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Asymptotic Analysis of Blind Cyclic
Correlation-Based Symbol-Rate Estimators
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Abstract—This paper considers the problem of blind symbol waveform (the symbol-raté/T;, the carrier frequency/phase
rate estimation of signals linearly modulated by a sequence of offset A fy, and the symbol alphabet) has to be performed
unknown symbols. Oversampling the received signal generates blindly from the received waveform, without knowledge of

cyclostationary statistics that are exploited to devise symbol-rate . . L ) .
estimators by maximizing in the cyclic domain a (possibly the transmitted symbols. Potential applications include passive

weighted) sum of modulus squares of cyclic correlation estimates. listening, automatic classification of modulation, and blind
Although quite natural, the asymptotic (large sample) perfor- synchronization of high-speed distributed networks, where
mance of this estimator has not been studied rigorously. The the receiver has to be synchronized without transmitting a

consistency and asymptotic normality of this symbol-rate esti- jiq/training sequence, for bandwidth efficiency reasons.
mator is established when the number of sample#v converges to

infinity. It is shown that this estimator exhibits a fast convergence ~ The goal of this paper is blind estimation of the symbol
rate (proportional to IN—3/2), and it admits a simple closed-form rate 1/7, from a sampled versiog(n) = w,(nT.) of con-
expression for its asymptotic variance. This asymptotic expression tinuous-time received waveform,(t), where the sampling
enables performance analysis of the rate estimator as a function period 7, is taken sufficiently small to satisff, < 7, /4.

of the number of estimated cyclic correlation coefficients and I, L
the weighting matrix. A justification for the high performance of The condition7. < T;/4, although not restrictive from a

the unweighted estimator in high signal-to-noise scenarios is also Practical standpoint, is adopted because it enables a relatively

provided. simple closed-form and “interpretable” expression for the
Index Terms—Cumulant, cyclostationary, estimation, fre- asymptotic variance of the symbol-rate estimator. For the sake
guency, spectrum estimation, symbol rate. of simplicity, it is also assumed tha& f, = 0, i.e., no carrier

frequency offset is present. The reader may check that this
assumption is not restrictive and that all the following results
I. INTRODUCTION . .
. remain true ifA fo #£ 0.
ET y.(t) denote the complex envelope of the continuous- 55 i every parameter estimation problem, maximum
time! received signal, which is supposed to be transmittégalinood of T, can be formulated, and implemented using
by anunknowncommunication source that employs linear digyy expection-maximization (EM) algorithm. However, in our
ital modulation. Signal,(t) can thus be expressed as particular context, several nuisance parameters such as the
G A ot channel impulse response or the transmitted symbols have to
Ya(t) = 0 Z siha(t = KT5) + wa(t) (1 be jointly epstimatedpin the maximum-likelihoog sense. The
hes resulting EM algorithm is therefore in practice difficult to use.
where {s,,},cz iS a zero-mean unit variance independe/e rather focus on a classical suboptimum estimatof .of
and identically distributed (i.i.d.) sequence of symbdlgI;  which relies on the observation that(¢) is a cyclostationary
stands for the baud rate of the transmittes(¢) denotes the signal and its cyclic frequencies are integer multiples of
convolution of the shaping filter with the unknown multipathl /7. The bandwidth ofy,(¢) is assumed to be the interval
channel A f, stands for the carrier frequency offset, andt) [—(1 + p)/(2T%), (1 + p)/(2T:)], where the parametep
represents a normally distributed noise. In certain appliceepresents the excess bandwidth and belongs to the interval
tions, estimation of the unknown parameters of the receivéd 1]. It follows that—1/75, 0, and1/7 are the sole nonneg-
ligible cyclic frequencies. The discrete-time sigpéh) is thus
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whereré’“‘”)(f) is the cyclic correlation ofy(n) at cyclic fre- cyclic correlation and spectrum estimation problems. Esti-

quencykag and lagr. Let mation of cyclic frequencies has been relatively less popular.
. Some previous works addressed the problem of testing if a
ry(n) = [ry(n, =X), ..., ry(n, T)] given frequencyx is a cyclic frequency or not (see, e.g., [6],

) o [9], where the cost functioll y, w(«) and higher order statis-
denote the vector &fY + 1 autocovariance coefficients, whergjcy) tests are considered). However, thorough analysis of the
the superscripf” stands for transposition. It follows that asymptotic performance of the estimatg w has not yet been

1 considered. Our work relates also to various papers devoted to
r,(n) = Z plkao) gZinkaon (3) frequency estimation in multiplicative and additive noise [2],
=Y [10], [23]. In these works, the observatig(n) is modeled as
H @ «@ o — 2iwn f
with the(2Y+1) x 1 vectorr{™ :=[r{(=1), ..., #i (1)]7. y(n) = AMn)e™™™® +w(n)

since, for eachr, ™ (7) = 0 whena is different from—ao, wherew(n) denotes additive white Gaussian noise, and the
0, anday, it is clear thatry) = 0 whena # —aq, 0, ao. “multiplicative” noise \(n) is a real and noncircular stationary
Therefore, we can consider the following classical symbol radgochastic process. In [10] and [23], the observation is real,
estimator (see, e.g., [6], where similar criterion is consideredyg thatexp(2imn fo) is replaced bycos(2xnfy). Using the
observation that f; is the unique conjugate cyclic frequency of

Qp = arg max Jw (@) y(n) (i.e., Ey?(n)] = 7’§2a°)(7) exp(2imn2fy)), the authors
proposed to estimat&f, by maximizing with respect tex the
where criterion
, o (O‘)t (O‘) N—1 2
Jv[, (Oé) N 'ry Wiry i Z yQ(TL) —2imwan
and whereZ denotes a closed interval included(ih 1/4) and N =

g];eiigmnig??hr:?rtgﬁ;;fs v?/ﬁlsggl 2-35:;2;§Za:erufn pzra?ti.ce which is similar to our cost function i (5) wheh = 0.

for a given cyclic frequency +¥ has to be estimated from a' Thg starting point of our work is based on thg obsgrvauon,
o Ty used in [2], [10], [20], [21], and [23], that certain cyclic fre-
finite number/' of samples{y(n)}n=o, ., y-1. The standard ¢,oncy estimation problems can be formulated as the estimation

sample estimate c7f<,\“3) is given by of a number of sinusoids embedded in additive noise and the
N1 cost functionJy, 7(«x) is equivalent to a periodogrand étands
?5{3) — 1 Z yQ(n)e—Qiﬂ-an for the identity matrix). The most popular approach to study the
‘ N —= asymptotic behavior of periodogram estimates is to introduce an
auxiliary nonlinear least squares (NLS) problem [2], [4], [10],
where [12], [14], [20], [21], and [23].
. . However, this approach cannot be used to anadyzay for
Y2(n) = [y(n = Tyy*(n), .., yln + " ()] W # I.More important, unless the number of cyclic correlation

oefficients taken into account is reduced to one as in [2], [10],
r} 0], [21], [23] (i.e., T = 0), calculating the variance éfx_ 1 by
the NLS approach necessitates very complicated computations
which do not lead to interpretable closed-form expressions. This
is a major result of this paper because, as it will be shown later,
the performance of the estimate can be enhanced by choosing
appropriately the parametdt. In this paper, we show that the
Iy, wia) = f"g\‘f)*W?E\‘f). (5) use of theT auxiliary_NLS criterion is not necessary, and t_hat the
asymptotic properties ak w can be established by using a
In this paper, we prove consistency and asymptotic normalifjuch simpler alternative approach, obtained by generalizing the
of G w. We also show that the convergence ratei@f w  analysis of [13].
is N=3/2 and calculate in closed form its asymptotic variance This paper is organized as follows. In Section II, we

The cyclic frequencyy, can thus be estimated by the eleme
an,w of Z defined by

&y w = argmax Jy w(a) (4)
a€cd

whereJy w(«) is the sampled version ofy ()

defined by explain the connections between the estimationagfand
the estimation of the frequency of a sinusoid corrupted by
YW = A}im N3E [(an,w — aO)Q] . additive noise. In Section lll, we state our main results and

derive a closed-form expression for the asymptotic variance of
This expression enables performance analysi&®fw as a &x, w. In Section IV, we rely on this expression to discuss the
function of W and the numbe2T + 1 of the estimated cyclic selection of the weighting matri#” and the number of cyclic
correlation coefficients used. correlations2Y + 1 that minimize the asymptotic variance
Statistical analysis of cyclostationary stochastic processefsi v, w. We indicate that the choicW = I appears quite
was studied by several authors (see, e.g., [11], [8], and thpepropriate. We also show that the selection of paranigter
references therein). However, most of these works addresgpdalys an important role in improving the performance of the
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symbol rate estimator. By choosifiggreater than the memory parameters, which provides the asymptotic covariance matrix
of the channeli(z) = 3=, ha(kT.)>~* leads to improved of the four-dimensional vectdfy, &\%7]. This approach is
performance of the estimator. In Section V, we finally illustratgiso used in [2], [10], and [23], in the context of frequency
the performance of v, w by means of numerical evaluations. estimation in presence of multiplicative and additive noise.
It can be shown that the NLS approach can be generalized to
[I. HARMONIC RETRIEVAL LINKS the case whem;(n) is a general nonstationary process. How-
ever, the NLS approach appears more difficult to extend when

Estimating the cycleay, can be reduced to estimating ) g h .
> 0. In this casef is a3(2T + 1)-dimensional vector,

frequencies of a number of sinusoids embedded in noide

[23], [10], [20], [21]. To show this equivalence, les(n) = and tfj?lg)éfplculations needed to evaluate the covariance matrix of
fe_1(n), ... cx(m)] be the mean-compensat@l +1)-di- 9 4" ] do not lead to a simple and interpretable expres-
mensional stochastic process defined by sion for the asymptotic covarlance matrix @ilr . Moreover,
the NLS approach cannot be generalized to analyze the prop-
ex(n) :=yy(n) — Efy,(n)] (6) erties ofa, w for W # I. In the next section, the asymptotic

performance analysis ofy, w is performed by generalizing the
wherelE[y,(n)] := r,(n). According to (3) and (6), it follows approach of [13], which is based on a direct study of the argu-

readily that ment that maximizes the periodogram.
1
y(n) = Z ré’““o)e%’“%" + ea(n). ) lll. A SYMPTOTIC PERFORMANCE
[— In the following, the overbar— will be used to denote com-
plex conjugation. Iz, ..., 7 are random vectors, the nota-
Thus,y,(n) can be interpreted as a sum of vector-valued cofon cum (x4, . . ., 2;,) will stand for theLth-order cumulant
plex frequencies), ao, and —ay corrupted by the zero-meantensor of vectors:y, . . ., z;,. The following mixing condition
additive noisee;(n). Moreover, the criteriony, w () in (5) i yj|| be required to establish the asymptotic performance of the
simply a weighted periodogram because symbol-rate estimator.
] V=l ‘ 2 Assumption 1:Let62(ﬂ2 be the multivariate random process
Inwla) = HN Z Yo (n)e 2o defined by (6) and define,” (n) := ex(n) andeS” (n) :=&x(n).
n=0 w We assume that;(n) satisfies the following mixing condition:
with the norm||z([5;, = =*Wz for any (2T + 1)-dimensional v, 3 A4, Vn,, Y(u, ..., v) € {0, 1},
vectorz. too
Several works have been devoted to frequency estimation [4], Z HCHInL (e§”1>(n1), o eguL)(nL)) H < M,.
[12]-[14]. However, the differences between the presentcontext, 57—
and these works are:4),(n) is multivariate, ii) the criterion is (8)

weighted by the matriW, and iii) ex(n) is not stationary but

cyclostationary. . o . - i -
The mixing condition (8) is not restrictive and it is satisfied
However, [20] and [21] showed that the approach of [4], [121/(/hen the impulse response of the filtey(t) has finite memory.

[14] can be gengrallzed wheh = 0 andes(n) is periodically Under Assumption 1, itis possible to prove the following lemma
correlated. In this context, one can apparently follow the clavsv—hich eneralizes the scalar counterpart in [4], [12]-[14], [20]
sical approach [4], [12], [14], which is based on the NLS est|- 9 P ' ' '

. " and [21].
mation auxiliary problem
Lemma 1: Assume thags(n) satisfies Assumption 1 and de-

[91\’7 64%()} = argaeg,l};\lé@ Kn(0, ) fine
whereK y (8, «) is the cost function defined by 89 (a) = ﬁ 1\221 nXey(n)e?iman, 9)
] V=1 1 ‘ 2 "
Kn(0, ) = = Z yQ(n) _ Z g, c2imkan Then
=0 k=t VK eN, sup ‘ ()] 220, asN — . (10)

with 87 := [6_,, 6o, 61] (recall thatY = 0 in [20] and [21]). aclol

Consistency and asymptotic normality of the NLS estimate Proof: See Appendix I.
&E\f‘) are rather easy to obtain. Moreover, it can be shown that
the estimates") anda,y, ; are asymptotically equivalent. InA. Consistency

[20] and [21], evaluation of the asymptotic varianceidf r is In this subsection, we study the consistencygf w, and
performed by calculating the asymptotic variance of the vectggtablish thatV (dy, w — co) converges to zero almost surely.
[0y, &%‘)T]. This is achieved by using a second-order Tayldrhis property is quite useful in establishing the asymptotic nor-

expansion ofK (@, «) around the true values of the fourmality of & w. The following result holds.
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Theorem 1:Assume that the positive matri¥ satisfies Then, asV — +oo, the following relations hold:
'ré‘”) W'ré‘”) > 0 (if W > 0, this condition is automatically ¢y (cy) — 0, if c£0

satisfied). Then, a&/ — oo anl(en) = 0. if e = 0andN|ey — o —

ay,w—ao— 0 and N(ayw —ag) =0 an(en) — ePsine(B), if c=0and

almost surely. dy=N(en —¢) — B ER.

Proof: We first note that the sequendé . w}nso be- EQquation (3) implies that
longs to the compact s&t C (0, 1/4). Therefore, in order to iy Jy(n

L - ! w Q) w
prove thatiy w converges almost surely te, it is sufficient Y= ) ( (N )

2

to establish that every convergent subsequence extracted from N L (kaxo) A
&y, w converges tayg. For this, we consider a subsequence = A}E}})@ Z Ty Qe(N) (’“O‘O - %(N),W)
{Gg(ny, w} Ncn cOnverging to a certain value, € Z, and we k=-1 w
prove thato; = ap. As «; andag belong toZ C (0, 1/4), the limits of
Sincedyy, w maximizes/y w(«), it follows that (—a0 — Aoy w)  aNd —dugn) asN — oo
Inwldn,w) 2 Iy w(ao). are not equal to zero (modul). Lemma 2 yields that
This inequality remains true for the subsequence, and we obtaliin /vy w (5‘45(1\’), W)
immediately that N=eo )
. R :S lim H'I‘Sao)q Ny o — & NYW ‘ . (13)
AJ = lim [Ty, w (Go,w) = Jen, w(ao)] A [ w00 (20 = Goow],

If 0y # ap, Lemma 2 implies that\J %= —|j#{*|2, < 0,
which contradicts the condition.J > 0. Thereforen; = ag
and the first part of Theorem 1 is established.

exists almost surely and is nonnegative.
Using the expression (7) of,(n), one observes that
Jn w(a) can be decomposed into four terms
. (O In order to prove the second part, we consider the sequence
In,w(a) =ty (a)Wiy(a) + 8y ()Win(a) {bn}ven defined byby := N(anw — ao). If {bx}ven is
+th(a)Ws§\?)(a) + sg?)*(a)ng\?)(a) not bounded, there exists a subsequefigey } x>0 such that

|bs(ny| — +oc. According to Lemma 2, the corresponding’
where is equal to—||'r§"°)| %, which is impossible. Thugpy } ven is
1 Nzt bounded. Lef{ b, vy} nen bE @ subsequence converging®o
() = N Z 7y (n) exp(—2iran) Using Lemma 2, we obtain thatJ = ||'r§“°)||%‘, (sinc?(B)—1).
n=0 As AJ > 0, 8 must be equal t6. This proves that
ands'?(a) is defined by (9) fok = 0. Itis easy to verify that N(ayw — ag) 230,  asN — oc.

tn(a) is bounded inV anda. Using Lemma 1, it follows that

. as. 1. 2 B. Asymptotic Normality of the Estimate
m Jyon)w(a) = lm e (ao)|ly,  (11) P ; ’ : A
N—oo N=oo The asymptotic normality and convergence ratedgf w

and e ) are next obtained using a second-order Taylor expansion of
Jim Janw (Gsenw) = lim [tsv) (Gonyw)llw - T, wle) aroundag
(12) 8JN7W(04) _ 8JN7W(04)
Recalling the expansion O a=&n, w Oa a=aqg
1 _ aQJ]\r7w(a) N
,',y(n) _ Z ,rékao) exp(2i7rka0n) - o2 i 6OéN7W (14)
_ h=—t where the estimation errétiy w = &x w — o and the scalar
it follows that &n w belongs tqwg, dx w] (Or [&n w, ao]). Taking into ac-
. as. N count thatd.Jn w(a)/d¢|ay = 0, it follows from (14) that
lim qu(N) W'(Oéo) = ‘ T,gao) . ’
N—ooo ’ 4 w 5 -1
L. X N _ 8 ,]]\r7w(a) a,]]\r7w(a)
In order to evaluate the limit (12), we need to introduce the fol-danw = — T 002 T
lowing simple lemma from [14]. =&N w ‘l=a(015)
Lemma 2: Let {cn}nen be a real-valued sequence, bebefine
longing to a compact set that is included(in1/2, 1/2], and 1 PIyw(a)
) . »AN wW=— ———————= (16)
converging toc. Define ; N2 92 )
A=aN, W
1=~ 1 8Ixwla)
flen) i= — exp(2imenn). Byvw = — 2INW) 17
(ex) = 3y 2 explaimean) WIEIR T e, 0




1926 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 7, JULY 2002

Plugging (16) and (17) back into (15), we obtain with Jm[-] standing for the imaginary part of a complex number.
Let us first analyzsﬁg\iw. Using decomposition (3), we obtain
N* Sanw = — Ay By w. (18) that
N-1

. . —2iraon _
In order to analyze the asymptotic propertie\oféy w, we D ry(n)emimoon = ploo) 4oy

have to study the asymptotic behavior.4f w andBy w. n=0 ) )
1) Asymptotic Behavior ofdy w: After some simple ROR. = —2imaon | p(—as) L = _diragn

algebraic manipulations, it can be checked thatw can 1= "y N doe Ty OUN >oe - (20)

be expressed in terms ¢t /N*)0X# /90’ | 4=s 4 With

N,W

n=0 n=0

K € {0,1,2}. Itis also easy to check that the sequend® the same way
{a&n wven satisfies Theorem 1. Using Lemmas 1 and 2, itis N-1
straightforward to show the following. 1 > ry(n)ne 2imeon = NAL o0 4o,
NVN &Y 2/N ’
Lemma 3: N1
1
(1)} —2imagn
- . - Eg =T — ne
Loy (=2i0)" (o) almost surel YNV "Z:O
2N S N
NE  gak } K+1 "y y =
a=ayN w + ,ré—ozg) Z ne—4i7rozgn'
asN — . NVN o
The asymptotic behavior of the termsande, is characterized
From this, we immediately obtain the following. by the following lemma.
Proposition 1: Lemma 4: For every strictly positive scaldrand any positive
integer K
Anw — v4 almostsurely, a®V — oo, | el
. 2 2 B K 2iran
with 4 := —%"'g(flo) Wl NE+e) z_:o nee —0 as — oo, fora #0.
. . . . Lemma 4 implies that
2) Asymptotic Behavior dfx, w: Using (6), it follows that 'mpi
Bx w can be decomposed into the following three terms: e, — 0, e2 — 0, and vV Ne; — 0, asN — oco. (21)
It is also easy to verify that
+
BY,, = —2ir [4 ('r,(ao) Wileo) _ plon) gpleo)
where Nw o0/N \VY v y v
A N1 +5*{W’r§"°) — ré"o)*Wsl) + 'I"éao)*WEQ
B(];) = —aT 3 + 2iTwagn W
N, W NQ\/N m nz=: 'T'y(ﬂ)TLC _E;WTEIQO) +E>{W€2 _ E;W€1:| )
N—-1
% Z ry (n)e~2iwaon One can observe that the imaginary part operator)(allows to
= cancel out the nonconvergent tefi+ 1)r{™ Wr{* /2¢/N
N-1 present in the expression dﬂ@ . Therefore,B(},) can be
B 4T > rp(n)ne”eon | W expressed as o o
- = (n)ne
NW NQ\/N = Y p
- N+1
N-1 BQ) = —2m |: (E*W'T‘,(ao) — ,'.’(Oéo) WEl)
x <Z <n>> W 2N\ T
Xil —i—'r‘éao)*ng - EEWT,;‘XO) +eiWey — E;W€1:| .
+ | D esnne o | W .
— Using the properties (21) aof; ande,, it follows thath\,y)W
N—1 ‘ converges to zero.
X <Z Ty (n)e‘Q”’mO”)] We note also thalBﬁ)W can be expressed as
n=0
. 2 .
5Oy =" gm Ai:l es(mymetimaon | W Byw = ~2inR(N)WE(N) (22)
NW NN il where

y <J‘Zl o (n)e_%mO")] W = diag(—W, W, W, —W)
R(N) := [R{(N), R3(N), R{ (N), Rj (N)]"

n=0
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then
E(N) := [Ej (N), E{ (N), Eg(N), E{(N)]"
and
N—-1
Eo(N) = —— 3 ep(n)e2imeon
0 \/N —
1 N-1 )
Ro(V) =17 3 mylmeme
1 N-1 )
E (N) _—N\/N nz:O ex(n)ne2iTaon
1 N—-1 ]
Ri(N) = Nz Z 'ry(n)ne_Q“WO".
n=0
Using (3), we obtain thal2(N) depends only on terms of the
form
1 N-1
NEFD Z n exp(2iman)
n=0

with K =0, 1, anda = 0, —ay
to show that

, —2a0. AS g > 0, it is easy

* * T T T
R(N) =[Sl plon)”, ol po)® |7 (23)
We prove in Appendix Il thaB(N
a zero-mean Gaussian distribution. This result showsﬁﬁ?é‘t‘,

’

is asymptotically zero-mean Gaussian. As /ﬁﬁ) -, it can be
expressed in the following form:

N—1
(3) _ * 1 —2imagn
Bow = —4rIm [El(N)W <N ;::0 e(n)e= 2w )] .
Lemma 1 shows that
N—1
N E:O ex(n) exp(2imagn)

converges almost surely to zero. SinBg(N

of the vectorE(N

thath\,)W almost surely converges to zero [5].
According to (19), we deduce the following result.

) is a component

Proposition 2:

), it is asymptotically Gaussian. This implies

1927

We have thus proved the asymptotic normalit;i\b% San w,
and that the convergence ratedéfy w is N —3/2 asin standard
frequency estimation problems.

3) Computation ofyyw: We now compute in closed form
=73 787" - Asya has been evaluated (see Proposition
1), it remains to calculate a closed-form expression for

om0,

Using (22) and (23), it is easy to check that
1 1
o [ o Lo o

X ( lim ]E[E(N)E*(N)])

N —oo
xw{ o) Téaor’%réao)ﬂ,.éawﬂ .

In order to evaluatbmy .., E[E(N)E"(N)], we observe that

) converges in distribution to where

E[E(N)E"(N)]
Py(0,0) Pn(0,1) PP(0,0) PP(0, 1)
Px(1,0) Py(1,1) PY(1,00 PP, 1)
P{0,00 PY0,1) Py(0,0) Py(0,1)
PO1,00) PP, 1) Py(1,0) Py(1,1)
(24)
Py(K, K'Y :=E[Ex(N)E (N)]
1 N—-1
K _ 1K’
N(IS+I§,+1) Z )62( )]nS "
% G—inagnGinagn’
and:
PY(K, K') ;:E[EK(N)Ei (V)]
N—-1

)]nls’n/K’

(Is-i—ls’-i—l) Z

—2imagn 6—27770071

X e

We now study the asymptotic behavior of these terms. For this,
we have to specify the properties®f(n). It is cyclostationary,
and using some results of [15], [17], and [22], we obtain that its
set of significant cyclic frequencies is giveby F = {{«g mod

Bnw — N(0, vz) in distribution, asV — oo 1])1] < 3}. In other words
where R.,(n, 7) = Elex(n + 7)e3(n)]
and
= lim E|BOyBow | -
R e [ NWEN, } RE(n, 7) = Eles(n + 7)ea(n)]

Using Propositions 1 and 2 as well as (18), we finally obtaff@n be expressed as
the main result of this section.

Theorem 2:

s e R(c) (n, 7)
N2 (anw — o) — N(0, vw) in distribution, agV — oo

wherevw = 'y;l’yl;'y;l.

o 2 @) 2imtna
- 'T'g )C ’

acF

Z re ,((y) 277Tn(y

acF

2The notation: mod 1 stands for the value of modulol.
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Using Assumption 1 and well-known results on Césaro surfinally, by combining all the previous results, we obtain the fol-
(see, e.g., [19]), we obtain after some simple manipulations thaiving compact and simple expression for the asymptotic vari-
1 ‘ ance:

Py(K, K') — —————— SO (Fimaoy, asN — oo

K+K+1 * 3 eV et o WL s e
(25) ’YW:F(R( o)W RC 0)) R WEW R

P (K, K’ el N (R WR) T (30)
N (K, )Hm e (e ), asN — oo
(26) where

Whereség)(exp(sz)) and S((ng)(exp(sz)) represent the ()

. . €, . . ’ Ty 0 . W 0
cyclic spectrum at cyclic frequendyand the conjugate cyclic R0 .— , W= _
spectrum at cyclic frequen@ey, of ex(n), respectively. Fortu- —5“0) 0 W
nately, the spectrﬁég)(exp(mwao)) and Sigﬁo)(exp(mwao)) r e
can be expressed more explicitly. Let G .= F T

(5';‘5\30) — ,;,5\“}0) _ ,rg}ao)

denote the estimation error corresponding*&%O). It is well IV. CHOOSING THE WEIGHTING MATRIX W
known thatNl/Q((S%E\‘fO)) converges to a Gaussian distribution AND PARAMETER T
[7]. LetT andl'® denote the unconjugated/conjugated asymp-

totic covariance matrices We now exploit (30) to study the influence & andT on

the performance of the estimate. A natural question that arises

[:= lim NE [6?‘5\‘?0)6%5\‘?0)*} is: how do we choose the weighting mat#¥ in order to im-
N—oo . . . .
prove the estimation? & is invertible, we can observe (see,
r?.— lim NIE [5,;-5\‘}0)5,;-5\‘}0)T} . e.g., [19]) that for ang¥ = W* > 0, the left-hand side (LHS)
N—oo ' '

of (30) is less tharf3/72)(R* G~* R*))~1, which repre-
In order to expresE andI*® in terms of S&) (exp (2imay))  SeNts the value of the right-hand side (RHS) of (30) evaluated
2 = —1 . .
andS((QSO)(exp(%wao)), we note that since fqr W=aq B This resul_t can be extend_ed eveg wt_@ns a
€ singular matrix by replacing the regular inveiGe = with the

1 (Moore—Penrose) pseudo-inve@éﬁ (see, e.g., [1]). However,

yo(n) = > 7 exp(2imkaon) + ea(n) the matrixG™ is not a block-diagonal matrix in general, i.e., it
k=—1 may happen that there is no weighting ma#txfor which vy

it follows that coincides with(3/72)(R™®" G# R\**))~!. Therefore, the ma-

1 trix inequality trick used in [19] to derive optimal weighting ma-
%5\?0) = Ro(N)+ —= Ey(N). trices is not applicable here. Hence, determining a positive-def-

VN inite optimal weighting matrix seems to be a difficult problem.
Substitutinge; from (20), we obtain that We show next thaW = I seems to be an appropriate

(o) choice, at least for high signgal-to-noise ratios (SNRs). In-
VN6 = Eo(N) + VN ey, deed, we prove in the sequel thdf = I leads to a very
From (21), it follows thaty/Ne; is a deterministic term con- low variance estimate if is chosen large enough. For this,
verging to zero, ayv — oo. From this, we deduce further thatwe assume for the sake of simplicity that the sequences
[5] circular: in this case, the expressionslbandI® are simple.
. N . Using that the spectrum of,.(¢) is limited to the interval
I'= lim E[Eo(N)Eq(N)]= lim Py (0,0) [—(14p)/(2T,), (1+p)/(21.,)] for some parametdr< p < 1

:S(O)(GQiﬂ'ag) (27) and7, <T./4, one can show that (see Appendix IlI)
c . . c 1
r® :A;g%oE[EO(N)Eg(N)]:AlgréoPg\,)(o, 0) r— / SZ(,O)(GQW)EZ(,O) (Gin(f—ag)) dip (27
(2‘10) 2w 0
=S o). 28 ‘
e(2"> (C ) ( ) x d*'r(CQ”Tf) df + i ,réao),réao) (31)
Plugging (27), (28), (25), and (26) back into (24) yields . o
4 2 4 4
lim E[E(N)E"(V)] re = / (%““(e“’”f )) dro (™ )dp (¥ ) df
Y 0
r ir r@9 1ir® + - ploo)plon)” (32)
ip i iple 1p@ ao
=2 ’ 2 ’ - (29)  where
re« ire r iT
IT® LIT@ IF 1T d (2™ = [exp(=2%nYf), ..., exp(2ix YT f)]T
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Asymptotic covariance (in dB) versus Upsilon

r|10n weighteld
weighted --------

0 10 20 30 40 50 60 70 80 90
Upsilon (SNR=20dB)

Fig. 1. ~r andyp# (in decibels) versu¥.

andx is the kurtosis of{s, }.cz. Using the conditioril, < whereRe[-] stands for the real part of a complex number. The

T./4, itis easy to show that important point is to observe that¥ is large enough
. T, . 2 : 0
(0)7 2imfy _ e 2iw f 2w f . .
Sy (6 ) = _TS h(@ )| + Sw(e ) § : TZ(JaO)(T)Cwirf‘r ~ SZ(JOéo)(CQZTFf)
[ 7 Te T % i F—ay ==
(o2 y = 22 (2 )h (e2 s 0>) (33)

5

and that®(T) ~ 0. It turns out that, in the noiseless case, the

whereh(z) := 37, ha(kTe)z—k andsS.,(exp (2ix f)) stands for asymptotic variance aty_y converges t@ asT increases. We

the spectral density ab(n) = w,(nT,). note that this result holds because we have chdEes 1. In
Let us now consider the noiseless case. The prodigrticular, itseems that W # I, the estimatéiy,w does not

550)(exp(2mf)) géo)(exp (2in(f — ao))) coincides with have the above property. Therefore, the chdie= I seems

|S§,a°)(exp (2 f))|2. After some straightforward r,n‘,:mipula_reasonable, at least if the SNR is high enough #rid chosen

tions, we obtain that the asymptotic variance of the estima{?e(ge enough.
&y, 1 1S given by Remark: In practice, the maximization ofy w () eith re-
spect to (w.r.t.)x is not so easy to achieve because it shows sev-
30(T) : . . X
= (34) eral spurious local maxima. The estiméatg, w is thus com-
47r2||1~§,a°)||4 puted in two steps. In the first step (coarse searéh) (<) is
where evaluated by means of a fast Fourier transform (FFT) algorithm
onthe grid{ay = k/N, k=0, ..., N—1}.Inthe second step
1 (fine search), a gradient maximization algorithmJof w- (),
(1) = 2/ df initialized at the argument ahax,, Jxy w(ax), gives the esti-
0 mated y w. As the asymptotic analysis presented in this paper
- ‘ 2 is closely related to the local behavior &f; w () aroundey,
— 2% / [5 éao)(@mf)} it of course only allows to predicate the performance of the fine
0 search, provided the coarse search has been successful. In par-

VI

T 2

Z Tg(/aO) (T)G—Qiﬂ'f‘r

7==—7

2
@ 217
Sz(/ 0)(6 f)‘

T 2 ticular, thatW = I is relevant in the context of the fine search
X l Z TZS‘XO)(T)CQ“Tﬁ] df does not imply that it is well adapted to the coarse search. In-
- deed, leT’(«) be the asymptotic covariance matrix&ﬂﬁ\‘f), o)
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Asymptotic covariance (in dB) versus SNR

norll-weightedI
_ weighted

0 5 10 15 20 25 30 35 40 45 50
SNR (Upsilon=deg(h))

Fig. 2. ~r andvyp (in decibels) versus SNR, faf = M.

thatI’ = I'(«y). It has been shown in [6] and [18] that choosing The variance of the weighted estimator does not converge to
W = I'(a)* allows, in principle, to improve dramatically thed when SNR increases, while the curve of the unweighted esti-
performance of the coarse search. However, in the context of thator confirms our calculations. Indeed, the variancé gfr

fine search, weighting the cost functioi: w(c) by W = I'¥  decreases t6 asY increases. Moreover, the unweighted esti-
is not necessarily recommended. This is going to be confirmethtor has a lower variance fdt large enough.

by the numerical evaluations in the following section.

VI. CONCLUSION
V. NUMERICAL ILLUSTRATIONS

We now illustrate the above results by some numerical ev?l—In this pa]!oer, webh?vet studt!ed :lgo\r/c\)/usr,lly the r? sym?;o'iltchper-
uations of the asymptotic variance &k w. We assume that ormance ofa symbol rate estimator. Ve have snown that the es-

the shaping filter used by the transmitter is a square-root rais&fpatoris CQI’]S_I?))'[GQHI, asymptoically normal, and that Its conver-
cosine pulse shape with excess bandwigtk= 0.2, and that gence rate i& —3/2. Our approach also leads to an interpretable

the propagation channel is a multipath channel. The amplitu&g?sed'form expression for the asymptotic variance. We have

phases, and time delays of the channel are random variables,%'dan_ advanta_lge of our mterpretable formula to discuss guide-
each curve is obtained by averaging the variances of our egﬁgs in selecting certain important parameters.
mate over 100 different realizations of the propagation channel.
It is assumed thaty = 7. /T is equal tol/5. In order to ob- APPENDIX |
tain quasi-band-limited signals, we have used a deljfee 80 PROOF OFLEMMA 1
polynomial h(z).
In Fig. 1, the noiseu(n) is white, SNR is equal to 20 dB, an
we study the influence of on the asymptotic covarianegy.
We compare the unweighted estimd#® = I) and th
weighted estimate corresponding to the chdie= I'*. We L N
K C .
&?rbzentcr;agahtehguvrgggagé.IagWS taken into account has a great [sg\r )(oc)]o = D Z n¥ &2 (n) exp(2inan).
We now study the behavior of the asymptotic covariance of
the estimate versus SNR. In Fig. 2, for sake of clarity, we onljhe reader may check that the other components can be treated
plot the casél' = M. using similar arguments. In the sequel, we deatg := eg(n)

g Wefirstnote thabg\{")(a) satisfies the statement of Lemma 1
if and only if any of its components verifies (10). In this ap-
e pendix, for brevity, we only prove the convergence of

n=0
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and s%()(a) = [35\5)(04)]0. We will rely on Hannan’s proof Therefore,

[13] to show that (K) 2
(K) a.s. Vi=IE| sup |sy (a)‘
sup ‘SN ()] =0, as N — oo. ac[0,1]
el . (2N + 1)} "
We first study the second-order momentap, o 1; s ()] < “yeacrn (@) + (V) +e(N) +d(N)= (35)
which is given by with
N-1 B,
Vi =E sup 35\1,&)( )‘ CL(N) = Z Z n —I—?’Ll ’7'L (7’L —I—?’LQ)I’TLQK
ac[0,1] n=—N-+41n1=4n
ng=An
N—-1 *
1 < < xXr 3 ! 3
=B sup N2(K+1) Z nfp/ " e(n)e*(n') . (”1 ”)7 (n2, )
ac0,1 ’_, K - -
<ol n,n'=0 b(N) := Z Z n 4+ 1) 5 (n + ng) K np™
n=—N+41 n1=4An
Xe?iﬂ'(nfn')oz ) ng=Ap
X T (n—i—m, ny —n2)rg (n2, n1 — n2)
N-1
Defining 4,, := sup(—n; 0) andB,, := inf(N —1—n; N-1), o(N) = Z Z 7+ 1) K0 X (n 4 np)Kny ™
it follows that n=—N+1 ni=A4n
1 N-1 ‘ B, noy=An
V.= il[lg)u NEETD o e 3 X,z, (1712, n+ny—n2)ret (g, n+n2 —np)
@ ’ n=—N+1 n'=A, K - -
) d(N) := Z Z n 4 1)1 5 (n + ng) K np™
x{(n + n/)"’nlk e(n+n')e* (n/)] . n==NAL M=

_ _ _ _ _ x cum(e(n + ny), €*(n1), ¢ (n+ n2), e(n2))
By using the triangular inequality, we obtain that

where
N-1
1 g = Ele(n + 7)e*(n)]
Vi < i re(n, 7)
N2(K+D) n=§+l and
Bn . ré(n, 7) = Ele(n 4+ 7)e(n)].
K, 1K N ] en”
I l ,E:A (n+n)"n"" e(n +n)e*(n) ] " We obtain easily that
According to Schwartz inequality, it follows also that la(N)| < 4% N4K Z Z e(ny, n)| |re(na, n)|.

B,
Z (n + n’)Kn’A e(n +n")e*(n')

From Assumption 1, we deduce that
la(N)| < 4K N AME(2N).

El

] n=—N+1ni,n=0

1
2 2

B, Thus,
< Z n+n)n' " e(n+n')e (n') ’
Syl CL(N) _ O(N2(2A+1/2))'
B. X K K In the same way, we obtain that
Z (n4+n)% 05 (n +n2)% ny B(N) = O(N2RE+D)
1,N2= K
3 o(N) = O(NZEEHD)
X [e(n + na)e"(na)e" (0 + ma)e(na)] | . @Nd

d(N) = O(N2RE+1/2)),
By taking advantage of the concavity of the square-root functidkecording to (35), it follows that

and Jensen’s inequality, we obtain that (K) 2] 1
E | sup ‘SN (a)‘ :O< 1)
W < M aclo0,1] | Nz
T NAKHD Let us considerN (M), the smallest integer greater than
- B, M2+ with 6 > 0. It follows that
> Z Z (7’L+7’Ll)k nlk (7’L+7’Lg)k an\ ) 2 1
n=—NHt Tz . aeod] ‘31\’<1\4)(a)‘ =0\

Nj=

Chebychev’s inequality leads further to

xIE[e(n +ni)e"(ny)e"(n +na)e(na)] | - Pr0b< sup ‘3 (@ ‘ ) O< 1+>
N(M MLt+o

a€[o,1]
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Therefore, for any > 0

> Prob <

MCN
The Borel-Cantelli lemma thus implies that

(K) - -
Prob <M ‘SNS(AD(C){)‘ = 0) =1

sup
acC0,1]

sg\{s&w)(a)‘ > E) < o00.

lim sup

—® agfo,1]
Thus,

sup |s§\1‘(3\4)(a)| 220, asM — oo.

aglo,1]
We have only proved the result for a certain subsequence
tracted froms%‘)(a). It remains to prove the uniform conver-
gence of the sequence itself. For this, Aétbe an integer be-
tweenN (M) and N (M + 1) and consider the expression

sup sup
N(M)<N<N(M+1) ac0,1]
(K+1)
K N(M) K
0@ - (FG) T s

We are going to establish that this term converges feor this,
we first evaluate its second-order moment

Vo= E sup sup

N(M)<N<N(M+1) ac0,1]

2

. N(M) (K+1) .
x |58 (@) - <T> SN (@)
It is easy to show that
) N(M+1) 2
K
n=N(M)

Applying Schwartz’s inequality on the RHS term of the previous

inequality, it follows that

1 N(M+1) N(M+1)
. 2K
VoS e | 2 rem 0 D e
n=N(M) n=N(M)
< M (N(M +1)— N(M))? N(M + 1)K
=7/Vi2 N(M)? N(M)2K
Due to the definition ofV(A/) it is easy to check that
(N(M+1)—- N(M))? o 1
N(M)? N M?
N(M+1)
_ M
and N , as M — oo
which implies that
E sup sup sg\i")(a)
N(M)<N<N(M+1) ac[0,1]

N(M) ’

N

(K)
SN‘(JW)

()

< )(K-l-l)
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Using again Chebychev's inequality and the Borel-Cantelli
lemma leads to

sup sup
N(M)<N<N(M+1) a€[o,1]

) N(M) K
S () (— S

a.s.

X —0,

(@)

as M — 0.

N

) (K+1)

As N(M)/N converges td asM — oo, it follows that

sup sup sg\é’)(a) — sg\{s&w)(a) 220,
NM)<NEN(M+1) ac[0,1]
ex- as M — 0.

AS SUP,e(o,1] sg\l‘&w)(a) almost surely converges to zero, the
previous equality implies that

sup s%()

a€lo0,1]

(@)

also converges to zero almost surely.

APPENDIX I
PROOF OFASYMPTOTIC NORMALITY OF E(N)

Let cumz(E(N)) denote theLth-order cumulant tensor of
E(N). The generic form of any of its components is given by

N-1
¢P =Nt Y D) DO gy
0, N15e-es ny_1=0

(vp—1)

C"'L—l

7

(ni-1)} (36)

wherer; andy, belong to the set$—7, ..., T} and{0, 1},
respectively,

xXcumy, {C.(,.ZO)(H()), .

—2imwagn 2imwagn
0 I 1 —
D( )(71) T { ﬁ 6721‘71'&0717 D( )(71) T { ﬁ e?iﬂ'agn
N N
and:

eOn) == e (n), eM(n) =72, (n).

It follows that¥ » € {0, 1}, andvn < N, |D®(n)| < 1. Due
to the triangular inequality applied on (36), we obtain that

N—-1

>

"0, N1 yeee L —1=0

| < vt

‘CUIHL {C.(,.ZO) (no), CS’I’I)(nl),

(vr—1)

(&
Tr.—1

ey

(nL_l)}‘ . @37

Assumption 1 implies that there is a constartt, independent
of {r}o<i<r—1, such thaﬂcj(\f) < MN~(z-D, Therefore,
cumz (E(N)) = O(N~Z-U).If L > 2, then(L — 1) > 0,
and it follows that

Alim cump,(E(N)) =0

to a Gaussian
O

which implies that E(N)
distribution.

converges



CIBLAT et al: ASYMPTOTIC ANALYSIS OF BLIND CYCLIC CORRELATION-BASED SYMBOL-RATE ESTIMATORS 1933

APPENDIX I if » € (—=1/2, 1/2]®. Hence, there is no aliasing in the RHS
DERIVATION OF (31) AND (32) term of the previous equation. This leads to
We first review some useful properties of fourth-order cyclic S (k%)( HmvL | QHimva | QRimys)
cumulants (see, e.g., [22]). Let ,, (¢, 7) denote the fourth-
order cumulant of,, (¢) attime index and lags := [ry, 72, 73] T3 Z Sy < ) 6((k —1) ap mod 1)
ca y, (&, ) i=cuy {ya(t), Yo (t4+71), yo(t—72), ya(t—73)}. L 1_733
; ; ; 1 v
The fourth-order cyclic cumulant at cyclic frequenayis de- - = S/ Ts) <_>
fined by T3 l; Lua \ T
. lag=kagmod1
ci(y;a('r) = / Cay, (8, T)eTH™ gt forall (w1, 1o, 13) € (—1/2, 1/2]3.
R

After this review on cyclic trispectra, we are able to derive

and the corresponding cyclic trispectrum at cyclic frequamcy(31) and (32). AT = S(g) (exp(2ima)), it suffices to compute

is given by the different components of previous cyclic spectrexth). Let
gl ey —2imur” [U]x, 1 denote thék, I)th entry of an arbitrary matri&/. Using
4,Ja( ) = 4,Ja( )6 T ’. . .
3 the circularity ofs(n), we obtain that
with the vector of cyclic frequencies := [11, v, vs]. Since [R, (n, oo = ry(n+v, 7 +u— ) (n, 7)

1.(t) is given by (1), it is well known that the cumulant cyclic

frequencies are the integer multipleslgf, and that the corre- +Cum4{u(n tut ), yi(nt ), yi(n ), y(n)}

sponding cyclic trispectra are given by (see, e.g., [16], [22]) Where(u, v) € {=T, ..., T}?. From this, we obtain that the
(k/T2) . . cyclic correlation coefﬁments af2(n) at cyclic frequency are
Siy, (W)= iHa(l‘/l)Ha(l‘/Q)Ha (13) given by
1
*Ha(k/Ts . vt tvs) (38) [RE,S) (T)} = Z ré’““o)(T +u— v)'f‘é’““o)* (1)
where H,(f) represents the Fourier transform éf,(¢). wv
As the bandwidth ofh,(t) is reduced to the interval virkanu (0)
[—(1 + p)/2Ts, (1 + p)/2L,] with 0 < p < 1, it is easy xe +egy(utm =7, —0).
to check that the cumulant cyclic frequencies set is given Byus,
{k/Ts, |k| < 3}. Therefore, the (normalized) cumulant cyclic ‘
frequencies of the digital sampled signgh) := y,(n1,) are [u,v = [552)(62”%)} L= > Riuo+Cuv
the values{ ko, |k| < 3}. We denote by T k=—1

‘ with
Si?go)(exp(2iﬁl/1), exp(2imvs), exp(2iTys))

R T /r’(k(yO) T + U —-v r’(k(yo)* T
the cyclic trispectrum of(n) at cyclic frequencysa and by ko, Z y ( ) u ()

TEZ
cffyO)(rl, 72, 73) the associated cyclic cumulant sequence de- % e2imkagu —2imanT
fined by and
(kero)
Gy’ (T 7 7) Z e (w41, =7, —v)e 20T
2 u v T -
_/ / S(kao)( 21771/1 c2imve Cinug)CQiﬂ'wT dv rez
= , . : o
12 Y Due to Parseval’s identity, it follows that

In the following, we will express

S(kao)

1
Rie v :/ S’(k(yg)(CQiﬂ-f)gr(k(yg) (CQiﬂ(f—(yg))
4y (exp(2imiy), exp(2irye), exp(2irvs)) o o "’ Y

2iw(u—v)f 2imkagv
in terms ofS*/™*) (/). It follows that (see, e.g., [15]) for _ _ o e dfe '
all (1, vz, v3) € (=172, 1/2]3 Sinceh,(t) is band-limited and. < 7, /4, the supports of the

functions
f— 50 (exp(2in f)) and f — S5 (exp(2in(f — o))
T3 Z Z f;l/yf) < )5((/€— [)ag mod 1) are disjoint fork=1 andk=—1. ThUS,R_1 4 » =R1 v, =0.

S(kao)( 2iwry 21TV

2i7wv3 )

, C , €

& I€Z pez?® AsforC,_ ., it is easy to obtain that
which reduces to 1/2 ©), 2 o 0
(k‘lo) 21771/1 21771/2 21771/3 Cu, v = / 54 : (C 171'1/17 c 171'1/27 c ”TVS)
4 Y ( ) —-1/2

l iw(vi(utT)—veT—r3v) —2imaoT

T3 Z Z i/yf)< )5((k—l)ao mod 1). ><<Z(32 (v (ut7) ) =2 )du
© =—dpcr TCZ

As h,(t) is band-limited, (38) and the conditidhi < 7,/4 B 1/2 S(O) ( simn 2in(n—a0) emug)

imply that = e oy 7 7

SUT W — /1) =0, forp#0 x A0 iy iy
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(4]

13

GU/To) vs
? Te

4 Ya

V1 — Qg

T.

1241
1.’

1773

1/2
3 /
T 1/2
lag=0mod 1

x 2T PIu—rsY) dy i,

(5]
(6]

As ag < 1/4, the condition(lag = O mod 1, for |I| < 3) holds

if and only if{ = 0. Therefore, we have

Cu v —

B

AsT. < T, /4 (which implies thatyy, < 1/4), H,(21/T.) and

(71

3
) Te

1 / 2 o V1~ @
13 —172

8
T (8]

1
4, Y E’

x 2T u—rsv) gy, gy,

. 1/2
K V1 V1 — V3
=— H | = )H | —— ) H;
TSTE /—1/2 <Te> ¢ < 1. ) <Te

V3 — & o
x H, <%) 2T e=rsv) ) s
€

9]

)

(10]

(11]

H,((1n — «o)/Te), respectively, are equal . /1(exp(2iny))

andT.h(exp(2im(v1 — «p))) forvy € [—1/2, 1/2]. Hence, [12]
1/ 2 ‘ ‘ ‘ [13]
c — e ° / 2z7rul)h* (62177(111 —ag)) ht (62271'1/3)
172 [14]

CU

< h ((32”(”3_"0)) 2inlnu—vav) gy, dvs.

(18]
According to (33), we obtain that
1/2 [16]
o=k / (ag) 217rf)62i7ruz/1 diy / Sz(jao)*
1/2 —1/2 [17]
% (627‘,77)‘)6—27‘,77'1;1/3 dl/g
T
=ho {00 ()r{*)" (v). [18]

e

This proves (31). Equation (32) can be derived using similaf;g
arguments. |

(1]

(2]

(3]

[20]
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