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Performance Analysis of Blind Carrier Frequency
Offset Estimators for Noncircular Transmissions

Through Frequency-Selective Channels
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Abstract—This paper deals with the problem of blind estimation
of the carrier frequency offset of a linearly modulated noncircular
transmission through an unknown frequency-selective channel. A
frequency estimator is developed based on the unique conjugate
cyclic frequency of the received signal, which is equal to twice the
frequency offset. Consistency and asymptotic normality of the fre-
quency estimator together with a closed-form expression for its
asymptotic variance are also established. The closed-form expres-
sion of the asymptotic variance enables analysis of the performance
of the proposed frequency offset estimator as a function of the
number of estimated cyclic correlation coefficients used. It is shown
that optimum is obtained if the number of correlation coefficients
taken into account coincides with the degree of the channel. Nu-
merical simulations are provided and confirm the conclusion of the
theoretical asymptotic analysis.

Index Terms—Asymptotic analysis, cyclic-correlation, cyclic fre-
quency, harmonic retrieval, multiplicative noise.

I. INTRODUCTION

B LIND estimation of the carrier frequency offset and/or
Doppler shifts is well motivated when it comes to com-

pensate the local oscillator drifts and Doppler shifts induced by
the relative motion of mobiles in wireless communication sys-
tems. Traditionally, channel estimation and synchronization rely
on the use of a set of known symbols (sync word), whose tem-
poral position is acquired at the receiver by cross correlating
the received signal with a prestored sync word. However, this
acquisition is very difficult to perform, if not impossible, for
frequency-selective channels affected by frequency offset [24].
Data-aided techniques are not particularly useful for compen-
sating the unknown intersymbol interference (ISI) effects in the
presence of residual frequency-offset [24]. Therefore, devel-
oping fast-converging blind or nondata-aided carrier frequency
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offset estimators for channels affected by unknown ISI effects
appears as an important problem.

In this paper, it is assumed that a linearly-modulated signal is
transmitted through an unknown frequency-selective channel.
The continuous-time received waveform is supposed to
be affected by a carrier frequency offset and/or Doppler shift
and is given by the following equation:

(1)

where represents the carrier frequency offset, and
denotes the independently and identically distributed (i.i.d.)
symbol sequence, which is assumed of zero mean, unit vari-
ance, andnoncircularly distributed (i.e., ). The
additive noise is assumed normally distributed, the baud
rate of the transmitter is denoted by , and stands
for the convolution of the transmit and receive filters with a
generally unknown multipath channel. Without any restriction,
the channel is assumed causal and time limited.

In order to retrieve the symbols from a sampled version of
the observation, it is necessary to estimate and compensate the
multiplicative noise effect introduced by the carrier frequency
offset and the additive ISI effects due to the frequency-selective
channel. Channel and residual carrier frequency offset estima-
tion is usually performed by transmitting periodically a known
training sequence. However, such an approach reduces the ef-
fective transmission rate and is not feasible in many applications
such as multipoint or distributed communication networks and
military interception systems. It is therefore useful to explore
blind solutions for estimating and compensating the carrier fre-
quency offset. Thus far, only a few works have addressed the
joint blind estimation/equalization of the channel in the pres-
ence of residual carrier (see e.g., [1]–[4] and [23]). Most of these
approaches rely on a two-steps procedure: First, the channel
is equalized using a constant modulus algorithm (CMA), and
then, the residual carrier is tracked at the output of the equalizer.
However, it is well known that this approach is successful only
if the symbol sequence is circular [7]. Minimization of a kur-
tosis-based criterion enables channel equalization with a non-
circular input constellation but only in the absence of residual
carrier [7]. Therefore, the above approach is not suitable for non-
circular transmissions.

In the noncircular symbol case, it is thus necessary to estimate
and compensate the carrier frequency offset before equalizing
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the unknown channel. For this, it is possible to use the well-
known fact that is the unique conjugate cyclic frequency
of the received signal (see, e.g., [8]–[11]). The purpose of this
paper is to establish and analyze the statistical performance of
the corresponding estimation schemes and to evaluate the loss in
performance relative to the scenario when the frequency offset
is estimated from the equalized output of the channel, assuming
perfect channel knowledge and ideal ISI cancelation.

II. CARRIER FREQUENCYOFFSETESTIMATOR AND RELATED

WORKS

Denote by the discrete-time signal obtained by sampling
the continuous-time waveform at the symbol rate :

. From (1), the following discrete-time channel
model is obtained:

(2)

where denotes the sampled version
of at the baud rate , is the degree of the polynomial

, and . The discrete-time equivalent fre-
quency offset is defined as1 mod . The estimation
of is thus equivalent to that of estimating.

Equation (2) can be rewritten as follows:

with

Therefore, can be interpreted as a complex sinusoid cor-
rupted by the additive noise and thecoloredmultiplica-
tive noise . Frequency estimation of harmonics corrupted
by additive and multiplicative noise was already studied by sev-
eral authors (see, e.g., [8]–[11]). These estimators exploit the
common feature that is the unique conjugate cyclic
frequency of the discrete-time signal . Indeed, the conju-
gate autocorrelation function
of can be expressed as

where stands for the conjugate cyclic correlation of
at lag and conjugate cyclic frequencyand is obtained

as the generalized Fourier series (FS) coefficient of the time-
varying correlation :

1The expressionb moda stands for the value ofb moduloa. By convention,
it belongs to the following interval [�a=2, a/2].

Since for each , when , the conjugate
cyclic correlation coefficients enable to retrieve as fol-
lows:

with2 and de-
noting the number of conjugate cyclic correlation lags consid-
ered. In practice, the unknown set of correlations is esti-
mated using the following consistent estimate (see, e.g., [20]):

where

(3)

Hence, can be estimated using the estimator

(4)

The statistical performance of this estimator was studied exten-
sively in [8]–[11] but only in the case . As it will be
shown later, the choice is quite relevant if the multi-
plicative noise is white. If is colored, as is the case
in the present context, it is reasonable to expect that choosing

leads to better performance.
In this paper, we prove the consistency and asymptotic nor-

mality of estimate for . We show that the rate of
convergence of is and provides a closed-form
expression for its asymptotic variance defined by

(5)

We rely on this expression to discuss the choice of. In
particular, we show that if is greater than the channel
memory , then the asymptotic variance is proportional to the
variance of the additive noise and, thus, converges to 0 when
the signal-to-noise ratio (SNR) increases. By choosing ,
it is shown that in presence of an unknown frequency-selective
channel of arbitrary memory, the asymptotic variance of the
frequency offset estimator achieves almost the same asymptotic
variance as the frequency offset estimator in the presence of a
flat-fading channel, i.e., an ideally pre-equalized channel with
no ISI effects.

The starting point of the technical part of our work is the ob-
servation that the multivariate signal can be interpreted as
a (multivariate) complex sinusoid of frequency corrupted by
a nonstationary additive noise and that the cost function
is equivalent to a periodogram [8], [10], [12]. The standard ap-
proach to perform the asymptotic analysis of the periodogram
estimates is to introduce an auxiliary nonlinear least-squares
problem [13]–[16]. However, calculating the variance of
by this approach necessitates complicated and tedious manip-
ulations that do not lead to interpretable and closed-form ex-
pressions when . We show that the auxiliary nonlinear

2The superscript denotes transposition.
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least-squares criterion is not necessary. We establish the asymp-
totic properties of by using an alternative approach and ob-
tain a closed-form expression for the asymptotic variance of.

This paper is organized as follows. Section III establishes the
link between the carrier frequency offset estimation problem
and the problem of estimating the frequency of a constant ampli-
tude harmonic embedded in additive noise. The asymptotic be-
havior of and the closed-form expression for its asymptotic
variance are established in Section IV. In Section V, a theoret-
ical analysis of the influence of the parameterand the filter

on the asymptotic performance of the frequency offset esti-
mator is conducted. In Section VI, practical issues regarding the
calculation of are addressed, and numerical simulations are
performed in order to study the relevance of the conclusion pro-
vided by the asymptotic analysis. Finally, a conclusion is drawn
in Section VII.

III. H ARMONIC RETRIEVAL LINKS

In order to show the equivalence between the present carrier
frequency offset estimation problem and the problem of esti-
mating a constant amplitude harmonic embedded in noise, we
first remark that

(6)

Consider the zero-mean ( )-dimensional vector de-
fined by

(7)

From (6) and (7), it follows that

(8)

Therefore, can be interpreted as a multidimensional har-
monic of frequency corrupted by the additive noise .
Moreover, the criterion in (4) is a periodogram because

(9)

It is easy to check that the autocorrelation function
depends only on the lag

so that is stationary with respect to its autocor-
relation function. On the contrary, its conjugate autocorrelation
function depends on as well
as :

Thus, is not a stationary process.
Thus far, numerous works have been devoted to the problem

of retrieving the parameters of a number of harmonics em-
bedded in noise by means of a periodogram estimator [13]–[16].

However, in the present paper, we deal with a more general
problem. The main differences between the present context and
the previously mentioned works are twofold.

i) is not stationary but cyclostationary.
ii) is a multivariate process.

However, most of the results in [13], [14], and [16] can be gen-
eralized to the present context. It is thus possible to adapt the
approach of [13], [14], and [16] based on the introduction of the
following nonlinear least-squares estimation (NLSE) problem:

where is the cost function defined by

(see, e.g., [9], [11], and [12] for the case ). Consistency
and asymptotic normality of the NLS-estimate are rather
easy to obtain. Moreover, it can be shown that the estimates

and are asymptotically equivalent, i.e., both have the
same asymptotic variance. The evaluation of the asymptotic
variance of is thus equivalent to that of . However,
calculating the asymptotic variance of is quite difficult
because it requires the asymptotic covariance matrix of the
vector-valued estimate . Using this approach, it is
quite difficult, not to say impossible, to obtain an interpretable
closed-form expression for the asymptotic variance of
when . More precisely, if , it is difficult to show
that the variance of converges to zero when the additive
noise variance converges to zero.

In the next section, we will develop a quite different approach
by generalizing the results shortly sketched in [15] when
, and is a stationary process.

IV. A SYMPTOTIC ANALYSIS

In the sequel, an overbar will be used to denote com-
plex conjugation. If are random vectors, the nota-
tion cum will stand for the th–order cumulant
tensor of the vectors . As the filter in (2) is
FIR, satisfies the following mixing condition assuming
very mild standard mixing assumptions on [22, p. 8, pp.
25–27].

Condition 1: If and , then
we have the equation at the bottom of the page.

Essentially, the mixing Condition 1 refers to the fact that suffi-
ciently separated samples are approximatively independent and
is satisfied by all the finite memory signals encountered in prac-
tice. Condition 1 appears useful in establishing the asymptotic
behavior of the proposed frequency offset estimator. Using Con-
dition 1, it is possible to prove the following key lemma.

ZZ

cum
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Lemma 1: Let

Then3

as

This result extends the main lemma introduced in [15] to any
multivariate nonstationary process that satisfies Condition 1.
The proof of [15] can be generalized to our context. For more
details on the technical details, see [17] and [18]. This result is
important because it shows, in some sense, that the contribu-
tion of the additive noise in the periodogram (9) of

is vanishing asymptotically while the harmonic compo-
nent produces a nonzero contribution.

Using Lemma 1, one can show the following theorem.
Theorem 1: Under the mixing Condition 1, satisfies

and as .
Proof: See Appendix A.

We now establish that is asymptotically Gaussian.
For this, we note that

Using a first-order Taylor expansion of the derivative of
around , we obtain that

(10)

where

(11)

(12)

and where belongs to [ ] or [ ]. In order to an-
alyze the asymptotic properties of , we have to
study the asymptotic behavior of and . The following
two theorems are proved in Appendices B and C, respectively.

Theorem 2: Assuming the mixing Condition 1, the following
relationship holds:

Theorem 3: Assuming the mixing Condition 1, it follows that
in distribution as , where the expres-

sion of can be deduced from the calculations presented in
Appendix C.

Using (10) and Theorems 2 and 3, we obtain the main result
of this section.

3Notation a:s: stands foralmost surely convergenceor convergence with
probability one.

Theorem 4: Assuming the mixing Condition 1, it follows that
in distribution as where

is given by

(13)

and

Matrices and denote the unconjugated/conjugated
asymptotic covariance matrices of ,
i.e.,

Proof: See Appendix E.
We have thus proved the asymptotic normality of

and that the convergence rate of is , as
encountered in standard constant amplitude harmonic retrieval
problems.

V. INFLUENCE OF AND

Although it is possible to evaluate in closed-form in the
general noncircular case, we only focus in the following on the
behavior of the estimator when ZZ is real valued. This
is because the most powerful result of this section only holds
in the real-valued case. In practice, this limitation is not very
restrictive because the noncircular constellations are very often
real valued.

In order to analyze the influence of the parameteron ,
we first have to derive the closed-form expressions of matrices

and . For this, we first introduce the following notations.
We denote by and the spec-
tral densities of and , respectively. If represents
the variance of the noise, can be expressed
as for some function

satisfying . Note
that

Denote by the conjugate cyclic spectrum of
at cyclic frequency . Straightforward calculations show

that

(14)

Relying on the (28) and (29), obtained in Appendix E and using
standard calculations, one can immediately obtain the following
lemma.
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Lemma 2: Assume that ZZ is real valued. Then, ma-
trices and are given by

where cum is the kurtosis of , and
represents the ( )-dimensional vector

.
After some straightforward but tedious manipulations, it is

possible to show the following result.
Theorem 5: Assume that ZZ is real valued; then, the

asymptotic variance can be written as

(15)

where does not depend on nor on and where
, , are given by

Finally

if

This result shows that if , the asymptotic variance
converges toward 0 as . Moreover, in the noiseless case,

if , which means that converges
toward 0 in probability. Therefore, the estimate converges
faster than toward if . However, the estimate

is not deterministic in the noiseless case unless is re-
duced to a constant, i.e., for finite. It can be shown,
in particular, that the first-order derivative ( )
of at is not zero. We note, however, that if
is reduced to a constant , then can be written as

As , the argument of the minimum of clearly
coincides with , i.e., . In other words, the estimator

is deterministic if is reduced to a constant.
It is also interesting to conform expression (15) with the for-

mulas given in [8]–[10] in the case , (the mul-
tiplicative noise is white) and the additive noise is white. In this
particular case, (15) gives

which coincides with the formulas presented in [8]–[10].
In the case where the noise is white (i.e., for

each ), the closed-form expression ofcan be simplified as
follows:

(16)

It is interesting to study the behavior of (16) when
, i.e., if the func-

tion is nearly identically
zero. In this case, the conjugate cyclic spectrum (14)
is, of course, nearly zero (note, in particular, that

). A
careful analysis of the term shows that re-
mains bounded if . The
dominant term in (16) is therefore the contribution of the
noise, which converges to . The boundness of when

seems to be a paradox. In
the noiseless case, this tends to indicate that the performance
of the estimate is insensitive to the power of the conjugate
cyclic spectrum at frequency . However, the values of
for which the asymptotic analysis becomes relevant increases
when . We also note that
if , the asymptotic analysis
does not make sense.

VI. SIMULATED PERFORMANCE

We assume BPSK modulation for the transmitted input
symbol stream. The channel is the convolution of the
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transmitter and receiver filters, which are square-root raised-co-
sine filters with roll-off factor , with an unknown
multipath channel. The complex amplitudes of the paths are
Gaussian distributed and the time delays are uniform distributed
in [ ]. The probability distribution of the time delays is
chosen to satisfy the condition . We only consider the
white noise case, i.e., is white noise. Unless otherwise
stated, we average the results over 1000 realizations of the
estimate . Note the channel is modified at each trial.

The cost function shows, in practice, several local spu-
rious extrema (see Fig. 1). is thus computed in two steps. In
the first step (coarse search), the function is evaluated by
means of an FFT algorithm on the grid for

. In the second step (fine search), a gradient min-
imization algorithm of , initialized at the argument of

, gives the estimate .
As we show later, the performance of the estimate is satis-

fying if the coarse search selects the frequencyof the grid,
denoted , which is the closest to . As the performance of
the first step is, of course, not predicted by the asymptotic anal-
ysis, we briefly study its performance.

A. Experimental Study of the First Step

We evaluate the values versus SNR for which the per-
centage of detections of frequency is equal to 0.99. Fig. 2
is evaluated by averaging on 5000 trials. It shows that the choice

outperforms significantly the choice . For
, the value provides satisfying detection rate

if SNR dB.
We have observed that wrong detections occur when the

power of the conjugate cyclic spectrum at frequencyis low.
In this case, second-order cyclic methods obviously fail.

B. Experimental Study of the Second Step

We study the behavior of the mean square error ofwith
respect to the SNR, the number of observations, and the de-
sign parameter , respectively. Our purpose is twofold. On one
hand, we wish to confirm the accuracy of the theoretical asymp-
totic analysis. For this, we compare the theoretical and empir-
ical mean square errors. The empirical mean square errors are
obtained by averaging, over MC Monte Carlo trials, the
estimation errors . On the other hand, in order
to study the effect of the channel on the performance, we
also evaluate the performance of in the ideal situation of a
channel that is perfectly equalized, i.e., no ISI effects are present
[ ].

The mean-square error is, of course, deeply influenced by
possible wrong detections in the coarse search step. This is illus-
trated in Fig. 3, in which we compare theoretical and empirical
values of the mean-square error versus SNR for . The
empirical and theoretical mean square errors are represented
by dashed lines and solid lines, respectively. We compute the
mean square errors for and . We also plot the
mean-square errors in the case where is reduced to a con-
stant.

Except in the ISI-less case, the empirical results are very far
from the asymptotic predictions because, over 1000 trials, one to

Fig. 1. One realization of cost function� 7! J (�).

Fig. 2. Threshold of right detection versus SNR (MC= 5000).

Fig. 3. MSE versus SNR (N = 500, wrong detection taken into account).

five wrong detections (depending on the SNR and on the value
of ) occurred.

In the next experiments, however, we show that the empirical
and theoretical results coincide if we do not take into account
in the mean-square errors the trials corresponding to the wrong
detections.
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The parameters used in Fig. 4 are the same as those in Fig. 3.
However, Fig. 4 represents the above-mentioned empirical mod-
ified mean-square errors.

For low SNRs, the (modified) empirical curves are closely
matched by the theoretical curves. In contrast, for high SNRs,
we notice that for the case , the theoretical and empirical
curves mismatch. This is because the is not a deterministic
estimate. If , converges in probability
to 0, but for a given value of , never coincides with .
If is too small, the term of converging faster than

may provide a residual variance greater than theoretical
asymptotic variance. In the ISI-less case, is deterministic,
and the empirical and theoretical curves match, whatever the
SNR.

In Fig. 5, the theoretical and modified empirical mean square
errors of the proposed frequency offset estimator are plotted
versus , assuming a fixed SNR dB.

The theoretical and empirical curves for are very
close one to the other for . The number of samples
must be chosen larger ( ) to observe a good fit between
the theoretical and empirical curves for . However, the
empirical performances for outperform quite signifi-
cantly those of the estimate corresponding to for any
value of .

Finally, we analyze the influence of on the asymptotic of
the carrier frequency estimator. We plot in Fig. 6 the theoret-
ical and modified empirical mean square errors versusfor
SNR dB and .

In this particular case, a significant improvement is observed
as soon as .

VII. CONCLUSIONS

In this paper, we have analyzed the performance of a
frequency offset estimator assuming an unknown frequency-se-
lective channel and noncircularly distributed symbols. We have
shown that the proposed estimator is consistent and asymptot-
ically normal and that its convergence rate is . We
have expressed its asymptotic variance in closed form and have
analyzed the influence of the number of cyclo-correlations
( ) on the performance of the frequency offset estimator.
We have shown that choosing a number of correlations greater
than the memory of the channel leads to a quite significant
improvement. In practice, the cost function to be maximized
shows spurious local extrema. Therefore, the estimate is
calculated using a coarse search on a FFT grid followed by a
gradient algorithm properly initialized. As the coarse search
may fail to select a good initialization, the empirical results
do not match the theoretical ones. However, if the trials on
which wrong detections occur are not taken account in the
evaluation of the mean-square errors, the theoretical and
empirical results are in agreement. Finally, it is interesting to
note that most of the results of this paper are valid if the signal

is replaced by a more general noncircular
multiplicative noise. The most important conclusion of The-
orem 5 ( if ), however, remains valid if the
multiplicative noise is modeled as the output of an FIR filter
driven by a real i.i.d sequence.

Fig. 4. MSE versus SNR (N = 500, only right detection taken into account).

Fig. 5. MSE versusN (SNR= 20 dB).

Fig. 6. MSE versusM (SNR= 20 dB,N = 500).

APPENDIX A
PROOF OFCONSISTENCY OF THECYCLIC FREQUENCY

ESTIMATOR

For this, we first note that the sequence belongs
to the compact set . Therefore, in order to
prove that converges almost surely to , it is sufficient
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to establish that every convergent subsequence extracted from
converges to . We consider a subsequence

converging to a certain value , and we will prove that
.

Since maximizes , it follows that
. Moreover, this inequality still holds for the subse-

quence, and we immediately obtain that

exists almost surely and is non-negative (i.e., ).
One observes that can be decomposed into four terms:

with and

, which is defined in Lemma 1. Furthermore, is
bounded with respect to and . According to Lemma 1, it
follows that

(17)

and

(18)

Since , it follows that

In order to evaluate the limit (18), we need to introduce the fol-
lowing lemma (see [16]).

Lemma 3

Let be a real-valued sequence, belonging to a com-
pact set that is included in and converging to. De-
fine

Then, as , the following relations hold.

• if .
• if and .
• if and .

One can check that

If , Lemma 3 implies that ,
which contradicts the condition . Therefore, .

We now consider the sequence defined by
. If is not bounded, there exists a sub-

sequence such that . According to

Lemma 3, the corresponding is equal to , which

is impossible. Thus, is bounded. Let be
a subsequence converging to. Using Lemma 3, we obtain that

. As , must be equal
to 0.

APPENDIX B
PROOF OFTHEOREM 2

We can immediately check that4

e

As , Theorem 1 implies that
. Using Lemmas 1 and 3 from Appendix A, it follows

that

for any integer . This proves Theorem 2.

APPENDIX C
PROOF OFTHEOREM 3

Using (8), it follows that can be written as

(19)

where

(20)

m (21)

is defined in Lemma 1, and

For is defined by

It is proved in Appendix D that converges in distribu-
tion to a zero-mean Gaussian distribution. This result shows that

is asymptotically zero-mean Gaussian. Moreover, Lemma
1 shows that converges almost surely to zero. As
is asymptotically Gaussian, it is bounded in probability. There-
fore, m converges almost surely
to zero [19]. Theorem 3 follows now immediately from (19).

4The notations<e[:] and=m[:] denote the real and imaginary parts of a com-
plex number, respectively.
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APPENDIX D
PROOF OFASYMPTOTIC NORMALITY OF

Let cum denote the th-order cumulant tensor of .
We recall that is a ( )-multivariate process. There-
fore, one can set

One can see that the generic form of the components of the
tensor cum is given by

cum (22)

where and belong to the sets and {0, 1},
respectively

and:

It follows that for and .
Due to the triangular inequality applied on (22), we obtain (23),
shown at the bottom of the page. Condition 1 implies that there
is a constant , depending only on , such that

Therefore, cum . If , then
and it follows that

cum

which implies that converges to a Gaussian distribution.

APPENDIX E
PROOF OFTHEOREM 4

As converges almost surely toward and converges
in distribution to a centered normal distribution of variance,

converges to a normal distribution
of zero-mean and standard deviation (see

[19]). In order to complete the proof of the theorem, we still
need to establish the expression of. According to Theorem 3
and (20), it is easy to check that

(24)

In order to evaluate , we need to obtain a closed-form expres-
sion for . For this, one can observe that the
matrix can be expressed as

(25)

where

and:

We now study the asymptotic behavior of these terms. Ac-
cording to Section III, we know that

and

Using Condition 1 and well-known results on Césaro sums,
we obtain after some simple manipulations that

(26)

(27)

where and
represent the cyclic spectrum at cyclic frequency 0 and
the conjugate cyclic spectrum at cyclic frequency
of , respectively. Fortunately, and

can be expressed more explicitly. Let

denote the estimation error

corresponding to the statistics . It is well known that

converges to a Gaussian distribution [20]. Let

cum (23)
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and denote the unconjugated/conjugated asymptotic
covariance matrices

Since , it follows that

From this, we deduce further that [19]

(28)

(29)

Plugging the (26)–(29) back into (25) yields

Finally, by combining the previous result and the (24), we ob-
tain, as expected, that

(30)

where
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