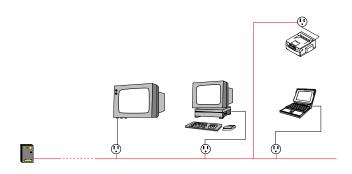

Communications sur câble électrique

Philippe Ciblat

École Nationale Supérieure des Télécommunications, Paris, France


Problématique : réseau d'accès

- Outdoor
- Réseau public
- Licence obligatoire

Philippe Ciblat Communications sur câble électrique

2/20

- Indoor
- Réseau privé
- Pas de licence

3/20

Les buts sont communs à l'outdoor et à l'indoor

- Débit partagé de qq dizaines de Mbits/s
- TEB de 10⁻⁷
- Latence 50ms (voix, jeux : 50ms; vidéo : 100ms; consultation internet : 400ms)
- Bande maximale de 30MHz

Dénomination :

- PLC : PowerLine Communication
- CPL : Communications on Powerline / Courant Porteur en Ligne

Rappel: l'électricté fonctionne à la fréquence 50Hz

- 1960 : Commutation des compteurs, Allumage des lumières Très basses fréquences (175Hz) et qq bits/s
- 1980 : Télémétrie Basses fréquences (9-100 kHz) et qq kbits/s
- 1995 : Domotique (9-100 kHz)
- Fin années 1990 : Domotique (indoor) ou réseau d'accès (outdoor) → Hautes fréquences (1,6-30MHz)

Normalisation

Instance:

CENELEC : couche PHY

ETSI : couche MAC et plus

• IEEE : groupe P1901

Consortium:

HomePlug : alliance de certification

OPERA : projet européen d'étude et de standardisation

Commercialisation:

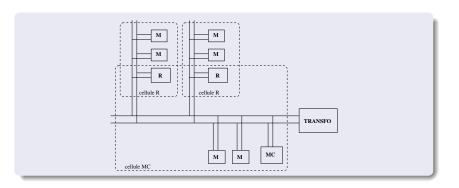
Indoor : oui

Outdoor : phase de test/prototype

Philippe Ciblat Communications sur câble électrique 6 / 20

- Réponse impulsionnelle de l'ordre de qq μs
- Canal statique
- Atténuation forte en fonction de la fréquence
 - 20dB/100m entre 1-10MHz
 - 40dB/100m entre 10-30MHz
- Bruit de fond : environ —120dBm/Hz
- Bruit impulsif: environ –60dBm/Hz pour une longueur typique de qq dizaines de μ s
- Puissance de transmission autorisée : environ –40dBm/Hz
- Néanmoins qq bandes interdites (radio AM, radio amateur)

Portée


- 400m entre 1-10MHz ⇒ Outdoor
- 200m entre 10-30MHz ⇒ Indoor

Philippe Ciblat Communications sur câble électrique

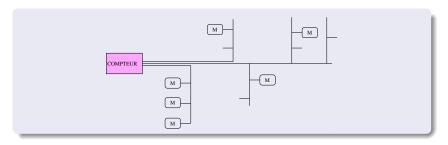
Canal: architecture outdoor 1

Distance moyenne transformateur-abonné en urbain :

- qq centaines de mètres voire un kilomètre
- qq centaines de foyers
- répéteur nécessaire (en bas des immeubles typiquement)

Philippe Ciblat Communications sur câble électrique 8 / 20

Canal: architecture outdoor 2


- Système multi-cellulaire et multi-utilisateur mais canal connu à l'intérieur d'une cellule
- Technique d'accès multiple comme en WIFI (distribué) ou comme en UMTS (centralisé)
- Différences entre PLC et ADSL :
 - multi-utilisateur (car câble partagé)
 - multi-cellulaire (car atténuation forte)

N.B.: Aux Etats-Unis, problématique différente car distance plus courte (transformateur sur pôteau en début de lotissement)

Philippe Ciblat Communications sur câble électrique 9 / 20

Canal: architecture indoor

Distance moyenne prise-prise : qq dizaines de mètres

- Liaison multi-point multi-point
- Une dizaine d'appareils
- Signal ne sort pas du réseau local (le compteur l'arrête!)
- Technique d'accès multiple clairement comme en WIFI (distribué de type CSMA/CA)

Philippe Ciblat Communications sur câble électrique 10 / 20

Modulation : Généralités 1

- On ne s'intéresse dorénavant qu'au réseau outdoor
- Néanmoins couche physique de l'indoor similaire
- Mais couche d'accès au medium différente

Toutes les fréquences sont potentiellement intéressantes donc

- Mode TDD entre cellule R et cellule MC
- Mode TDD entre le lien montant et descendant.

Présentation

Couches physique et MAC conçues par le projet RNRT IDILE (consortium d'industriels et d'académiques dont l'ENST)

Philippe Ciblat Communications sur câble électrique 11 / 20

Modulation : Généralités 2

- Bande $\approx 20 \mathrm{MHz} \Rightarrow T_{s} \approx 0,05 \mu \mathrm{s}$
- Filtre de longueur maximale $15\mu s$ soit 300 symboles
- ⇒ Gestion simple de l'interférence entre symboles
 - Canal statique
 - Fréquences interdites
 - Evanouissement important
- ⇒ Gestion du débit par bande de fréquence

Solution

OFDM est plus adapté que le CDMA et que le mono-porteuse

Philippe Ciblat Communications sur câble électrique 12 / 20

OFDM: Dimensionnement

Largeur de bande (B)	20 MHz
Temps symbole d'information ($T_s = 1/B$)	0,05 μ s
Longueur du filtre	15 μ s
Degré du filtre (<i>L</i>)	300
Préfixe cyclique (CP)	300
Nombre de porteuses (N)	2048
Perte d'efficacité spectrale	12,8 %
Espacement entre porteuse ($\Delta f = B/N$)	9,75 kHz
Temps bloc FFT ($T = 1/\Delta f$)	102 μ s
Temps symbole OFDM	117 μ s

Désynchronisation des horloges d'échantillonnage

$$N \times \text{précision} \approx 10^{-2}$$

Utilisation d'un VCO/PLL de 5ppm

Egaliseur fréquentiel

Soit u(z) l'égaliseur fréquentiel (dénommé aussi FEQ)

h: filtre représentant le canal de propagation. $H_k = h(e^{2i\pi k/N})$: réponse fréquentielle sur la porteuse 'k'.

Sortie de FFT (porteuse 'k') : $z_n^{(k)} = H_k s_n^{(k)}$

- Filtre adapté : $U_k = H_k^*$
- Forçage à zéro : $U_k = 1/H_k$
- Wiener : $U_k = H_k^*/(|H_k|^2 + \sigma_{b,k}^2)$
- DFE

- Technique de codage similaire à celle de l'ADSL
- Entrelaceur présent juste pour améliorer la concaténation des codes et non pour gérer le bruit impulsif

Bruit impulsif

- Qq dizaines de μ s, donc interne à un symbole OFDM
- Fréquence d'apparition 10ms
- Si nécessaire, technique d'ARQ pour le symbole/paquet perdu

Philippe Ciblat Communications sur câble électrique 15 / 20

Accès multiple

Comment associer une technique d'accès multiple à l'OFDM à l'intérieur d'une cellule

Réponse

- MC-CDMA : gère mal la connaissance du canal
- MC-DS-CDMA : gère bien l'interférence multi-cellulaire et permet le partage de bonnes porteuses
- OFDMA: solution simple et efficace

N.B.: CDMA seul (sans OFDM) ne peut être retenu car

- fréquence interdite
- mauvaise gestion du canal connu à l'émetteur

Difficulté

Trouver un critère pertinent

Soit R_k le débit atteignable par l'utilisateur $k = \{1, \dots, K\}$

	Equitable	Débit cumulé
$\sum_{k=1}^{K} R_k$	mauvais	optimal
$\sum_{k=1}^{K} \alpha_k R_k$	moyen	bon
$\sum_{k=1}^{K} \log(R_k)$	moyen	bon
$\max \min R_k$	très bon	mauvais
$\operatorname{var}\left(\frac{R_k}{R_{k,\text{seul}}}\right)$	bon	bon

Philippe Ciblat Communications sur câble électrique 17 / 20

Allocation dynamique

En OFDMA, utilisateur unique par sous-porteuse ⇒ idem à l'ADSL

- « Waterfilling » n'est pas applicable
- Modulation adaptative en revanche possible
 - Probabilité d'erreur bit cible de 10⁻⁷ en sortie du décodeur RS, soit une probabilité d'erreur bit de 10⁻³ en entrée
 - Pour simplifier, on assimile la probabilité d'erreur bit à la probabilité d'erreur symbole P_s, d'où

$$P_s = 4Q\left(\sqrt{d_{min}^2|H|^2/4N_0}\right) \text{ avec } E_b = \frac{M-1}{6}d^2$$

Lien entre nb de bits/symbole et le RSB

$$m = \left| \log_2 \left(1 + \frac{\text{RSB}}{\Gamma} \right) \right|$$

avec

$$\text{RSB} = \frac{E_b |H|^2}{N_0} \quad \text{et} \quad \Gamma = \frac{2}{3} \left(\, Q^{(-1)} \left(\frac{P_s}{4} \right) \, \right)^2 = 9 \text{dB}$$

thilippe Ciblat Communications sur câble électrique 18 / 20

Capacité de Shannon avec

- Marge de 10dB
- Bande de 20MHz
- RSB maximal de 80dB et atténuation moyenne de 20dB/100m

ĺ	0m	100m	200m	300m
ľ	460Mbits/s	330Mbits/s	200Mbits/s	70Mbits/s

La réalité

ſ	HomePlug 1.0	HomePlug 1.1	HomePlug A/V	IDILE
	6Mbits/s	35Mbits/s	80Mbits/s	100Mbits/s

Philippe Ciblat Communications sur câble électrique 19 / 20

- http://www.cpl-france.org/
- http://www.ist-opera.org/
- http://www.isplc.org/
- Numéro spécial du IEEE Journal of Selected Areas in Communications (JSAC), Juillet 2006.
- E. Biglieri, « Coding and modulation for a horrible channel », IEEE Com. Magazine, Mai 2003.
- M. Zimmermann, « Analysis and Modeling of impulse noise in broadband PLC », IEEE Trans. on Electromagnetic Compatibility, Fév 2002
- S. Gault, « An OFDMA based modem for PLC over low voltage distribution network », IEEE International Symposium on PLC and its Applications (ISPLC), Avril 2005.