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Asymptotic Analysis of Blind Cyclic
Correlation-Based Symbol-Rate Estimators

Philippe Ciblat, Philippe Loubaton, Member, IEEE, Erchin Serpedin, and Georgios B. Giannakis, Fellow, IEEE

Abstract—This paper considers the problem of blind symbol
rate estimation of signals linearly modulated by a sequence of
unknown symbols. Oversampling the received signal generates
cyclostationary statistics that are exploited to devise symbol-rate
estimators by maximizing in the cyclic domain a (possibly
weighted) sum of modulus squares of cyclic correlation estimates.
Although quite natural, the asymptotic (large sample) perfor-
mance of this estimator has not been studied rigorously. The
consistency and asymptotic normality of this symbol-rate esti-
mator is established when the number of samples converges to
infinity. It is shown that this estimator exhibits a fast convergence
rate (proportional to 3 2), and it admits a simple closed-form
expression for its asymptotic variance. This asymptotic expression
enables performance analysis of the rate estimator as a function
of the number of estimated cyclic correlation coefficients and
the weighting matrix. A justification for the high performance of
the unweighted estimator in high signal-to-noise scenarios is also
provided.

Index Terms—Cumulant, cyclostationary, estimation, fre-
quency, spectrum estimation, symbol rate.

I. INTRODUCTION

L ET denote the complex envelope of the continuous-
time1 received signal, which is supposed to be transmitted

by anunknowncommunication source that employs linear dig-
ital modulation. Signal can thus be expressed as

(1)

where is a zero-mean unit variance independent
and identically distributed (i.i.d.) sequence of symbols,
stands for the baud rate of the transmitter, denotes the
convolution of the shaping filter with the unknown multipath
channel, stands for the carrier frequency offset, and
represents a normally distributed noise. In certain applica-
tions, estimation of the unknown parameters of the received
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1The subscripta is used to denote continuous-time analog signals.

waveform (the symbol-rate , the carrier frequency/phase
offset , and the symbol alphabet) has to be performed
blindly from the received waveform, without knowledge of
the transmitted symbols. Potential applications include passive
listening, automatic classification of modulation, and blind
synchronization of high-speed distributed networks, where
the receiver has to be synchronized without transmitting a
pilot/training sequence, for bandwidth efficiency reasons.

The goal of this paper is blind estimation of the symbol
rate from a sampled version of con-
tinuous-time received waveform , where the sampling
period is taken sufficiently small to satisfy .
The condition , although not restrictive from a
practical standpoint, is adopted because it enables a relatively
simple closed-form and “interpretable” expression for the
asymptotic variance of the symbol-rate estimator. For the sake
of simplicity, it is also assumed that , i.e., no carrier
frequency offset is present. The reader may check that this
assumption is not restrictive and that all the following results
remain true if .

As in every parameter estimation problem, maximum
likelihood of can be formulated, and implemented using
an expection–maximization (EM) algorithm. However, in our
particular context, several nuisance parameters such as the
channel impulse response or the transmitted symbols have to
be jointly estimated in the maximum-likelihood sense. The
resulting EM algorithm is therefore in practice difficult to use.
We rather focus on a classical suboptimum estimator of
which relies on the observation that is a cyclostationary
signal and its cyclic frequencies are integer multiples of

. The bandwidth of is assumed to be the interval
, where the parameter

represents the excess bandwidth and belongs to the interval
. It follows that , , and are the sole nonneg-

ligible cyclic frequencies. The discrete-time signal is thus
cyclostationary and the parameter defined by

represents its unique strictly positive cyclic frequency. Note that
the condition: implies that . Estimating

is thus equivalent to estimating . For this, we introduce
the autocovariance function of , denoted by and
defined by . The superscript
stands for Hermitian conjugate. We obtain that

(2)
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where is the cyclic correlation of at cyclic fre-
quency and lag . Let

denote the vector of autocovariance coefficients, where
the superscript stands for transposition. It follows that

(3)

with the vector .
Since, for each , when is different from ,
, and , it is clear that, when .

Therefore, we can consider the following classical symbol rate
estimator (see, e.g., [6], where similar criterion is considered)

where

and where denotes a closed interval included in and
the Hermitian matrix is positive-definite .
Selection of the matrix will be addressed later. In practice,
for a given cyclic frequency , has to be estimated from a
finite number of samples . The standard
sample estimate of is given by

where

The cyclic frequency can thus be estimated by the element
of defined by

(4)

where is the sampled version of

(5)

In this paper, we prove consistency and asymptotic normality
of . We also show that the convergence rate of
is and calculate in closed form its asymptotic variance
defined by

This expression enables performance analysis of as a
function of and the number of the estimated cyclic
correlation coefficients used.

Statistical analysis of cyclostationary stochastic processes
was studied by several authors (see, e.g., [11], [8], and the
references therein). However, most of these works addressed

cyclic correlation and spectrum estimation problems. Esti-
mation of cyclic frequencies has been relatively less popular.
Some previous works addressed the problem of testing if a
given frequency is a cyclic frequency or not (see, e.g., [6],
[9], where the cost function and higher order statis-
tical tests are considered). However, thorough analysis of the
asymptotic performance of the estimate has not yet been
considered. Our work relates also to various papers devoted to
frequency estimation in multiplicative and additive noise [2],
[10], [23]. In these works, the observation is modeled as

where denotes additive white Gaussian noise, and the
“multiplicative” noise is a real and noncircular stationary
stochastic process. In [10] and [23], the observation is real,
so that is replaced by . Using the
observation that is the unique conjugate cyclic frequency of

(i.e., ), the authors
proposed to estimate by maximizing with respect to the
criterion

which is similar to our cost function in (5) when .
The starting point of our work is based on the observation,

used in [2], [10], [20], [21], and [23], that certain cyclic fre-
quency estimation problems can be formulated as the estimation
of a number of sinusoids embedded in additive noise and the
cost function is equivalent to a periodogram (stands
for the identity matrix). The most popular approach to study the
asymptotic behavior of periodogram estimates is to introduce an
auxiliary nonlinear least squares (NLS) problem [2], [4], [10],
[12], [14], [20], [21], and [23].

However, this approach cannot be used to analyze for
. More important, unless the number of cyclic correlation

coefficients taken into account is reduced to one as in [2], [10],
[20], [21], [23] (i.e., ), calculating the variance of by
the NLS approach necessitates very complicated computations
which do not lead to interpretable closed-form expressions. This
is a major result of this paper because, as it will be shown later,
the performance of the estimate can be enhanced by choosing
appropriately the parameter. In this paper, we show that the
use of the auxiliary NLS criterion is not necessary, and that the
asymptotic properties of can be established by using a
much simpler alternative approach, obtained by generalizing the
analysis of [13].

This paper is organized as follows. In Section II, we
explain the connections between the estimation of and
the estimation of the frequency of a sinusoid corrupted by
additive noise. In Section III, we state our main results and
derive a closed-form expression for the asymptotic variance of

. In Section IV, we rely on this expression to discuss the
selection of the weighting matrix and the number of cyclic
correlations that minimize the asymptotic variance
of . We indicate that the choice appears quite
appropriate. We also show that the selection of parameter
plays an important role in improving the performance of the
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symbol rate estimator. By choosinggreater than the memory
of the channel leads to improved
performance of the estimator. In Section V, we finally illustrate
the performance of by means of numerical evaluations.

II. HARMONIC RETRIEVAL LINKS

Estimating the cycle can be reduced to estimating
frequencies of a number of sinusoids embedded in noise
[23], [10], [20], [21]. To show this equivalence, let

be the mean-compensated -di-
mensional stochastic process defined by

(6)

where . According to (3) and (6), it follows
readily that

(7)

Thus, can be interpreted as a sum of vector-valued com-
plex frequencies , , and corrupted by the zero-mean
additive noise . Moreover, the criterion in (5) is
simply a weighted periodogram because

with the norm for any -dimensional
vector .

Several works have been devoted to frequency estimation [4],
[12]–[14]. However, the differences between the present context
and these works are: i) is multivariate, ii) the criterion is
weighted by the matrix , and iii) is not stationary but
cyclostationary.

However, [20] and [21] showed that the approach of [4], [12],
[14] can be generalized when and is periodically
correlated. In this context, one can apparently follow the clas-
sical approach [4], [12], [14], which is based on the NLS esti-
mation auxiliary problem

where is the cost function defined by

with (recall that in [20] and [21]).
Consistency and asymptotic normality of the NLS estimate

are rather easy to obtain. Moreover, it can be shown that
the estimates and are asymptotically equivalent. In
[20] and [21], evaluation of the asymptotic variance of is
performed by calculating the asymptotic variance of the vector

. This is achieved by using a second-order Taylor
expansion of around the true values of the four

parameters, which provides the asymptotic covariance matrix

of the four-dimensional vector . This approach is
also used in [2], [10], and [23], in the context of frequency
estimation in presence of multiplicative and additive noise.

It can be shown that the NLS approach can be generalized to
the case when is a general nonstationary process. How-
ever, the NLS approach appears more difficult to extend when

. In this case, is a -dimensional vector,
and the calculations needed to evaluate the covariance matrix of

do not lead to a simple and interpretable expres-
sion for the asymptotic covariance matrix of . Moreover,
the NLS approach cannot be generalized to analyze the prop-
erties of for . In the next section, the asymptotic
performance analysis of is performed by generalizing the
approach of [13], which is based on a direct study of the argu-
ment that maximizes the periodogram.

III. A SYMPTOTIC PERFORMANCE

In the following, the overbar will be used to denote com-
plex conjugation. If are random vectors, the nota-
tion will stand for the th-order cumulant
tensor of vectors . The following mixing condition
will be required to establish the asymptotic performance of the
symbol-rate estimator.

Assumption 1:Let be the multivariate random process
defined by (6) and define and
We assume that satisfies the following mixing condition:

(8)

The mixing condition (8) is not restrictive and it is satisfied
when the impulse response of the filter has finite memory.
Under Assumption 1, it is possible to prove the following lemma
which generalizes the scalar counterpart in [4], [12]–[14], [20],
and [21].

Lemma 1: Assume that satisfies Assumption 1 and de-
fine

(9)

Then

as (10)

Proof: See Appendix I.

A. Consistency

In this subsection, we study the consistency of , and
establish that converges to zero almost surely.
This property is quite useful in establishing the asymptotic nor-
mality of . The following result holds.
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Theorem 1: Assume that the positive matrix satisfies
(if , this condition is automatically

satisfied). Then, as

and

almost surely.
Proof: We first note that the sequence be-

longs to the compact set . Therefore, in order to
prove that converges almost surely to , it is sufficient
to establish that every convergent subsequence extracted from

converges to . For this, we consider a subsequence
converging to a certain value , and we

prove that .
Since maximizes , it follows that

This inequality remains true for the subsequence, and we obtain
immediately that

exists almost surely and is nonnegative.
Using the expression (7) of , one observes that

can be decomposed into four terms

where

and is defined by (9) for . It is easy to verify that
is bounded in and . Using Lemma 1, it follows that

(11)

and

(12)

Recalling the expansion

it follows that

In order to evaluate the limit (12), we need to introduce the fol-
lowing simple lemma from [14].

Lemma 2: Let be a real-valued sequence, be-
longing to a compact set that is included in , and
converging to . Define

Then, as , the following relations hold:

if

if and

if and
.

Equation (3) implies that

As and belong to , the limits of

and as

are not equal to zero (modulo). Lemma 2 yields that

(13)

If , Lemma 2 implies that ,
which contradicts the condition . Therefore,
and the first part of Theorem 1 is established.

In order to prove the second part, we consider the sequence
defined by . If is

not bounded, there exists a subsequence such that
. According to Lemma 2, the corresponding

is equal to , which is impossible. Thus, is
bounded. Let be a subsequence converging to.

Using Lemma 2, we obtain that .
As , must be equal to. This proves that

as

B. Asymptotic Normality of the Estimate

The asymptotic normality and convergence rate of
are next obtained using a second-order Taylor expansion of

around

(14)

where the estimation error and the scalar
belongs to (or ). Taking into ac-

count that , it follows from (14) that

(15)
Define

(16)

(17)



1926 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 7, JULY 2002

Plugging (16) and (17) back into (15), we obtain

(18)

In order to analyze the asymptotic properties of , we
have to study the asymptotic behavior of and .

1) Asymptotic Behavior of : After some simple
algebraic manipulations, it can be checked that can
be expressed in terms of with

. It is also easy to check that the sequence
satisfies Theorem 1. Using Lemmas 1 and 2, it is

straightforward to show the following.

Lemma 3:

almost surely

as

From this, we immediately obtain the following.

Proposition 1:

almost surely, as

with

2) Asymptotic Behavior of : Using (6), it follows that
can be decomposed into the following three terms:

(19)

where

with standing for the imaginary part of a complex number.
Let us first analyze . Using decomposition (3), we obtain
that

(20)

In the same way

The asymptotic behavior of the termsand is characterized
by the following lemma.

Lemma 4: For every strictly positive scalarand any positive
integer

as for

Lemma 4 implies that

and as (21)

It is also easy to verify that

One can observe that the imaginary part operator () allows to
cancel out the nonconvergent term
present in the expression of . Therefore, can be
expressed as

Using the properties (21) of and , it follows that
converges to zero.

We note also that can be expressed as

(22)

where
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then

and

Using (3), we obtain that depends only on terms of the
form

with , and . As , it is easy
to show that

(23)

We prove in Appendix II that converges in distribution to
a zero-mean Gaussian distribution. This result shows that

is asymptotically zero-mean Gaussian. As for , it can be
expressed in the following form:

Lemma 1 shows that

converges almost surely to zero. Since is a component
of the vector , it is asymptotically Gaussian. This implies
that almost surely converges to zero [5].

According to (19), we deduce the following result.

Proposition 2:

in distribution, as

where

Using Propositions 1 and 2 as well as (18), we finally obtain
the main result of this section.

Theorem 2:

in distribution, as

where .

We have thus proved the asymptotic normality of ,
and that the convergence rate of is as in standard
frequency estimation problems.

3) Computation of : We now compute in closed form
. As has been evaluated (see Proposition

1), it remains to calculate a closed-form expression for

Using (22) and (23), it is easy to check that

In order to evaluate , we observe that

(24)

where

and:

We now study the asymptotic behavior of these terms. For this,
we have to specify the properties of . It is cyclostationary,
and using some results of [15], [17], and [22], we obtain that its
set of significant cyclic frequencies is given2 by

. In other words

and

can be expressed as

2The notationx mod 1 stands for the value ofx modulo1.
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Using Assumption 1 and well-known results on Césaro sums
(see, e.g., [19]), we obtain after some simple manipulations that

as

(25)

as

(26)

where and represent the

cyclic spectrum at cyclic frequencyand the conjugate cyclic
spectrum at cyclic frequency of , respectively. Fortu-
nately, the spectra and

can be expressed more explicitly. Let

denote the estimation error corresponding to . It is well
known that converges to a Gaussian distribution
[7]. Let and denote the unconjugated/conjugated asymp-
totic covariance matrices

In order to express and in terms of
and , we note that since

it follows that

Substituting from (20), we obtain that

From (21), it follows that is a deterministic term con-
verging to zero, as . From this, we deduce further that
[5]

(27)

(28)

Plugging (27), (28), (25), and (26) back into (24) yields

(29)

Finally, by combining all the previous results, we obtain the fol-
lowing compact and simple expression for the asymptotic vari-
ance:

(30)

where

IV. CHOOSING THE WEIGHTING MATRIX

AND PARAMETER

We now exploit (30) to study the influence of and on
the performance of the estimate. A natural question that arises
is: how do we choose the weighting matrix in order to im-
prove the estimation? If is invertible, we can observe (see,
e.g., [19]) that for any , the left-hand side (LHS)
of (30) is less than , which repre-
sents the value of the right-hand side (RHS) of (30) evaluated
for . This result can be extended even whenis a
singular matrix by replacing the regular inverse with the
(Moore–Penrose) pseudo-inverse (see, e.g., [1]). However,
the matrix is not a block-diagonal matrix in general, i.e., it
may happen that there is no weighting matrixfor which
coincides with . Therefore, the ma-
trix inequality trick used in [19] to derive optimal weighting ma-
trices is not applicable here. Hence, determining a positive-def-
inite optimal weighting matrix seems to be a difficult problem.

We show next that seems to be an appropriate
choice, at least for high signgal-to-noise ratios (SNRs). In-
deed, we prove in the sequel that leads to a very
low variance estimate if is chosen large enough. For this,
we assume for the sake of simplicity that the sequenceis
circular: in this case, the expressions ofand are simple.
Using that the spectrum of is limited to the interval

for some parameter
and , one can show that (see Appendix III)

(31)

(32)

where
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Fig. 1.  and (in decibels) versus�.

and is the kurtosis of . Using the condition
, it is easy to show that

(33)

where and stands for
the spectral density of .

Let us now consider the noiseless case. The product
coincides with

. After some straightforward manipula-
tions, we obtain that the asymptotic variance of the estimate

is given by

(34)

where

where stands for the real part of a complex number. The
important point is to observe that if is large enough

and that . It turns out that, in the noiseless case, the
asymptotic variance of converges to as increases. We
note that this result holds because we have chosen . In
particular, it seems that if , the estimate does not
have the above property. Therefore, the choice seems
reasonable, at least if the SNR is high enough andis chosen
large enough.

Remark: In practice, the maximization of eith re-
spect to (w.r.t.) is not so easy to achieve because it shows sev-
eral spurious local maxima. The estimate is thus com-
puted in two steps. In the first step (coarse search), is
evaluated by means of a fast Fourier transform (FFT) algorithm
on the grid . In the second step
(fine search), a gradient maximization algorithm of ,
initialized at the argument of , gives the esti-
mate . As the asymptotic analysis presented in this paper
is closely related to the local behavior of around ,
it of course only allows to predicate the performance of the fine
search, provided the coarse search has been successful. In par-
ticular, that is relevant in the context of the fine search
does not imply that it is well adapted to the coarse search. In-
deed, let be the asymptotic covariance matrix of , so
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Fig. 2.  and (in decibels) versus SNR, for� = M .

that . It has been shown in [6] and [18] that choosing
allows, in principle, to improve dramatically the

performance of the coarse search. However, in the context of the
fine search, weighting the cost function by
is not necessarily recommended. This is going to be confirmed
by the numerical evaluations in the following section.

V. NUMERICAL ILLUSTRATIONS

We now illustrate the above results by some numerical eval-
uations of the asymptotic variance of . We assume that
the shaping filter used by the transmitter is a square-root raised-
cosine pulse shape with excess bandwidth , and that
the propagation channel is a multipath channel. The amplitude,
phases, and time delays of the channel are random variables, and
each curve is obtained by averaging the variances of our esti-
mate over 100 different realizations of the propagation channel.
It is assumed that is equal to . In order to ob-
tain quasi-band-limited signals, we have used a degree
polynomial .

In Fig. 1, the noise is white, SNR is equal to 20 dB, and
we study the influence of on the asymptotic covariance .

We compare the unweighted estimate and the
weighted estimate corresponding to the choice . We
notice that the number of lags taken into account has a great
influence on the variance.

We now study the behavior of the asymptotic covariance of
the estimate versus SNR. In Fig. 2, for sake of clarity, we only
plot the case .

The variance of the weighted estimator does not converge to
when SNR increases, while the curve of the unweighted esti-

mator confirms our calculations. Indeed, the variance of
decreases to as increases. Moreover, the unweighted esti-
mator has a lower variance for large enough.

VI. CONCLUSION

In this paper, we have studied rigorously the asymptotic per-
formance of a symbol rate estimator. We have shown that the es-
timator is consistent, asymptotically normal, and that its conver-
gence rate is . Our approach also leads to an interpretable
closed-form expression for the asymptotic variance. We have
taken advantage of our interpretable formula to discuss guide-
lines in selecting certain important parameters.

APPENDIX I
PROOF OFLEMMA 1

We first note that satisfies the statement of Lemma 1
if and only if any of its components verifies (10). In this ap-
pendix, for brevity, we only prove the convergence of

The reader may check that the other components can be treated
using similar arguments. In the sequel, we denote
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and . We will rely on Hannan’s proof
[13] to show that

as

We first study the second-order moment of
which is given by

Defining and ,
it follows that

By using the triangular inequality, we obtain that

According to Schwartz inequality, it follows also that

By taking advantage of the concavity of the square-root function
and Jensen’s inequality, we obtain that

Therefore,

(35)

with

where

and

We obtain easily that

From Assumption 1, we deduce that

Thus,

In the same way, we obtain that

and

According to (35), it follows that

Let us consider , the smallest integer greater than
with . It follows that

Chebychev’s inequality leads further to
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Therefore, for any

The Borel–Cantelli lemma thus implies that

Thus,

as

We have only proved the result for a certain subsequence ex-
tracted from . It remains to prove the uniform conver-
gence of the sequence itself. For this, letbe an integer be-
tween and and consider the expression

We are going to establish that this term converges to. For this,
we first evaluate its second-order moment

It is easy to show that

Applying Schwartz’s inequality on the RHS term of the previous
inequality, it follows that

Due to the definition of it is easy to check that

and as

which implies that

Using again Chebychev’s inequality and the Borel–Cantelli
lemma leads to

as

As converges to as , it follows that

as

As almost surely converges to zero, the
previous equality implies that

also converges to zero almost surely.

APPENDIX II
PROOF OFASYMPTOTIC NORMALITY OF

Let denote the th-order cumulant tensor of
. The generic form of any of its components is given by

(36)

where and belong to the sets and ,
respectively,

and:

It follows that , and , . Due
to the triangular inequality applied on (36), we obtain that

(37)

Assumption 1 implies that there is a constant, independent
of , such that . Therefore,

. If , then ,
and it follows that

which implies that converges to a Gaussian
distribution.
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APPENDIX III
DERIVATION OF (31) AND (32)

We first review some useful properties of fourth-order cyclic
cumulants (see, e.g., [22]). Let denote the fourth-
order cumulant of at time index and lags

The fourth-order cyclic cumulant at cyclic frequencyis de-
fined by

and the corresponding cyclic trispectrum at cyclic frequency
is given by

with the vector of cyclic frequencies . Since
is given by (1), it is well known that the cumulant cyclic

frequencies are the integer multiples of and that the corre-
sponding cyclic trispectra are given by (see, e.g., [16], [22])

(38)

where represents the Fourier transform of .
As the bandwidth of is reduced to the interval

with , it is easy
to check that the cumulant cyclic frequencies set is given by

. Therefore, the (normalized) cumulant cyclic
frequencies of the digital sampled signal are
the values . We denote by

the cyclic trispectrum of at cyclic frequency and by
the associated cyclic cumulant sequence de-

fined by

In the following, we will express

in terms of . It follows that (see, e.g., [15]) for
all

which reduces to

As is band-limited, (38) and the condition
imply that

for

if . Hence, there is no aliasing in the RHS
term of the previous equation. This leads to

for all .
After this review on cyclic trispectra, we are able to derive

(31) and (32). As , it suffices to compute
the different components of previous cyclic spectra of . Let

denote the th entry of an arbitrary matrix . Using
the circularity of , we obtain that

where . From this, we obtain that the
cyclic correlation coefficients of at cyclic frequency are
given by

Thus,

with

and

Due to Parseval’s identity, it follows that

Since is band-limited and , the supports of the
functions

and

are disjoint for and . Thus, .
As for , it is easy to obtain that
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As , the condition , for holds
if and only if . Therefore, we have

As (which implies that ), and
, respectively, are equal to

and for . Hence,

According to (33), we obtain that

This proves (31). Equation (32) can be derived using similar
arguments.
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