao/Q)))

plo0) as N — oo. +S., (e2mf) .

y(“)

Ay == y4 = 3
Theorem 3: Assuming the mixing Condition 1, it follows that Denote bys(%)(exp (2im f)) the conjugate cyclic spectrum of
Ba _—>/\/( ,v5) in distribution asV — oc, where the expres- y(n) at cycllc frequencyy,. Straightforward calculations show
sion of y5 can be deduced from the calculations presented timat
Appendix C. ‘ ‘
Using (10) and Theorems 2 and 3, we obtain the main resuﬁy< ) (2) =h (GQMU_GO/Q)) h (@_2”7(’0_“0/2)) - (14)

of this section.
Relying on the (28) and (29), obtained in Appendix E and using

3Notation a.s. stands foralmost surely convergenaa convergence with standard calculations, one can immediately obtain the following
probability one lemma.
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Lemma 2: Assume thafs,} _z is real valued. Then, ma- y = 0if M > L, which means thalV3/2(én — ap) converges

tricesT" andI'(¢) are given by toward O in probability. Therefore, the estimdte converges
. faster thanV—3/2 towardc if M > L. However, the estimate
r :/ S, (¥ 8, (em(ao—f)) & is not deterministic in the noiseless case unfgss is re-
0 duced to a constant, i.én # ag for IV finite. It can be shown,
~dyy (e2i7ff) dy (GQW)* df in particular, that the first-order derivativé.{iy () /dor|a=a,)
-1 of Jy(«) ator = oy iS not zero. We note, however, thatifz)
+/ Sy (e¥™1Y 8, ((32”(“0*’6)) is reduced to a constan, thenJy («) can be written as
0
. . * 2
~dyay (GQZﬂ'f) djyy (Gsz(ao—f)) df JN N Z 82 2im(ag—a)n
1
+ Ii/ h (62i7rf) h (G—Qiﬂ'f) dys (CQiW(f+a0/2)) df n=0
e . As s2 > 0, the argument of the minimum ofx () clearly
/ h (C2i7rf)* h (Cf%wf)* dy (C2iw(f+ao/2)) df  coincides withxo, i.e., &y = . In other words, the estimator
0 é v is deterministic ifh(z) is reduced to a constant.
o) :/15(?0)) (27) S(‘“)) (em(ao_f)) Itis al_so in_teresting to conform expression (15) with the for-
Yyl yle mulas given in [8]-[10] in the casE = 0, A(z) = 1 (the mul-

ginf gim(ao—f)\ T tiplicative noise is white) and the additive noise is white. In this
~dyr () duy (C ’ ) df particular case, (15) gives
T glaw) ¢ 2infy glao) [ 2in(ag—
s ) s (o) = ()
0 72 2

) 2in f 2im AT
dar () day (77) " df which coincides with the formulas presented in [8]—[10].

n ﬁ/l B (A1) (27T dyy (62i7r(f+ozo/2)> df In the case where the noise is white (ig¢?™/) = 1 for
0 eachf), the closed-form expression gfcan be simplified as
L 4 4 4 T follows:
/ h (62177)‘) h (G—Qzﬂ'f) d]\l (GQZW(f-l-ag/Q)) df
0 =®(M)
wherex = cumy(s,, sn,sn,s,) IS the kurtosis ofs,,, and L 0 4 ” )
dps(e¥™F) represents the2(/ + 1)-dimensional vector n 30 9 Iy |r (=) [ [0 (20| df
dM(Ginf) — [G—inj\lf’.“’einJ\lf]T. 2 1 nimfy2 ain 2 2
After some straightforward but tedious manipulations, it is (fo [ (e2 )7 R (e ) df)
possible to show the following result. o2 (16)
Theorem 5: Assume tha{s,} _- is real valued; then, the f01 (2D 2 | (e 2 R df

asymptotic variance can be written as
It is interesting to study the behavior of (16) when

3 2 2 . . . .
7:<I>(M)+%M (15) fy [N |(e2=N2df  — 0, ie., if the func-
T Qs tion f — A )h(c=?"f) is nearly identically
where®(M) does not depend ar? nor ong(¢?~f) and where zero. In this case, the conjugate cyclic spectrum (14)
Q1, Q2, Q3 are given by is, of course, nearly zero (note in particular, that
1 i — 24 Qo i
) , Jo (AP 2df - = [TISE (e )2dp). A
Q1 ;:/ <‘g(e2v¢ﬁf)h(e—%(f—ao/?))‘ careful analysis of the tern®(M) shows that®(M) re-
0 mains bounded iff [A(c%*/)?|h(c=%*/)|2df — 0. The
1 ‘g (G—Qiﬁ(f—(yg)) 3 (CQiﬁ(f—(yO/Q))‘Q do'minant.term in (16) is therefore the contribution of the
noise, which converges tso. The boundness 6d(A) when

fol |h(c®™5)|2|h(e=2F)|2df — 0 seems to be a paradox. In
the noiseless case, this tends to indicate that the performance
4 4 2 4 of the estimate is insensitive to the power of the conjugate
L 2iw f —2iw(f—ag) (o) 2iw f .
Q2 '_/ ‘9 (™) g (@ ’ )‘ ‘Sy<co> (e )‘ 4f  cyclic spectrum at frequencyo. However, the values oN

. 2
‘S;((l:)) 27,7rf) ‘ df

) 2 for wh|ch the asymptotic analysis becomes relevant increases
Qs = </ ‘55‘(10) 2”1‘)‘ df) ) when fo |h(®™ )2 h(e= 2 ) |2df — 0. We also note that
if fo |R(e®™H)|2|h(e=2™)|2df = 0, the asymptotic analysis
Finally does not make sense.
®(M)=0 if M=L. VI. SIMULATED PERFORMANCE

This result shows that i/ > L, the asymptotic variance We assume BPSK modulation for the transmitted input
converges toward 0 a8 — 0. Moreover, in the noiseless casesymbol stream. The channélz) is the convolution of the
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transmitter and receiver filters, which are square-root raised-co- e

sine filters with roll-off factorp = 0.2, with an unknown
multipath channel. The complex amplitudes of the paths are
Gaussian distributed and the time delays are uniform distributed °* ; : : - : : : :
in [0, 37,]. The probability distribution of the time delays is oz} | i b d ]
chosen to satisfy the conditiah < 20. We only consider the : T
white noise case, i.ew(n) is white noise. Unless otherwise
stated, we average the results over 1000 realizations of the °%f i
estimatei . Note the channel is modified at each trial. P U S SRR RS SHRS SUPNE SR SN S e
The cost function/y («) shows, in practice, several local spu- . : ' L
rious extrema (see Fig. 1.y is thus computed in two steps. In
the first step (coarse search), the functibn(«) is evaluated by
means of an FFT algorithm on the gfd;, = £/N, for0 <
k < N}. In the second step (fine search), a gradient min-

D L S I IS TR

ol ) ....... ........ TP N It s R .

gaf e O - L d

imization algorithm ofJy(«), initialized at the argument of % er ez os s B
min,, J(ax), gives the estimaté .

As we show later, the performance of the estimate is satis- Fig. 1. One realization of cost functian — Jx(«).
fying if the coarse search selects the frequemgcyf the grid, N (eyond hich datectonarr bty e | et vurss SRR
denotedy, . , which is the closest tayp. As the performance of 600 T e

q : : : :

the first step is, of course, not predicted by the asymptotic anal-
ysis, we briefly study its performance.

o——=o Cost function with M=0

A. Experimental Study of the First Step

We evaluate the valued versus SNR for which the per-
centage of detections of frequengy . is equal to 0.99. Fig. 2
is evaluated by averaging on 5000 trials. It shows that the choice
M = L outperforms significantly the choicg&/ = 0. For
M = L, the valueN = 400 provides satisfying detection rate
if SNR > 10 dB.

We have observed that wrong detections occur when the Cooh
power of the conjugate cyclic spectrum at frequeagyis low. et
In this case, second-order cyclic methods obviously fail.

N i
2 25 k] 35 L] 45 50
- SNA {MC=5000}

Fig. 2. Threshold of right detection versus SNR (MC5000).
B. Experimental Study of the Second Step

We study the behavior of the mean square erraok fwith o
respect to the SNR, the number of observatidhsand the de- : : : :
sign parametei/, respectively. Our purpose is twofold. On one “of e G e

_ ’ \ ; ; ; | | = Theoretcal M=l
hand, we wish to confirm the accuracy of the theoretical asymp- g - ek oy
totic analysis. For this, we compare the theoretical and empir- B ;:;%’,’;";:f:.i;‘:’g‘.“s‘?..mmr
ical mean square errors. The empirical mean square errors are : : ‘ L (O 0B mpiical (S1-less case)

obtained by averaging, over M€ 1000 Monte Carlo trials, the E . -
estimation errorgiy — ap)?/a3. On the other hand, in order ¥ 5 3 : L ;
to study the effect of the channk(z) on the performance, we
also evaluate the performancedf; in the ideal situation of a
channelthatis perfectly equalized, i.e., no ISl effects are present
[h(z) = 1].

The mean-square error is, of course, deeply influenced by ‘. . . ‘ ; -. ;
possible wrong detections in the coarse search step. This isillus- I 1 » B R (NSt o100 “° - b
trated in Fig. 3, in which we compare theoretical and empirical
values of the mean-square error versus SNRMot 500. The  Fig. 3. MSE versus SNRY = 500, wrong detection taken into account).
empirical and theoretical mean square errors are represented
by dashed lines and solid lines, respectively. We compute e wrong detections (depending on the SNR and on the value
mean square errors fad = 0 and M = L. We also plot the of M) occurred.
mean-square errors in the case whiee) is reduced to a con-  In the next experiments, however, we show that the empirical
stant. and theoretical results coincide if we do not take into account

Except in the ISI-less case, the empirical results are very farthe mean-square errors the trials corresponding to the wrong
from the asymptotic predictions because, over 1000 trials, onedgtections.

~100}
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The parameters used in Fig. 4 are the same as those in Fig. 3. . , . .
However, Fig. 4 represents the above-mentioned empirical mod- 1 - 1 , s e
ified mean-square errors. : 3 : ' '

For low SNRs, the (modified) empirical curves are closely
matched by the theoretical curves. In contrast, for high SNRs,
we notice that for the casd = L, the theoretical and empirical
curves mismatch. This is because the is not a deterministic
estimate. Ife? = 0, N3/2(4x — ) converges in probability
to 0, but for a given value aN, &y never coincides witlayg.

If &2 is too small, the term ofiyr — ag converging faster than
N3/2 may provide a residual variance greater than theoretical
asymptotic variance. In the ISl-less caég; is deterministic, phical (M=0)

and the empirical and theoretical curves match, whatever the o oEmpaca (S1-tess cast)

A " i
SNR. o 15 20 25 % 3 40 as 50
'SNR (Na500, MCx1000}

In Fig. 5, the theoretical and modified empirical mean square
errors of the proposed frequency offset estimator are plotteid. 4. MSE versus SNRY = 500, only right detection taken into account).
versusy, assuming a fixed SNR= 20 dB.

The theoretical and empirical curves faf = 0 are very . il
close one to the other fa¥ > 300. The number of sample¥
must be chosen largeM > 500) to observe a good fit between
the theoretical and empirical curves t&af = L. However, the
empirical performances fak/ = L outperform quite signifi-
cantly those of the estimate correspondingifo= 0 for any
value of V.

Finally, we analyze the influence éff on the asymptotic of
the carrier frequency estimator. We plot in Fig. 6 the theoret-
ical and modified empirical mean square errors verkgl$or
SNR = 20 dB andN = 500. L —

In this particular case, a significantimprovement is observed | - oo
as soon ag/ > 4.

) Theoretical (Mat)
i L~ - - - Empirical (M=L)
2 - »——m Theoretical (M=0)
i x= = < Empirical (M=0) H
6——o Theoretical (ISI-less case)
~ . o~ - oEmpirical (I1SI-less case)

700
N{SNR=20d8. MC=1000%

VIl. CONCLUSIONS
Fig. 5. MSE versusV (SNR = 20 dB).

In this paper, we have analyzed the performance of a
frequency offset estimator assuming an unknown frequency-se- ,
lective channel and noncircularly distributed symbols. We have v v : [ mreorsea
shown that the proposed estimator is consistent and asymptot- ;’ P | g eoretcal (si-less case
ically normal and that its convergence ratelél /N3/2). We Co
have expressed its asymptotic variance in closed form and have
analyzed the influence of the number of cyclo-correlations
(2M + 1) on the performance of the frequency offset estimator.
We have shown that choosing a number of correlations greater
than the memory of the channel leads to a quite significant
improvement. In practice, the cost function to be maximized S : : ;
shows spurious local extrema. Therefore, the estimate is \ [ i T~ e
calculated using a coarse search on a FFT grid followed by a [ ' ‘

MSE versus M
T

T T

" MSE (dB)

gradient algorithm properly initialized. As the coarse search ————s o Tgem o 2= ‘v <

. PR . - ~o- <7 o . Q=== O = e -
may fail to select a good initialization, the empirical results ; s n L i R
do not match the theoretical ones. However, if the trials on M (Ne500. SNR=2008)

which wrong detections occur are not taken account in the
evaluation of the mean-square errors, the theoretical and
empirical results are in agreement. Finally, it is interesting to
note that most of the results of this paper are valid if the signal
a(n) = [h(z)]s, is replaced by a more general noncircular
multiplicative noise. The most important conclusion of The-
orem 5 @(M) = 0if M > L), however, remains valid if the  For this, we first note that the sequeng@y } x>0 belongs
multiplicative noise is modeled as the output of an FIR filteto the compact sef C (—0.5,0.5). Therefore, in order to
driven by a real i.i.d sequence. prove thaté converges almost surely tey, it is sufficient

Fig. 6. MSE versus/ (SNR= 20dB, N = 500).

APPENDIX A
PrROOF OFCONSISTENCY OF THECYCLIC FREQUENCY
ESTIMATOR & v
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to establish that every convergent subsequence extracted fisimpossible. Thusibx } yer is bounded. Lefby vy} ven be

&y converges tay. We consider a subsequen@, vy ven

converging to a certain value; € Z, and we will prove that A]

a1 = Qp.
Since & maximizesJy (), it follows that Jy(dy) >

Jn(ap). Moreover, this inequality still holds for the subse-

quence, and we immediately obtain that
AJ = lim [Jyv) (Gon) = Jen(@o)]

exists almost surely and is non-negative (i2J > 0).

One observes thaty («) can be decomposed into four terms:

In(a) = ti(@)tn(a) + 9" (@)tn(a)
+t;f<a>s;?><a> +59"(@)sQ(a)

with tN(Oé) =
(0)

(1/N) Y05

follows that
- a.s. 1. 2
A T (o) = lim g0 (o) (17)
and
- ~ a.s. 1. ~ 2
A Joon (Gaon)= Hmltson @ean)]”- - (28)

Sincer . (n) = r((°>) exp (2imragn), it follows that

i a.s. (o) 2
i Jaco o) s

In order to evaluate the limit (18), we need to introduce the fol-

lowing lemma (see [16]).

Lemma 3

Let{cn }ven be areal-valued sequence, belonging to a com-
pact set that is included i-1/2, 1/2] and converging te. De-

fine

§ : 2171'an

Then, asV — +o0, the following relations hold.

s gn(en) — 0if ¢ £ 0.

* gy(ev) — 0if c = 0andNley — ¢ — oo,

« gn(en) — ePsine(B)if c=0andN(ey—c) — B € R.
One can check that

an(en) ==

2 lim || R °>)
N J

Jim Jyon) (Gpn) =]

N 2
’ |%<N> (@0 = %(N))| :
If a1 # oo, Lemma 3 implies thanJ=" — ‘r(ff) < 0,
which contradicts the conditioA.J > 0. Thereforep; = .
We now consider the sequenfiey } ven defined byby :=

N(&y — ag). If {by}ncn is not bounded, there exists a sub:
— 4o00. Accordmg to

sequence by ) f >0 such thatb, )

(ao)

Lemma 3, the correspondiny./ is equal to— ||r e

r, o (n)exp (—2iran) and
sy («), which is defined in Lemma 1. Furthermotey («) is
bounded with respect t& and«. According to Lemma 1, it th

, which

a subsequence convergingtoUsing Lemma 3, we obtain that

Hr(‘(“)) (sinc?(3) — 1). As AJ > 0, 8 must be equal

APPENDIX B
PROOF OFTHEOREM 2

We can immediately check tHat

2

8r£a]3r

Jda

2

.AN :F

OéZ&N
2 a?A(a)

+ Fﬁ%e (8@)2

As |Gy — ag| < |&n — apl, Theorem 1 implies thaV (ay —
o) =%0. Using Lemmas 1 and 3 from Appendix A, it follows
at

i oK A((:(y]zr ( 2L7r) (@0)
NK (aa)k K+1 y( )
A=qQ N

for any integerk . This proves Theorem 2.

APPENDIX C
PROOF OFTHEOREM 3

Using (8), it follows thati3 can be written as

By = BY 1 B (19)
where
5 <2ir e, 20
BY = - arm B3 (s (ao)] (21)

©

sy (ap) is defined in Lemma 1, and
(ex0)” o (an)T
R := I‘y2 ul‘éao)”v I‘y2 _r;g;QO)T]

Ey =[E}(0), Ex (1), ER(0), EL (1]

For K = 0,1, Ex(K) is defined by

IS —2177(10 n

EN( le \/_ Z

It is proved in Appendix D thaE converges in distribu-
tion to a zero-mean Gaussian distribution. This result shows that
353,) is asymptotically zero-mean Gaussian. Moreover, Lemma
1 shows thatg\?) converges almost surely to zero. sy (1)
is asymptotically Gaussian, it is bounded in probability. There-
fore, BY = —4xSm[EY, (1)s\(ao)] converges almost surely
fo zero [19]. Theorem 3 follows now immediately from (19).

4The notation§Re].] andIm[.] denote the real and imaginary parts of a com-
plex number, respectively.
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APPENDIX D In order to evaluatez, we need to obtain a closed-form expres-
PROOF OFASYMPTOTIC NORMALITY OF E 5 sion forlimy _, o IE[ExE%/]. For this, one can observe that the

Let cumy (E ) denote thelth-order cumulant tensor & . matrix E[Ey E} ] can be expressed as

We recall thak(n) is a @M + 1)-multivariate process. There-

fore. one Can sof Py(0,0) Px(0,1) P(0,0) PY(0,1)
] Py(LO) Pr(LD) PRLO PRALD| o
e(n) = [e—m(n),...,em(n)]" . P(0,0) P{0,1) Px(0,0) Px(0,1)
(¢) (0
One can see that the generic form of the components of the Py(1,0) Py (L1 Py(1,0) Py(L1)
tensor cum(Ey) is given by where
N—1
C](\{*) ::N—% Z D(Vo)(no) . D(VL—l)(nL_l) PN(K7 K/) =E [Ei\r(K) *’(K/)]
ros e 1 =0 T NE+E+1
- cumy, {6.(;(;0)(710), e eg’;L:ll)(nL_l)} (22) N—1 S ,
. Z E [e(n)e*(n/)] nls n/ls GQZW(XO(N —n)
where; and 1 belong to the set§—7,...,T} and {0, 1}, n=0
respectively and:
—2imagn 2imagn P(cr)(.[(7 K/) :]E EA’(K)ETr(K/)
DO(n) := { cﬂe—%iaon DW(n) := {eﬂe%iagn " [ 1 V)
and: " " :NA{“ZK’H
6‘(rO) (7’L) ZIGT(TL), C.(rl)(ﬂ) = CT(TL). . Z E [e(n)eT(n’)] n[\’n/I\’,CQiﬁGO(n,-l—’n,).
n=0
It follows that forvr € {0,1} andvn < N, |D®)(n)| < 1. n'=o

Due to the triangular inequality applied on (22), we obtain (23e now study the asymptotic behavior of these terms. Ac-
shown at the bottom of the page. Condition 1 implies that theé%rding to Section Ill. we know that

is a constaniM,, depending only od., such that

o

Re(n,7) =Ele(n +1)e"(n)] = Ro(7),
and

R (n,7) =E [e(n + 7)e(n)] = RES (r)e?m20on,

S MLN_(L/Q_l).

Therefore, cum(Ey) = O (N-(/2=D) If L > 2, then

(L/2—=1) > 0 and it follows that Using Condition 1 and well-known results on Césaro sums,

we obtain after some simple manipulations that
A}im cum,(Eyx) =0 P P

1

which implies thatE x converges to a Gaussian distributian. J\lgréo Py (K, K :mséo) (¢¥™)  (26)
1 ¢ 1 «@ TR et
APPENDIX E Alliréo PS\,) (K,K") :mgii>o> (ePim0) (27)

PROOF OFTHEOREM 4

As Ax converges almost surely towayd and5y converges where f Séo)(exp (2inf)) and f — S(?ao)(exp (2inf))

in distribution to a centered normal distribution of variange represent the cyclic spectrum at cycﬁé:ﬂ frequency O and
N32(&x—ag) = — Ay By converges to a normal distribution

al 5 the conjugate cyclic spectrum at cyclic frequen@yg
N(0,~) of zero-mean and standard deviatipn= v, "y (see egn), respectively. FortunatelyS{” (exp (2irap)) and

[19]). In order to complete the proof of the theorem, we still,(2a, P -
need to establish the expressiomofAccording to Theorem 3 ~e{” (exp (2imao)) can be expressed more explicitly. Let

(o) — aloo) (@) At
and (20), it is easy to check that I n = Ty — T, denote the estimation error
corresponding to the statistidéy‘(i%). It is well known that
75 = 47°R (A}i_l)%O]E[EA’ERf]) R". (24) \/Néf;‘ffg)N converges to a Gaussian distribution [20]. Let
N—-1
‘CJ(\TL) < NTH2 Z ‘CumL {C%O)(ﬂo)v RS Ggiljl)(”Lfl)}‘ . (23)

ng,...,np—1=0
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I' and I’ denote the unconjugated/conjugated asymptoticie]
covariance matrices

Sinceyq(n) =

From

re = Jim [En(0)ER (0)]

(7]

hm NIE [61‘5‘3) N

[51' (?c0>) N

(@)
6rJ(co) ]\r:|

()T
YN[

[8]
r'® .= lim NE

N—oo

or
[

= rgj“OQe?mon + e(n), it follows that [10]

~(a)

11
P (11]

VN6t = Ex(0).

this, we deduce further that [19]

I = lim E[ExN(0)E%(0)] =

N—oo

ISéO) (GQiﬂ'ag)

Alim Px(0,0)

hm P )( 0)

S(2a0)

50 (e2470).

Plugging the (26)—(29) back into (25) yields

lim
N—oo

r©

lr(C)
T

T

W=
HH

E[E(NE"(N)] =

H
2
o
S

Wl N
3

o

~

(19]

[20]

(1

Finally, by combining the previous result and the (24), we ob-
tain, as expected, that

where

(1]

(2]

(3]

[21]
[22]

= —2 —4 (30)

(23]

[24]

[25]

R(Oéo)

) =
[26]
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