TSE101 - Partie introductive

Philippe Ciblat

Telecom Paris, Institut Polytechnique de Paris

Objectifs pédagogiques

Ils sont multiples et complémentaires

- Connaissances scientifiques sur le système-Terre et le climat
 - \hookrightarrow quelques résultats considérés comme cruciaux
 - → aperçu de la modélisation mathématique
 - → chiffres précis permettant de naviguer avec aisance
 - → apport d'une vision systémique
- Utilité de vos futures études sur l'analyse du changement climatique et la capacité à agir dessus
- Réflexion sur votre parcours d'ingénieur et l'impact de vos technologies

Remarque: ce cours

- n'est pas orthogonal aux autres cours de l'école
 - o lien, par exemple, avec SI101, COM105, MDI220
 - lien, par exemple, avec filières SD-TSIA, Telecom-RIO
- n'est pas une série de conférences

Organisation et plan du cours

- 28TH (14 demi-journées ou 42 heures)
- 3TH par semaine en P3 et 1TH par semaine en P4

Plan

1.	Systèmes dynamiques, climat et énergie 12T	Ή
2.	Numérique et environnement 3T	Ή
3.	Systèmes économiques et environnement 6T	Ή
4.	Leviers d'action pour la transformation 4T	Ή
_	Examen	Ή

- o 3 QCMs répartis durant le cours
- Analyse de documents sur table

Partie 1 : Systèmes dynamiques, climat et énergie - 12TH

1. Système-Terre 5TH
 Systèmes dynamiques à boucle de rétroaction Modélisation mathématique Cycle du carbone, du nitrate et du phosphore, Modèle World3 Quelques métriques d'évaluation 3 TPs
 2. Climat: physique, passé et futur
3. Energie et décarbonation

Partie 2 : Numérique et environnement - 3TH

- o Bilan global : réseaux de télécoms et IA
- Problématique des matières premières
- Effet rebond
- Effet de levier : le numérique comme externalité positive
- o 1 TP

Partie 3 : Systèmes économiques et environnement - 6TH

 Fonctionnement du système économique actuel 4TH Principaux mécanismes de l'activité économique contemporaine Notion d'externalités négatives, verrouillage socio-technique Théories de la transition environnementale 1 TP
 2. Histoire politique environnementale

Partie 4: Leviers d'action pour la transformation - 4TH

1.	Usagers/consommateurs
2.	Ingénieurs/salariés
3.	Citoyens