MICAS902

Introduction to Probabilities and Statistics

Part on "Detection and Estimation"

Philippe Ciblat

Telecom Paris, Institut Polytechnique de Paris, Palaiseau, France

Outline

- Motivation and preliminaries
- Detection Theory (Bayesian approach)
 - Optimal detector: Maximum A Posteriori (MAP)
 - Optimal performance
- Hypothesis Testing (deterministic approach)
 - Optimal test: Neyman-Pearson test (NPT)
 - Optimal Asymptotic performance
- Estimation Theory (deterministic approach)
 - Optimal performance: Cramer-Rao bound (CRB),
 - Algorithms: Maximum likelihood (ML), Moments, Least Square (LS)
 - Asymptotic performance
- Stimation Theory (Bayesian approach)
 - Optimal estimator: Mean A Posteriori (MeAP)
 - Optimal performance: Bayesian Cramer-Rao bound (BCRB)

Part 1: Motivation and Preliminaries

Toy example: symbol detection

$$\underbrace{y}_{\text{observation}} = \underbrace{s}_{\text{information symbol: 1 or } -1} + \underbrace{w}_{\text{noise}}$$

Goal: given y, recovering s in the best way.

Remarks:

- Symbols are modeled as random: $Pr\{s = 1\} = p$ with p known
- Figure of merit: average error probability

$$P_e := \Pr{\hat{s} \neq s}$$

= $\Pr{\hat{s} = 1 | s = -1} \Pr{s = -1} + \Pr{\hat{s} = -1 | s = 1} \Pr{s = 1}$

• Conclusion: discrete-valued and random parameter s

Toy example: signal detection

$$\left\{ \begin{array}{lll} \text{Hypothesis } \mathcal{H} = \mathcal{H}_0 \colon \underbrace{y} & = \underbrace{+\underbrace{w}}_{\text{no signal noise}} \\ \text{Hypothesis } \mathcal{H} = \mathcal{H}_1 \colon \underbrace{y}_{\text{observation}} & = \underbrace{x}_{\text{signal noise}} + \underbrace{w}_{\text{noise}} \\ \end{array} \right.$$

Goal: given *y*, say if transmitted signal is active or not in the best way. **Remarks:**

- Hypothesis parameter is not random usually
- Figure of merit:
 - maximizing signal detection probability $P_D = \Pr\{\mathcal{H}_1 | \mathcal{H}_1\}$
 - given a maximum false alarm probability $P_{FA} = \Pr\{\mathcal{H}_1 | \mathcal{H}_0\}$
- ullet Conclusion: discrete-valued and deterministic parameter ${\cal H}$

Applications:

- radar (intrusion detection, missile detection),
- interweave cognitive radio

Toy example: channel estimation

$$\underbrace{y_n}_{\text{set of observations}} = \underbrace{\sum_{\ell=0}^{L} h_{\ell} s_{n-\ell}}_{\text{unknown channel impulse response}} + \underbrace{w_n}_{\text{noise}}$$

Goal: given $\{y_n\}_{n=0,\dots,N-1}$, recovering $\{h_\ell\}_{\ell=0,\dots,L}$ in the best way. **Remarks:**

- Symbols are known and channel modeled as unknown deterministic
- Figure of merit: mean square error

MSE :=
$$\mathbb{E}[\|\hat{\mathbf{h}} - \mathbf{h}\|^2] = \sum_{\ell=0}^{L} \mathbb{E}[|\hat{h}_{\ell} - h_{\ell}|^2]$$

with
$$\mathbf{h} = [h_0, \cdots, h_L]^T$$
.

Conclusion: continuous-valued and deterministic parameter h

Toy example: coin tossing parameter

Let $\mathcal{X} = \{x_0, \cdots, x_O\}$ be a set of values

$$y_n = x_\ell$$
 with probability p_ℓ s.t. $\sum_{\ell=0}^Q p_\ell = 1$.

Goal: given $\{y_n\}_{n=0,\dots,N-1}$, recovering $\{p_\ell\}_{\ell=0,\dots,Q}$ in the best way. Remarks:

- Coin tossing parameter $\mathbf{p} = [p_0, \cdots, p_Q]^T$ may be modeled as random parameter with a priori distribution (e.g. fluctuation around a predetermined value $p_{\ell} = p + \varepsilon_{\ell}$ with known p
- Figure of merit: mean square error

$$MSE := \mathbb{E}[\|\hat{\mathbf{p}} - \mathbf{p}\|^2]$$

Warning: expectation is over all the random variables (so averaging over the distributions of the noise and the parameter)

Conclusion: continuous-valued and random parameter p

Applications:

Heads or tails, Loaded dice

- Let θ_0 be the true value of the parameter
- Let $\hat{\theta}_{(N)}$ be the estimated/guessed/decoded parameter (through the help of N observations)
- Let θ be a generic variable of any function helping to estimate/guess/decode θ_0 .

θ_{0}	random	deterministic
discrete	Detection (Part 2)	Hypothesis testing (Part 3)
continuous	Bayesian estimation (Part 5)	Estimation (Part 4)

Figures of merit for discrete-valued parameters

Special Case: binary parameter (0/1) leads to four probabilities

- $Pr\{1|0\}$ (false alarm), $Pr\{0|0\}$ (with $Pr\{1|0\} + Pr\{0|0\} = 1$)
- $Pr\{1|1\}$ (correct detection), $Pr\{0|1\}$ (with $Pr\{1|1\} + Pr\{0|1\} = 1$)

Figures of merit:

• If random, a priori distribution $\pi_0 = \Pr\{0\}$ and $\pi_1 = \Pr\{1\}$

$$P = C_{0,0}\pi_0 \Pr\{0|0\} + C_{1,0}\pi_0 \Pr\{1|0\} + C_{0,1}\pi_1 \Pr\{0|1\} + C_{1,1}\pi_1 \Pr\{1|1\}$$

with $C_{i,j}$ cost related to the configuration i|j

Example: $P_e = \pi_0 \Pr\{1|0\} + \pi_1 \Pr\{0|1\}$

- If deterministic, tradeoff between both metrics (optimization for function output in R² unfeasible)
 - Constant false alarm rate (CFAR): $\max \Pr\{1|1\}$ s.t. $\Pr\{1|0\} \le C_{FA}$
 - Constant detection rate (CDR): min $Pr\{1|0\}$ s.t. $Pr\{1|1\} \ge C_D$

Figures of merit for continuous-valued parameters

Remark: P_e usually no meaningful (except in some pathological cases)

Goal: find metric measuring the closeness of $\hat{\theta}$ to θ_0 . Typically Mean Square Error (MSE)

MSE :=
$$\mathbb{E}[\|\hat{\theta} - \theta_0\|^2]$$

MSE (θ_0) = $\int \|v - \theta_0\|^2 p_{\hat{\theta}}(v) dv$ (if deterministic)
MSE = $\iint \|v - u\|^2 p_{\hat{\theta}, \theta_0}(v, u) dv du$ (if random)

where the expectation is over all the random variables!

Intro Detection Hypothesis Testing Estimation Bayesian Estimation

Main results (take-home messages)

θ_0	random	deterministic
discrete	Error probability	CFAR
	Max A Posteriori (MAP),	Likelihood Ratio Test
	Max Likelihood (ML)	(LRT)
	if equilikely	
	Theoretical performance	Asymptotic performance
		$(N o \infty)$
continuous	MSE	MSE
	Mean A Posteriori (MMSE)	Asymptotically ML
		under some conditions
	Theoretical performance	Asymptotic performance

Generalities

- Let $\mathbf{X}_N = \{X_1, \dots, X_N\}$ be a random process
- The probability density function (pdf) $p_{\mathbf{X}}(\mathbf{x})$ depends on θ_0 , e.g., Gaussian process with unknown mean and variance $(\theta_0 = [\text{mean, variance}])$

Goal

Given a realization of the process (an event) $\mathbf{x}_N = \{x_1, \dots, x_N\}$, find out an estimated value, $\hat{\theta}_N$, of θ_0 , i.e., information on the pdf

Notations:

- If θ_0 is random:
 - $p_{X,\theta}(\mathbf{x}_N,\theta)$: joint distribution between data and parameter

- equivalently,
$$p_{X|\theta}(\mathbf{x}_N|\theta)$$
. $p_{\theta}(\theta)$
- equivalently, $p_{\theta|X}(\theta|\mathbf{x}_N)$ a priori distribution $p_{\theta|X}(\theta|\mathbf{x}_N)$. $p_X(\mathbf{x}_N)$

a posteriori distribution

• If θ_0 is deterministic: $p_X(\mathbf{x}_N; \theta)$, equivalently, $p_{X|\theta}(\mathbf{x}_N|\theta)$ pdf depending on θ likelihood

Review of Matrix Algebra

Non-singular square matrix: $\mathbf{H} \in \mathbb{C}^{n \times n}$ is non-singular iff all its eigenvalues are non-zero

Inverse of square matrix: Let $\mathbf{H}^{-1} \in \mathbb{C}^{n \times n}$ be the matrix inverse of $\mathbf{H} \in \mathbb{C}^{n \times n}$.

- Then, $HH^{-1} = H^{-1}H = Id$
- Moreover, H⁻¹ exists iff H is non-singular

Moore-Penrose pseudo-inverse of non-square matrix: Let $\mathbf{H} \in \mathbb{C}^{M_R \times M_T}$ be a non-square full rank matrix.

- Right Pseudo-inverse: if $M_R < M_T$ then **H** admits a right pseudo-inverse, $\mathbf{H}^\# = \mathbf{H}^{\mathrm{H}}(\mathbf{H}\mathbf{H}^{\mathrm{H}})^{-1}$, such that $\mathbf{H}\mathbf{H}^\# = \mathbf{I}\mathbf{d}$
- Left Pseudo-inverse: if $M_R > M_T$ then **H** admits a left pseudo-inverse, $\mathbf{H}^\# = (\mathbf{H}^H \mathbf{H})^{-1} \mathbf{H}^H$, such that $\mathbf{H}^\# \mathbf{H} = \mathbf{Id}$

Review of Matrix Algebra (cont'd)

- Let **x**, **y** be two vectors in \mathbb{C}^n
- Let (canonical) inner product : $< \mathbf{x} | \mathbf{y} >= \mathbf{x}^H \mathbf{y}$ (bilinear sesqui-symmetric definite-positive)
- Norm: $\|\mathbf{x}\| = \sqrt{<\mathbf{x}|\mathbf{x}>} = \sqrt{\sum_{\ell=12}^n |x_\ell|^2}$; Euclidean distance: $\|\mathbf{x}-\mathbf{y}\|$
- Quadratic form (bilinear sesqui-symmetric form) : $\mathbf{x}^H \mathbf{A} \mathbf{y}$ with \mathbf{A} Hermitian matrix ($\mathbf{A} = \mathbf{A}^H$)

Properties of quadratic form (and related matrix A)

- Positive Definite Quadratic form/matrix: ∀x, x^HAx > 0 ⇔ eigenvalues of A strictly positive (notation: A > 0)
- Positive Semi-definite Quadratic form/matrix: $\forall \mathbf{x} \neq \mathbf{0}$, $\mathbf{x}^H \mathbf{A} \mathbf{x} \geq 0 \Leftrightarrow$ eigenvalues of **A** positive (notation: $\mathbf{A} \geq 0$)
- Inequalities for positive semi-definite matrix: partial order ≥ for two matrices A ≥ 0, B ≥ 0;

$$A > B \Leftrightarrow A - B > 0$$

Part 2 : Detection Theory

Introduction

Let

- $\Theta \in \mathbb{K}^n$ be the finite set of possible values for parameter θ (\mathbb{K} any field)
- **y** be the observation depending on the parameter, let say, θ_0 .

Goal : make a decision on θ based on the observation. The decision is denoted by $\hat{\theta}$.

Figure of merit: average error probability

$$P_e = \Pr{\{\hat{\theta} \neq \theta\}}$$

Decision regions

- The value of y leads to one deterministic decision
- The value of \mathbf{y} can be viewed as a position in \mathbb{K}^n

Let decision region associated with θ_0 be as follows

$$\Omega_{\theta_0} := \{ \mathbf{y} \in \mathbb{K}^n : \hat{\theta}(\mathbf{y}) = \theta_0 \}, \qquad \forall \theta_0 \in \Theta,$$

i.e., the set of observations \mathbf{y} leading the decoder to decide the value θ_0 for the parameter

Remark:

We have a partition of \mathbb{K}^n

$$\Omega_{\theta} \cap \Omega_{\theta'} = \emptyset, \quad \forall \theta, \theta' \in \Theta, \ \theta \neq \theta'$$

and

$$\bigcup_{\theta \in \Theta} \Omega_{\theta} = \mathbb{K}^n.$$

Main results

Result 1

Minimizing Pe leads to make the following decision

$$\hat{ heta} = rg \max_{ heta \in \Theta} extstyle{p_{ heta|Y}}(heta|\mathbf{y})$$

i.e.,
$$\Omega_{\theta} = \{ \mathbf{y} \in \mathbb{K}^n : p_{\theta|Y}(\theta|\mathbf{y}) \ge p_{\theta|Y}(\theta'|\mathbf{y}), \ \forall \theta' \ne \theta \}$$

Optimal decoder: Maximum A Posteriori (MAP)

Result 2 (special case)

Minimizing P_e leads to make the following decision if θ equilikely

$$\hat{\theta} = \arg\max_{\theta \in \Theta} p_{Y|\theta}(\mathbf{y}|\theta)$$

i.e.,
$$\Omega_{\theta} = \{ \mathbf{y} \in \mathbb{K}^n : \rho_{Y|\theta}(\mathbf{y}|\theta) \ge \rho_{Y|\theta}(\mathbf{y}|\theta'), \ \forall \theta' \ne \theta \}$$

Optimal decoder: Maximum Likelihood (ML)

Main questions

• Description of Ω_{θ} (region borders?)

or equivalenty

- Derivations of $p_{\theta|Y}$ or $p_{Y|\theta}$?
- Finding out arg max ?

Sketch of proof

$$P_e = 1 - P_d \text{ with } P_d := \Pr{\{\hat{\theta} = \theta\}}.$$

We get

$$\begin{split} \boldsymbol{P}_{d} &= \sum_{\theta_{0} \in \Theta} \Pr\{\hat{\boldsymbol{\theta}} = \theta_{0} | \boldsymbol{\theta} = \theta_{0}\} \cdot \Pr\{\boldsymbol{\theta} = \theta_{0}\} \\ &= \sum_{\theta_{0} \in \Theta} \int_{\mathbf{y} \in \Omega_{\theta}} \boldsymbol{p}_{Y|\boldsymbol{\theta}}(\mathbf{y} | \boldsymbol{\theta} = \theta_{0}) \cdot \Pr\{\boldsymbol{\theta} = \theta_{0}\}, \\ &= \int_{\mathbf{y} \in \mathbb{K}^{n}} \sum_{\theta_{0} \in \Theta} \mathbf{1}\{\mathbf{y} \in \Omega_{\theta}\} \boldsymbol{p}_{Y|\boldsymbol{\theta}}(\mathbf{y} | \boldsymbol{\theta} = \theta_{0}) \cdot \Pr\{\boldsymbol{\theta} = \theta_{0}\} \boldsymbol{dy}, \\ &= \int_{\mathbf{y} \in \mathbb{K}^{n}} \left(\sum_{\theta_{0} \in \Theta} \mathbf{1}\{\mathbf{y} \in \Omega_{\theta}\} \boldsymbol{p}_{\theta|Y}(\boldsymbol{\theta} = \theta_{0} | \mathbf{y})\right) \boldsymbol{p}_{Y}(\mathbf{y}) \boldsymbol{dy}. \end{split}$$

For each \mathbf{y} , we select (and we need to select at most one) θ_0 maximizing $\theta_0 \mapsto p_{\theta|Y}(\theta = \theta_0|\mathbf{y})$

Example 1: SISO case

Let Single-Input-Single Output (SISO) case

$$y = s + w$$

with $s \in 4$ PAM and w a zero-mean Gaussian noise with variance σ^2 ML can be written as follows

$$\hat{s} = \arg\min_{s \in 4\text{PAM}} |y - s|^2$$

which leads to the following decision region

Remark: decision regions are described by the bisector between admissible points. We call this decoder as **threshold detector**.

Example 2: MIMO

Multiple Input - Multiple Ouput (MIMO): N_r receive antennas and N_t transmit antennas

- increase the data rate significantly,
- better reliability for communications links.

$$y^{(r)} = \sum_{t=1}^{N_t} h_{r,t} s^{(t)} + w^{(r)} \Leftrightarrow \mathbf{y} = \mathbf{H}\mathbf{s} + \mathbf{w}$$

with
$$\mathbf{y} = [y^{(1)}, \cdots, y^{(N_r)}]^T$$
, $\mathbf{H} = [h_{r,t}]_{1 \le r \le N_r, 1 \le t \le N_t}$, $\mathbf{s} = [s^{(1)}, \cdots, s^{(N_t)}]^T$, and $\mathbf{w} = [w^{(1)}, \cdots, w^{(\overline{N_r})}]^T$.

Remark: very generic model (actually any linear operator)

Goal

Carrying out the optimal decoder \Leftrightarrow derive $p_{Y|S}(\mathbf{y}|\mathbf{s})$.

Example 2: MIMO (cont'd)

As the noise is independent on each antenna, we have

$$p(\mathbf{y}|\mathbf{s}) = p(y^{(1)}|\mathbf{s}) \cdots p(y^{(N_r)}|\mathbf{s}).$$

As $w^{(r)}$ is a zero-mean Gaussian variable with variance σ^2 , we obtain

$$p(y^{(r)}|\mathbf{s}) \propto e^{-\frac{\left(y^{(r)} - \sum_{t=1}^{N_t} h_{r,t} \mathbf{s}_\ell^{(t)}\right)^2}{2\sigma^2}}$$

which leads to

$$\rho(\mathbf{y}|\mathbf{s}) \propto e^{-\frac{\sum_{r=1}^{N_r} \left(y^{(r)} - \sum_{e=1}^{N_e} h_{r,e} s_\ell^{(e)}\right)^2}{2\sigma^2}} = e^{-\frac{\|\mathbf{y} - \mathbf{H}\mathbf{s}\|^2}{2\sigma^2}}.$$

with the norm L^2 s.t. $\|\mathbf{x}\|^2 = \sum_r x_r^2$.

Result

$$\hat{\boldsymbol{s}} = \arg\min_{\boldsymbol{s} \in \mathcal{M}^{N_t}} \underbrace{\|\boldsymbol{y} - \boldsymbol{H} \boldsymbol{s}\|^2}_{:=f(\boldsymbol{s})}.$$

Remark: discrete optimization in high dimension (*massive MIMO* : $N_t = 256$)

Example 3: MIMO with Laplacian noise

We replace the Gaussian noise by a Laplacian noise (per antenna)

$$p_W(w) = \frac{1}{\sqrt{2\sigma^2}} e^{-\frac{2|w|}{\sqrt{2\sigma^2}}}.$$

Typically

- noise composed by some other users (collisions)
- more impulsive noise

Same approach as in previous slides, we have

$$\hat{oldsymbol{s}} = rg \min_{oldsymbol{s} \in \mathcal{M}^{N_t}} \| oldsymbol{y} - oldsymbol{\mathsf{Hs}} \|_1$$

with the norm L^1 s.t. $\|\mathbf{x}\|_1 = \sum_r |x_r|$.

Remarks:

- **distance** L^1 =, Manhattan distance.
- Noise distribution (which provides the statistical link between input and output) plays a great role and strongly modifies the decoder through the involved distance!

Example 3: special case (SITO)

$$N_t = 1$$
, $N_r = 2$, $h_{1,1} = 2$ et $h_{2,1} = 1$, 2PAM.

Decision regions' border

- bisector in Gaussian case
- piecewise linear function (angles: 0, 90°, 45°, -45°) in Laplacian case (counter-intuitive)

Part 3: Hypothesis Testing

$$\left\{ \begin{array}{lll} \text{Hypothesis } \mathcal{H}_0 \colon & y & \sim & \rho_{Y|\mathcal{H}_0} \\ \text{Hypothesis } \mathcal{H}_1 \colon & y & \sim & \rho_{Y|\mathcal{H}_1} \end{array} \right.$$

Remark: $p_{Y|\mathcal{H}_0} \neq p_{Y|\mathcal{H}_1}$. If not, problem unfeasible since we can not distinghuish between both hypotheses based on the statistical properties.

Figure of merit: maximizing probability of detection (power of the test)

$$P_D = \Pr\{\mathcal{H}_1 | \mathcal{H}_1\}$$

or equivalenty minimizing probability of miss detection (probability of Type-II error)

$$P_M = \Pr\{\mathcal{H}_0 | \mathcal{H}_1\}$$

s.t. probability of false alarm (probability of Type-I error) below a predefined threshold

$$P_{FA} = \Pr\{\mathcal{H}_1 | \mathcal{H}_0\} \leq P_{FA}^{target}$$

Main results

Result

Minimizing the miss detection probability s.t. false alarm probability is below a threshold leads to the so-called Neyman-Pearson test, also called Likelihood Ratio Test (LRT), defined as follows

$$\Lambda(y) = \log \left(\frac{p_{Y|\mathcal{H}_1}(y)}{p_{Y|\mathcal{H}_0}(y)} \right) \underset{\mathcal{H}_0}{\gtrless} \mu,$$

with

- Λ the Log Likelihood Ratio (LLR)
- μ the threshold enabling to satisfy the target false alarm probability $P_{FA}^{\rm target}$

Main questions

- Derivations of $p_{Y|\mathcal{H}_0}$?
- Derivations of $p_{Y|\mathcal{H}_1}$?
- Derivations of μ ?

$$P_D = \int_{\Omega_1} p_{Y|\mathcal{H}_1}(y) dy$$
$$= \int_{\mathbb{K}^n} \mathbf{1}\{y \in \Omega_1\} p_{Y|\mathcal{H}_1}(y) dy$$

and

$$P_{FA} = \int_{\Omega_1} p_{Y|\mathcal{H}_0}(y) dy$$

= $\int_{\mathbb{K}^n} \mathbf{1}\{y \in \Omega_1\} p_{Y|\mathcal{H}_0}(y) dy$

 Let T be the Neyman-Parson test (written in terms of probablity of selecting \mathcal{H}_1)

$$T: \left\{ \begin{array}{ll} T(y) = 1 & \text{if} & \rho_{Y|\mathcal{H}_1}(y) > \mu \rho_{Y|\mathcal{H}_0}(y) \\ T(y) = t & \text{if} & \rho_{Y|\mathcal{H}_1}(y) = \mu \rho_{Y|\mathcal{H}_0}(y) \\ T(y) = 0 & \text{if} & \rho_{Y|\mathcal{H}_1}(y) < \mu \rho_{Y|\mathcal{H}_0}(y) \end{array} \right.$$

• Let T' be any other test s.t. $P_{FA} \leq P_{FA}^{\text{target}}$

Sketch of proof (cont'd)

We have

$$\begin{split} \forall y, & (T(y)-T'(y))(p_{Y|\mathcal{H}_1}(y)-\mu p_{Y|\mathcal{H}_0}(y)) \geq 0 \\ \Rightarrow & \int_{\mathbb{K}^n} (T(y)-T'(y))(p_{Y|\mathcal{H}_1}(y)-\mu p_{Y|\mathcal{H}_0}(y))dy \geq 0 \\ \Rightarrow & \int_{\mathbb{K}^n} (T(y)-T'(y))p_{Y|\mathcal{H}_1}(y)dy \geq \mu \int_{\mathbb{K}^n} (T(y)-T'(y))p_{Y|\mathcal{H}_0}(y)dy \\ \Rightarrow & P_D-P_D' \geq \mu (P_{FA}-P_{FA}') \\ \Rightarrow & P_D-P_D' \geq \mu (P_{FA}^{target}-P_{FA}') \\ \Rightarrow & P_D-P_D' \geq 0 \end{split}$$

ROC curve

Remarks:

- If $T(y) = 1, \forall y$, then $P_D = 1$ and $P_{FA} = 1$ (in military context: launch always a missile!)
- So P_D strongly depends on P_{FA} , and P_D should be plotted versus $P_{F\Delta}$

Definition:

Given a configuration (SNR, number of samples, etc), function $P_{FA} \mapsto P_D$ is called Receiver Operating Characteristics (ROC) curve

How to draw it? plot the pair $(P_{FA}(\mu), P_D(\mu))$ for any μ

Example: Gaussian signal in Gaussian noise

$$\begin{cases} \mathcal{H}_0 &: y(n) = w(n) \\ \mathcal{H}_1 &: y(n) = x(n) + w(n) \end{cases}, n = 1, \dots, N$$

with

- w(n) iid zero-mean Gaussian noise with known $\sigma_w^2 = \mathbb{E}[|w(n)|^2]$,
- x(n) also iid zero-mean Gaussian with known variance $\sigma_x^2 = \mathbb{E}[|x(n)|^2]$

We have

$$\begin{cases} p_{Y|\mathcal{H}_{0}}(\mathbf{y}) &= \prod_{n=1}^{N} p_{Y|\mathcal{H}_{0}}(y_{n}) \text{ with } p_{Y|\mathcal{H}_{0}}(y_{n}) = \frac{1}{\pi \sigma_{w}^{2}} e^{-\frac{|y_{n}|^{2}}{\sigma_{w}^{2}}} \\ p_{Y|\mathcal{H}_{1}}(\mathbf{y}) &= \prod_{n=1}^{N} p_{Y|\mathcal{H}_{1}}(y_{n}) \text{ with } p_{Y|\mathcal{H}_{1}}(y_{n}) = \frac{1}{\pi (\sigma_{x}^{2} + \sigma_{w}^{2})} e^{-\frac{|y_{n}|^{2}}{\sigma_{x}^{2} + \sigma_{w}^{2}}} \end{cases}$$

with
$$y = [y(1), \dots, y(N)]^{T}$$

Example: LRT

$$\Lambda(\mathbf{y}) = \log \left(\frac{\frac{1}{\pi(\sigma_X^2 + \sigma_W^2)} e^{-\frac{\sum_{n=1}^N |y_n|^2}{\sigma_X^2 + \sigma_W^2}}}{\frac{1}{\pi\sigma_w^2} e^{-\frac{\sum_{n=1}^N |y_n|^2}{\sigma_W^2}}} \right)$$

$$= \log \left(\frac{\sigma_W^2}{\sigma_X^2 + \sigma_W^2} e^{-(\frac{1}{\sigma_X^2 + \sigma_W^2} - \frac{1}{\sigma_W^2}) \sum_{n=1}^N |y_n|^2} \right)$$

$$= \text{positive constant} \times \sum_{n=1}^N |y_n|^2 + \text{constant}$$

LRT = energy test is optimal!

$$T(\mathbf{y}) = \frac{1}{\sigma_x^2 + \sigma_w^2} \sum_{n=1}^{N} |y(n)|^2 \underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\geqslant}} \eta$$

Example: performances derivations

• Under \mathcal{H}_1 , $T(\mathbf{y})$ follows a χ_2 -distribution with 2N degrees of freedom with pdf

$$\rho_{\chi_2,2N}(x) = \frac{1}{\Gamma_c(N)} x^{N-1} e^{-x}, \ x \ge 0$$

• Under \mathcal{H}_0 , $T(\mathbf{y})$ follows a χ_2 -distribution with 2N degrees of freedom with pdf

$$p_{\chi_2,2N}(x) = \frac{1}{(\sigma_w^2/(\sigma_x^2 + \sigma_w^2))^N \Gamma_c(N)} x^{N-1} e^{-\frac{(\sigma_x^2 + \sigma_w^2)x}{\sigma_w^2}}, \ x \ge 0$$

with complete and incomplete Gamma function

$$\Gamma_c(s) = \int_0^\infty x^{s-1} e^{-x} dx$$

and

$$\Gamma_{\rm inc}(s,u) = \int^{\infty} x^{s-1} e^{-x} dx$$

$$\begin{split} P_{FA} &= \operatorname{Pr}(T(\mathbf{y}) > \eta | \mathcal{H}_0) \\ &= \int_{\eta}^{\infty} \frac{1}{(\sigma_w^2/(\sigma_x^2 + \sigma_w^2))^N \Gamma_c(N)} x^{N-1} e^{-\frac{(\sigma_x^2 + \sigma_w^2)^X}{\sigma_w^2}} dx \\ &= \frac{1}{\Gamma_c(N)} \cdot \frac{1}{(\sigma_w^2/(\sigma_x^2 + \sigma_w^2))^N} \cdot \int_{\eta}^{\infty} x^{N-1} e^{-\frac{(\sigma_x^2 + \sigma_w^2)^X}{\sigma_w^2}} dx \\ &= \frac{\Gamma_{\operatorname{inc}}\left(N, \eta \frac{\sigma_x^2 + \sigma_w^2}{\sigma_w^2}\right)}{\Gamma_c(N)} \end{split}$$

Similarly

$$P_D = rac{\Gamma_{\mathsf{inc}}(\mathcal{N}, \eta)}{\Gamma_{c}(\mathcal{N})}$$

Asymptotic regime for generic case

- In general, very difficult to obtain P_D and P_{FA} in closed-form (the previous example is a counter-case)
- To overcome this issue, asymptotic regime $(N \to \infty)$

Stein's lemma

Under iid assumption for $y_1, \dots y_N$, we denote $P_1 = P_{\mathcal{H}_1}(y_1)$ and $P_0 = P_{\mathcal{H}_0}(y_1)$. For any ε ,

- it exists a sequence of tests T_N , s.t.,
 - $-P_D(T_N) > 1 \varepsilon$ for N large enough,
 - and $P_{FA}(T_N) < e^{-N(D(P_1 || P_0) \varepsilon)}$
- Let T_N' be a sequence of tests s.t. $P_D(T_N') > 1 \varepsilon$. Then $P_{FA}(T_N') > (1 2\varepsilon)e^{-N(D(P_1||P_0) + \varepsilon)}$

with $D(P_1||P_0)$ the Kullback-Leibler distance defined as

$$D(P_1\|P_0) := \int P_1(y) \log\left(\frac{P_1(y)}{P_0(y)}\right) dy = \mathbb{E}_{y \sim P_1}\left[\log\left(\frac{P_1}{P_0}\right)\right]$$

Sketch of proof: achievability

Let T_N be the following test:

$$\Omega_1 = \left\{ \mathbf{y} | D(P_1 \| P_0) - \varepsilon \leq \frac{1}{N} \log \left(\frac{P_{Y|\mathcal{H}_1}(\mathbf{y})}{P_{Y|\mathcal{H}_0}(\mathbf{y})} \right) \leq D(P_1 \| P_0) + \varepsilon \right\}$$

We have

1. If
$$\mathbf{y} \in \mathcal{H}_1$$
, $\lim_{N \to \infty} \frac{1}{N} \log \left(\frac{P_{Y|\mathcal{H}_1}(\mathbf{y})}{P_{Y|\mathcal{H}_0}(\mathbf{y})} \right) \stackrel{probability}{=} D(P_1 \| P_0)$

- 2. $P_D(T_N) > 1 \varepsilon$, for N large enough
- 3. $\forall \mathbf{y} \in \Omega_1$, $P_{Y|\mathcal{H}_1}(\mathbf{y})e^{-N(D(P_1||P_0)+\varepsilon)} \leq P_{Y|\mathcal{H}_0}(\mathbf{y}) \leq P_{Y|\mathcal{H}_1}(\mathbf{y})e^{-N(D(P_1||P_0)-\varepsilon)}$
- 4. $P_{FA}(T_N) \leq e^{-N(D(P_1 || P_0) \varepsilon)}$

Sketch of proof: achievability (cont'd)

(1.)

$$\frac{1}{N} \log \left(\frac{P_{Y|\mathcal{H}_1}(\mathbf{y})}{P_{Y|\mathcal{H}_0}(\mathbf{y})} \right) \quad \stackrel{iid}{=} \quad \frac{1}{N} \sum_{n=1}^{N} \log \left(\frac{P_1(y_n)}{P_0(y_n)} \right) \\
\stackrel{\text{WLLN}}{\Rightarrow} \quad \mathbb{E}_{y \sim P_1} \left[\log \left(\frac{P_1}{P_0} \right) \right] \text{ in probability} \\
= \quad D(P_1 || P_0)$$

- (2.) $\lim_{N\to\infty} \Pr\{|T_N(\mathbf{y}) D(P_1||P_0)| > \varepsilon\} = 0 \Rightarrow \exists N_0(\varepsilon), N > 0$ $N_0(\varepsilon)$, s.t. $1 - P_D(T_N) = \Pr\{|T_N(\mathbf{y}) - D(P_1||P_0)| > \varepsilon\} < \varepsilon$ (3.) Just manipulating the inequalities in Ω_1
- (4.)

$$\begin{split} P_{FA}(T_N) &= \int_{\mathbf{y} \in \Omega_1} P_{Y|\mathcal{H}_0}(\mathbf{y}) d\mathbf{y} \overset{(3.)}{\leq} \int_{\mathbf{y} \in \Omega_1} P_{Y|\mathcal{H}_1}(\mathbf{y}) e^{-N(D(P_1 \| P_0) - \varepsilon)} d\mathbf{y} \\ &\leq e^{-N(D(P_1 \| P_0) - \varepsilon)} \int_{\mathbf{y} \in \Omega_1} P_{Y|\mathcal{H}_1}(\mathbf{y}) d\mathbf{y} \\ &\leq e^{-N(D(P_1 \| P_0) - \varepsilon)} P_D(T_N) \leq e^{-N(D(P_1 \| P_0) - \varepsilon)} \end{split}$$

Sketch of proof: converse

Let $T_N \cap T'_N$ be the composite test (\mathcal{H}_1 is decided iff both decode \mathcal{H}_1)

As
$$P_D(T_N) > 1 - \varepsilon$$
 and $P_D(T_N') > 1 - \varepsilon$, we have

$$P_D(T_N \cap T_N') > 1 - 2\varepsilon$$

Moreover

$$\begin{array}{lcl} P_{FA}(T_N') & \geq & P_{FA}(T_N \cap T_N') \\ & = & \int_{\mathbf{y} \in \Omega_1(T_N) \cap \Omega_1(T_N')} P_{Y|\mathcal{H}_0}(\mathbf{y}) d\mathbf{y} \\ & \stackrel{(3.)}{\geq} & \int_{\mathbf{y} \in \Omega_1(T_N) \cap \Omega_1(T_N')} P_{Y|\mathcal{H}_1}(\mathbf{y}) e^{-N(D(P_1 || P_0) + \varepsilon)} d\mathbf{y} \\ & = & e^{-N(D(P_1 || P_0) + \varepsilon)} P_D(T_N \cap T_N') \\ & \geq & (1 - 2\varepsilon) e^{-N(D(P_1 || P_0) + \varepsilon)} \end{array}$$

Extension: Generalized LRT (GLRT)

Problem: in many applications, some parameters of the pdf are unknown (e.g. the variance)

Goal: testing the hypotheses but the hypotheses are partially unknown (through some parameters of nuisance)

- Let ν be the nuisance parameters
- Let $P_{Y|\mathcal{H}_1}(\mathbf{y};\nu)$ be the pdf under \mathcal{H}_1 for one value of ν
- Let $P_{Y|\mathcal{H}_0}(\mathbf{y}; \nu)$ be the pdf under \mathcal{H}_0 for one value of ν

$$T(\mathbf{y}) = rac{\max_{
u} P_{Y|\mathcal{H}_1}(\mathbf{y};
u)}{\max_{
u} P_{Y|\mathcal{H}_0}(\mathbf{y};
u)}$$

- No optimality result
- No asymptotic result

Extension: Bayesian LRT (BLRT)

- We have a priori distribution on parameters of nuisance ν
- Let q be the known a priori distribution of ν (typically offset)

$$T(\mathbf{y}) = \frac{\int P_{Y|\mathcal{H}_1}(\mathbf{y}; \nu) q(\nu) d\nu}{\int P_{Y|\mathcal{H}_0}(\mathbf{y}; \nu) q(\nu) d\nu}$$

- No optimality result
- No asymptotic result

Part 4 : Estimation for deterministic parameters

Statistics

- Let $\mathbf{y}_N = \{y_1, \dots, y_N\}$ be a (multi-variate) observation of the process Y_N
- A statistic is any function T only depending on the observation

$$T(\mathbf{y}_N)$$

Any statistic is a random variable (and will be studied as it)

but few questions before

- How characterizing T s.t. T provides on θ information enough?
- In other words, how representing \mathbf{y}_N in a compact form through T without loosing information on θ ?
- ⇒ Fundamental concept of sufficient statistics
 - If T is a sufficient statistic, is it close to θ?
- ⇒ Rao-Blackwell theorem

Reminder

 \mathbf{v} provides information on θ iff the pdf of \mathbf{v}_N , denoted by

$$p(\mathbf{y}_N; \theta) \text{ or } p(\mathbf{y}_N | \theta),$$

depends on θ

T is said sufficient statistics iff given the random variable $T(\mathbf{Y}_N)$, pdf on the whole observation is useless. Consequently, the random variable $\mathbf{Y}_N | T(\mathbf{Y}_N)$ has a pdf independent of θ

$$p_{Y|T}(\mathbf{y}_N|T(\mathbf{Y}_N);\theta)$$
 does not depend on θ

Remark: in practice difficult to check that T is a sufficient statistic by using this definition

Sufficient statistics: properties

Fisher factorization theorem

T is a sufficient statistic of θ iff it exists two functions $g_{\theta}(.)$ (depending on θ) and h(.) (independent of θ) s.t.

$$p(\mathbf{y}_N; \theta) = g_{\theta}(T(\mathbf{y}_N))h(\mathbf{y}_N)$$

Remark: The Likelihood Ratio (between two values: θ and θ') depends only on $T(\mathbf{y}_N)$

$$\frac{p(\mathbf{y}_N;\theta)}{p(\mathbf{v}_N;\theta')} = \frac{g_{\theta}(T(\mathbf{y}_N))}{g_{\theta'}(T(\mathbf{v}_N))}.$$

So, to distinguish θ from θ' , evaluating $T(\mathbf{y}_N)$ is enough

Sketch of proof

If T is sufficient statistic, then

$$\begin{aligned}
\rho_{Y}(\mathbf{y}_{N};\theta) &= \int \rho_{Y|T}(\mathbf{y}_{N}|t;\theta)\rho_{T}(t;\theta)dt \\
&\stackrel{(a)}{=} \rho_{Y|T}(\mathbf{y}_{N}|T(\mathbf{y}_{N});\theta)\rho_{T}(T(\mathbf{y}_{N});\theta) \\
&\stackrel{(b)}{=} \underbrace{\rho_{Y|T}(\mathbf{y}_{N}|T(\mathbf{y}_{N}))}_{h(\mathbf{y}_{N})}\underbrace{\rho_{T}(T(\mathbf{y}_{N});\theta)}_{g_{\theta}(T(\mathbf{y}_{N}))}
\end{aligned}$$

- (a) if $t' \neq T(\mathbf{y}_N)$, then $p_{Y|T}(\mathbf{y}_N|t';\theta) = 0$
- (b) T sufficient statistic

Sketch of proof (cont'd)

If
$$p(\mathbf{y}_N; \theta) = g_{\theta}(T(\mathbf{y}_N))h(\mathbf{y}_N)$$
, we have
• If $t \neq T(\mathbf{y}_N)$,

$$p_{Y|T}(\mathbf{y}_N|T(\mathbf{Y}_N)=t;\theta) = 0$$

• If
$$t = T(\mathbf{y}_N)$$
,

$$\begin{aligned}
\rho_{Y|T}(\mathbf{y}_{N}|T(\mathbf{Y}_{N}) &= t; \theta) &\stackrel{\text{Bayes}}{=} & \frac{\rho_{Y,T}(\mathbf{y}_{N}, T(\mathbf{Y}_{N}) = t; \theta)}{\rho_{T}(T(\mathbf{Y}_{N}) = t; \theta)} \\
&\stackrel{(c)}{=} & \frac{\rho_{Y}(\mathbf{y}_{N}; \theta)}{\rho_{T}(T(\mathbf{Y}_{N}) = t; \theta)} \\
&\stackrel{(d)}{=} & \frac{\rho_{Y}(\mathbf{y}_{N}; \theta)}{\int_{y|T(y) = t} \rho_{Y}(y; \theta) dy} \\
&= & \frac{g_{\theta}(t)h(\mathbf{y}_{N})}{\int_{y|T(y) = t} g_{\theta}(t)h(y) dy} = \frac{h(\mathbf{y}_{N})}{\int_{y|T(y) = t} h(y) dy}
\end{aligned}$$

(c)
$$p_{YT}(\mathbf{y}_N, T(\mathbf{Y}_N) = t; \theta) = p_Y(\mathbf{y}_N; \theta)$$

(d)
$$p_T(T(\mathbf{Y}_N) = t; \theta) = \int_y p_{Y,T}(y, T(\mathbf{Y}_N) = t; \theta) dy \stackrel{(c)}{=} \int_{Y|T(Y)=t} p_Y(y; \theta) dy$$

Philippe Ciblat

Application

As an estimate of θ , we may have

$$\hat{\theta}_{N} = \arg\max_{\theta} p(\mathbf{y}_{N}; \theta)$$

If T is a sufficient statistic, then

$$\hat{\theta}_N = \arg \max_{\theta} g_{\theta}(T(\mathbf{y}_N))$$

$$= \operatorname{fct}(T(\mathbf{y}))$$

and only the knowledge of $T(\mathbf{y}_N)$ is enough to estimate θ .

Questions:

- What is the function fct?
- Is $\hat{\theta}_N = T(\mathbf{y}_N)$ a reasonnable choice?

Figures of merit for $\hat{\theta}_N$

Remarks:

• An estimate $\hat{\theta}_N$ of θ is just a statistic "close" to θ

$$\hat{ heta}_{\mathsf{N}} = \hat{ heta}(\mathbf{y}_{\mathsf{N}})$$

- "Close" implies we need a cost function $C(\hat{\theta}_N, \theta)$ to measure the gap between $\hat{\theta}_N$ and θ .
 - $\mathbf{1}(\|\hat{\theta}_N \theta\| \ge \varepsilon)$: uniform cost
 - $\|\hat{\theta}_N \theta\|_{L^1} : Manhattan cost (L^1 norm)$
 - $-\|\hat{\theta}_N \theta\|^2$: quadratic/Euclidian cost (\hat{L}^2 norm)

Risk

We average the cost function over all the values of \mathbf{y}_N

$$R(\hat{\theta}_N, \theta) = \mathbb{E}[C(\hat{\theta}_N, \theta)]$$
$$= \int C(\hat{\theta}_N(\mathbf{y}_N), \theta) p(\mathbf{y}_N; \theta) d\mathbf{y}_N$$

Biais and Mean Square Error (MSE)

Bias:

$$b(\theta, \hat{\theta}_N) = \mathbb{E}[\hat{\theta}(\mathbf{y}_N)] - \theta$$

Variance:

$$\operatorname{var}(\theta, \hat{\theta}_N) = \mathbb{E}[\|\hat{\theta}(\mathbf{y}_N) - \mathbb{E}[\hat{\theta}(\mathbf{y}_N)]\|^2]$$

Mean Square Error:

$$MSE(\theta, \hat{\theta}_N) = \mathbb{E}[\|\hat{\theta}(\mathbf{y}_N) - \theta\|^2]$$
$$= \|b(\theta, \hat{\theta}_N)\|^2 + var(\theta, \hat{\theta}_N)$$

Remarks

- Bias and variance are the mean and variance of the random variable $\hat{\theta}_N$ respectively
- An estimate is called *unbiased/biasfree* iff $b(\theta, \hat{\theta}_N) = 0$
- Warning: the quality of the estimate depends on the considered figures of merit

Sufficient statistics and estimate's design

Rao-Blackwell theorem

- Let T be a sufficient statistic for θ
- Let T' be an unbiased estimate for θ
- Let $T'' = \mathbb{E}[T'|T]$

Then

• T'' is an unbiased estimate of θ

$$\mathbb{E}[T''(\mathbf{y}_N)] = \theta$$

• T" does not offer a worse MSE than T'

$$\mathbb{E}[\|T''(\mathbf{y}_N) - \theta\|^2] \le \mathbb{E}[\|T'(\mathbf{y}_N) - \theta\|^2]$$

Sketch of proof

As T sufficient statistic. T" does not depend on θ

$$T'' = \mathbb{E}[T'|T] = \int t'(y) \rho_{Y|T}(y|t;\theta) dy = \int t'(y) \rho_{Y|T}(y|t) dy,$$

can be evaluated by knowing \mathbf{v}_N only. So, T'' is a statistic for θ

In addition, we get

$$\mathbb{E}[T''] = \mathbb{E}[\mathbb{E}[T'|T]]$$

$$= \iint t' \rho_{T'|T}(t';\theta) dt' \rho_{T}(t) dt$$

$$= \iint t' \rho_{T',T}(t',t;\theta) dt' dt$$

$$= \int t' \left(\int \rho_{T',T}(t',t;\theta) dt \right) dt'$$

$$= \int t' \rho_{T'}(t';\theta) dt'$$

$$= \mathbb{E}[T'] = \theta$$

Sketch of proof (cont'd)

• If \tilde{T} unbiased $\mathbb{E}[(\tilde{T}-\theta)^2] = \mathbb{E}[\tilde{T}^2] + \theta^2$, then $\mathbb{E}[\|T''(\mathbf{v}_N) - \theta\|^2] < \mathbb{E}[\|T'(\mathbf{v}_N) - \theta\|^2] \Leftrightarrow \mathbb{E}[\|T''(\mathbf{v}_N)\|^2] < \mathbb{E}[\|T'(\mathbf{v}_N)\|^2]$

Then

$$\mathbb{E}[\|T''(\mathbf{y}_N)\|^2] \stackrel{(a)}{=} \mathbb{E}[\|\mathbb{E}[T'(\mathbf{y}_N)|T]\|^2]$$

$$\stackrel{(b)}{\leq} \mathbb{E}[\mathbb{E}[\|T'(\mathbf{y}_N)\|^2|T]]$$

$$\stackrel{(c)}{=} \mathbb{E}[\|T'(\mathbf{y}_N)\|^2]$$

- (a) replace T'' by its definition
- (b) Jensen inequality: let ϕ be a convex function, then $\phi(\mathbb{E}[X]) \leq \mathbb{E}[\phi(X)]$
- (c) similar to previous slide with $||T'||^2$ instead of T'

Consequences

Minimum-Variance Unbiased Estimator (MVUE)

- Let T be a sufficient statistic for θ
- Assume that it exists an unique function f s.t. $\mathbb{E}[f(T)] = \theta$

Then f(T) is a Minimum Variance Unbiased Estimate of θ

Notion of completeness

A sufficient statistic T is said complete iff

$$\mathbb{E}[h(T)] = 0 \Rightarrow h(T) = 0, \ \forall \theta$$

As a consequence, f(T) is MVUE

Remarks:

- Easy to find f? no
- Completeness is easier to check

• Let T' be an unbiased estimate of θ . We know that $T'' = \mathbb{E}[T'|T]$ is a function of T and also an unbiased estimate ($\mathbb{E}[T''] = \theta$). So T'' = f(T). Consequently, $\forall T'$, we have

$$\mathbb{E}[\|T'' - \theta\|^2] \le \mathbb{E}[\|T' - \theta\|^2]$$

• Assume T complete. Consider f_1 and f_2 s.t. $\mathbb{E}[f_1(T)] = \theta$ and $\mathbb{E}[f_2(T)] = \theta.$

$$\mathbb{E}[f_{1}(T)] = \mathbb{E}[f_{2}(T)]$$

$$\mathbb{E}[(f_{1} - f_{2})(T)] = 0$$

$$f_{1} - f_{2} = 0$$

$$f_{1} = f_{2}$$

Example

- Let Y_N be a iid Gaussian vector with unknown mean m and unit-variance.
- Let $\theta = m$

We have

$$\rho_{Y}(\mathbf{y}_{N}; \theta) = \frac{1}{(2\pi)^{N/2}} e^{-\frac{1}{2} \sum_{n=1}^{N} (y_{n} - m)^{2}} \\
= \frac{1}{(2\pi)^{N/2}} e^{-\frac{1}{2} \sum_{n=1}^{N} (y_{n}^{2} + m^{2} - 2y_{n} m)} \\
= \underbrace{\frac{1}{(2\pi)^{N/2}} e^{-\frac{1}{2} \sum_{n=1}^{N} y_{n}^{2}}}_{h(\mathbf{y}_{N})} \underbrace{e^{-\frac{1}{2} (Nm^{2} - 2m \sum_{n=1}^{N} y_{n})}}_{g_{\theta}(T(\mathbf{y}_{N}))}$$

with

- $\hat{m}_N = \sum_{n=1}^N y_n/N$: empirical mean
- \bullet $T(\mathbf{v}_N) = \hat{m}_N$

T is a sufficient statistic for θ

Example (cont'd)

\hat{m}_N is

- unbiased
- MSE $var(m, \hat{m}_N) = \frac{1}{N}$
- complete statistic

$$\mathbb{E}[\phi(T(\mathbf{y}_N))] \stackrel{(a)}{\propto} \int h(t)e^{-\frac{N}{2}(t-\theta)^2}dt = 0$$

$$\stackrel{(b)}{=} h \star g = 0$$

$$\stackrel{(c)}{=} H.G = 0$$

$$\stackrel{(d)}{=} H = 0$$

- (a): \hat{m}_N is Gaussian with mean θ and variance 1/N
- (b): convolution with a Gaussian function g.
- (c): H and G Fourier transform of h and g respectively
- (d): G is still a Gaussian function
- MVUE

Counter-example

Consider $T(\mathbf{y}_N) = y_1$

$$\begin{aligned} p_{Y|Y_1}(\mathbf{y}_N|y_1;\theta) &= \frac{p_{Y,Y_1}(\mathbf{y}_N,y_1;\theta)}{p_{Y_1}(y_1;\theta)} \\ &= \mathbf{1}_{\mathbf{y}_N(1)=y_1} \frac{p_{Y}(\mathbf{y}_N;\theta)}{p_{Y_1}(y_1;\theta)} \\ &\propto \frac{e^{-\frac{1}{2v}\sum_{n=1}^N (y_n-\theta)^2}}{e^{-\frac{1}{2v}\sum_{n=2}^N (y_n-\theta)^2}} \\ &\propto e^{-\frac{1}{2v}\sum_{n=2}^N (y_n-\theta)^2} \end{aligned}$$

- $p_{Y|Y_1}(\mathbf{y}_N|y_1;\theta)$ still depends on θ
- $T = Y_1$ is not a sufficient statistic

Performances

What have we seen?

- Sufficient statistic
- If some additional properties (difficult to satisfy), MVUE

Still open questions

• Fair comparison between two estimates: $\hat{\theta}_1$ is better then $\hat{\theta}_2$ wrt the risk R iff

$$R(\hat{\theta}_1, \theta) \leq R(\hat{\theta}_2, \theta) \quad \forall \ \theta$$

- Is there a minimum value for the risk?
 - if the risk is quadratic
 - if the problem is smooth enough
 - if we reduce the class of considered estimates
- the answer is ves
 - Cramer-Rao bound (CRB)
 - achievable sometimes (more often when $N \to \infty$)

Smoothness

Problem is said smooth if

$$\frac{\partial \boldsymbol{p}_{Y|\theta}(\mathbf{y}_N|\theta)}{\partial \theta}_{|\theta=\theta_0}$$

exists for any \mathbf{v}_N and any θ_0 .

• $\mathbf{y}_N \mapsto p_{Y|\theta}(\mathbf{y}_N|\theta)$ has the same support for any θ

$$\int \frac{\partial \rho_{Y|\theta}(\mathbf{y}_N|\theta)}{\partial \theta} d\mathbf{x}_N = \frac{\partial}{\partial \theta} \int \rho_{Y|\theta}(\mathbf{y}_N|\theta) d\mathbf{y}_N = 0$$

Example

Let \mathbf{Y}_N be a iid Gaussian vector with unknown mean $\theta = m$ and unit-variance

$$p_{Y|\theta}(\mathbf{y}_N|\theta) = \frac{1}{(2\pi)^{N/2}} e^{-\frac{1}{2}\sum_{n=1}^{N}(y_n - \theta)^2}$$

•
$$\frac{\partial p_{Y|\theta}(\mathbf{y}_N|\theta)}{\partial \theta}|_{\theta=\theta_0} = (\sum_{n=1}^N y_n - \theta) p_{Y|\theta}(\mathbf{y}_N|\theta)$$

- the support is \mathbb{R}^N for any θ
- $\int_{\mathbb{D}^N} p_{Y|\theta}(\mathbf{y}_N|\theta) d\mathbf{y}_N = 1$

Cramer-Rao bound

Result

Any unbiased estimate satisfies

$$\mathbb{E}\left[\left(\hat{\theta} - \theta_0\right)\left(\hat{\theta} - \theta_0\right)^{\mathrm{T}}\right] \geq F(\theta_0)^{-1} = \mathrm{CRB}(\theta_0)$$

with

• $F(\theta_0)$ the so-called Fisher Information Matrix (FIM) defined as

$$F(\theta_0) = \mathbb{E}\left[\left(\frac{\partial \log p_{Y|\theta}(\mathbf{y}_N|\theta)}{\partial \theta}_{|\theta=\theta_0}\right) \left(\frac{\partial \log p_{Y|\theta}(\mathbf{y}_N|\theta)}{\partial \theta}_{|\theta=\theta_0}\right)^T\right]$$

>: order for quadratic semi-definite matrix

Sketch of proof

Let us first consider the scalar case

$$\mathbb{E}\left[(\hat{\theta} - \theta_0) \frac{\partial \log p_{Y|\theta}(y|\theta)}{\partial \theta}\Big|_{\theta_0}\right] = \int (\hat{\theta} - \theta_0) \frac{\partial \log p_{Y|\theta}(y|\theta)}{\partial \theta}\Big|_{\theta_0} p_{Y|\theta}(y|\theta_0) dy$$

$$= \int (\hat{\theta} - \theta_0) \frac{\partial p_{Y|\theta}(y|\theta)}{\partial \theta}\Big|_{\theta_0} dy$$

$$= \int \hat{\theta} \frac{\partial p_{Y|\theta}(y|\theta)}{\partial \theta}\Big|_{\theta_0} dy - \theta_0 \int \frac{\partial p_{Y|\theta}(y|\theta)}{\partial \theta}\Big|_{\theta_0} dy$$

$$= \frac{\partial}{\partial \theta} \mathbb{E}[\hat{\theta}] = \frac{\partial}{\partial \theta} \theta$$

$$= 1$$

Then Cauchy-Schwartz inequality

$$\mathbb{E}[XY]^2 \leq \mathbb{E}[X^2]\mathbb{E}[Y^2]$$

Sketch of proof (cont'd)

By setting $D(y, \theta_0) = \frac{\partial \log p_{Y|\theta}(y|\theta)}{\partial \theta}|_{\theta_0}$ a column vector, we have by construction

$$M := \mathbb{E}\left[\left(F(\theta_0)^{-1}D(y,\theta_0) - (\hat{\theta} - \theta_0)\right)\left(F(\theta_0)^{-1}D(y,\theta_0) - (\hat{\theta} - \theta_0)\right)^T\right] \geq 0$$

So

$$M = \mathbb{E} \left[F(\theta_0)^{-1} D(y, \theta_0) D(y, \theta_0)^{\mathrm{T}} F(\theta_0)^{-1} \right] + \mathbb{E} [(\hat{\theta} - \theta_0)(\hat{\theta} - \theta_0)^{\mathrm{T}}]$$

$$- \mathbb{E} \left[F(\theta_0)^{-1} D(y, \theta_0)(\hat{\theta} - \theta_0)^{\mathrm{T}} \right] - ()^{\mathrm{T}}$$

$$= F(\theta_0)^{-1} + \mathbb{E} [(\hat{\theta} - \theta_0)(\hat{\theta} - \theta_0)^{\mathrm{T}}] - F(\theta_0)^{-1} \mathbb{E} [D(y, \theta_0)(\hat{\theta} - \theta_0)^{\mathrm{T}}] - ()^{\mathrm{T}}$$

In addition

$$\mathbb{E}[\textit{D}(\textit{y}, \theta_0)(\hat{\theta} - \theta_0)^{\mathrm{T}}] = \mathsf{Id}$$

Application

$$MSE(\hat{\theta}, \theta_0) \ge trace(F(\theta_0)^{-1})$$

since

$$MSE = \sum_{n=1}^{N_{\theta}} \mathbb{E}[|\hat{\theta}(n) - \theta_0(n)|^2] = trace(\mathbb{E}[(\hat{\theta} - \theta_0)(\hat{\theta} - \theta_0)^T])$$

and

$$A \ge B \Rightarrow \operatorname{trace}(A) \ge \operatorname{trace}(B)$$

- CRB exists also for biased case
- An unbiased estimate achieving the CRB is said efficient

Cramer-Rao bound (cont'd)

Result

If $\theta \mapsto \log p_{Y\theta}(\mathbf{y}_N|\theta)$ has a second-order derivative, then

$$F(heta_0) = -\mathbb{E}\left[rac{\partial^2 \log p_{Y| heta}(\mathbf{y}_N| heta)}{(\partial heta)^2}_{| heta= heta_0}
ight]$$

where $\mathbb{E}[\partial^2 \log p_{Y|\theta}(\mathbf{y}_N|\theta)/(\partial\theta)^2_{|\theta=\theta_0}]$ is the Hessian matrix whose components (ℓ,m) are

$$\mathbb{E}\left[\frac{\partial^2\log p_{\mathsf{Y}|\boldsymbol{\theta}}(\mathbf{y}_{\mathsf{N}}|\boldsymbol{\theta})}{\partial \boldsymbol{\theta}(\ell)\boldsymbol{\theta}(m)}_{|\boldsymbol{\theta}=\boldsymbol{\theta}_0}\right]$$

Sketch of proof

Let us consider the scalar case

$$\begin{split} \mathbb{E}\left[\frac{\partial^{2}\log p_{Y|\theta}(y|\theta)}{(\partial\theta)^{2}}_{|\theta=\theta_{0}}\right] &= -\mathbb{E}\left[\frac{1}{p_{Y|\theta}(y|\theta_{0})^{2}}\left(\frac{\partial p_{Y|\theta}(y|\theta)}{\partial\theta}_{|\theta=\theta_{0}}\right)^{2}\right] \\ &+ \mathbb{E}\left[\frac{1}{p_{Y|\theta}(y|\theta_{0})}\frac{\partial^{2}p_{Y|\theta}(y|\theta)}{(\partial\theta)^{2}}_{|\theta=\theta_{0}}\right] \\ &= -\mathbb{E}\left[\left(\frac{1}{p_{Y|\theta}(y|\theta_{0})}\frac{\partial p_{Y|\theta}(y|\theta)}{\partial\theta}_{|\theta=\theta_{0}}\right)^{2}\right] \\ &= -\mathbb{E}\left[\left(\frac{\partial \log p_{Y|\theta}(y|\theta)}{\partial\theta}_{|\theta=\theta_{0}}\right)^{2}\right] \end{split}$$

Example 1

Let \mathbf{Y}_N be a iid Gaussian vector with unknown mean $\theta = m$ and unit-variance

$$p_{Y|\theta}(\mathbf{y}_N|\theta) = \frac{1}{(2\pi)^{N/2}} e^{-\frac{1}{2}\sum_{n=1}^{N}(y_n - \theta)^2}$$

Result

Fisher Information Matrix is s.t.

$$F^{-1}(\theta_0) = \frac{1}{N}$$

Remarks: the empirical mean estimate

- unbiased, MVUE with variance 1/N
- efficient (rational since MVUE and CRB evaluation)

Example 2

- Let Y_N be a process depending on two multi-variate parameters θ_1 and θ_2 .
- Let $\theta = [\theta_1^T, \theta_2^T]^T$

$$F(\theta) = \left[\begin{array}{c} \mathbb{E}\left[\frac{\partial \log p_{Y|\theta}(\mathbf{y}_N|\theta)}{\partial \theta_1} \frac{\partial \log p_{Y|\theta}(\mathbf{y}_N|\theta)}{\partial \theta_1^T}\right] & \mathbb{E}\left[\frac{\partial \log p_{Y|\theta}(\mathbf{y}_N|\theta)}{\partial \theta_1} \frac{\partial \log p_{Y|\theta}(\mathbf{y}_N|\theta)}{\partial \theta_2^T}\right] \\ \mathbb{E}\left[\frac{\partial \log p_{Y|\theta}(\mathbf{y}_N|\theta)}{\partial \theta_2} \frac{\partial \log p_{Y|\theta}(\mathbf{y}_N|\theta)}{\partial \theta_1^T}\right] & \mathbb{E}\left[\frac{\partial \log p_{Y|\theta}(\mathbf{y}_N|\theta)}{\partial \theta_2} \frac{\partial \log p_{Y|\theta}(\mathbf{y}_N|\theta)}{\partial \theta_2^T}\right] \end{array} \right]$$

Matrix inversion lemma

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \Rightarrow M^{-1} = \begin{bmatrix} S^{-1} & -S^{-1}BD^{-1} \\ -D^{-1}CS^{-1} & D^{-1} + D^{-1}CS^{-1}BD^{-1} \end{bmatrix}$$

with the so-called Schur complement

$$S - A - BD^{-1}C$$

Example 2 (cont'd)

- If B=C=0, then performance for joint optimization (both θ_1 and θ_2 are unknown) are the same as only one of them is unknown
- If $B \neq 0$ and $C \neq 0$ (actually $C = B^{T}$), then
 - Schur complement is definite-positive (take $\tilde{x} = [x^T, -x^TBD^{-1}]^T$)
 - $-D^{-1}B^{T}S^{-1}BD^{-1}$ is positive
 - joint estimation for θ_2 is worse
 - $-BS^{-1}B^{T}$ is positive and as $A-S=BS^{-1}B^{T}$, then A>S and $S^{-1} > A^{-1}$
 - joint estimation for θ_1 is worse

Asymptotic analysis

- In many estimation problems, very difficult to obtain performance at fixed N for the variance
- Consequently difficult to know the distance to CRB
- Extremely difficult to design an (almost)-efficient algorithm at fixed N (see the characterization of the complete sufficient statistic)
- To overcome these issues. $N \to \infty$ is useful

Goal

Analyze the performance (bias, variance, ...) of $\hat{\theta}_N$ when $N \to \infty$

Example

Let \mathbf{Y}_N be a iid vector with unknown mean $\theta = m$ and unit-variance

$$\rho_{Y|\theta}(\mathbf{y}_N|\theta) = \frac{1}{(2\pi)^{N/2}} e^{-\frac{1}{2}\sum_{n=1}^{N}(y_n-\theta)^2}$$

Let

$$\hat{m}_N = \frac{1}{N} \sum_{n=1}^N y_n$$

- Convergence?
- Distribution?
 - Shape
 - Mean (value of convergence necessary)
 - Variance

Example

Let \mathbf{Y}_N be a iid vector with unknown mean $\theta = m$ and unit-variance

$$\rho_{Y|\theta}(\mathbf{y}_N|\theta) = \frac{1}{(2\pi)^{N/2}} e^{-\frac{1}{2}\sum_{n=1}^{N}(y_n-\theta)^2}$$

Let

$$\hat{m}_N = \frac{1}{N} \sum_{n=1}^N y_n$$

- Convergence?
- Distribution?
 - Shape
 - Mean (value of convergence necessary)
 - Variance

Let \mathbf{Y}_N be a iid vector with unknown mean $\theta = m$ and unit-variance

$$\rho_{Y|\theta}(\mathbf{y}_N|\theta) = \frac{1}{(2\pi)^{N/2}} e^{-\frac{1}{2}\sum_{n=1}^{N}(y_n-\theta)^2}$$

Let

$$\hat{m}_N = \frac{1}{N} \sum_{n=1}^N y_n$$

- Convergence?
- Distribution?
 - Shape
 - Mean (value of convergence necessary)
 - Variance

Example (cont'd)

In any case

$$\mathbb{E}[\hat{m}_N] = m \text{ and } \lim_{N \to \infty} \hat{m}_N \stackrel{a.s.}{=} m$$

but

If y_n Gaussian,

$$\sqrt{N}(\hat{m}_N - m) \stackrel{\mathcal{D}}{=} \mathcal{N}(0, 1)$$

• If y_n non-Gaussian, Central-Limit Theorem

$$\lim_{N\to\infty}\sqrt{N}(\hat{m}_N-m)\stackrel{\mathcal{D}}{=}\mathcal{N}(0,1)$$

Goal

Extend similar results to other cases

Consistency

Definition

$$\lim_{N\to\infty}\hat{\theta}_N\stackrel{a.s.}{=}\theta_0$$

with the almost surely convergence

$$\Pr\left(\omega: \lim_{N\to\infty} \hat{\theta}_N(\omega) = \theta_0\right) = 1$$

Standard approaches for proving it:

- Strong law of large number (SLLN)
- Weak law of large numbers (WLLN) if convergence in probability
- Other way:
 - Borel-Cantelli lemma

$$\forall \varepsilon > 0, \ \sum_{n \in \mathbb{N}} \Pr(\|\hat{\theta}_n - \theta_0\| > \varepsilon) < +\infty \Rightarrow \Pr(\lim_{N \to \infty} \hat{\theta}_N = \theta_0) = 1$$

Markov/Tchebitchev inequality and Doob trick

$$\Pr(\|\hat{\theta}_N - \theta_0\| > \varepsilon) \le \frac{\mathbb{E}[\|\hat{\theta}_N - \theta_0\|^2]}{\varepsilon^2}$$

Asymptotic normality

Definition

An estimate is said asymptotically normal iff $\exists p$ s.t.

$$\lim_{N\to\infty} N^{p/2} (\hat{\theta}_N - \theta_0) \stackrel{\mathcal{D}}{=} \mathcal{N}(0,\Gamma)$$

where

• p is the so-called speed of convergence

$$MSE = \mathbb{E}[\|\hat{\theta}_N - \theta_0\|^2] \sim \frac{\operatorname{trace}(\Gamma)}{NP}$$

• Γ is the so-called asymptotic covariance matrix

Standard approaches for proving it:

- Central-Limit Theorem
- Standard proof by using the characteristic function of the second-kind

$$t \mapsto \log \mathbb{E}[e^{iXt}]$$

Definitions

An estimate is said asymptotically unbiased iff

$$\lim_{N\to\infty}\mathbb{E}[\hat{\theta}_N]=\theta_0$$

An estimate is said asymptotically efficient iff

$$\lim_{N\to\infty}\frac{\text{MSE}(N)}{\text{trace}(\text{CRB}(N))}=1$$

Algorithms

- Contrast-based estimate
- Maximum-Likelihood (ML) estimate
- Least-Square (LS) estimate
- Moments-matching (MM) estimate

Definition for contrast estimate

• Let J be a bivariate function. It is called a contrast function iff

$$\theta \mapsto J(\theta, \theta_0)$$

is minimum in $\theta = \theta_0$

• Let J_N a statistic of \mathbf{y}_N depending on generic parameter θ

$$\theta \mapsto J_N(\mathbf{y}_N, \theta)$$

 J_N is called a *contrast process* iff

$$\lim_{N\to\infty} J_N(\mathbf{y}_N,\theta) \stackrel{p.}{=} J(\theta,\theta_0)$$

• The so-called *minimum constrast estimate* $\hat{\theta}_N$ is obtained by

$$\hat{ heta}_{N} = rg\min_{ heta} J_{N}(\mathbf{y}_{N}, heta)$$

Example

Let \mathbf{Y}_N be a iid Gaussian vector with unknown mean $\theta = m$ and unit-variance

$$\rho_{Y|\theta}(\mathbf{y}_N|\theta) = \frac{1}{(2\pi)^{N/2}} e^{-\frac{1}{2}\sum_{n=1}^{N}(y_n-\theta)^2}$$

We have

$$J(\theta,\theta_0) = 1 + (\theta_0 - \theta)^2$$

$$J_N(\mathbf{y}_N,\theta) = \frac{1}{N} \sum_{n=1}^N (y_n - \theta)^2$$

$$\hat{\theta}_N = \frac{1}{N} \sum_{n=1}^N y_n$$

The empirical mean is a minimum contrast estimate (unbiased, efficient, asymptotically normal with p = 1)

Main results

Consistency

If $\theta \mapsto J(\theta, \theta_0)$ and $\theta \mapsto J_N(\mathbf{y}_N, \theta)$ are continuous in θ (and other mild regularity conditions on J_N), then minimum contrast estimate $\hat{\theta}_N$ consistent

Asymptotic normality

- $\theta \mapsto J_N(\mathbf{y}_N, \theta)$ twice-differentiable in an open neighborhood of θ_0
- $\sqrt{N} \frac{\partial J_N(\mathbf{y}_N, \theta)}{\partial \theta}|_{\theta = \theta_n}$ converges in distribution to a zero-mean Gaussian distribution with covariance matrix $\Delta(\theta_0)$
- the Hessian matrix $\frac{\partial^2 J_N(\mathbf{y}_N,\theta)}{(\partial \theta)^2}|_{\theta=\theta_0}$ converges in probability to the definite-positive matrix $H(\theta_0)$
- and mild regularity technical conditions on J_N

then minimum contrast estimate $\hat{\theta}_N$ asymptotically normal with p=1and asymptotic covariance matrix

$$\Gamma(\theta_0) = H^{-1}(\theta_0)\Delta(\theta_0)H^{-1}(\theta_0)$$

By applying second-order Taylor series expansion around θ_0 , we get

$$\frac{\partial J_N(\boldsymbol{y}_N,\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}_{|\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}_N} = 0 = \frac{\partial J_N(\boldsymbol{y}_N,\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}_{|\boldsymbol{\theta}=\boldsymbol{\theta}_0} + \frac{\partial^2 J_N(\boldsymbol{y}_N,\boldsymbol{\theta})}{(\partial \boldsymbol{\theta})^2}_{|\boldsymbol{\theta}=\boldsymbol{\theta}_0} (\hat{\boldsymbol{\theta}}_N - \boldsymbol{\theta}_0)$$

So

$$-\underbrace{\sqrt{N}\frac{\partial J_{N}(\mathbf{y}_{N}\theta)}{\partial \theta}}_{\text{cv. in distribution to }\mathcal{N}(0, \Delta(\theta_{0}))} = \underbrace{\frac{\partial^{2}J_{N}(\mathbf{y}_{N}, \theta)}{(\partial \theta)^{2}}}_{\text{cv. in probability to }H(\theta_{0})} \sqrt{N}(\hat{\theta}_{N} - \theta_{0})$$

Then

$$\lim_{N\to\infty} H(\theta_0).\sqrt{N}(\hat{\theta}_N-\theta_0) \stackrel{\mathcal{D}}{=} \mathcal{N}(0,\Delta(\theta_0))$$

Maximum-Likelihood (ML) estimate

Definition

Let $p_{Y|\theta}(.|\theta_0)$ be a probability density parametrized by θ_0 The Maximum-Likelihood (ML) estimate for θ_0 is defined as follows

$$\hat{ heta}_{\mathrm{ML},N} = rg \max_{ heta} oldsymbol{
ho}_{Y| heta}(\mathbf{y}_N| heta)$$

Likelihood equations: If $\theta \mapsto p_{Y|\theta}(\mathbf{y}_N|\theta)$ is differentiable, then

$$\frac{\partial p_{Y|\theta}(\mathbf{y}_N|\theta)}{\partial \theta}_{|\theta=\hat{\theta}_{\text{ML},N}} = 0$$

Warning: the ML estimate is not necessary unique (if more than one global maximum)

Link with minimum contrast estimate

Fundamental assumption

Y_N iid vector

We have

$$\hat{\theta}_{\mathrm{ML},N} = \arg\min_{\theta} J_{N}(\mathbf{y}_{N}, \theta)$$

with the following contrast process

$$J_N(\mathbf{y}_N, \theta) := -\frac{1}{N} \log p_{Y|\theta}(\mathbf{y}_N|\theta) = -\frac{1}{N} \sum_{n=1}^N \log p_{Y|\theta}(\mathbf{y}_n|\theta)$$

One can prove

$$\lim_{N\to\infty} J_N(\mathbf{y}_N,\theta) \stackrel{p.}{=} J(\theta,\theta_0)$$

with the contrast function (maximum in $\theta = \theta_0$)

$$J(\theta, \theta_0) = -\mathbb{E}[\log p_{Y|\theta}(\mathbf{y}_N|\theta)]$$

$$= -\int \log(p_{Y|\theta}(\mathbf{y}_N|\theta))p_{Y|\theta}(\mathbf{y}_N|\theta_0)d\mathbf{y}_N$$

$$= D(p_{Y|\theta}(.|\theta_0)||p_{Y|\theta}(.|\theta)) + H(p_{Y|\theta}(.|\theta_0))$$

Asymptotic analysis

Result

If \mathbf{Y}_N iid vector, and the ML-related constrast function and process satisfy standard conditions, then ML estimate is

- consistent
- asymptotically unbiased
- asymptotically normal with p = 1
- asymptotically efficient $(\lim_{N\to\infty} \operatorname{trace}(\Gamma(\theta_0))/(N\operatorname{trace}(\operatorname{CRB}(N))) = 1)$

General case (non-iid):

- no general result
- should be analyzed case by case
- nevertheless iid result often valid

Sketch of proof

Let $F(\theta_0)$ the FIM when N samples are available.

$$F(\theta_0) \stackrel{\textit{iid}}{=} \sum_{n,n'=1}^{N} \mathbb{E}\left[\frac{\partial \log p_{Y|\theta}(y_n|\theta)}{\partial \theta}_{|\theta=\theta_0} \cdot \frac{\partial \log p_{Y|\theta}(y_{n'}|\theta)}{\partial \theta}_{|\theta=\theta_0}^{T}\right]$$

$$= NF_1(\theta_0) + \sum_{n \neq n'} \mathbb{E}\left[\frac{\partial \log p_{Y|\theta}(y_n|\theta)}{\partial \theta}_{|\theta=\theta_0}\right] \mathbb{E}\left[\frac{\partial \log p_{Y|\theta}(y_{n'}|\theta)}{\partial \theta}_{|\theta=\theta_0}^{T}\right]$$

$$= NF_1(\theta_0)$$

with $F_1(\theta_0)$ the FIM for one sample

Sketch of proof (cont'd)

$$-\sqrt{N} \frac{\partial \frac{1}{N} \log p_{Y|\theta}(\mathbf{y}_N|\theta)}{\partial \theta}_{|\theta=\theta_0} = -\sqrt{N} \left(\frac{1}{N} \sum_{n=0}^{N} \frac{\partial \log p_{Y|\theta}(y_n|\theta)}{\partial \theta}_{|\theta=\theta_0} - 0 \right)$$

$$\stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}(0, \Delta(\theta_0))$$

since
$$\mathbb{E}[\frac{\partial\log p_{Y|\theta}(y_n|\theta)}{\partial\theta}_{|\theta=\theta_0}]=0$$
 and with

$$\Delta(\theta_0) = \lim_{N \to \infty} N \mathbb{E} \left[\frac{\partial \frac{1}{N} \log p_{Y|\theta}(\mathbf{y}_N|\theta)}{\partial \theta}_{|\theta = \theta_0} \frac{\partial \frac{1}{N} \log p_{Y|\theta}(\mathbf{y}_N|\theta)}{\partial \theta}_{|\theta = \theta_0}^{\mathrm{T}} \right]$$

$$= \frac{1}{N} \sum_{n,n'=1}^{N} \mathbb{E} \left[\frac{\partial \log p_{Y|\theta}(\mathbf{y}_n|\theta)}{\partial \theta}_{|\theta = \theta_0} \frac{\partial \log p_{Y|\theta}(\mathbf{y}_{n'}|\theta)}{\partial \theta}_{|\theta = \theta_0}^{\mathrm{T}} \right]$$

$$= F_1(\theta_0)$$

Sketch of proof (cont'd)

$$-\frac{\partial^{2} \frac{1}{N} \log p_{Y|\theta}(\mathbf{y}_{N}|\theta)}{(\partial \theta)^{2}}_{|\theta=\theta_{0}} = -\frac{1}{N} \sum_{n=1}^{N} \frac{\partial^{2} \log p_{Y|\theta}(\mathbf{y}_{n}|\theta)}{(\partial \theta)^{2}}_{|\theta=\theta_{0}}$$

$$\stackrel{p. N\to\infty}{=} -\mathbb{E} \left[\frac{\partial^{2} \log p_{Y|\theta}(\mathbf{y}_{n}|\theta)}{(\partial \theta)^{2}}_{|\theta=\theta_{0}} \right]$$

$$= F_{1}(\theta_{0})$$

Consequently,

$$H(\theta_0) = F_1(\theta_0)$$

Sketch of proof (cont'd)

We remind

$$\sqrt{N}(\hat{\theta}_{\mathrm{ML},N} - \theta_0) \overset{\mathcal{D}}{\rightarrow} \mathcal{N}(0,\Gamma(\theta_0))$$

with

$$\Gamma(\theta_0) := H^{-1}(\theta_0) \Delta(\theta_0) H^{-1}(\theta_0) = F_1^{-1}(\theta_0)$$

Consequently

$$\lim_{N\to\infty} N\mathbb{E}\left[(\hat{\theta}_{\mathrm{ML},N} - \theta_0)(\hat{\theta}_{\mathrm{ML},N} - \theta_0)^{\mathrm{T}}\right] = F_1^{-1}(\theta_0)$$

$$\mathbb{E}\left[(\hat{\theta}_{\text{ML},N} - \theta_0)(\hat{\theta}_{\text{ML},N} - \theta_0)^T\right] \approx \frac{1}{N}F_1^{-1}(\theta_0) = F^{-1}(\theta_0) = \text{CRB}(N)$$

Example 1

Let \mathbf{Y}_N be a iid Gaussian vector with unknown mean $\theta = m$ and unit-variance

$$p_{Y|\theta}(\mathbf{y}_N|\theta) = \frac{1}{(2\pi)^{N/2}} e^{-\frac{1}{2}\sum_{n=1}^{N}(y_n - \theta)^2}$$

We can see that $\hat{\theta}_{ML,N}$ is the empirical mean, and

$$\sqrt{N}(\hat{\theta}_{\mathrm{ML},N}-m)\overset{\mathcal{D}}{\to}\mathcal{N}(0,1)$$

and

$$CRB(N) = \frac{1}{N}$$

Example 2

Let a pure harmonic with additive noise

$$y_n = e^{2i\pi f_0 n} + w_n, \ n = 1, \cdots, N$$

with w_n iid zero-mean (circularly) Gaussian noise with variance σ_w^2 Remarks:

- independent sample but not identically distributed (non-id)
- none of previous results applies!

Results

$$\hat{f}_{\mathrm{ML},N} = \arg\max_{f} \Re \left\{ \frac{1}{N} \sum_{n=1}^{N} y_n e^{-2i\pi f n} \right\}$$

$$N^{3/2}(\hat{f}_{\mathrm{ML},N}-f_0) \stackrel{\mathcal{D}}{\rightarrow} \mathcal{N}(0,\frac{3\sigma_w^2}{8\pi^2})$$

Much faster than standard case since $\mathbb{E}[(\hat{f}_{\text{ML},N}-f_0)^2] \approx \frac{3\sigma_W^2}{8\pi^2N^3}$

Proof: see Exercises' session

Least-Square (LS) estimate

Let

$$y_n = f_n(\theta_0) + w_n, \ n = 1, \cdots, N$$

with

- $f_n(.)$ deterministic function
- w_n zero-mean process

Least-Square (LS) estimate

We fit the model with the data wrt the Euclidian distance

$$\hat{\theta}_{\mathrm{LS},N} = \arg\min_{\theta} \sum_{n=1}^{N} |y_n - f_n(\theta)|^2$$

Related to the closest vector problem in a (non-discrete) vector space

Result

If w_n is iid Gaussian noise (with variance σ_w^2), LS is identical to ML

Example: empirical mean is both LS and ML (with Gaussian noise)

Linear model:

$$\mathbf{y}_N = \mathbf{H}\theta + \mathbf{w}_N$$

Then

$$\hat{\theta}_{\mathrm{LS},N} = \arg\min_{\boldsymbol{\theta}} \|\mathbf{y}_N - \mathbf{H}\boldsymbol{\theta}\|^2$$

If H column full rank, then

$$\hat{ heta}_{ extsf{LS}, extsf{N}} = \mathbf{H}^\# \mathbf{y}_{ extsf{N}}$$

Moments-matching (MM) estimate

q-order moments:

statistical terms with the following form

$$\mathbb{E}[f(Y_1,\cdots,Y_p)]$$

with f a monomial function of degree q

related to the Taylor-series expansion of the function

$$\omega \mapsto \mathbb{E}[e^{iY\omega}]$$

if we consider only one variable Y

Notations:

- Let $S(\theta)$ a vector of moments depending on θ
- Let \hat{S}_N the empirical estimate of $S(\theta_0)$ with N samples

Moments-matching (MM) estimate (cont'd)

Algorithm

lf

- $S(\theta) = S(\theta_0) \Rightarrow \theta = \theta_0$
- and $\theta \mapsto S(\theta)$ is continuous,

we define the contrast process

$$J_N(\mathbf{y}_N, \theta) = \|\hat{S}_N - S(\theta)\|^2$$

and the MM estimate as

$$\hat{\theta}_{\mathrm{MM},N} = \arg\min_{\boldsymbol{\theta}} \|\hat{\boldsymbol{S}}_{N} - \boldsymbol{S}(\boldsymbol{\theta})\|^{2}$$

Vocabulary: MM estimate is also called Method of Moments (MoM)

Moments-matching (MM) estimate (cont'd)

Result

lf

- $\theta \mapsto S(\theta)$ is twice differentiable in θ_0
- $\sqrt{N}(\hat{S}_N S(\theta_0)) \stackrel{\mathcal{D}}{\rightarrow} \mathcal{N}(0, R(\theta_0))$

then

$$\sqrt{N}(\hat{\theta}_{\mathrm{MM},N} - \theta_0) \stackrel{\mathcal{D}}{\rightarrow} \mathcal{N}(0,\Gamma(\theta_0))$$

with

$$\Gamma(\theta_0) = \left(D(\theta_0)^{\mathrm{T}}D(\theta_0)\right)^{-1}D(\theta_0)^{\mathrm{T}}R(\theta_0)D(\theta_0)\left(D(\theta_0)^{\mathrm{T}}D(\theta_0)\right)^{-1}$$

with
$$D(\theta_0) = \partial S(\theta) / \partial \theta_{|\theta=\theta_0}$$

Remark: second bullet is often satisfied (if iid, straightforward).

Sketch of proof

We have

$$\sqrt{N} \frac{\partial J_N(\mathbf{y}_N, \theta)}{\partial \theta}_{|\theta=\theta_0} = -2D(\theta_0)^{\mathrm{T}} \sqrt{N} (\hat{S}_N - S(\theta_0))$$

$$\stackrel{\mathcal{D}}{\to} \mathcal{N}(0, \Delta(\theta_0))$$

with
$$\Delta(\theta_0) = 4D(\theta_0)^T R(\theta_0) D(\theta_0)$$

$$\frac{\partial^{2} J_{N}(\mathbf{y}_{N}, \theta)}{(\partial \theta)^{2}}_{|\theta = \theta_{0}} = 2D(\theta_{0})^{T} D(\theta_{0})$$

$$- 2\frac{\partial^{2} S^{T}}{(\partial \theta)^{2}}_{|\theta = \theta_{0}} \underbrace{(\hat{S}_{N} - S(\theta_{0}))}_{\text{cy}}$$

Example

Let \mathbf{Y}_N be a iid Gaussian vector with unknown mean $\theta_0 = m$ and unit-variance

We consider

$$J_N(\mathbf{y}_N,\theta) = \|\hat{m}_N - \theta\|^2$$

and the MM estimate as

$$\hat{\theta}_{\mathrm{MM},N} = \underset{\theta}{\arg\min} J_N(\mathbf{y}_N, \theta)$$

$$= \hat{m}_N$$

Then

$$\sqrt{N}(\hat{m}_N-m)\stackrel{\mathcal{D}}{\rightarrow}\mathcal{N}(0,1)$$

since

•
$$D(\theta_0) = 1$$

•
$$R(\theta_0) = \lim_{N \to \infty} N \mathbb{E}[(\hat{m}_N - m)^2] = 1$$

Extension to complex-valued case

Let us now consider that $\theta \in \mathbb{C}^K$

Can apply all previous results by working on

$$\tilde{\theta} = [\Re\{\theta\}^T, \Im\{\theta\}^T]^T \in \mathbb{R}^{2K}$$

• But result not easy to interpret: use

$$\tilde{\theta} = \underbrace{\frac{1}{2} \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix}}_{M} \cdot \underbrace{\begin{bmatrix} \theta \\ \overline{\theta} \end{bmatrix}}_{\theta} \quad \text{and} \quad \underline{\theta} = \begin{bmatrix} \overline{\theta} \\ \theta \end{bmatrix}$$

Remind

$$\frac{\partial.}{\partial\theta} = \frac{1}{2} \left(\frac{\partial.}{\partial \Re\{\theta\}} - i \frac{\partial.}{\partial \Im\{\theta\}} \right) \text{ and } \frac{\partial.}{\partial\underline{\theta}} = \frac{1}{2} \left(\frac{\partial.}{\partial \Re\{\theta\}} + i \frac{\partial.}{\partial \Im\{\theta\}} \right)$$

(see $f(\theta) = \theta$)

Apply previous results with changes of variables (θ and θ)

Main result

We have

$$\mathbb{E}[(\hat{\underline{\theta}} - \underline{\theta}_0)(\hat{\underline{\theta}} - \underline{\theta}_0)^H] \ge \underline{F}^{-1}(\underline{\theta}_0)$$

with

$$F(\underline{ heta}_0) = \mathbb{E}\left[\left(rac{\partial \log p_{Y| heta}(\mathbf{y}_N| heta)}{\partial \underline{ heta}_{=}}
ight)\left(rac{\partial \log p_{Y| heta}(\mathbf{y}_N| heta)}{\partial \underline{ heta}_{=}}
ight)^{\mathrm{H}}
ight]$$

Remarks:

- we can use "real-valued" CRB expression with $^{\rm H}$ and $\bar{\theta}$ instead of $^{\rm T}$ and θ iff cross term vanishes in $F(\underline{\theta}_0)$
- many examples in telecommunications (as working in baseband with on complex enveloppe)

Philippe Ciblat

Sketch of proof

We have

$$\begin{split} \mathbb{E}[(\hat{\hat{\theta}} - \tilde{\theta}_0)(\hat{\hat{\theta}} - \tilde{\theta}_0)^T] & \geq & CRB(\tilde{\theta}_0) \\ \mathbb{E}[(\hat{\hat{\theta}} - \tilde{\theta}_0)(\hat{\hat{\theta}} - \tilde{\theta}_0)^H] & \geq & CRB(\tilde{\theta}_0) \\ M\mathbb{E}[(\hat{\underline{\theta}} - \underline{\theta}_0)(\hat{\underline{\theta}} - \underline{\theta}_0)^H]M^H & \geq & MCRB(\underline{\theta}_0)M^H \\ \mathbb{E}[(\hat{\underline{\theta}} - \underline{\theta}_0)(\hat{\underline{\theta}} - \underline{\theta}_0)^H] & \geq & CRB(\underline{\theta}_0) \end{split}$$

since

$$F(\underline{\theta}_0) = M^{H}F(\tilde{\theta}_0)M \quad \Rightarrow \quad CRB(\underline{\theta}_0) = M^{-1}CRB(\tilde{\theta}_0)M^{-1}^{H}$$
$$\Rightarrow \quad CRB(\tilde{\theta}_0) = MCRB(\underline{\theta}_0)M^{H}$$

with $\partial ./\partial \underline{\theta} = M^{\mathrm{H}} \partial/\partial \tilde{\theta}$

Part 5 : Bayesian estimation (for random parameters)

Detection Hypothesis Testing Estimation Bayesian Estimation

Principle of Bayesian approach

- Let us consider θ_0 as a random variable with a known *a priori* probability density function $p_{\theta}(\theta)$.
- Let us consider the joint pdf between observations and unknown parameter θ_0 . Bayes' rule leads to

$$\rho_{Y,\theta}(\mathbf{y}_N,\theta) = \rho_{Y|\theta}(\mathbf{y}_N|\theta)\rho_{\theta}(\theta)$$

Quadratic risk

$$\begin{aligned} \text{MSE} &= & \mathbb{E}[\|\hat{\theta}_N - \theta_0\|^2] \\ &= & \int \|\hat{\theta}_N - \theta\|^2 p_{Y,\theta}(\mathbf{y}_N, \theta) d\mathbf{y}_N d\theta \\ &= & \mathbb{E}[\mathbb{E}_{.|\theta}[\|\hat{\theta}_N - \theta\|^2]] \\ &= & \mathbb{E}[\text{MSE}_{\text{det.}}(\theta)] \end{aligned}$$

Remark: the risk is averaged over all the values of θ_0 . It is not evaluated for a specific value of θ_0 .

Optimal estimate

Result

The optimal unbiased estimate (wrt MSE) exists and is given by

$$\hat{ heta}_{ ext{MMSE}, extstyle N} = \mathbb{E}_{ heta | extstyle Y}[heta] = \int heta extstyle p_{ heta | extstyle Y}(heta | extstyle extstyle y_N) d heta$$

This estimate is called MMSE and corresponds to the mean of the *a* posteriori pdf of θ

Remarks:

 The optimal estimate is the Mean A Posteriori (MeAP) insterad of the Maximum A Posteriori (MAP) defined as follows

$$\hat{ heta}_{ ext{MAP}, N} = rg \max_{ heta} oldsymbol{p}_{ heta \mid Y}(heta | \mathbf{y}_N)$$

 In deterministic approach, the optimal unbiased estimate does not exist in general. But often exists asymptotically (through ML)

Let us consider the scalar case

$$MSE(\hat{\theta}_N) = \int \left(\int (\hat{\theta}_N - \theta)^2 p_{\theta|Y}(\theta|\mathbf{y}_N) d\theta \right) p_Y(\mathbf{y}_N) d\mathbf{y}_N$$

As inner integral and $p_Y(\mathbf{y}_N)$ are positive, $\mathrm{MSE}(\hat{\theta}_N)$ is minimum if for each observation \mathbf{y}_N , the inner integral is minimum itself. So we are looking for $\hat{\theta}_N$ s.t.

$$rac{d}{d\hat{ heta}_N}\int(\hat{ heta}_N- heta)^2p_{ heta|Y}(heta|\mathbf{y}_N)d heta=0$$

which implies

$$\hat{\theta}_{N} \underbrace{\int p_{\theta|Y}(\theta|\mathbf{y}_{N})d\theta}_{1} = \int \theta p_{\theta|Y}(\theta|\mathbf{y}_{N})d\theta$$

Example

$$y_n = m + w_n$$
, pour $n = 1, \dots, N$

with

- m zero-mean Gaussian variable with known variance σ_m^2
- w_n iid zero-mean Gaussian process wth known variance σ_w^2

$$p_{m,Y}(m|\mathbf{y}_N) = p_{Y|m}(\mathbf{y}_N|m)p_m(m)/p_Y(\mathbf{y}_N)$$

$$\propto e^{-\left(m-\frac{\sigma_m^2}{\sigma_m^2+\sigma_w^2/N}\frac{1}{N}\sum_{n=1}^N y_n\right)^2/2\sigma_w^2}$$

$$\hat{m}_{\text{MMSE},N} (= \hat{m}_{\text{MAP},N}) = \frac{\sigma_m^2}{\sigma_m^2 + \sigma_b^2/N} \left(\frac{1}{N} \sum_{n=1}^N y_n \right)$$

Remarks:

- If $\sigma_m^2 \ll \sigma_w^2$, $\hat{m}_{\text{MMSE},N}$ close to a priori mean (0)
- If $\sigma_m^2 \gg \sigma_w^2$, $\hat{m}_{\text{MMSE},N}$ close to empirical mean

Bayesian Cramer-Rao Bound

Result

Let $\hat{\theta}$ be an unbiased estimate of θ_0 , then

$$MSE(\hat{\theta}) \ge F^{-1} = BCRB$$

with

$$\mathcal{F} = \mathbb{E}\left[\left(rac{\partial \log oldsymbol{
ho}_{Y, heta}(oldsymbol{y}_N, heta)}{\partial heta}
ight)\left(rac{\partial \log oldsymbol{
ho}_{Y, heta}(oldsymbol{y}_N, heta)}{\partial heta}
ight)^{\mathrm{T}}
ight]$$

Remarks:

We have

$$F = -\mathbb{E}\left[\frac{\partial^2 \log p_{Y,\theta}(\mathbf{y}_N,\theta)}{(\partial \theta)^2}\right]$$

• No link between BCRB and $\mathbb{E}[CRB_{\theta}(\theta)]$

General conclusion

- Rich topic with four main configurations
- In deterministic approach: mainly asymptotic results and Maximum Likelihood plays a great role
- In Bayesian approach: optimal estimate fully characterized and finite-data analysis possible

References

- H. Cramer, "Mathematical Methods of Statistics", 1946.
- V. Kotelnikov, "The Theory of Optimum Noise Immunity", 1947 (1959 in English).
- H.L. Van Trees, "Detection, Estimation, and Modulation Theory". Part 1, 1968.
- H.V. Poor, "An introduction to signal detection and estimation", 1988.
- S.M. Kay, "Fundamentals of Statistical Signal Processing", 1993.
- B. Porat, "Digital Processing of Random Signals: Theory and Methods", 1994.