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Performance Analysis of Blind Carrier Phase
Estimators for General QAM Constellations

Erchin Serpedin, Philippe Ciblat, Georgios B. Giannaké&low, IEEE and Philippe LoubatgriMember, IEEE

Abstract—targe quadrature amplitude modulation (QAM)  performance of the power-law estimator in [5], [8], [14]. Finally,
constellations are currently used in throughput efficient high-speed  computer simulations are presented to corroborate the theoret-
communication applications such as digital TV. For such large -4 developments and to compare the performance of the inves-

signal constellations, carrier-phase synchronization is a crucial tigated oh timat In the literat two decision-directed
problem because for efficiency reasons, the carrier acquisition Igatled phase estimators. In the fiterature, two decision-directe

must often be performed blindly, without the use of training (DD) phase estimators [8], [16] were reported to improve sig-
or pilot sequences. The goal of the present paper is to provide nificantly the performance of the power-law estimators in the
thorough performance analy5|§ of the.bllnd carrier phase estima- high signal-to-noise ratio (SNR) regimes. However, at low SNR,
tors _that ha\_/e been proposed in the literature and to assess their the reported DD estimators do not improve the performance of
relative merits. . .

the power-law estimator. The performance analysis of DD al-

~Index Terms—Asymptotic performance, blind estimation, car- gorithms is beyond the scope of this paper, and it will not be
rier phase, Cramér-Rao bound, synchronization. considered here

|. INTRODUCTION Il. PROBLEM STATEMENT

AST acquisition of the carrier phase is a crucial issue We consider the baseband QAM communication system
in high-speed communication systems that employ laryéere the received signal(n) = Y,.(n) + jYi(n) is given by
guadrature amplitude modulation (QAM) modulation schemes. 0
One of the challenges associated with large QAM constellations Y(n)=e"X(n)+N(n) (1)
is blind carrier acquisition, which is often required in large anghere
heavily loaded multipoint networks for bandwidth efficiency y;,.(n) in-phase component af(n);
and little effort involved in network monitoring. Itis knownthat = y;(n) quadrature component &f(n);
for large QAM constellations, the conventional carrier tracking X (»n) independently and identically distributed (i.i.d.) input

schemes frequently fail to converge and result in “spinning” QAM symbol stream;

[10], [12]. Therefore, developing computationally simple blind () circularly distributed Gaussian noise, which is as-
carrier phase estimators with guaranteed convergence and good sumed to be independent &f(n);

statistical properties is well motivated. 9 unknown carrier phase offset.

Recently, a number of blind carrier phase estimators hayfe problem of blind carrier phase estimation consists of recov-
been proposed [1], [2], [5], [6], [13, p. 266—-277], [14], but thorering the phase erréronly from knowledge of the received data
ough performance analysis of all these algorithms has not bqe(h). Because the input QAM constellation has quadrayi2)
performed. In order to quantify the performance of these esgiymmetry, it follows that it is possible to recover the unknown
mators, the large sample (asymptotic) performance analysispbfised only modulo ar/2-phase ambiguity. This ambiguity
these phase estimators will be established and compared Vgl be further eliminated through the use of appropriate coding
the stochastic (modified) Cramér—Rao bound [13, Sec. 2.4]skhemes. Therefore, without any loss of generality, we can as-
is shown that the seemingly different estimators [1], [2], [Skume that the unknown phaédies the interval £ /4, 7 /4).

[7], [13, p. 266-277], [14], are equivalent, whereas the esth the next section, we briefly outline the blind phase estimators
mator proposed in [6] has a larger asymptotic variance than {h¢ [2], [5]-[7], [13, p. 266—277], [14] and establish their exact
power-law estimator [5], [8], [14]. It is also shown that by extarge sample performance.

ploiting the additional samples acquired through oversampling

the received continuous-time waveform does not improve the [Il. BLIND CARRIER PHASE ESTIMATORS

A. Approximate Maximum Likelihood Estimator:
Manuscript received April 3, 2000; revised April 4, 2001. The associate editPhyrth-Power Estimator
coordinating the review of this paper and approving it for publication was Prof.
Gregori Vazquez. The maximum likelihood (ML) estimator éfcan be theoret-
E. Serpedin is with the Department of Electrical Engineering, Tex3ga|ly derived by maximizing a stochastic likelihood function
A&M University, College Station, TX 77843-3128 USA (e-mail: ser- . . " . .
pedin@ee.tamu.edu). obtained by averaging the conditional probability density
P. Ciblat and P. Loubaton are with Laboratoire “Systémes de Communidanction of the received data with respect to the unknown data

tion,” Université de Marne-la-Vallée, Noisy le Grand, France. stream X (n). However, for high-order QAM constellations,
G. B. Giannakis is with the Department of Electrical and Computer Engih tati | lexity i ved i lculating the lik

neering, University of Minnesota, Minneapolis, MN 55455 USA. € computatonal complexity involved in calculating the like-
Publisher Item Identifier S 1053-587X(01)05856-1. lihood function and, more importantly, the resulting nonlinear

1053-587X/01$10.00 © 2001 IEEE



SERPEDINet al. PERFORMANCE ANALYSIS OF BLIND CARRIER PHASE ESTIMATORS 1817

optimization problem render the ML estimator impractical fo€artwright's estimator is defined by
most high-speed applications. The need for computationally

simple estimators with guaranteed convergence calls for Ya — Vo
alternative (possibly suboptimal but computationally feasible) tan(46) :4< ) =0

phase estimators. 1 R
Moeneclaey and de Jonghe have shown in [14] that for :Zatan[4<“7>} . (8)
any arbitrary two-dimensional (2-D) rotationally symmetric K

constellations (such as square or cross QAM constellationg), verify that Cartwright's estimator is the fourth-power esti-

the fourth-power (or power-law) estimator can be obtaingfator in (2), we equate the in-phase and quadrature components

as an approximate ML estimator in the limit of small SNRy¢
[SNR := 10log E| X (n)|*/E|N(n)|?, where:= stands for “is
deflned_ as”]. The power-law estimator and its sampled version EY*(n) = ej49EX4(n)
are defined as

= cos(40)EX*(n) + jsin(40) EX*(n)  (9)

6 :=Larg[(EX**(n)) EY*(n)] (2) EY*(n) = E(Yx(n) + jY;(n))*
N - =E [Y(n) + Y (n) — 6Y,2(n)Y(n)]
o Vi) +4)E [Y2(n)Yi(n) - Y, (n)Y(n)]
N *4 n=1
0:=;arg|E (X" (n)) N 3 =7 +45(Ya — ) (10)

It follows that v = cos(40)EX*(n) and 4(y, — v) =

) 4 A .
where the superscript stands for complex conjugation, andi{4¢)EX"(n), which implies tf'we equivalence between
the operatoi(-) denotes the expectation operator. The fourttgStimators (2) and (48)- Cartwright's (fourth-power) estimator
power estimator does not require any complex nonlinear opffau!fes only thatZX*(n) # 0 and the independence between
mizations, but it requirea priori knowledge of the input con- X(n) and a_lddltlve cwcula_rly and normally distributed noise
stellationZ(X *4(n)). However, this is not a restrictive assump2Y (), @nd it can be applied to both square and cross-QAM
tion since for most QAM constellation& X *4(n) is a nega- cor)stellatlons, as_opposed to the estimator propo§ed in [6],
tive real-valued number, whose effect can be easily account¥gich can be applied only to square-QAM constellations.

for. Using standard convergence results [3], [4], [11], it can be Ifc is mterestmg to remark that three qther phase estimators,
checked that asymptotically, (3)i&.p. 1 a consistent estimatorWhich were derived using completely different arguments, are
(9 — 6 asN — o) for any SNR range. An explanation can p&duivalent to the fourth-power estimator. An alternative robust
obtained by observing that in the presence of circularly and n(_prhase estimator with guaranteed convergence has been proposed

mally distributed noiseV (n), the following relation holds: in [2] for square-QAM constellations. Herein, the carrier acqui-
sition problem is reduced to the blind source separation problem

1 X wopl ' of the linear mixture of the in-phase and quadrature-phase com-

¥ Z Yi(n) 5 EY*(n) = Y EX*(n) (4) ponents of the received signal, and a cumulant-based source sep-
n=1 aration criterion is proposed to estimate the unknown phase-

offset [2]. In [1] and [13, pp. 271-277], a low SNR approxi-

4 _ Pan 4 L ation of the likelihood function, assuming PSK input constel-
EY*(n) = Blexp(j6)X(n) + N(n))", taking into account lations, is shown to have the same form as the estimator [2].

. k —
the independence betweaf(n) andN(r), andEN"(n) = 0 Furthermore, it is justified that this estimator can be used even

for any positive integek. Hence, (3) recovers the carrier phas . .
from the phase of the fourth-order moment of the received dafgr general QAM constellations [13, pp. 271-277]. By relying

Cartwright has proposed estimating the unknown thaseon Godard’s quartic criterion [10], Foschini has shown an al-

using a different set of fourth-order statistics [5]. Define the fof_errjanve_denvanon (.)f this phase estimator in [.7]' Ne?<t, we de-
. scribe briefly the estimator proposed in [2], which relies on the
lowing fourth-order moments and cumulants

observation that the in-phase and quadrature components of a

where the second equality in (4) is obtained by expandi

v =B [Y(n)] + E [Y}*(n)] — 6E [Y2(n)Y2(n)] square-QAM constellation are independent.
! ! ! ! Let ¢ denote an estimate of the unknown phase offsete-
(BDY:(n)Yi(n)] = 0) ©) fine the “rotated” outpu¥’ (n) := exp(—j¢) ¥ (n), and assume
Yo :=cUMY;(n), Yi(n), Yi(n), Yi(n)) that X (n) belongs to a square-QAM constellation. In the ab-
=E [Y}(n)Y;(n)] — 3E [Y,2(n)] E[Y,(n)Yi(n)] sence of noise and i# = 6, then the in-phase and quadrature
—-E [Y?’(n)Y;(n)] (6) components of (n) = X(n) are independent. Thus, the joint
! cumulants of the in-phagé’,.(»)) and quadraturé¥;(n)) com-
e 1= UMY, (n), Yi(n), Yi(n), Yi(n)) ponents ofY’ (n) are equal to zero [3, p. 19]
=E [Y,(n)Y;(n)] = 3E [Y7*(n)] E[Y,(n)Yi(n)]
=B [ myPm)]. ™ o i=cum (Yo (n), ¥i(n), Vi(n), Yi(n)) =0

IThe notationw.p. 1 denotes convergence with probability one (almost

surely), 3o = cum(¥,(n), Yi(n), Yi(n), Yi(n)) =0 (11)
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and® 4, — % = 0. It is interesting to remark that (11) con- ANES

tinues to hold true even in the presence of additive circularly 1 Im ¢ (1/NV) Z Yi(n)

and normally distributed nois&¥ (n) because the cumulants of =3 atan ";1 (15)
the in-phase and quadrature component¥ 1) cancel out [3, : "

p. 19]. By taking into account (10), it follows thgt, — 4, = Req (1/N) Z:IY ()

(EY*(n) — EY**(n))/8;j. Thus,f can be estimated from
with Im(.) and R€.) denoting the imaginary and real part op-

6, := argmin (EY4(n) - EY*4(71)) erators, respectively. Using the notations.= EY*(n) and
¢ ’ ’ p:=(1/N) Zﬁ:‘:l Y*(n), (15) can be expressed as
= arg mtgn (eT7*PEY*(n) — Y EY 4 (n)) . (12)

é:latan{lm{p}+lm{e_p}} . (16)
i s 4 4 ey 4 Re{p} + Re{p — p}
If we consider the polar representatiBy *(n) = A* exp(j486),
from (12), we obtain tha#, = argminy \*(exp(—j4(¢ — By considering the first-order approximation of the argument in
9)) — exp(j4(¢ — 6))), which implies thatd, = # modulo the right-hand side of (16), it follows that
a /4-phase ambiguity. Hence, estimator (12) is the same as 1 Im{p}
the fourth-power estimator (2). By taking advantage of the t ~ Zatan{R elo} +6} ) (7)
sign of 7 == (EY*(n) + EY**(n))/2 [see (5) and (10)], s i Rel;
the 7 /4-phase ambiguity inherent in (12) can be reduced to a €:= M — tan(46) M (18)
7 /2-phase ambiguity [since &, — # = 7 /4 modulor /2, then Re{p} Re{p}
¥ = —EX*(n) # EX*(n)]. The first-order Taylor expansion of (17) leads further to

In practice, many communication systems utilizing QAM )
constellations employ also coding, which implies that the SNR 64 2 (46) € (19)
available at the synchronizer will be reduced by an amount 4

proportional to the coding gain. In order to evaluate correcthhd hence

the performance of these phase estimators at all SNR levels, we R 2 cost(46)

next provide an exact expression for the large sample variance lim NFE (9 - 9) = lim NEe. (20)
of the power-law estimator, which is valid for any SNR level, 7 16 N—oo

and it is not restricted to the high SNR regime, as is the cag defining

with the approximate asymptotic expression presented in [14].
The next section will show that for 256-QAM, the expression

n =NE(p - p)*

of [14] is not valid for low and medium SNRs@0 dB). 1 N . . 2
Theorem 1: Assuming that the i.i.d. symbol streal(n) is =NE| + > Yin) - EYi(n) (21)
coming from a finite dimensional QAM-constellation and that A ";1
the additive noiséV(n) is circularly and normally distributed ry :=NE|p— p|
and independent ok (n), then the estimate (3) is asymptoti- 1 X . .
cally unbiased and presents the asymptotic variance =NE| Y Yin) - EY*(n)
n=1
- j_ ) = Hvas = EXO(n) LSy "
I N0 =Sy @ {FXvrm-erim) @
Withd py- 40 := EY*(n) = /** EX*(n), and and using (18), simple manipulations show that
iy s = EIX(n)[® + 16E\X () CE|N(n) Npe = 2o OsSOIRen ) — snEIming g
Lo 4 H 6 2 cos*(40)(EX%(n))?
+36E|X(n)[*E|N(n)|* + 16E|X(n)|“E|N(n)] . . . . .
+ E[N(n)|%. (14) Expand!ng the right-hand side terms in (21) and (22), simple
calculations lead to
. Proof: Since EX**(n) is real valued, it follows from (3) 1 =EYS(n) — (EY4(n))2
ry =E|Y(n)|® = |[EY*(n)|”. (24)
N
Im {EX*4(n)(1/N) Z Y4(n)} Inserting (24) back into (23) and (20), we obtain the sought re-
5 1 n=1 lation (13). The central limit theorem (CLT) and (17) and (18)
6 = — atan - . P . - .
4 N imply that § is asymptotically normally distributed with zero
Re{EX*4(n)(1/N) > Y4(n)} mean. O.
n=1 The asymptotic variance (13) does not depend on the un-
2We can easily check that, = —7s [6]. known phase but only on the input symbol constellation and

SThe notationyuy. ; := EY*(n)Y *!(n) stands for thék + 7)th moment the SNR. This confirms the conclusion drawn in [5] stating that
of Y(n). ’ the standard deviation of (8) appears to be constant with respect
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Slochasﬁc Cramer-Rao Bound
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Phase: Standard Deviation (degrees)

20
SNR (dB)
@)
Fig. 1. Standard deviation versus SNR. (a) Experimental values. (b) Asymptotic values (256 square-QAM).
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Stochastic Cramer-Rao Bound
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Stochastic Cramer-Rao Bound

---- Parameters: MC«300, Ns5§32.... ... ..

Phase: Standard Deviation (degrees)
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... Parameters: MC=300, N=§12- . Paramsters: MCa300, Na512.

Phase: Standard Deviation (degrees)
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SNR (dB)

@)

(256 square-QAM).

to the true value of. We evaluate next the asymptotic perfor-

mance of a phase estimator based on an alternative set of
tics that was proposed in [6].

B. HOS-Based Phase Estimator of [6]

The phase estimator [6] extracts the unknown phase informa-

tion 6 € (—x/4, = /4) using the relations

Yo =W < -
cot(26) = 27 if - >0125 <4
c(-3-slvs )
(25)
C2(va ) o | T
(26)
with v, := E[|X[Y] — 2{E|X]|?}? and
v :=cum{Y,(n), Y;(n), Yi(n), Yi(n)}
=E [V (n)Y?(n)] — E [V (n)] E [Y7(n)]
=0.25sin%(26)7,. (27)

15 20
SNR {d8)
(b)

Fig. 2. Standard deviation versus SNR. Experimental/theoretical values. (a) Power estimator. (b) Reduced-constellation power estimattra{e)Tineator

5 20
SNR (d8)

©

Stochastic Cramer-Rao Bound

Asymptotic Limit: Power Estimator

Experimental: Power Estimator

Asymptotic Limit: Chen e'al Estimator
Chen etal

statis-

35

Phase: Standard Deviation (degrees)

i i : i L
500 1000 1500 2000 2500 3000 3500 4000 4500 S000
No. of samples (N)

Fig. 3. Standard deviation versus number of samples. Power estimator versus
Chenet al. estimator (256 square-QAM).

Let 44, 45, and¥ denote sample estimates fof, v, and~,
respectively, and define tﬂﬁ andé, the sample estimates cor-
responding to (25) and (26), respectively. Reasoning along the
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Stochastic Cramer-Rao Bound
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Fig. 4. Standard deviation versus SNR. (a) Cheal. estimator § = 7/5). (b) Asymptotic limits (256 square-QAM).

lines of the proof presented for Theorem 1, the asymptotic per-
formance ofél and 9} can be established and is given by the
following result.

Theorem 2: Assuming that the i.i.d. symbol streal(n) is
coming from a finite-dimensional QAM-constellation and that
the additive noiseV(n) is circularly and normally distributed
and independent of(n), then the estimateg, and 6, are
asymptotically unbiased and present the asymptotic variances

lim N (él - 9)2

N—oo
011 + cot?(26) 022 — 2cot(260) 012
- 2
72
v v v
ve(-p-5lvls ) (28)
. N 2
Jim N (8. -0)
011 +4tan?(260)022 + 4 tan(26) 10
- 2
72
mw T
e(3) 2

respectively, where we have (30)—(32), shown at the bottom of
the next pageyiy, 44 is given by (14), and

.

8

S

Phase: Standard Deviation (degrees)
[~
&
T

Cramer-Rao Bound
b Power Estimator
{ -0+ Chenetal. Estimator

.. Pararetors; N=512; SNR=1088. . ...

IV. PERFORMANCE COMPARISONS

Fig. 5. Standard deviation versus phase offset. Asymptotic limit (256
square-QAM).

and for any SNR, it exhibits a larger variance than the power-law
estimator.

In this section, computer simulations are performed to as-

prye2 =Y [EXS(n)X*?(n) + 12EX?(n) X *(n)E|N(n)|?

+ 15EX*(n)E|N(n)[*] (33)
Hy,51 IICMH[EXS( )X*(n) +5EX ( )E|N(”)|2] (34)
py,ss = E|X(n )®+9E|X (n)|*E|N(n)|?
+9E|X ()| 2EIN (n)[* + E|N(n)|° (35)
pyee = E1X (n)|* +4E|X (n)PE|N(n)[?
+E|N(n)|* (36)
py,11 ::E|X(n)|2 +E|N(n)|2. (37)

sess the relative merits of the proposed phase estimators by
comparing the theoretical (asymptotic) limits and the experi-
mental standard deviations of the investigated estimators. Two
additional estimators have been analyzed: the fractionally-sam-
pled (FS) power-law estimator and the reduced-constellation
power estimator. The FS-power estimator recovers the unknown
phase offse® by exploiting all the samples obtained by frac-
tionally sampling (oversampling) the received continuous-time
waveform in the estimator (3). A raised-cosine pulse shape with
roll-off factor 0.3 and an oversampling factét = 3 are as-

sumed throughout the simulations. The reduced-constellation
As opposed to the power-law estimator, the asymptotic perfgrewer estimator also relies on (3), but only the received samples

mance of the Chest al. estimator [6] depends on the phas¢hat are larger in magnitude than a given threshold are processed
offset 8. As the simulation results will show (see Fig. 5), th¢12, p. 1382], [8, p. 1482]. Thus, only the points closest to the
asymptotic performance of this estimator deteriorates signifeur corners of the constellation are processed. The asymptotic
cantly whenever tha priori intervals (25) and (26) are missed performance of the reduced-constellation estimator is provided
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Fig. 6. Standard deviation versus SNR. (a) Power estimator. (b) Reduced-constellation power estimator (128 cross-QAM).
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Fig. 7. Standard deviation versus SNR/data. (a) Reduced-constellation power-law and power-law estimators. (b) Power estimator (128 cross-QAM).

by (13), with the higher order moments of the input sequengersus SNR, assuming a square 256-QAM constellation,
computed in accordance with the reduced constellation. 6 = 15°(=7/12), N = 512 samplesM C = 300 Monte Carlo

In Fig. 1(a) and (b), we have plotted the experimentalins, and additive normally distributed noise. The threshold in
and asymptotic standard deviations of all these estimatdh® reduced-constellation power estimator has been set up so

cos(86) [(EX‘*(n))2 - EXS(n)} — [EX*(n)[* + py 44

O11 ::E[(’Aya - ’?b) - (’Ya - ’7(;)]2 = 32 (30)
—sin(86) [ EX3(n) — 2 (BX*(n)"] +21m{puy; 2}
012 = NE{(H = V)[(Fa — %) — (a =W} = ol
4 sin(40)EXH(n) [y, 22 — 3 11] + 8(EIX () + EIN(n)?) Im{py, 51} (31)
64
om = NE( — ) = cos(86) EXB(n) + 3uy, 44 — 4 Re{py, 62]i2—848/f§7 11 — 6[cos(4) EX*(n) — py, 22] 2

B 32N2Y, 11 [COS(49)EX4(”) - 2E|Y(”)|4] — 16[Re{ iy, 51} — prv, 33]pv, 11 (32)
128
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In Fig. 5, the set of value8 > = /4 should be considered as
reduced moduler /4 to the interval(0, w/4), whereas the set
6 < —n /4 is reduced module-w/4 to (—= /4, 0).

! : : : 1 : In Figs. 6 and 7, we have analyzed the performance of the
: Paramg»;ers:AN=5,12, theta=pi/12, 256-QAM

—  Stochastic Cramer-Rao Bound
~=G---  Asymptotic Limit
—é6—  Approximate Asymptotic Limit

power-law and the reduced-constellation power-law estimators
in the case of a cross 128-QAM constellation, assunding
7/12, MC = 300, and N = 4000 samples. The threshold
for the reduced-constellation power estimator is chosen such
that in every quadrant only the two points with the largest radii
are processed. We have selected the threshold to improve the
performance of the reduced-constellation estimator. However, it
turns out that for large cross-QAM constellations, the improve-
ment provided by a reduced-constellation estimator relative to a
full-constellation estimator is negligible. For such cross-QAM
constellations, the Cheat al.estimator cannot be used since the
in-phase and quadrature components of the input symbol stream
are not independent. In Figs. 6 and 7(a), the experimental and
asymptotic standard deviations of the full- and reduced-constel-
Fig. 8. Standard deviation versus SNR. Exact and approximate asympigligion power-law estimators are plotted for different SNR levels.
limits (256 square-QAM). . T .

Fig. 7(a) and (b) show that the asymptotic limit predicts well the

experimental results for all SNR levels and number of samples
that only the received samples corresponding to the 12 poimNs> 1000. It also appears that for cross-QAM constellations,
of the input 256-QAM constellation with the largest radii ar¢ghe power-law estimator exhibits very slow convergence rate,
processed. The solid line denotes the stochastic Cramér—Rad good estimates of the phase-offset can be obtained only by
bound(CRB = 1/(N - SNR)) corresponding to the phaseusing a large number of sample¥ - 5000). Finally, Fig. 8 re-
estimate. Fig. 1 shows that the power-law estimator performeals that for 256-QAM constellations, the approximate asymp-
better than the Cheaet al. estimator [6] at all SNR levels but totic limit derived in [14] does not predict well the exact asymp-
worse than the reduced-constellation power estimator at higltic limit of the power-law estimator for small and medium
SNRs (SNR> 20 dB). The FS-based power estimator appeashRs.
to have the worst performance. The reduced performance of
the FS-power estimator is due to the increased “self-noise”
generated by the residual intersymbol interference effects.
For this reason, we have not pursued further the analysis of
FS-based power-law estimators.

Phase: Standard Deviation (degrees)

25 40

20
SNR (dB)
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