MICAS904-ROSP/DCOM0

Introduction to Communications Theory

Part on "Modulation and Demodulation"

Philippe Ciblat

Telecom Paris, Institut Polytechnique de Paris, Palaiseau, France

Roadmap

MICAS904	ROSP		
TX (Modulation)			
Channel modeling			
RX (Demodula	tion, Detection)		
joint with DCOM0 (5TH)			
Detection, Performances			
joint with DCOM0 (4TH)			
Channel coding (6TH)			
	DCOM0 end		
	agement		
(ZF, MMSE, DFE, OFDM)			
joint with DCOM1 (4TH)			
MICAS904 end	Blind equalization		
	Synchronization		
	MIMO decoding		
	Nonlinearity mitigation		
	DCOM1 end		

- Section 1: Digital Communication scheme
- Section 2: A toy example
- Section 3: Baseband and carrier signals
- Section 4: Propagation channel
- Section 5: Transmitter (Modulation)
- Section 6: Receiver (Demodulation)
 - Matched filter + sampler
 - Nyquist filter

Section 1: Digital Communication scheme

- 2G, 3G, 4G, DVBT, Wifi, Bluetooth
- ADSL. Fiber
- MP3, DVD
- Channels: copper twisted pair, powerline, wireless, optical fiber, ...
- Sources: analog (voice) or digital (data)

If analog source, ...

Sampling (no information loss)

Nyquist-Shannon Theorem

Let $t \mapsto x(t)$ be a continuous-time signal of bandwidth B. x(t) is perfectly characterized by the sequence $\{x(nT)\}_n$ where T is the sampling period satisfying $1/T \ge B$.

Quantization (information loss)

Example

Let us consider voice signal

Quality	Bandwidth	Sampling	Quantization	
2G	[300Hz, 3400 Hz]	8kHz	8 bits	
Hifi	[20Hz, 20kHz]	44kHz	16 bits	

Analog system: s(t) analog source

transmit signal :
$$x(t) = f(s(t))$$

- + Pros: low complexity
- Cons: data transmission, multiple access, performance, limited information processing

Digital system: s_n digital source (composed by 0 and 1)

transmit signal :
$$x(t) = f(s_n)$$

Example Baseband/carrier Channel Modulation Demodulation

Design parameters

•	Data rate	<i>D_b</i> bits/s
•	Bandwidth	<i>B</i> Hz
•	Error probability	P _e
•	Transmit power (SNR)	<i>P</i> mW or dBm
•	Latency	L

Goal

 $\max D_b$ with $\min B, P_e, P, L$

but

- theoretical limits (information theory)
- physical constraints (propagation, complexity)

Practical case: depends on Quality of Service (QoS)

- 2G/3G: target L with fixed D_b and variable P_e
- ADSL: $\max D_b$ with target P_e and fixed B and P

Scheme Example Baseband/carrier Channel Modulation Demodulation

A few systems

System	D_b	В	P _e	Spectral efficiency
DVB	10Mbits/s	8MHz	10 ⁻¹¹	1,25 bits/s/Hz
2G	13kbits/s	25kHz	10 ⁻²	0,5 bits/s/Hz
ADSL	500kbits/s	1MHz	10^{-7}	0,5 bits/s/Hz

e Example Baseband/carrier Channel Modulation Demodulation

Transceiver/Receiver structure

Question?

How to design

- Modulation/demodulation boxes
- Coding/decoding boxes
- ... depending on propagation channel

Section 2: A toy example

The "old" optical fiber

Goal:

- Sending a bit stream $a_n \in \{0, 1\}$ at data rate D_b bits/s
- Data a_n will be sent at time nT_b with $T_b = 1/D_b$ s

How?

•
$$x(t) = 0$$
 if $a_n = 0$ within $[nT_b, (n+1)T_b) \Rightarrow \text{No light}$

•
$$x(t) = A$$
 if $a_n = 1$ within $[nT_b, (n+1)T_b) \Rightarrow Light$

but

Light has a color (∼ wavelength)

$$x_c(t) = x(t)\cos(2\pi f_0 t)$$

Mathematical framework

- Each data has a shape. Here, the rectangular function
- Each shape is multiplied by an amplitude. Here, either A or 0
- Each data is shifted at the right time

$$x(t) = \sum_n s_n g(t - nT_s)$$

with

- g(t) shaping filter. Here, g(t) rectangular function
- s_n **symbol** sequence. Here $s_n = Aa_n$
- T_s symbol period. Here, $T_s = T_b$

Finally

$$x_c(t) = x(t)\cos(2\pi f_0 t)$$

Degrees of freedom

- carrier frequency f₀
 - impact on propagation condition
 - impact on data rate (see later)
- shaping filter g(t)
 - impact on bandwidth

$$S_x(f) \propto |G(f)|^2$$

- with G(f) Fourier Transform of g(t)
- impact on receiver complexity and performance (see later)
- symbol s_n
 - impact on data rate: multi-level
 - impact on performance (see later)
- symbol period T_s
 - impact on data rate
 - impact on bandwidth (through the choice of g(t))

Section 3: Baseband/carrier signals

Questions

$$x_c(t) = x(t)\cos(2\pi f_0 t)$$

with

- $x_c(t)$: carrier signal
- x(t): baseband signal \Rightarrow (complex) envelope

Q1: Is there another way to translate the signal? $x(t) \rightarrow x_c(t)$

- YES
- I/Q modulator
- Complex-valued signal

Q2: How retrieving x(t) from $x_c(t)$?

I/Q demodulator

Mathematical framework

Instead of using only cos, we can use simultaneously cos and sin

$$x_c(t) = x_p(t)\cos(2\pi f_0 t) - x_q(t)\sin(2\pi f_0 t)$$

= $\Re\left((x_p(t) + ix_q(t))e^{2i\pi f_0 t}\right)$

with

- $x_p(t)$ a baseband real-valued signal of bandwidth B: **In-phase**
- $x_a(t)$ another real-valued signal of bandwidth B: Quadrature

We may have two streams in baseband for one carrier signal!

Complex envelope

The baseband signal can be represented by the so-called complex envelope

$$x(t) = \frac{1}{\sqrt{2}} \left(x_p(t) + i x_q(t) \right)$$

Mathematical framework (cont'd)

Assuming $B/2 < f_0$, we have

I/Q modulator

I/Q demodulator

In practice, we work with complex envelope

- smaller bandwidth B instead of 2f₀ + B
- o no cos and sin disturbing terms

A few wireless systems

When f_0 increases

- propagation degrades $(1/f^2)$
- antenna size decreases (1/f)
- bandwidth B may increase

System	f_0	В	Antenna size
Intercont.	\sim 10MHz (HF)	100kHz	100m
DVBT	600MHz (UHF)	\sim 1 MHz	1m
2G	900MHz	\sim 1 MHz	10cm
Wifi	5.4 GHz	10MHz	\sim 1cm
Satellite	11GHz	100MHz	_
Personal Network	60GHz	_	_

Section 4: Propagation channel

Multipath channel

- typical wireless channel
- valid also for ADSL and optical fiber (low SNR)

$$y(t) = \sum_{k} \rho_{k} x(t - \tau_{k}) + w(t)$$
$$= c(t) \star x(t) + w(t)$$

with noise w(t)

- Dispersion time: $T_d = \max_k \tau_k$
- Coherence bandwidth: $B_c = \min_f \arg \max_{\delta} \{ \|C(f) C(f + \delta)\| < \varepsilon \}$

$$B_c = \mathcal{O}(1/T_d)$$

Noise property

Let $w_c(t)$ be the (random) noise at carrier level

- $w_c(t)$ is zero-mean (real-valued) Gaussian variable
- $w_c(t)$ is stationary ($\mathbb{E}[w_c(t)^2]$ independent of t)
- $w_c(t)$ is almost white

What's happened for complex envelope w(t)?

Noise property (cont'd)

$$w(t) = \frac{1}{\sqrt{2}} \left(w_p(t) + i w_q(t) \right)$$

with

1. $w_p(t)$ and $w_q(t)$ zero-mean (real-valued) stationary Gaussian variable with the same spectrum

2. $w_p(t)$ and $w_q(t)$ are independent

Model: Gaussian channel

- Short multipaths (T_d) compared to symbol period (T_s)
- Holds for Hertzian beams
- Holds for Satellite
- Holds also for very low data rate transmission

$$y(t) = x(t) + w(t)$$

Model: Frequency-Selective channel

- Holds for cellular systems (2G with $T_d = 4T_s$)
- Holds for Local Area Network (Wifi with $T_d = 16T_s$)
- Holds for ADSL ($T_d = 100 T_s$)
- Holds also for Optical fiber (the so-called chromatic dispersion)

$$y(t) = c(t) \star x(t) + w(t)$$

⇒ InterSymbol Interference (ISI)

Remark

- Channel type (ISI?) is modified according to data rate
- The higher the rate is, the stronger the ISI is $(T_d \gg T_s)$

Section 5: Transmitter (Modulation)

Question

How associating bits a_n with analog (baseband) signal x(t)?

Binary modulation

- Waveform: $x_0(t)$ if bit '0' and $x_1(t)$ if bit '1'
- Binary linear modulation

$$x_0(t) = Ag(t)$$
 and $x_1(t) = -Ag(t)$

with symbols -A and A, and the shaping filter g(t)

If the symbol period is T_s , then

$$x(t) = \sum_{k} s_k g(t - kT_s)$$
 with $s_k \in \{-A, A\}$

Example (g(t)) rectangular function)

Multi-level modulation

-3A

- Bandwidth of x(t) (B) identical of that of g(t) (1/ T_p):
 - If $T_{\rho} \gg T_{s}$, InterSymbol Interference (see rectangular case)
 - If $T_p \ll T_s$, bandwidth is wasted (signal oscillates at $1/T_s$)

$$T_s \approx T_p$$

Spectral efficiency is 1bit/s/Hz in binary modulation

Multi-level modulation: one symbol contains more than one bit

Example Baseband/carrier Channel Modulation Demodulation

Constellations

Constellation = set of possible symbols

- Pulse Amplitude Modulation (PAM)
- Phase Shift Keying (PSK)

Quadrature Amplitude Modulation (QAM)

Section 6: Receiver (Demodulation)

Question

Two main boxes:

- How coming back to discrete-time signal: demodulation
- How detecting optimally the transmit bits (from z(n)): detector

Goal

Describing and justifying the demodulation

A mathematical tool: signal space

Let L^2 be the space of energy-bounded function

$$L^2 = \left\{ f \text{ s.t. } \int |f(t)|^2 dt < +\infty \right\}$$

 L^2 is an infinite-dimensional vectorial space

Properties

• L2 has an inner product

$$< f_1(t)|f_2(t)> = \int f_1(t)\overline{f_2(t)}dt$$

- leads to "orthogonality" principle: $\langle f_1(t)|f_2(t)\rangle = 0$
- leads to a norm: $||f(t)|| = \sqrt{\langle f(t)|f(t)\rangle}$
- L^2 has an infinite-dimensional orthonormal (otn) basis: $\{\Psi_m(t)\}_m$

$$\forall f \in L^2, \exists \{\beta_m\}_m, f(t) = \sum_m \beta_m \Psi_m(t) \text{ with } \beta_m = < f(t) | \Psi_m(t) >$$

Any function is described by complex-valued coefficients

A signal subspace

Let *E* be a subspace of L^2 generated by the functions $\{f_m(t)\}_{m=1,\dots,M}$

$$E = \operatorname{span}(\{f_m(t)\}_{m=1,\dots,M}) = \left\{ \sum_{m=1}^{M} \alpha_m f_m(t) \text{ for any complex } \alpha_m \right\}$$

Property

This subspace has a finite dimension and a finite otn basis

$$D = \dim_{\mathbb{C}} E$$
 and $E = \operatorname{span}\{\Phi_{\ell}(t)\}_{\ell \in \{1, \dots, D\}}$

For instance, let f(t) be a function in E

$$f(t) = \sum_{\ell=1}^D s^{(\ell)} \Phi_\ell(t) \text{ with } s^{(\ell)} = < f(t) | \Phi_\ell > \in \mathbb{C}$$

- $\mathbf{s} = [\mathbf{s}^{(1)}, \cdots, \mathbf{s}^{(D)}]^{\mathrm{T}}$ corresponds to the analog signal f(t)
- Usually, we prefer to work with s (which will carry information)

Example Baseband/carrier Channel Modulation Demodulation

Exhaustive demodulator

$$y(t) = \sum_{k} s_{k} h(t - kT_{s}) + w(t)$$

with any symbol s_k and any filter h(t)

Question

How sampling without information loss?

- Nyquist-Shannon Theorem: sampling at $f_e > B$. Then $y(n/f_e)$ contains all the information on y(t)
 - Actually information ($\{s_k\}$) is only a part of y(t)
- Exhaustive demodulator based on subspace principle
- Information $\{s_k\}$ belongs to the subspace E

$$E = \operatorname{span}(\{h(t - kT_s)\}_k)$$

- Noise w(t) belongs to E and E^{\perp} (orthogonal of E)
 - $w(t) = w_E(t) + w_{E^{\perp}}(t)$ ($w_E(t)$ and $w_{E^{\perp}}(t)$ independent)

Consequently, projection on E contains any information on $\{s_k\}$ in y(t)

Exhaustive demodulator (cont'd)

Projection on E

$$z(n) = \langle y(t)|h(t-nT_s) \rangle$$

$$= \int y(\tau)\overline{h(\tau-nT_s)}d\tau$$

$$= \overline{h(-t)} \star y(t)_{|t=nT_s}$$

$$y(t) \qquad \qquad h(-t) \qquad \qquad ynT_s' \qquad z(n)$$

Projection = Matched filter + Sampling

Remark: Sampling at T_s and not at T_e

Input/output discrete-time model

$$z(n) = \sum_{\ell} \tilde{h}(\ell T_s) s_{n-\ell} + w(n)$$

with

- $\tilde{h}(t) = \overline{h(-t)} \star h(t)$
- $w(n) = \overline{h(-t)} * w(t)_{|t=nT_s}$ zero-mean complex-valued stationary Gaussian with spectrum

$$S_w(e^{2i\pi f}) = N_0 \tilde{h}(e^{2i\pi f}) = N_0 |h(e^{2i\pi f})|^2$$

Orthogonal basis case

What's happened when $\{h(t - kT_s)\}_k$ is an **otn** basis \Leftrightarrow **No ISI**

$$z(n) = s_n + w(n)$$

Equivalent proposition

- $\{h(t kT_s)\}_k$ otn basis
- $\tilde{h}(t)$ Nyquist filter

$$\tilde{h}(\ell T_s) = \delta_{\ell,0} \Leftrightarrow \sum_{k} \tilde{H}\left(f - \frac{k}{T_s}\right) = T_s$$

h(t) square-root Nyquist

$$\tilde{h}(t) = \overline{h(-t)} \star h(t) \Leftrightarrow H(f) = \sqrt{\tilde{H}(f)}$$

In practice, h(t) square-root Nyquist iff

- Gaussian channelno ISI provided by propagation channel
- g(t) square-root Nyquist no ISI provided by shaping filter

Nyquist filter

Main property

If h(t) square-root Nyquist, then

$$B>\frac{1}{T_s}$$

Examples:

- h(t) rectangular $\Leftrightarrow \tilde{h}(t)$ triangular
- h(t) square-root raised cosine (srrc) $\Leftrightarrow \tilde{h}(t)$ raised cosine

with roll-off ρ (ρ = 0.22 in 3G, ρ = 0.05 in DVB-S2, ρ = 0.01 in WDM-Nyquist)

Consequence on noise

If h(t) square-root Nyquist, then w(n) white noise

- $w(n) = w_R(n) + iw_I(n)$
- $w_B(n)$ and $w_I(n)$ independent
- $\mathbb{E}[w_R(n)^2] = \mathbb{E}[w_I(n)^2] = N_0/2$
- $\mathbb{E}[|w(n)|^2] = N_0$ and $\mathbb{E}[w(n)^2] = 0$

Probability density function (pdf)

$$\begin{aligned} p_{w}(x) &= p_{w_{R},w_{I}}(x_{R},x_{I}) = p_{w_{R}}(x_{R})p_{w_{I}}(x_{I}) \\ &= \frac{1}{\sqrt{\pi N_{0}}}e^{-\frac{x_{R}^{2}}{N_{0}}} \times \frac{1}{\sqrt{\pi N_{0}}}e^{-\frac{x_{I}^{2}}{N_{0}}} = \frac{1}{\pi N_{0}}e^{-\frac{x_{R}^{2}+x_{I}^{2}}{N_{0}}} \\ &= \frac{1}{\pi N_{0}}e^{-\frac{|x|^{2}}{N_{0}}} \end{aligned}$$

Non-orthogonal basis case

What's happened when $\{h(t - kT_s)\}_k$ is a **non-otn** basis

- ISI
- Colored noise

Equivalent model

By using whitening filter f, we have

$$y(n) = f \star z(n) = \sum_{\ell=0}^{L} h(\ell) s_{n-\ell} + w(n)$$

with w(n) white Gaussian noise

Conclusion

Sequence of slides stops here but it remains to do

- Detector
 - \rightarrow recovering s_n from z(n) in no-ISI case
 - \rightarrow recovering s_n from z(n) in ISI case
- Performances
- Channel coding/decoding
- Channel impulse response estimation (blind equalization)
- Synchronization

Scheme Example Baseband/carrier Channel Modulation Demodulation

References

[Tse2005] D. Tse and P. Viswanath, Fundamentals of wireless communications, 2005

[Goldsmith2005] A. Goldsmith, Wireless Communications, 2005

[Proakis2000] J. Proakis, Digital Communications, 2000

[Benedetto1999] S. Benedetto and E. Biglieri, Principles of digital transmission with wireless applications, 1999

[Viterbi1979] A. Viterbi and J. Omura, Principles of digital communications and coding, 1979

[Gallager2008] R. Gallager, Principles of digital communications. 2008

[Wozencraft1965] J. Wozencraft and I. Jacob, Principles of communications engineering, 1965

[Barry2004] J. Barry, D. Messerschmitt and E. Lee, Digital communications, 2004

[Sklar2001] B. Sklar, Digital communications : fundamentals ans applications, 2001

[Ziemer2001] R. Ziemer and R. Peterson, Introduction to digital communication, 2001