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IV. REPLY TO COMMENT 4

In the literature, there exist many quadratic TFDs whose kernels do
not have a two–dimensional (2-D) lowpass shape but are well known
for their cross-terms suppression property. One particular example is
the cone-shape distribution whose Doppler-lag kernel [1, p. 146] is
displayed in Fig. 1 for two values of its tuning parameter �, specifi-
cally, 0.01 and 100. By continuously varying the value of � from small
to large, the kernel evolves from an allpass filter shape (i.e., the dis-
tribution is not appropriate for cross-terms suppression) to the shape
displayed in the figure (i.e., the kernel removes all cross-terms, except
those on the axis � = 0). There exists no value of � for which this
kernel has a 2-D lowpass shape. For an arbitrary signal, the user has
to select an appropriate value of � to decide the amount of cross-terms
suppression.

Similarly, by continuously varying its parameter �, the BD
Doppler-lag kernel shape evolves as shown in the figure of the
comments. In particular, for small values of �, the kernel removes all
cross-terms, except those on the axis � = 0, and for large values, the
BD becomes inappropriate for cross-terms suppression, as explained
in the original paper. Note that because of its zero value at the origin,
the BD may cause some extra energy distortion for the auto-terms;
however, this does not seem to adversly affect its time-frequency
representation, as shown by the various examples provided in the
paper. This is why the major interest of the paper is not only to define
a new quadratic TFD with useful resolution properties but to also open
a new direction of research in the design of quadratic TFDs with new
criteria that are not limited by old thinking.

In short, one can say that each kernel has its own characteristics that
are, in general, different from those of the others. This situation is very
normal and expected because each kernel defines a different member
of the quadratic class with different properties. Further details can be
found in a recent tutorial on this question [3, ch. 3].
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A Fine Blind Frequency Offset Estimator for
OFDM/OQAM Systems
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Abstract—Like other orthogonal frequency division multiplexing
(OFDM) systems, OFDM systems based on offset quadrature amplitude
modulation (OFDM/OQAM) are very sensitive to carrier frequency offset.
In this paper, a new blind carrier frequency offset estimator is developed
for OFDM/OQAM systems by exploiting the noncircularity of the received
OFDM/OQAM signal. Since the received signal exhibits conjugate cyclic
frequencies at twice the carrier frequency offset, the frequency estimator
is designed by maximizing a cost function expressed in terms of the sample
conjugate cyclocorrelations. The theoretical asymptotic (large sample)
performance analysis of the proposed estimator is established. Computer
simulations are presented to illustrate the performance of the estimator.
It is shown that the proposed estimator is very accurate whenever it is
well initialized. Therefore, the proposed estimator appears to be very well
adapted for a tracking mode rather than for an acquisition mode.

Index Terms—Carrier frequency offset, conjugate cyclocorrelation, esti-
mation, OFDM system.

I. INTRODUCTION

The orthogonal frequency division multiplexing (OFDM) system,
which belongs to the family of multicarrier transmission schemes, has
been developed to combat efficiently the intersymbol interference (ISI)
effects on frequency-selective channels. Its main advantages are the
very low computational cost [the receiver consists only of a fast Fourier
transform (FFT) and, if necessary, of a more general filterbank] and the
simplified equalization step [1]. During the last few years, OFDM-like
techniques have received increasing attention and are currently em-
ployed in the European digital radio broadcasting (DAB), digital terres-
trial TV broadcasting (DVBT), indoor wireless systems (HIPERLAN),
and broadband access on twisted pair (ADSL).

However, it is well-known that OFDM-like techniques are more sen-
sitive to carrier frequency offset than single carrier techniques [2]. The
frequency offset (due to Doppler shifts and local oscillator drifts) gives
rise to intercarrier interference (ICI), which dramatically degrades the
performance. Therefore, removing the frequency offset at the front end
of the receiver is a crucial task.

A lot of techniques based on the OFDM principle have been pro-
posed in the literature. The structure of a standard OFDM transmitter
consists of the concatenation of an IFFT transform and a guard interval
and a linear modulation shaped by means of a rectangular window. As
the time-frequency localization of such shaping windows is not com-
pact, considerable research attention has recently been allocated to de-
veloping alternative modulations such as OFDM/offset quadrature am-
plitudemodulation (OQAM), which constitutes a combination between
an offset quadrature-amplitude modulation and a square-root Nyquist
pulse-shaping filter (see, e.g., [3]–[9]). For OFDM/OQAM schemes,
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the guard interval is omitted, which guarantees a better spectral effi-
ciency relative to regular OFDM schemes. However, OFDM/OQAM
systems require an equalization step, which can be efficiently imple-
mented [9].

Thus far, numerous works regarding the blind (nondata aided) esti-
mation of the frequency offset in standard OFDM systems have been re-
ported. Among these, the subspace-based methods have been recently
proposed in [10] and [11] and shown to be equivalent to the maximum
likelihood (ML) estimator in [12]. Nevertheless, the validity domain of
such methods is quite restrictive since the presence of virtual subcar-
riers has to be assumed. In the absence of virtual subcarriers, a max-
imum likelihood based estimator has also been introduced under the
strong assumption of a flat-fading channel [13]. However, simulation
experiments show that the ML-based estimator is not quite robust to
ISI-channel effects. In [14], a new blind frequency estimator is pro-
posed by exploiting the second-order cyclostationary statistics of the
oversampled received signal. This estimator represents an extension of
the approach proposed in [15] to the OFDM framework and is specifi-
cally designed only for flat-fading channels [14]. However, it performs
well for flat-fading channels and is just robust over multipath propaga-
tion channels. Recently, a new blind carrier frequency offset estimator
for OFDM systems was introduced in [16]. This estimator can only be
applied under the restrictive assumption of a noncircular input symbol
constellation1 and exploits the conjugate second-order cyclostationary
statistics of the received signal [16].

A natural extension of the estimator [14], which has been designed
in the context of a standard OFDM system, to an OFDM/OQAM type
system is proposed in [17]. One can observe that the performance and
the properties of these two estimators are close. Similar to the analysis
performed in [17], we propose herein to extend and analyze the esti-
mator [16] to OFDM/OQAM systems.

As the real and the imaginary parts of the transmitted signal
in an OFDM/OQAM system are not statistically identical, such a
modulating signal is intrinsically noncircular. Therefore, the estimator
introduced in [16] can be extended without restriction to the considered
OFDM/OQAM system. The purpose of the paper is to introduce and
analyze this new estimator in the context of OFDM/OQAM systems.

As it will be seen later, the proposed estimator is equivalent to es-
timating the parameters of a harmonic embedded in additive noise by
means of the maximization of a periodogram in the frequency domain.
It is well known that the periodogram has several local maxima. There-
fore, the search of the maximum of the periodogram has to be computed
in two steps—i) the coarse acquisition step and ii) the fine acquisition
step—which is in general iterative and initialized by the coarse step.
As pointed out in [18], the first step may be affected by outliers.2 One
of the main objectives of this paper is to evaluate the asymptotic (large
sample) variance of the proposed frequency offset estimator. The pro-
posed asymptotic performance analysis only studies the behavior of the
cost function around the true frequency, and it is not relevant for eval-
uating the performance of the first step. The performance of the coarse
acquisition step will be studied experimentally by means of the proba-
bility of detecting a false peak.

Computer simulations illustrate that the proposed estimator is quite
sensitive to outliers and but that it yields very good performance for
the fine acquisition step whenever it is well initialized. Therefore, the
proposed estimator is particularly well suited for the fine tracking mode
rather than to the coarse acquisition mode.

The rest of this correspondence is organized as follows. In Section II,
for the sake of simplicity, we introduce the estimator for flat-fading

1Noncircularity translates into the condition that the expected value of the
squared input symbol is nonzero.

2The argument corresponding to the maximum of the periodogram may be
far away from the expected true value.

channels as in [17]. In Section III, the asymptotic analysis is reported
in order to evaluate the performance of the fine acquisition step. In Sec-
tion IV, computer simulations are presented to corroborate the theoret-
ical performance analysis and to illustrate that the proposed estimator
is quite robust to ISI-channel effects and symbol timing errors.

II. NEW ESTIMATOR

For an OFDM/OQAM system, the transmitted continuous-time
baseband signal xa(t) can be expressed as follows:

xa(t) =

Q�1

q=0

xq(t)

where the qth signal component

xq(t) :=
l2

(aq;lga(t� lT ) + ibq;lga(t� lT + T=2))

� e2i�(q=Q)(t�lT )

corresponds to a linear offset modulation translated to the sub-car-
rier q=Q. The sequences aq;l and bq;l are real-valued and belong to
PAM-type modulations. Thus, the complex valued sequence sq;l =
aq;l + ibq;l can be interpreted as a QAM-type modulation. Moreover,
we assume that aq;l and bq;l are independently and identically dis-
tributed (i.i.d.) with unit-variance. The duration of a complete OFDM
symbol that corresponds to the set fs0;l; . . . ; sQ�1;lg is equal to T .
Consequently, the period of each information symbol sq;l is Ts =
T=Q. Furthermore, the pulse ga(t) is usually a square-root raised co-
sine (with roll-off � and built assuming the OFDM-rate 1=T ) instead of
a rectangular window. Without any restriction, one can assume that the
mapping t 7! ga(t) is time limited with the time support [�LTs; LTs].
Last, no guard interval is inserted even in the presence of a frequency-
selective channel.

For the sake of simplicity, we assume first that the transmitted
signal passes through a flat-fading channel as in [17]. Hence, the
continuous-time baseband received signal ya(t) takes the following
form:

ya(t) = xa(t)e
2i��f t + wa(t) (1)

where �f0 is the carrier frequency offset, and wa(t) stands for the ad-
ditive zero-mean Gaussian noise. Our aim is to estimate the carrier fre-
quency offset from the sole knowledge of the symbol-rate sampled re-
ceived signal.

According to (1), the discrete-time signal y(n) := ya(nTs) can be
expressed as follows:

y(n) =

Q�1

q=0

xq(n) e2i��f n + w(n) (2)

where

xq(n) =
l2

(aq;lg(n� lQ) + ibq;l~g(n� lQ))

� e2i�(q=Q)(n�lQ)T

g(m) := ga(mTs); ~g(m) := ga(mTs + QTs=2), and w(n) :=
wa(nTs). Finally, �f0 := (�f0Ts mod 1), where (amod b) 2 [0; b)
is the remainder after dividing a by b.

Before proceeding further, we recall that a zero-mean discrete-time
stochastic process p(n) is said to be unconjugate (conjugate) cyclo-
stationary if the unconjugate (conjugate) correlation coefficients3

3The overline stands for complex conjugation.
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[p(m + n)p(n)] ( [p(m+ n)p(n)], respectively) can be expressed
in terms of a Fourier series expansion, i.e.,

[p(m+ n)p(n)] =

1

k=0

r(a )(m)e2i�a n

where F := fakgk�0 is the countable set of the so-called cyclic fre-
quencies of p(n). The sequence fr(a )(m)gm2 denotes the cyclocor-
relation sequence at cyclic frequency ak of p(n).

In [17], it has been proved that the unconjugate correlations of
the OFDM/OQAM signal y(n) are cyclostationary with cycles
F = fq=Qgq=0;...;Q�1. In addition, it turns out that the phases of
the associated unconjugate cyclocorrelations directly depend on the
unknown carrier frequency offset. Based on this observation, [17]
develops a frequency offset estimator whose performance is improved
whenever the subcarriers are weighted with different factors. The
weighting of the carriers obviously restricts the application field of
this method.

We have observed that the conjugate correlations of the received
signal are nonzero and are cyclostationary with the set of cycles
F = f�0 + q=Qgq=0;...;Q�1, where �0 = (2�f0 mod 1). Since Q
is assumed to be known, estimating �f0 boils down to estimating
�0. Therefore, a frequency offset estimator can be developed by
maximizing a certain cost function expressed in terms of the conjugate
cyclocorrelations.

Let rc(n; � ) = [y(n + � )y(n)] denote the conjugate correlation
at time index n and lag � of y(n). After straightforward derivations, it
turns out that

rc(n; � ) =

Q�1

q=0

e2i�(2q=Q)(n+�=2) Gm(n; � )e2i�� (n+�=2)

where

Gm(n; � ) :=
l2

(g(n+ � � lQ)g(n� lQ)

� ~g(n+ � � lQ)~g(n� lQ)):

Obvious manipulations lead to (3), shown at the bottom of the page.
As g(n) and ~g(n) are different, one can verify that n 7! Gm(n; � ) is
not reduced to zero and is periodic with periodQ. This implies that the
conjugate correlation of the received signal is nonzero, cyclostationary,
and takes the following generic form:

rc(n; � ) =

Q�1

q=0

r(� +q=Q)
c (�)e2i�(� +q=Q)n (4)

where r(� +q=Q)
c (�) is the conjugate cyclocorrelation at lag � and can

be expressed as

r(�)c (�) = lim
N!1

1

N

N�1

n=0

rc(n; � )e
�2i��n: (5)

According to (3), we obtain the expression at the bottom of the page.
As soon as j�f0j < 1=Q, knowledge of the set F provides exactly the
value of �0. Indeed, �0 is the sole value in the interval [�1=Q; 1=Q)

for which r(�+q=Q)
c (�) is nonzero, whenever q is an odd integer. Thus,

�0 can be obtained based on the following estimator:

�0 := arg max
�2[�1=Q;1=Q)

J(�); J(�) :=

q odd

r
(�+q=Q)
c

2

(6)

with r
(�)
c := [r

(�)
c (�L); . . . ; r

(�)
c (L)]T. The cost function (6) ex-

ploits directly all the second-order cyclostationary information (present
at any cycle and any lag) in the received signal. By means of numerical
computations, we have observed that other cost functions that exploit
either only all the cycles or only all the lags are outperformed by the se-
lected cost function. To keep the length of this paper to a minimum, we
next concentrate only on the estimator associated with the cost function
(6).

In practice, the conjugate cyclocorrelation vector r(�)c has to be esti-
mated because onlyN observations are available. The sample estimate
of r(�)c is obtained by dropping the limit and the mathematical expec-
tation in (5). This leads to the sample estimate

r̂
(�)
c;N :=

1

N

N�1

n=0

z(n)e�2i��n

with z(n) := [y(n�L)y(n); . . . ; y(n+L)y(n)]T. The corresponding
estimate of �0, which is denoted by �̂N , is defined by

�̂N := arg max
�2[�1=Q;1=Q)

JN(�)

JN(�) :=

q odd

r̂
(�+q=Q)
c;N

2

:

The proposed estimator allows an interesting interpretation as a spec-
tral estimation problem. Consider the following zero-mean process:
e(n) = z(n)� [z(n)]. Equation (4) leads to

z(n) =

q odd

r
(� +q=Q)
c e2i�(� +q=Q)n + e(n): (7)

Thus, z(n) corresponds to a sum of constant amplitude multivariate
harmonics embedded in the additive noise e(n). Estimating�0 reduces
to the problem of estimating the parameters of a number of multivariate
harmonics. Note also that the cost function JN(�) can be rewritten as
follows:

JN(�) =

q odd

1

N

N�1

n=0

z(n)e�2i�(�+q=Q)n

2

which represents a sum of weighted periodograms. This implies that
the cost function JN(�) consists of a number of spectral lines at cycles
�0+q=Q (where q is an odd) and a ground-like level induced by noise.

rc(n; � ) = QGm(n; � )e2i�� (n+�=2); if n = (��=2modQ=2)
rc(n; � ) = 0; otherwise.

(3)

r
(� +q=Q)
c (�) = �2Gm((Q� � )=2; � )e2i�(q=(2Q)+� =2)� ; for q odd
r
(� +q=Q)
c (�) = 0; for q even.
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It is well known that the periodogram JN(�) has several local
maxima. Therefore, the computation of the estimate �̂N has to be per-
formed in two steps. In the first coarse acquisition step, the objective
is to detect the peaks, and the function JN(�) is evaluated on an FFT
grid. In the second, a fine acquisition step carried out by a gradient
minimization algorithm of JN(�), initialized at the estimate provided
by the first step, is performed in order to obtain the estimate �̂N .

Both steps have to be analyzed separately. The first step, which is
connected to the so-called outliers effect [18], is theoretically difficult
to analyze. A standard and largely adopted criterion to measure the per-
formance of the first step is the probability of right detection of the peak
around a given harmonic. This probability is evaluated in Section IV.
The analysis of the second step boils down to an asymptotic analysis,
which is performed in Section III.

III. ASYMPTOTIC ANALYSIS

We herein determine the convergence rate of the estimates and report
closed-form expressions for the corresponding asymptotic covariances.

Without any loss of generality, the noise e(n) is assumed to satisfy
the standard mixing condition [19], which resumes to absolute summa-
bility of its cumulants: a condition that is satisfied by all finite memory
processes. Exploiting the results of previous works about harmonic re-
trieval in additive noise (see [16] and the references therein), we obtain
the following results:

Theorem 1: Asymptotically as N ! 1, the frequency estimate
�̂N converges in distribution to a normal distribution

N3=2(�̂N � �0)
L
�! N (0; 
):

Note that the convergence rate is proportional to 1=N3, which is a result
that corroborates the standard results encountered in most harmonic
retrieval problems. The closed-form expression for the asymptotic co-
variance 
 is detailed in the following theorem (see [16]).

Theorem 2: The asymptotic covariance 
 is given by


 =
3

�2
q;q oddR

H
q	q;q Rq

q oddR
H
qRq

2

with

Rq :=
r
(� +q=Q)
c

r
(� +q=Q)
c

and

	q;q :=
�(q;q ) ��

(q;q )
c

��
(q;q )
c �(q;q )

where

�(q;q ) := lim
N!1

N �r̂
(� +q=Q)
c;N � �r̂(� +q =Q)

c;N

�(q;q )
c := lim

N!1
N �r̂

(� +q=Q)
c;N � �r̂

(� +q =Q)
c;N

and

�r̂
(�)
c;N := r̂

(�)
c;N � r(�)c :

To take advantage of this result, we need more explicit expressions
for � and �c, which are the asymptotic covariance of the sample esti-
mates corresponding to the vector of cyclocorrelations. First of all, we
derive these matrices in terms of the statistics of the disturbance occur-
ring in the equivalent harmonic retrieval problem, i.e., e(n). According
to [16], we have

�(q;q ) = S((q�q )=Q)
e

e2i�(� +q=Q)

�(q;q )
c = S

(2� +(q+q )=Q)

e

e2i�(� +q=Q)

where f 7! S
(�)
e (e2i�f ), and f 7! S

(�)

e

(e2i�f) denote the cy-
clospectra of e(n) at cyclic frequency � with respect to its unconjugate
and conjugate autocorrelation functions, respectively.

We now determine the second-order cyclic statistics of the distur-
bance e(n). Define dT (e2i�f) := [e�2i�Tf ; . . . ; e2i�Tf ]T. We as-
sume that the source fsq;lg is Gaussian. To be perfectly accurate, a
term depending on the kurtosis of the source will have to be added in
the sought expressions. However, since the cumulants of order higher
than two are numerically very weak, the terms depending on the kur-
tosis of the source may be neglected, and consequently, the Gaussian
source approximation holds. Based on the results reported in [16], it
turns out that

S((q�q )=Q)
e

e2i�(� +q=Q)

=

Q�1

m=0

1

0

S(m=Q)
y (e2i�f)S((q�q �m)=Q)

y

� e2i�(� +q=Q�f)

� dT (e
2i�f) d

H
T e2i�(f�m=Q)

+ d
H
T e2i�(� +(q +m)=Q�f) df

and

S
(2� +(q+q )=Q)

e

e2i�(� +q=Q)

=

Q�1

m=0

1

0

S
(� +m=Q)

y
(e2i�f)S

(� +(q�q �m)=Q)

y

� e2i�(� +q=Q�f)

� dT (e
2i�f) d

T
T e2i�(� +m=Q�f)

+ d
T
T e2i�(f+(q �m)=Q) df

where S(�)
y (e2i�f) and S(�)

y
(e2i�f) denote the cyclic spectra associ-

ated with the unconjugate and conjugate autocorrelations of y(n), re-
spectively.

The next step resumes finding more suitable expressions for these
received signal cyclospectra. The derivations of Sy and Sy no longer
exploit previous works. Indeed, these calculations are specific for each
problem. After rather simple but tedious calculations, we obtain

S(q=Q)
y (e2i�f) =

Q�1

n=0 k2

Gp(n; kQ)

� e�2i�[(f�� =2)kQ+(q=Q)n] + �2

S
(� +q=Q)

y
(e2i�f) = �2

�2

Gm((Q� � )=2; � )

� e�2i�(f�� =2�q=(2Q))�

with

Gp(n; � ) =
l2

(g(n+ � � lQ)g(n� lQ)

+ ~g(n+ � � lQ)~g(n� lQ))

and

�2 := [jw(n)j2]:

As the expressions of the asymptotic covariances can no longer be
simplified, we resort to numerical computations of the asymptotic co-
variances to analyze the theoretical results.
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TABLE I
FALSE DETECTION OCCURRENCE (IN PERCENT) FOR Q = 4

TABLE II
FALSE DETECTION OCCURRENCE (IN PERCENT) FOR Q = 16

IV. NUMERICAL EVALUATIONS

The following simulation parameters are used throughout this sec-
tion. The roll-off factor of the shaping filter ga(t) is equal to � =
0:2, and the noise w(n) is white with the variance �2 = [jw(n)j2].
The number of OFDM symbols is denoted by M = N=Q, and the
signal-to-noise ratio (SNR) is defined as SNR := 2=�2. We average
the experimental results over MC = 500 independent Monte Carlo
runs.

In Tables I and II, we display the probability of detecting a false
peak versusM and SNR, assuming two scenariosQ = 4 andQ = 16,
respectively. We assume that the coarse search leads to a right detec-
tion if it selects the closest frequency of the grid to the sought cyclic
frequency. The estimator succeeds in detecting the right peak with al-
most no error, assuming much lowerM or SNR. Moreover, for greater
values of Q, a better detection performance can be observed. Never-
theless, our estimation procedure requires large observation windows
in order to provide reliable coarse estimates.

In the next experiments, we compare the theoretical and experi-
mental performance of the proposed estimator. We also compare our
estimate with the only prior estimate developed in an OFDM/OQAM
[17]. As the estimate introduced in [17] is not robust to the fre-
quency-selective propagation channel, we focus on the AWGN
channel. Moreover, we have noticed that the performance of his
estimate is disastrous without carrier weighting and cannot then be
utilized for any purpose. Therefore, Bölcskei’s estimate has been
carried out by using the carrier weighting of [17], whereas our estimate
works whatever the weighting and especially without weighting. The
analytical expression of the normalized mean-square error (MSE) is
defined as 
=(�20N

3). The dashed curve (with star point) is obtained
for the entire algorithm (the first step followed by the second one).
The dashed-curve corresponds to the estimate obtained when the
second step is initialized with a good estimate. The solid line refers to
the MSE obtained by means of asymptotic analysis. Fig. 1 depicts the
MSE versus SNR for Q = 4. As expected, the effect due to outliers
appears only during the coarse search and appears at SNR levels below
10 dB. Furthermore, as soon as the estimate is well initialized, the
experimental and theoretical performance are in quite good agreement,
except at very low SNR. This mismatch at low SNR can be reduced by
considering more data. A floor effect at large SNR values occurs. This
is due to the fact that we have observed that 
 is non-null, even in the
noiseless case. We remark that our estimate outperforms Bölcskei’s
estimate as soon as the outliers effect vanishes.
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Fig. 1. Practical MSE versus SNR (M = 512).
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Fig. 2. Practical MSE versusM (SNR = 10 dB).

Fig. 2 depicts the MSE versusM forQ = 4. The difference between
the experimental and theoretical performance vanishes whenever the
number of symbols is large enough. Furthermore, the outliers vanish
wheneverM takes on sufficiently large values. Once again, we observe
that our estimate is much better than that of Bölcskei forM sufficiently
large.

Now, we consider the scenario when the transmitted signal passes
through an unknown frequency-selective channel. The received signal
is expressed as follows:

ya(t) =

K

k=1

�kxa(t� �k):

Two cases are studied: In the first one, only a timing error occurs, i.e.,
K = 1 and �1 = � . The timing error � is assumed to be smaller than the
sampling period Ts = T=Q. In the second case, we consider an actual
non-flat-fading channel with K = 5. The complex amplitudes
f�kgk=1;...;5 are Gaussian distributed, and the time delays
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Fig. 3. MSE versus SNR: Timing error case or frequency-selective channel
case.

f�kgk=1;...;5 are uniformly distributed in [0; 3Ts]. In a standard OFDM
scheme with guard interval, the delay spread is assumed to be smaller
than the OFDM symbol duration in order to ensure a reasonable length
for the guard interval. Therefore, our assumption concerning the delay
spread is not restrictive.

In Fig. 3, we plot the MSE versus SNR for the flat-fading channel
(circle point) and for the frequency-selective channel (cross point). The
timing error corresponding to the flat-fading channel and the taps of
the frequency-selective channel are modified at each Monte Carlo trial.
We observe that the estimator is quite robust to timing errors and time-
dispersive propagation effects. In the frequency-selective channel case,
the performance is worse than in the flat-fading channel framework,
and the SNR threshold beyond which no outliers occur increases in the
case of the frequency-selective channel. Thus, the coarse acquisition
step is more sensitive to the presence of time-dispersive channel. In
contrast, the fine acquisition step is robust.

According to the previous numerical results, one may envisage at
least two strategies for designing (semi-)blind synchronizers for real-
istic OFDM/OQAM systems. As the proposed estimator exhibits poor
performance in the coarse acquisition step, the first acquisition step
may be achieved by means of a different estimator. First, a good can-
didate for coarse acquisition is the blind estimator introduced in [17],
which appears to be less sensitive to outliers effects (cf.[17, Figs. 2
and 3] and Fig. 1 and 2 herein). In contrast, the estimator [17] is much
less powerful for the second step (fine acquisition) since its conver-
gence rate is equal to 1=N (see [20]4 and Fig. 2). Therefore, the fine
acquisition step can be performed via the proposed estimator in order
to improve strongly the accuracy of the estimate provided by the coarse
acquisition step. Second, a semi-blind approach can be also envisaged:
a data-aided estimator relying on a small training sequence inserted in
each frame for obtaining a good coarse estimate, which may be subse-
quently refined by the proposed blind estimator. Finally, one can ob-
serve that since a good initialization is necessary, the proposed blind
estimator is also particularly adapted to the tracking mode.

4In [20], the convergence rate for the estimator proposed in [15] has been
evaluated. As the estimator introduced in [17] is a natural extension of that one
of [15], similar derivations can be done and lead to the same convergence rate.

V. CONCLUSION

We have investigated a new blind frequency offset estimator for
OFDM/OQAM modulation. The proposed estimator performs well
and is quite robust over frequency-selective channels. Nevertheless,
this estimator requires quite a large observation window in order to be
provided with proper initialization. Therefore, this estimator is rather
well suited for a fine search (tracking mode) but not for a coarse search
(acquisition mode). The asymptotic performance of this estimator
is established, and computer simulations confirm all the theoretical
assertions.
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