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@ Motivation and preliminaries

@ Detection Theory (Bayesian approach)
e Optimal detector: Maximum A Posteriori (MAP)
e Optimal performance

© Hypothesis Testing (deterministic approach)
o Optimal test: Neyman-Pearson test (NPT)
e Optimal Asymptotic performance

© Estimation Theory (deterministic approach)
e Optimal performance: Cramer-Rao bound (CRB),
e Algorithms: Maximum likelihood (ML), Moments, Least Square (LS)
e Asymptotic performance

@ Estimation Theory (Bayesian approach)
e Optimal estimator: Mean A Posteriori (MeAP)
e Optimal performance: Bayesian Cramer-Rao bound (BCRB)
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Part 1 : Motivation and Preliminaries J
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Toy example: symbol detection

= S + w
y ~— ~—
observation information symbol: 1 or —1 noise

Goal: given y, recovering s in the best way.

Remarks:
@ Symbols are modeled as random: Pr{s = 1} = p with p known
@ Figure of merit: average error probability

Pe = Pr{s#s}
— Pr{s=1|s= —1Pr{s = —1} + Pr{& = —1|s = 1}Pr{s = 1}

@ Conclusion: discrete-valued and random parameter s
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Toy example: signal detection

Hypothesis H = Hop: = + w
yp - Y __ T
observation no signal noise
Hypothesis H = H1: = X + w
yp 1 y TV
observation signal noise

Goal: given y, say if transmitted signal is active or not in the best way.
Remarks:

@ Hypothesis parameter is not random usually

@ Figure of merit:

e maximizing signal detection probability Pp = Pr{#|#1}
@ given a maximum false alarm probability Pea = Pr{#+|Ho}

@ Conclusion: discrete-valued and deterministic parameter H
Applications:

@ radar (intrusion detection, missile detection),

@ interweave cognitive radio
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Intro

Toy example: channel estimation

L
Yn = g hesn_¢ + Wn
£=0
set of observations ~ , noise

unknown channel impulse response

Goal: given {yn}n=o,... Nn—1, recovering {h¢}¢—o,... L in the best way.
Remarks:

@ Symbols are known and channel modeled as unknown
deterministic

@ Figure of merit: mean square error
L
MSE = E[[|h — h|[?] = S E[|A — hy[?]
£=0
with h = [/’707 s ,h[_]T.
@ Conclusion: continuous-valued and deterministic parameter h
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Toy example: coin tossing parameter

Let ¥ = {xp,- -, Xq} be a set of values

Q
¥n = Xg with probability py s.t. Z pe=1.
¢=0
Goal: given {yn}n—o,... N—1, recovering {p}i—o.... @ in the best way.
Remarks:
@ Coin tossing parameter p = [po, - - - , pg]T may be modeled as

random parameter with a priori distribution (e.g. fluctuation
around a predetermined value p, = p + ¢, with known p

@ Figure of merit: mean square error
MSE := E[|[p - p|*]

Warning : expectation is over all the random variables (so
averaging over the distributions of the noise and the parameter)
@ Conclusion: continuous-valued and random parameter p
Applications:
@ Heads or tails, Loaded dice
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Problem classification

@ Let 6, be the true value of the parameter

@ Let é(N) be the estimated/guessed/decoded parameter (through
the help of N observations)

@ Let 0 be a generic variable of any function helping to
estimate/guess/decode 6.

o H random ‘ deterministic
discrete Detection (Part 2) Hypothesis testing (Part 3)
continuous || Bayesian estimation (Part 5) Estimation (Part 4)
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Figures of merit for discrete-valued parameters

Special Case: binary parameter (0/1) leads to four probabilities
@ Pr{1/|0} (false alarm), Pr{0]0} (with Pr{1]|0} + Pr{0|0} = 1)
@ Pr{1]1} (correct detection), Pr{0|1} (with Pr{1]1} + Pr{0[1} = 1)

Figures of merit:
@ If random, a priori distribution 7o = Pr{0} and 7y = Pr{1}

P = CO707T0PI"{O|O}+C1707T0PI’{1 ‘0}+C()717T1PI‘{0|1 }+C1,1’/T1PI'{1 |1}

with C;; cost related to the configuration i
Example: P, = moPr{1|0} + 71Pr{0|1}

@ If deterministic, tradeoff between both metrics (optimization for
function output in R? unfeasible)

— Constant false alarm rate (CFAR): maxPr{1[1} s.t. Pr{1|0} < Cra
— Constant detection rate (CDR): minPr{1]0} s.t. Pr{1|1} > Cp
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Intro

Figures of merit for continuous-valued parameters

Remark: P, usually no meaningful (except in some pathological
cases)

Goal: find metric measuring the closeness of 4 to 6. Typically Mean
Square Error (MSE)

MSE = B[ - 6o]?]
MSE(6p) = / v — 6o|°py(v)dv (if deterministic)
MSE = // v — UHZ,D(;J,O(V7 u)dvdu (if random)

where the expectation is over all the random variables!
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Intro

Main results (take-home messages)

Philippe Ciblat

6o H random deterministic
discrete Error probability CFAR
Max A Posteriori (MAP), Likelihood Ratio Test
Max Likelihood (ML) (LRT)
if equilikely
Theoretical performance | Asymptotic performance
(N — o0)
continuous MSE MSE

Mean A Posteriori (MMSE)

Asymptotically ML
under some conditions

Theoretical performance

Asymptotic performance
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Generalities

@ Let Xy = {X1,..., Xy} be a random process

@ The probability density function (pdf) px(x) depends on 6,
e.g., Gaussian process with unknown mean and variance
(Ao = [mean, variance])

Given a realization of the process (an event) xy = {1, ..., xn}, find
out an estimated value, 6y, of g, i.e., information on the pdf

Notations:
@ If 6y is random:
— px,0(Xn, 0): joint distribution between data and parameter

— equivalently, pxo(Xn|0).  pe(0)
—— N——~

likelihood a priori distribution

— equivalently, pgx(6]Xn) .px(Xn)
N—_———

a posteriori distribution

@ If p is deterministic:  px(xn;¢) , equivalently, px|s(Xn|0)
N—_—— ——

pdf depending on 6 likelihood
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Review of Matrix Algebra

Non-singular square matrix: H € C"*" is non-singular iff all its
eigenvalues are non-zero

Inverse of square matrix: Let H-' € C"*" be the matrix inverse of
H e Cm™n.

@ Then,HH-'=H '"H=1Id
@ Moreover, H™" exists iff H is non-singular

Moore-Penrose pseudo-inverse of nhon-square matrix: Let
H € CM=*Mr be a non-square full rank matrix.

@ Right Pseudo-inverse: if Mg < Mt then H admits a right
pseudo-inverse, H#* = HY(HH")~", such that HH* = Id

@ Left Pseudo-inverse: if Mg > My then H admits a left
pseudo-inverse, H#* = (H"H)~'H", such that H*H = Id
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Intro

Review of Matrix Algebra (cont’'d)

@ Let x, y be two vectors in C”

@ Let (canonical) inner product : < x|y >= x"y (bilinear
sesqui-symmetric definite-positive)

@ Norm: [|x|| = /< X[x > = />_,_;, |x|2; Euclidean distance:
x—yl

@ Quadratic form (bilinear sesqui-symmetric form) : x!Ay with A
Hermitian matrix (A = AH)

Properties of quadratic form (and related matrix A)

@ Positive Definite Quadratic form/matrix: vx, x7Ax > 0 <
eigenvalues of A strictly positive (notation: A > 0)

@ Positive Semi-definite Quadratic form/matrix: Vx # 0,
xHAx > 0 < eigenvalues of A positive (notation: A > 0)

@ Inequalities for positive semi-definite matrix: partial order >
for two matrices A > 0, B > 0;

A>B=A-B>0
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Part 2 : Detection Theory ]
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Introduction

Let

@ O € K" be the finite set of possible values for parameter 6 (K any
field)

@ y be the observation depending on the parameter, let say, 6.

Goal : make aAdecision on 6 based on the observation. The decision
is denoted by 6.

Figure of merit : average error probability

Pe = Pr{d + 6}
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Decision regions

@ The value of y leads to one deterministic decision
@ The value of y can be viewed as a position in K"

Let decision region associated with 6y be as follows
Qg = {y €K":0(y) =6}, V€O,

i.e., the set of observations y leading the decoder to decide the value
6 for the parameter

Remark:

We have a partition of K"

QN Q=0 V0,0cO,0+0

U Qp = K".

0coe

and
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Main results

Result 1

Minimizing P, leads to make the following decision

0 = arg ?eagpew(ﬂy)

e, Qo = {y € K" : pyy(0ly) > poyv(0'ly), VO’ # 6}
Optimal decoder: Maximum A Posteriori (MAP)

Result 2 (special case)

Minimizing P, leads to make the following decision if  equilikely

f = arg ryeagpne(vlﬂ

i.e., Q9 = {y € K": pyjo(y|0) > pyjo(y]0), V&' # 6}
Optimal decoder: Maximum Likelihood (ML)
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Main questions

@ Description of Q4 (region borders?)
or equivalenty

@ Derivations of pgy or py|s ?
@ Finding out arg max ?
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Sketch of proof

Pe =1 — Py with Py := Pr{f = 6}.

We get
Py = > Pr{f=060|0 =00} -Pr{f = 6o}
0p€O
= 5" | pvalylo = 60) - Pr{6 = 6o},
oo Y YEDs
=[S0y < lpvi(ylo = 6o) - Pr{6 = fojy.
yeK”

6p€O©

ASC]

/ye]K" (Z 1{y € Qo }pgv(0 = 00|y)) py(y)dy.

For each y, we select (and we need to select at most one) 6,
maximizing 6o — pg|y (0 = oY)
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Example 1: SISO case

Let Single-Input-Single Output (SISO) case
y=s+w

with s € 4PAM and w a zero-mean Gaussian noise with variance o2
ML can be written as follows

N . 2
S = — S
€ i S

which leads to the following decision region

34t —a t 4 1?3y

—2A 0 2A

Remark: decision regions are described by the bisector between
admissible points. We call this decoder as threshold detector.
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Example 2: MIMO

Multiple Input - Multiple Ouput (MIMO): N, receive antennas and
N; transmit antennas

@ increase the data rate significantly,
@ better reliability for communications links.

N
yO=>"hsO+wh o y=Hs+w
t=1

withy = [y .. yNIT H = [h ]1<ren, 1<t<nes
s = [5(1)7 e 7S(Nr)]T, and w = [W(1), e W(N,)]T_

Remark: very generic model (actually any linear operator)

Carrying out the optimal decoder < derive py|s(Y|s).
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Detection

Example 2: MIMO (cont’d)

As the noise is independent on each antenna, we have
p(yls) = p(y™|s)--- p(y™s).
As w(") is a zero-mean Gaussian variable with variance o2, we obtain

pyls) e @
which leads to

Sy (V0 - 508, rest?)” _ ly—Hs|?
(y|s) x e 252 =@ 2.2

with the norm L2 s.t. ||x||2 =, x2.

=arg min |y —Hs|?.
se MM ~— —
—f(s)

Remark: discrete optimization in high dimension (massive MIMO :
N; = 256)
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Example 3: MIMO with Laplacian noise

We replace the Gaussian noise by a Laplacian noise (per antenna)

—_
>
=

Typically
@ noise composed by some other users (collisions)
@ more impulsive noise

Same approach as in previous slides, we have

S=arg min ||y —Hs|4
se MM

with the norm L' s.t. ||x[[s = 3, [/
Remarks:
@ distance L'=, Manhattan distance.
@ Noise distribution (which provides the statistical link between

input and output) plays a great role and strongly modifies the
decoder through the involved distance!

Philippe Ciblat MICAS902: Part on “Detection and Estimation”



Detection

Example 3: special case (SITO)
Nt: 1, N,:2, h171 =2et h2,1 =1, 2PAM.

¥ space
a
\ Pl
N g
\ 5
\ =
\ <

\
. Region for s = A
\\
A L)
\

\\
—24 \

N 24 Antenna 1

.
\
—A
y
\
\
. .
Region for s = 4A
.
\

.
Line in "dashed magenta” corresponds to Gaussian case

Decision regions’ border
@ bisector in Gaussian case
@ piecewise linear function (angles: 0, 90°, 45°, —45°) in Laplacian
case (counter-intuitive)
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Hypothesis Testing

Part 3 : Hypothesis Testing )
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Hypothesis Testing
Introduction

Hypothesis Ho: Yy~ Py,
Hypothesis Hi: Yy~ Py,

Remark: py|y, # Py|x,- If not, problem unfeasible since we can not
distinghuish between both hypotheses based on the statistical
properties.
Figure of merit : maximizing probability of detection (power of the
test)

Pp = Pr{H1 |7’[1}

or equivalenty minimizing probability of miss detection (probability of
Type-Il error)
Py = Pr{Ho|H1}

s.t. probability of false alarm (probability of Type-I error) below a
predefined threshold

Pea = Pr{H4|Ho} < P&
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Main results

Result

Minimizing the miss detection probability s.t. false alarm probability is
below a threshold leads to the so-called Neyman-Pearson test, also
called Likelihood Ratio Test (LRT), defined as follows

o Py, (Y)Y *
AY) = log (PY|H0(}’)> 50 -

with
@ Athe Log Likelihood Ratio (LLR)
@ 1 the threshold enabling to satisfy the target false alarm
probability P
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Hypothesis Testing

Main questions

@ Derivations of pyjy;, ?
@ Derivations of py3, ?

@ Derivations of p ?
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Sketch of proof

Py — / Py, (¥)dly

_ /K 1{y € Q}pyjw, (v)dy

and

Philippe Ciblat

Pea = QPYWO(Y)dy
1

_ /K 1{y € Q}pyju, (y)dy

@ Let T be the Neyman-Parson test (written in terms of probablity
of selecting H1)

T(y)=1 if pyj,(¥) > uPyr,(Y)
T:q¢ TWy)=t if pyp,(¥) = 1Py (Y)
T(y) =0 if pypy, (¥) < Py, (¥)

@ Let T’ be any other test s.t. Pra < P59
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Sketch of proof (contd)

We have

vy,

4

L

(T = T WPy, () = 1Pyi7o(¥)) = O
L (T0) = TP () = o))y = 0

L0 = TPy = 1 [ (T0) = TP )y
Pp — Pp > ju(Pra — Pra)

Po — Pp > ji(PE™ — Pra)

Pp— Py >0

Philippe Ciblat
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Hypothesis Testing
ROC curve

Remarks:
o If T(y) =1,Vy, then Pp =1 and Pgs = 1 (in military context:
launch always a missile!)
@ So Pp strongly depends on Pga, and Pp should be plotted versus
Pra
Definition:
Given a configuration (SNR, number of samples, etc), function
Pea — Pp is called Receiver Operating Characteristics (ROC) curve

04 05
P, (SNR=0GB)

How to draw it? plot the pair (Pga(), Po(x)) for any u
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Hypothesis Testing

Example: Gaussian signal in Gaussian noise

Ho :y(n)=w(n
A i WARLEE R
with
@ w(n) iid zero-mean Gaussian noise with known o2, = E[|w(n)|?],
@ x(n) also iid zero-mean Gaussian with known variance
of =E[lx(n)P?]

We have

Py, (Y) = H,I:I=1 Py 3, (Yn) with Py |3, (Vn) = e

_ mf®
Py (¥) = Tney Pyipe, (va) with Py, (vn) = szomye #F

withy = [y(1), -, y(N)]”
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Hypothesis Testing

Example: LRT

=N L ivnl?
1 - 2 2
e oxtow
2 2
+0o%)
Ay) = log | ZZto
(v) g =N L ivnl?
1,7 2
i g

~(Zir-4) TN, yn|2>
w

= log| 5——=5e€ 7w
0)2(+05V

N
= positive constant X Z |Vn|? + constant
n=1

Q
N
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Hypothesis Testing

Example: performances derivations

@ Under #H4, T(y) follows a y»-distribution with 2N degrees of
freedom with pdf

1 1
pXZ,ZN(X) = I_C(N)XN 1e X7 X 2 0

@ Under Hg, T(y) follows a x»-distribution with 2N degrees of
freedom with pdf

1 (o5 +ow)x

, X) = xN1e A, x>0
Prea(X) = (2 JE G2 YT (W) -

with complete and incomplete Gamma function

Fo(s) = / x5~ Te dx
0

and -
Finc(s, u) = / xS Te Xdx
u
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Hypothesis Testing

Example: performances derivations (cont'd)

Pea = Pr(T(y) > nlHo)
- 1 Ny -
= x""le % dx
/77 (0%/(02+02))’Vrc(N)
1 [e's) (UX+0W)X
= ARG N/n xN ax
rinc (Na TIUX;%VGW)
B Fe(N)
Similarly
Py rmc(Nﬂ?)
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Hypothesis Testing

Example: ROC

0 02

0.4 0.6 0.4 0.6
P, (SNR=0dB) P_, (SNR=-20dB)
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Asymptotic regime for generic case

@ In general, very difficult to obtain Pp and Pg, in closed-form (the
previous example is a counter-case)

@ To overcome this issue, asymptotic regime (N — o)

Stein’s lemma

Under iid assumption for y4, - - - yn, we denote Py = Py, (y1) and
Po = Py, (y1). Forany e,

@ it exists a sequence of tests Ty, s.t.,

— Pp(Tn) > 1 — ¢ for N large enough,
— and Pra(Ty) < e N(D(P1[|Py)—¢)

@ Let T} be a sequence of tests s.t. Pp(Ty) > 1 —¢. Then
Pea(T}) > (1 — 2¢)eNO(PilIPo)+<)

with D(Py||Po) the Kullback-Leibler distance defined as

D(PiIFy) = [ Pi(y) g (%D Y= {"’g (g)]

Philippe Ciblat
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Sketch of proof: achievability

Let Ty be the following test:

2, = {yio(pi1p) = < 1og (P20 ) < oGP + 2

Py24,(Y)
We have
1. If y € H1, ||mN*>oo 1N |Og (}i:::ﬁ;g;’;) probib///ty D(P1 HPO)
2. Pp(Tn) > 1 —¢, for N large enough
3. Wy € Qq,

Py 3, (y)e~NOPIPI+E) < Py (y) < Pyjgy, (y) e~ VPP IR —2)
4. Pea(Tw) < e~ NOPIIP)—)

Philippe Ciblat MICAS902: Part on “Detection and Estimation”



Sketch of proof: achievability (contd)

(1)
LI Py, (Y) i 1 A o [ P10n)
N g<PY|Ho(y)> - N,,Zz;l g<Po yn))

WLLN
%

P
Eyp, {Iog (P;)} in probability
= D(P1||Ro)

2) limysoeo PI‘{| TN(y) — D(P1 ||P0)| > ¢ } =0 =, HN()(E), N >
No(e), s.t. 1 — Pp(Twn) = Pr{[Tn(y) — D(P1[|Po)[ > ¢ } < e
(3.) Just manipulating the inequalities in Q4

“.)

3.)
Pra(Tn) = / Py 3, (y)dy g / Py, (y)e~MOPIIP)=<) gy
yeQ yeQ,

< e NOPIR)-< / Pyire, (Y
ye

< @ ND(PiPo)—e) PD(TN) < @ N(D(P1[|Po)—¢)
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Hypothesis Testing
Sketch of proof: converse

Let Ty N Ty, be the composite test (1 is decided iff both decode #+)

As Pp(Ty) > 1 —cand Pp(T}) > 1 —¢, we have

Moreover

Pra(TR)

Po(ThNTy) >1—2¢

> PFA(TN n TI/\I)

-/ Pyios (Y)Y
yeQ(Tn)NQ24(Ty)

3)
2 / Pyis, (y) e NOPiIIP+) gy
yeQ(Tn)NQ24(Ty)

= e NOPIR+) Py Ty N TR)
> (1 —2¢)e NOPiIP)+e)

Philippe Ciblat
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Hypothesis Testing

Extension: Generalized LRT (GLRT)

Problem: in many applications, some parameters of the pdf are
unknown (e.g. the variance)

Goal: testing the hypotheses but the hypotheses are partially
unknown (through some parameters of nuisance)

Let v be the nuisance parameters
Let Py y, (V; v) be the pdf under 7, for one value of v
Let Py3,(y; v) be the pdf under #, for one value of v

max, Py, (Y; V)
max, Py, (Y; V)

T(y) =

No optimality result
No asymptotic result
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Hypothesis Testing

Extension: Bayesian LRT (BLRT)

@ We have a priori distribution on parameters of nuisance v
@ Let g be the known a priori distribution of v (typically offset)

[ Py (¥:v)a(v)dv

T0) = 1By (v 1)q()

@ No optimality result
@ No asymptotic result
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Part 4 : Estimation for deterministic parameters |
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Estimation

Statistics

o Letyny ={y1,...,yn} be a (multi-variate) observation of the
process Yy
@ A statistic is any function T only depending on the observation
T(yn)

@ Any statistic is a random variable (and will be studied as it)

but few questions before

@ How characterizing T s.t. T provides on 6 information enough?

@ In other words, how representing yy in a compact form through
T without loosing information on 6?

= Fundamental concept of sufficient statistics

@ If T is a sufficient statistic, is it close to 67?
= Rao-Blackwell theorem
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Sufficient statistics

Reminder
y provides information on 6 iff the pdf of yy, denoted by

p(yn; 0) or p(yn|0),

depends on 6

T is said sufficient statistics iff given the random variable T(Yy), pdf
on the whole observation is useless. Consequently, the random
variable Yy|T(Yy) has a pdf independent of ¢

Py 7(Yn|T(Yn); 0) does not depend on 6

Remark: in practice difficult to check that T is a sufficient statistic by
using this definition
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Estimation

Sufficient statistics: properties

Fisher factorization theorem

T is a sufficient statistic of @ iff it exists two functions gy(.) (depending
on 6) and h(.) (independent of 0) s.t.

p(yn; 0) = go(T(Yn))h(Yn)

Remark: The Likelihood Ratio (between two values: 6 and ')
depends only on T(yn)

p(yn: ) — go(T(yn))

p(yn:0") 9o (T(yn))

So, to distinguish 6 from ¢’, evaluating T(yn) is enough
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Sketch of proof

If T is sufficient statistic, then

/ Pyir(ynlt O)pr(t: 6)ct

Py 7(YNIT(YN); 0)PT(T(Yn); 0)

Py T(YnIT(YN)) pT(T(YN); 0)
h(yn) 90(T(Yn))

py(Yn;0)

—
D
=

—
o
-

(a) if ' # T(yn), then py|r(yn[t';0) =0
(b) T sufficient statistic

MICAS902: Part on “Detection and Estimation”
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Sketch of proof (contd)

It p(yn; ) = 9o(T(yn))h(Yn), we have
o Ift# T(yn),

pyr(Yn|T(Yn) =10) = 0
e Ift=T(yn),

ayes ,TY :t,9
prr(yw| T(Yu) = i) P2 Prrim. T0) = 60)

pT( T(YN) = f; 9)

© Py (yn;: 0)
pr(T(Yn) = t;0)
@ Py (yn; 6)
fy\T tpY(y 0)dy
9o(t)h(yn) _ h(yn)

fy\r tgﬁ() (y)dy a fy|7’(y):1h(}/)dy

(¢) pv.r(yn, T(Yn) = t,0) = py(yn; 0)
(d) pr(T(Yn) =10) = [ pv.r(y, T(Yn) = t;0)dy =
Jyiriy)= PY(y: 0)dy

©
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Application

As an estimate of §, we may have
Oy = argmax p(yn; 0)
If T is a sufficient statistic, then
On = argmaxgs(T(yn))
= fet(T(y))

and only the knowledge of T(yy) is enough to estimate 6.
Questions:

@ What is the function fct?
@ Is Ay = T(yn) a reasonnable choice?
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Figures of merit for dy

Remarks:
@ An estimate Oy of 6 is just a statistic “close” to 6

On = é(VN)

@ “Close” implies we need a cost function C(dy, ) to measure the
gap between 6y and 6.
— 1(||fw — 0]| > €) : uniform cost

— [|0n — ]|+ : Manhattan cost (L' norm)
— ||~ — 0] : quadratic/Euclidian cost (L% norm)

We average the cost function over all the values of yy

R(On.0) = E[C(dn.0)]
- / C(On(yn). 6)p(yn: B)dyn
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Estimation

Biais and Mean Square Error (MSE)

Bias: . R
b(0,0n) = E[0(yn)] — 0

Variance: . A A
var(6, On) = E[[|0(yn) — E[(yn)]|]
Mean Square Error:

E[6(yn) — 0]
= |1b(6, On)I* + var(8, )

MSE(0, Oy)

@ Bias and variance are the mean and variance of the random
variable 6y respectively

@ An estimate is called unbiased/biasfree iff b(0,0n) = 0

@ Warning: the quality of the estimate depends on the considered
figures of merit
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Estimation

Sufficient statistics and estimate’s design

Rao-Blackwell theorem

@ Let T be a sufficient statistic for ¢
@ Let T’ be an unbiased estimate for 0
@ Let 7" =E[T'|T]
Then
@ T"is an unbiased estimate of ¢

E[T"(yn)] = ¢
@ T does not offer a worse MSE than T’

E[| T"(yn) — 61°] < E[|IT"(yn) — 6]°]
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Sketch of proof

@ As T sufficient statistic, 7" does not depend on 6

T =E[T'|T] :/t’(y)py‘r(ylt; e)dy:/t’(y)pm(y\t)dy,

can be evaluated by knowing yy only. So, T” is a statistic for 6
@ In addition, we get

E[T"] = E[E[T|T]
— [[ torirttiondtprityar

= // l‘lpTgT(t/, t; e)df/df
= /t/ (/pT/7T(t/, t; 9)6”) at

- / ¢ pro(t'; 0)dt
_ E[T]=0
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Sketch of proof (contd)

e If T unbiased E[(T — 0)?] = E[T?] + 62, then
E[| T"(yn)—0|7] < E[IT'(yn)—011%] < E[I T"(yn)II?] < E[IT'(yn)|%]
@ Then
BT (yn)I2] 2 E[EIT (ya)| TIIP
< E[E[IT"(yn)IIT]]
© B[ Ty

(a) replace T” by its definition

(b) Jensen inequality: let ¢ be a convex function, then
P(E[X]) < E[s(X)]

(c) similar to previous slide with || 7’||? instead of T”
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Consequences

Minimum-Variance Unbiased Estimator (MVUE)
@ Let T be a sufficient statistic for 6
@ Assume that it exists an unique function f s.t. E[f(T)] =0

Then f(T) is a Minimum Variance Unbiased Estimate of 0

| A

Notion of completeness

A sufficient statistic T is said complete iff

E[h(T)] =0 = h(T) =0, V0

As a consequence, f(T) is MVUE

Remarks:
@ Easytofind f ? no
@ Completeness is easier to check
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Sketch of proof

@ Let T’ be an unbiased estimate of §. We know that 7" = E[T’|T]
is a function of T and also an unbiased estimate (E[T"] = ). So
T” = f(T). Consequently, VT’, we have

E[| 7" - 0|") <E[IT" - 0]

@ Assume T complete. Consider f; and £, s.t. E[f;(T)] = 6 and
E[f(T)] = 0.

E[fi(T)] = E[&(T)]
E[(h —R)(T)] = 0
i — b 0
i = b
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Example

@ Let Yy be a iid Gaussian vector with unknown mean m and
unit-variance.

@ letd=m
We have
1 _1 N n— 2
py(yn:0) = e 2=t (Yo=m)
S NS D 3 )
(271')N/2
1 1SN 2t (NmR_2 Ny
— We 3 2n=t Y e z(Nm=—=2m =0 4 yn)
9o (T(yn))
h(yn)
with
o Ay =" y./N : empirical mean
@ T(yn) =My
T is a sufficient statistic for 0 J
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Estimation

Example (cont’'d)

ﬁ7N is
@ unbiased
@ MSE var(m, i) = &
@ complete statistic

—
Y
=

/mna%kwm:o

Elp(T(yn))]
© ph g=0
9 Ha=o0
9D H=0

(a) : my is Gaussian with mean 6 and variance 1/N
(b) : convolution with a Gaussian function g.

(c) : Hand G Fourier transform of h and g respectively
(d) : Gis still a Gaussian function

e MVUE
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Counter-example

Consider T(yn) = y1

Py.v, (YN, Y1; 0)
Py, (y1;0)
Tyn()=y Py(yw: 6)
Py, (y1:0)
@20 Loni(Yn—0)?
e w07
x e‘% SN S (ya—0)?

Pyy, (YnIy1:0) =

@ pyy,(Ynly1;0) still depends on 6
@ T =Y, is not a sufficient statistic
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Performances

What have we seen?
@ Sufficient statistic
@ If some additional properties (difficult to satisfy), MVUE
Still open questions
@ Fair comparison between two estimates: 6; is better then 8, wrt
the risk R iff . A
R(61,0) < R(62,0) V¢
@ Is there a minimum value for the risk ?
— if the risk is quadratic
— if the problem is smooth enough
— if we reduce the class of considered estimates
@ the answer is yes

— Cramer-Rao bound (CRB)
— achievable sometimes (more often when N — o)
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Smoothness

Problem is said smooth if

°
Opy e(Yn|0)
00 |0=0,

exists for any yy and any 6.

@ yn — Py|o(Yn|0) has the same support for any 6
o

/ pyo(Yn|0)

0
20 axy = 20 /PY|9(VN|9)dVN =0
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Example

Let Yy be a iid Gaussian vector with unknown mean 8 = m and
unit-variance

1 _1 SN _n)2
Pyio(ynl0) = We 15N (yn—0)

3 0
py%(g,\,\ )|9:90 = (Zgﬁ Yn — 0)py|e(Yn|0)

o
@ the support is RN for any 6

@ [on Pyio(Yn|0)dyn =1
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Estimation

Cramer-Rao bound

Any unbiased estimate satisfies

A a T
E [(e — o) (8- o) ] > F(66)~" = CRB(6p)
with
@ F(6p) the so-called Fisher Information Matrix (FIM) defined as

_ - [(2108pyis(yni6) dlogpypynlo) )"
F(to) =E l(&g‘g:%) <89|9=60> ]

@ >: order for quadratic semi-definite matrix
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Sketch of proof

Let us first consider the scalar case

E {(é - 90)W90] = /(é - ao)Wl%pya(}/leo)dy
_ /(é B 00)3PY|géY\9) |90dy
_ /éapygéyle)leod}’—eo/ 8pygéy|9)leo
= %]E[é] = %9

= 1
Then Cauchy-Schwartz inequality

E[XY]? < E[X?]E[Y?]
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Sketch of proof (contd)

By setting D(y, 6p) = %;(J’W)

construction

10, @ column vector, we have by

M= & [ (F0) 0y, 0) — (0~ 0)) (FU0e) DOy do) — (G- 0))| 2 0

So
M = E[F(6) 'D(y,60)D(y00)"F(6 )1]+E[(é—90)(é—90)T]

- E[F(%) D(y, 60)(0 — )}

= F(6o) " + E[(6 — 60) (8 — )T]— F(60)"E[D(y,80)(8 — 60)"] — ()"
In addition

E[D(y,00)(8 — 60)"] = Id
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Application

MSE(6, 6y) > trace(F(6)™")

since
MSE = ZEH@(” o(n)[?] = wace(E[(6 — 60)(6 — 60)"])

and
A > B = trace(A) > trace(B)

@ CRB exists also for biased case
@ An unbiased estimate achieving the CRB is said efficient
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Estimation

Cramer-Rao bound (cont’d)

If & — log pys(Yyn|0) has a second-order derivative, then

F0y) = —F [32 log Pyja(Yn|0) ]
|6=00

(00)?

where E[9? log py|s(Yn|0)/(96)7_,,] is the Hessian matrix whose
components (¢, m) are

92 log py|o(Yn|0)
0(0)6(m) o=
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Sketch of proof

Let us consider the scalar case

9 log py o (¥16) _ 1 Ipya(y10) ?
E[ (96)? ] - E[PY&(}’Wo)z( o6 weo)]

E 1 pyo(y10)
Pyio(y16o)  (90)2 |0=0¢

L 1 9pyp(ylf) ?
a IEl(lme(y@o) o0 |0—90)]

= -E l(a |°gpgo|e(}’|9) 9_00) 2]

Philippe Ciblat MICAS902: Part on “Detection and Estimation”



Example 1

Let Yy be a iid Gaussian vector with unknown mean 8 = m and
unit-variance
1

15N _ )2
pY\G(yN‘Q) = We_; En:1(}’n 0)

Fisher Information Matrix is s.t.

1
9 _ U

Remarks: the empirical mean estimate
@ unbiased, MVUE with variance 1/N
@ efficient (rational since MVUE and CRB evaluation)
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Example 2

@ Let Yy be a process depending on two multi-variate parameters
01 and 0.
@ Letg=[07,001"

E [8|°ng\9(yN|9) 3|OgPV\9(VN|9)} E [3|0gPY\9(YN\9) 8|08PY\0(YN|9):|

F(o) = 901 20T 0, 907
o E 0 log pyjo(yn|0) O log py|e(Ynl0) E 0 log py|g(Yn|0) Olog py|e(yn|0)
90, 20T 90, 907

Matrix inversion lemma

A B Y- — S —s-'BD-"
c D|~ =| -p-'cs-' D'+D-'cS'BD'

|

with the so-called Schur complement

S=A-BD'C
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Estimation

Example 2 (cont'd)

@ If B= C = 0, then performance for joint optimization (both 6; and
6> are unknown) are the same as only one of them is unknown

@ If B#0and C # 0 (actually C = B"), then

Schur complement is definite-positive (take X = [xT, —x"BD~']")

— D7'B'S™'BD" is positive
— joint estimation for 6, is worse

BS~'B"is positive and as A— S = BS™'B", then A > S and
STT>AT
— joint estimation for 61 is worse
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Asymptotic analysis

@ In many estimation problems, very difficult to obtain performance
at fixed N for the variance

@ Consequently difficult to know the distance to CRB

@ Extremely difficult to design an (almost)-efficient algorithm at
fixed N (see the characterization of the complete sufficient
statistic)

@ To overcome these issues, N — oo is useful

Analyze the performance (bias, variance, ...) of gy when N — oo
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Estimation

Example

Let Yy be a iid vector with unknown mean 8 = m and unit-variance

1 _1 SN Y
Pyio(ynl0) = We 1N (yn—0)

Let

1 N
my = N;}/n

10 échantillons

@ Convergence?

@ Distribution?
— Shape
— Mean (value of
convergence
necessary)
— Variance

Nombre de valeurs trouvées par rectangle (pour 1000 tests)
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Estimation

Example

Let Yy be a iid vector with unknown mean 8 = m and unit-variance

1

e 3N (yn—0)?
(271—)N/2

Pyio(ynl0) =
Let

1 N
my = N;}/n

100 échantilons.

@ Convergence?

0 @ Distribution?

— Shape

— Mean (value of
, convergence
necessary)

; T — Variance

Nombre de valeurs trouvées par rectangle (pour 1000 tests)
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Estimation

Example

Let Yy be a iid vector with unknown mean 8 = m and unit-variance

1

e 3N (yn—0)?
(2m)N/2

Pyio(ynl0) =

Let

1 N
my = N;}/n

1000 échantillons

@ Convergence?

0 @ Distribution?

— Shape

— Mean (value of
o , convergence
necessary)
e 15 > o : o — Variance

Moyenne estimée

Nombre de valeurs trouvées par rectangle (pour 1000 tests)
5
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Estimation

Example (cont’'d)

In any case
E[fy] = mand lim my % m
N— oo

but
o If y, Gaussian,
VN(iy —m) 2 N (0,1)

@ If y, non-Gaussian, Central-Limit Theorem

lim VN(fy —m) 2 N (0,1)

N— oo

Extend similar results to other cases \
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Consistency

- A a.s.
lim HN = 90
N— oo

with the almost surely convergence

Pr <w ©lim On(w) = 0()) =1
N— oo

Standard approaches for proving it:
@ Strong law of large number (SLLN)
@ Weak law of large numbers (WLLN) if convergence in probability
@ Other way:
— Borel-Cantelli lemma

Ve >0, > Pr(||fh — bo]| > &) < +oo = Pr( lim Oy = 6o) =1
N— oo
neN
— Markov/Tchebitchev inequality and Doob trick
E[||0n — 6o|*]

Pr(HéN — 6ol > ) < 2
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Estimation

Asymptotic normality

An estimate is said asymptotically normal iff 3p s.t.

lim NP/2(6y — 60) 2 N(0,T)

N— oo
where
@ pis the so-called speed of convergence

trace(I)
NP

MSE = E[||0y — 6o]|?] ~

@ [ is the so-called asymptotic covariance matrix

Standard approaches for proving it:
@ Central-Limit Theorem
@ Standard proof by using the characteristic function of the
second-kind

t — log E[e™X]
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Definitions

@ An estimate is said asympitotically unbiased iff

,JLmME[HN] =t

@ An estimate is said asympitotically efficient iff

MSE(N)

VY
A trace(CRB(N))
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Algorithms

@ Contrast-based estimate
@ Maximum-Likelihood (ML) estimate
@ Least-Square (LS) estimate

@ Moments-matching (MM) estimate
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Estimation

Definition for contrast estimate

Philippe Ciblat

@ Let J be a bivariate function. It is called a contrast function iff
0 — J(6,6)

is minimum in 6 = 6y
@ Let Jy a statistic of yy depending on generic parameter ¢

0 — JN(yN, 9)

Jy is called a contrast process iff
lim Jn(yn,8) Z J(6, 60)
N— oo
@ The so-called minimum constrast estimate y is obtained by

Oy = arg min In(yn, 6)
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Example

Let Yy be a iid Gaussian vector with unknown mean § = m and
unit-variance
1 _1 SN Y
pY\G(YN‘Q) = We 2 En:1(}/n 0)
We have
J(0,600) =1+ (0 — 0)?

The empirical mean is a minimum contrast estimate (unbiased,
efficient, asymptotically normal with p = 1)
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Main results

Consistency

If 0 — J(0,00) and 6 — Jn(yn, ¢)) are continuous in ¢ (and other mild
regularity conditions on Jy), then minimum contrast estimate 6y
consistent

Asymptotic normality

@ 0 — Jn(yn, ) twice-differentiable in an open neighborhood of 6y

o N2uub) 6_g, CONVerges in distribution to a zero-mean
GaUSS|an distribution with covariance matrix A(6o)

@ the Hessian matrix %‘9 ,. converges in probability to the
=Y
definite-positive matrix H(6p)

@ and mild regularity technical conditions on Jy

then minimum contrast estimate 6y asymptotically normal with p = 1
and asymptotic covariance matrix

[(60) = H™"(60)A(60)H " (60)
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Sketch of proof

By applying second-order Taylor series expansion around 6y, we get

9JIn(yn, 0) —0=— 9In(yn, ) 9In(yn, 6) (On — 60)
00 |0=0y 00 |6=6o (00)? |6=6, N °
So
OIn(yno) _ PPInlyw,9) iy —
\/NTW:% - (89)2 (680 \/N(QN 90)

cv. in distribution to A'(0, A(60)) ¢y, in probability to H(6o)

Then
Jim_H(60).v/N(Bi — 60) 2 N (0, A(60))
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Estimation

Maximume-Likelihood (ML) estimate

Definition
Let py|¢(.|00) be a probability density parametrized by 6o
The Maximum-Likelihood (ML) estimate for 6, is defined as follows

éML’N = arg max Pyia(yn|0)

Likelihood equations: If 6 — py|4(yn|0) is differentiable, then

pya(YnI0)

=0
o0 |0=6y N

Warning: the ML estimate is not necessary unique (if more than one
global maximum)
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Estimation

Link with minimum contrast estimate

Fundamental assumption
Y iid vector

We have

éMLN = arg mein JIn(Yn, 0)
with the following contrast process

1
In(Yn, 0) := — 1 log Pyjo(Ynlf) = — ZIOEPY\G(Yn|9)

n 1
One can prove
Jim Jn(yn, ) £ J(6, 60)
with the contrast function (maximum in 6 = 6y)
J(0,60) = —E[logpyje(yn|0)]
— [ loglpyiolynle))pyiynico)dyw
= D(pyo(.100)[IPy6(.10)) + H(Pyia(.|60))
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Estimation

Asymptotic analysis

Result

If Yy iid vector, and the ML-related constrast function and process
satisfy standard conditions, then ML estimate is

@ consistent
@ asymptotically unbiased
@ asymptotically normal with p = 1

@ asymptotically efficient
(limn— oo trace(I (Ao ))/(Ntrace(CRB(N))) = 1)

General case (nhon-iid):
@ no general result
@ should be analyzed case by case
@ nevertheless iid result often valid
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Sketch of proof

Let F(6p) the FIM when N samples are available.

N
Foo) 2 S E

n,n’=1

0log py|e(¥n|0) 3'°€PY\9(yn’|9)T
00 16=0y 00 |6=6,

B 0 log py|e(¥nl?) dlog pyjs(ym|0)"
= NFi(6o) + Z E { o0 oeJ . a0 =

n#£n’

—  NF;(fo)

with F1(6o) the FIM for one sample
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Sketch of proof (contd)

log Py o(Yn|0) 1 o 3|ogpy‘9(yn\0)
N /
= - N - - =~ -
\/> 00 |0=0¢ N pard 00 |0=6, 0

B N(0, A())

since E[w _g,] = 0 and with

A(By) = lim NIE[

N—oo

07 log Pyio(ynl0) 97 log pyia(ynlo) "
00 |0=0o 00 |0=60

1 i E dlog pyo(¥nl?) dlog pyjo(ym|0)"
00 [6=60 00 |6=6o

n,n’=1

= Fi(bo)
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Sketch of proof (contd)

9P log pyjo(ynl6) _ Z 0 |0gPY|0 (¥nl6)
(90)? |6=0, N |6=00
pNsoo o 32 |0gPY|9(Yn|9)
(06)? 10=05
= Fi(%)
Consequently,

H(6o) = F1(60)
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Sketch of proof (contd)

We remind ) >
VN(@yi.n — 60) = N(0,T(6))
with
[(6o) := H "(60)A(60)H " (60) = F; " (6o)
Consequently

lim NE {(é\ML,N —00) (v — GO)T] = F, " (6o)

N— oo

E [(éML,N - 90)(éML,N - QO)T} ~
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Example 1

Let Yy be a iid Gaussian vector with unknown mean 6§ = m and
unit-variance

1 _1 5N Y
Pyo(Yn|0) = We 15N (n—0)

We can see that HAML,N is the empirical mean, and

\/N(éML,N — m) 2) ./\/‘(07 1)

and ]
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Example 2

Let a pure harmonic with additive noise
Yn= e2f7'rfon+Wn7 n= 1) 7N

with w;, iid zero-mean (circularly) Gaussian noise with variance o2,
Remarks:

@ independent sample but not identically distributed (non-id)
@ none of previous results applies!

N
z 1 —2irfr
LN = arg mfaX%{N E yne < n}

R 2
N2 (han — o) 2 A0, 270
8

Much faster than standard case since E[(fun — f)?] & gt

Proof: see Exercises’ session
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Estimation

Least-Square (LS) estimate
Let

Yn= fn(eo)—FWn, n=1,---,N
with
@ fp(.) deterministic function
@ W, zero-mean process
Least-Square (LS) estimate
We fit the model with the data wrt the Euclidian distance

N
éLS,N = arg mgn 21 |Yn — fn(9)|2
P

Related to the closest vector problem in a (non-discrete) vector space

If w, is iid Gaussian noise (with variance o2), LS is identical to ML

Example : empirical mean is both LS and ML (with Gaussian noise)
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Estimation

Example

Linear model:
YN = HO + wy

Then )
Ois,n = arg mein llyn — H19||2

If H column full rank, then

éLS,N = H#VN
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Estimation

Moments-matching (MM) estimate

g-order moments:
@ statistical terms with the following form
E[f(Y1,---, Yp)l
with f a monomial function of degree g
@ related to the Taylor-series expansion of the function

w— E[e]

if we consider only one variable Y

Notations:
@ Let S(#) a vector of moments depending on 6
@ Let Sy the empirical estimate of S(6,) with N samples
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Estimation

Moments-matching (MM) estimate (cont’d)

Algorithm
If

(] 8(9) = 8(90) = 0= 90,

@ and 0 — S(6) is continuous,
we define the contrast process

In(yn.0) = 118 — SO)I?

and the MM estimate as

b = arg min || By — S(69)|?

Vocabulary: MM estimate is also called Method of Moments (MoM)
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Estimation

Moments-matching (MM) estimate (cont’d)

Result
If

@ 0 +— S(0) is twice differentiable in 6y

o VN(8y — S(60)) B N(0, R(60))
then

VN(ban — 00) 3 N(0,T(60))
with
[(60) = (D(66)"D(60)) " D(66)" R(60)D(60) (D(60)" D(65)) "

with D(6p) = 0S(6)/06,9—g,

Remark: second bullet is often satisfied (if iid, straightforward).
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Sketch of proof

We have

B N(0, A(6)))

with A(6p) = 4D(66)" R(66) D(6o)

PP In(Yn, 0
(I\é(ay)g)lee - 2D(90)TD(90)
aZST A
~ %S (5y-sw
(89)2‘9:90M
o %o
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Example

Let Yy be aiid Gaussian vector with unknown mean 6y = m and
unit-variance

We consider
In(Yn, 0) = [Iiy — 0]
and the MM estimate as

éMM,N = arg mein In(yn, 0)
= My
Then
VN(fi — m) B N(0,1)
since
@ D(6p) =1

o R(fo) = limn_,oe NE[(fity — m)?] = 1
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Extension to complex-valued case
Let us now consider that § € CK
@ Can apply all previous results by working on
6= [R{6}T,3{0}7]" € R?K

@ But result not easy to interpret: use

s 1011 0 9
4[] e [2]
—_———— ——
M [

@ Remind

0. 1( o . o 0._1( 0 ;0
0 2 (aén{e} - ’as{e}) and 96~ 2 <83‘E{9} i 183{9})
(see f(0) = 0)

Philippe Ciblat

Apply previous results with changes of variables (¢ and )
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Main result

We have
E[(® — 00)(8 — 05)"] > E~'(6,)
with
H
| 0 | 0
F(0y) = {(3 nggg(ym ) ) (3 nggg(ym ) ) ]
= IGIGO = ‘9:90
Remarks:

@ we can use “real-valued” CRB expression with  and 6 instead of
T and ¢ iff cross term vanishes in F(6,)

@ many examples in telecommunications (as working in baseband
with on complex enveloppe)
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Sketch of proof

We have
E[( — G0)(6 — 65)T] > CRB(fp)
E[(6 — G0)(@ — 00)"] > CRB()
ME[(® — 0,)(0 — 0,)"IM" > MCRB(0,)M"
E[(8 — 00)( — 0,)"] > CRB(6,)

since
F(0,) = M'F()M = CRB(8,) = M~'CRB(fo)M~ "
= CRB(fy) = MCRB(§,)M"

with 0./0 = M"9/00
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Bayesian Estimation

Part 5 : Bayesian estimation (for random parameters) |
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Principle of Bayesian approach

@ Let us consider 6 as a random variable with a known a priori
probability density function py(6).

@ Let us consider the joint pdf between observations and unknown
parameter 6y. Bayes’ rule leads to

Py.,o(Yn, 0) = Pya(Yn|0)Ps(0)

Quadratic risk

E(ldn — 8ol
/ 10n — 012Dy 6(yn, 0)dyndo

E[E jo[l|0n — 011%]]
—  E[MSEq (0)]

MSE

Remark: the risk is averaged over all the values of 6. It is not
evaluated for a specific value of 6.
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Optimal estimate

The optimal unbiased estimate (wrt MSE) exists and is given by

Bynase.n = Eopy[6] = / 0po1y (0lyn)do

This estimate is called MMSE and corresponds to the mean of the a
posteriori pdf of 6

Remarks:

@ The optimal estimate is the Mean A Posteriori (MeAP) insterad of
the Maximum A Posteriori (MAP) defined as follows

Ovapn = arg mé’ixpe\Y(9|VN)

@ In deterministic approach, the optimal unbiased estimate does
not exist in general. But often exists asymptotically (through ML)
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Sketch of proof

Let us consider the scalar case

MSE@n) = [ ([ @n—0200v(Glym)ds ) priywayn

As inner integral and py(yn) are positive, MSE(@N) is minimum if for
each observation yy, the inner integral is minimum itself.
So we are looking for dy s.t.

d ~
— (9[\/ e 0)2p9|y(0|yN)d0 =0
diy

which implies

9N/P9|Y(9|VN)d9 = /9P9|Y(9|VN)d9
N —

1

Philippe Ciblat MICAS902: Part on “Detection and Estimation” 101 /105



Bayesian Estimation

Yn=m+w, pourn=1... N
with
@ m zero-mean Gaussian variable with known variance o2,
@ w, iid zero-mean Gaussian process wth known variance o2,

Pmy(Mlyn) = Pyim(Yn|m)pm(m)/py(y¥n)

o @ T X Vo) 127

mMMSE,N(: mMAP,N) m N Z}/n
b

Remarks:
e Ifo2 <« o2, Muwmse,n close to a priori mean (0)
@ If 02, >> 02, Mymse.n close to empirical mean
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Bayesian Estimation

Bayesian Cramer-Rao Bound

Let d be an unbiased estimate of 6, then

MSE(f) > F~' = BCRB

with .
F_R dlog py o(Yn,0)\ (Ologpy e(Yn,0)
B 00 00
Remarks:
@ We have

F_ & {82 Iog(pg;;(y,v,@)}

@ No link between BCRB and E[CRB(6)]

Philippe Ciblat MICAS902: Part on “Detection and Estimation” 103 /105



General conclusion

@ Rich topic with four main configurations

@ In deterministic approach: mainly asymptotic results and
Maximum Likelihood plays a great role

@ In Bayesian approach: optimal estimate fully characterized and
finite-data analysis possible
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