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@ Section 1: Information Theory tools
@ Section 2: Optical nonlinear channels

@ Section 3: Optical MIMO channels

Chromatic dispersion (CD) SISO channel
Polarization Mode Dispersion (PMD) MIMO channel
Polarization Dependent Loss (PDL) MIMO channel
— Practical coding schemes
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IT tools

Section 1 : Information Theory tools |
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Goal for optical system

Transmitting
@ over a long range (2000km)
@ ultra-high data-rate (1Tbs per wavelength)
@ with high fidelity (bit error rate at 10~15)
but constraints occur

@ economical constraints (energy, complexity, cost)
@ technological constraints (propagation, electronic devices)

@ theoretical constraints

= Information Theory [Shannon1948]
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IT tools

Notion of “information”

Channel Receiver

the received information is “something” which is transmitted but the
receiver does not know it before the transmission

@ Information thus deals with uncertainty
@ Uncertainty is well modeled by randomness
@ Examples :

— A deterministic event does not contain information
— Arandom event in communications: binary stream from a
audio/video flow, ...
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Information metric

Information corresponds to randomness

)

the more random the event is, the more information the event carries

Level (or quantity) of information carried by event S = s has to satisfy
following intuitive properties:

@ /(S = s) decreasing function wrt probability Pr(S = s)
@ /(S=s)=0when Pr(S=s)=1
@ /(S = s) is a continuous function wrt Pr(S = s)

@ If two independent events S; = s; et S, = sp are observed, then
the total received information is /(S; = s1) + I(S2 = s2)

= I(S=s)=—log, (Pr(S=25s))
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IT tools

(Discrete) Entropy

@ Let X be a discrete random variable (rv) whose values belong to
A:{X1,"' ;XM}

@ Let p(x) = Pr(X = x)

@ Information in rv X, called entropy, is the average of information
of each event. Therefore

M
H(X) = Ex[I(X = x)] = = > p(Xm) log>(p(Xm))
m=1

Remarks
@ 2-base for logarithm since information bits per channel use (pcu)
@ If X is N-variate, then H(X) = Ex[/(X = x)]/N
@ Entropy only depends on probability density function

@ The semantic is not taken into account in Information Theory

— In French, only the probability of occurrence of each character is
taken into account, not the meaning of the words/sentences
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Example: binary stream

@ Pr(iX=0)=p
@ PriiX=1)=1-p

H(X) = H(p) & —plog,(p) — (1 - p)log,(1 — p) |
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IT tools

(Other) Entropies

Philippe Ciblat

@ Joint entropy: let Xi,--- , X, be random variables
H(X17" 7 Z Z pX17 » Xn IOgQ( (X17"'aXn))
X1 €A XpnEAp

@ Conditional entropy: level of information in Y once X has been
observed (and so known)

H(YIX) = —Ex[)_ p(ylx)logs(p(y|x))]
YEAy

= — > p(x,y)logy(p(y|x))

XEAx,YEAy

o Differential entropy: level of information when X has values
belonging to an uncountable set

/P )log,(p(x))dx

where p(x) is the probability density function (pdf) of rv X
— Gaussian case with p(x) = (1/v/2r)e /2
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IT tools

Mutual information

@ Let /(X; Y) be the mutual information between X and Y
@ ltis the level of information shared by X and Y

I(X; Y) = H(X) — H(X]Y) ]

H(X,Y)

H(X)

Examples
e If Y=X,then I(X,Y) = H(X)
@ If Y and X independent, then /(X,Y) =0
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Channel capacity

@ Let X = [xq,-- -, xn] be the transmitted signal
@ Let T be the information rate: TN bits of information in X
@ Let Y = [y1, -, yn] be the received signal

@ Let C be the channel capacity. Then

C= m(a;< I(X;Y) (depends only on p(y|x) and p(x))
p(x

There exists a coding scheme of length N with information rate T,
such that,

T<C and lim P.=0
N— oo

@ Fundamental limit is the rate not the reliability
@ Non-constructive theorem (large interleaver required)
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IT tools

Example: Binary Symmetric Channel (BSC)

X Y
(withp = 1/2)

@ Channel corresponding with hard decision binary stream
@ If physical channel is Gaussian, then

B 2E;\ 2E,C . _
q_Q< NO>_Q< N0> with E; = E,/2
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IT tools

Example: contd
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@ Capacity vanishes when g = 0.5
@ Capacity vanishes when Ep /Ny below 0.4dB
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Example: Gaussian channel

Y=X+W

with W a white zero-mean circularly-symmetric Gaussian noise with
variance Ny per real dimension

The most famous expression of Information Theory

@AsSE,.=TxEpand T < C,

E r_, T—0
>3 > log(2)

N——
=—1.6dB
@ As for the rate (bits/s),

Blog,(1 + P/BNy)
with bandwidth B (Hz)
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IT tools

Spectral efficiency (SE)

@ Let us focus on practical linear modulations
X(t) = skg(t — KTs)
k

where

— sk belongs to 2™-QAM

— Sk is also the output of a N-length FEC with rate R

— g(t) a p-roll-off shaping filter (p ~ 0 for WDM Nyquist)
— Information rate T = mR pcu

@ Datarate = T/T; bits/s

@ Maximal data rate = C/T; bits/s

Maximal SE: C bits/s/Hz (zero BER and fixed SNR)
Practical SE: T bits/s/Hz (non-zero BER and fixed MCS)
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Nonlinear channels

Section 2 : Optical nonlinear channels |
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Nonlinear channels models

@ To derive capacity, Input/Output closed-form expression required
@ Hereafter, for sake of simplicity, one polarization

Nonlinearity = Kerr effect (index of refraction depends on power) )

Non-linear Schrédinger Equation (NSE)

X Bp 2X
5z T X 20

4 ’}/NL|X|2X 0
with

@ « the attenuation

@ (3, the dispersion (CD)

@ ~n. the nonlinear coefficient

@ L the fiber/span length

No closed-form solution without further simplifications (« or 5,)
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Volterra series

@ Volterra series provide approximate solution to NSE
@ So, in the frequency domain, we have [Brandt1997]

Y(f) & €2 2L X(F) + Yoo (F) + W(F)
with
Yau(f) = €™l (2ir)yn / / / S(f— fi + fh — B)X(F)X*(R)X(f)

ol(—a+2inBy(~P+R—-B+)) _ 4

f, df> df-
T e = i

Special case: non-dispersion (5> = 0)

Y(t) = ef‘YNLLeﬂ|X(f)\2X(t) + W(t)
with Leg = (1 — &) /a
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Literature on nonlinear capacity derivations

@ Numerical evaluation [Essiambre2010]

I(X;Y)= //p (x,¥) Iogz< '[()() ())) dxdy with predefined p(x)

@ Lower-bound derivations [Turitsyn2003]

@ Approximation derivations with p(x) assumed Gaussian
— based on Volterra series [Tang2001, Tang2006]
— based on additional multiplicative noise (valid only for specific
set-ups) [Mitra2001,Kahn2004]
— based on additional additive noise (valid only for specific set-ups)
[Poggiolini2011]
— based on perturbative solution of NSE [Narimanov2002]

In this lecture, we will focus on Tang’s approach )
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Numerical results from the literature

@ 1 span

@ B=50GHz

@ By =0GHz

@ N, =81 WDM channels

@ L =280km

@ Nop=10"°mW/GHz

@ o =0.2dB/km

@ 3> = —21.6 ps?/km m
@y =122W ' . km™’

@ Results are scattered because of models

@ Gaussian input derivations correct for practical input power
@ Chromatic dispersion increases the nonlinear capacity
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Numerical results from the literature

1 span o [ re—

y
—+— Tang (Non—disp.)

o

° 08

o Bg - 0 GHZ @ —w— Poggiolini

@ N, =81 WDM channels goeres .

o L—80km £

o No=10-5 mW/GHz :

@ o = 0.2 dB/km ° '
@ [ =-216 p32/km 0 01 1 RN 1000
° L = 122 W_1 ) km_1 Input power per channel (mW)

@ Results are scattered because of models

@ Gaussian input derivations correct for practical input power
@ Chromatic dispersion increases the nonlinear capacity
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Derivations for non-dispersive case

Py
Maximal rate = Blog, (1 + D OnteeP) ) bits/s

3(yne LeitPx )2 N2
NoB + P 5ty (i Lo NoPL )2

@ Derivations can be found in [Delesques2012]
@ Red terms have been added and decrease the capacity
@ Maximum value obtained for P: = (NoB/3)"/3/(ynLeitN:)?/3 is

Maximal rate™ = log, <1 + = >
(Y LettNeNo B)?/3
@ At high Py,
Maximal rate = Blog, ( NB?1LNP> —0
057V NL Leff
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Derivations for dispersive case

B/2

. Pe(1 + 16722, 12 N2P2)>
Maximal rate = log, (1 eft. ¢ X/ of
/_3/2 %2 ( - NoB + Mx(f)

with

N
M = exRuPy/E) S [[[ar-fn-n)

ki ko, kg=—N

fi + k1B fo + koB f3 + k3B
t t t
rec ( B ) rec ( B rec B

2
df dhdfy

X

o [—a+2i527r2(—f2+f12—f22+f32)]

—a+2iBm2(—f2 + 2 — 2+ 12)

@ Derivations can be found in [Delesques2012]
@ Expressions difficult to manage
@ But easy to evaluate numerically
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Numerical illustrations

Same value as in slide 18 (except 32: —5.1 for LEAF; —21.6 for SMF)

—5—Non- di spersi ve fiper
[|—E—LEAF fiber
| |—©—SMF fiber
——-Linear case

Data rate (Ghit/s)
S
S
IS]

N
o
S]

100 t -
0.01 0.1 1
I nput power per channel (nW

@ Dispersion increases the capacity
@ Around 550 Gbits/s (11 bits/s/Hz) possible with Gaussian input!
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MIMO channels

Section 3 : Optical MIMO channels |
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MIMO models

@ Two polarizations (2 x 2 MIMO)
— Chromatic dispersion (CD) + Polarization Dispersion Mode (PMD)

_ 2in?B,LR . | cos(8) sin(8)
Y(f) =€ 2 HPMDX(f)+ W(f) with HPMD = |: —sin(@) COS(@)
— Polarization Dependent Loss (PDL)
_ - _yH| V1t 0
Y(f) = Hep  X(f)+W(f) with Hpp. =U { 0 N } Vv

with U and V two unitary matrices and v €] — 1, 1] the PDL loss

PDL coefficient: I = 10 log, ({2 J

@ Extension : multi-modes fiber (not addressed in these slides)
@ Nonlinear effect neglected hereafter
22/34
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MIMO channels
Random channel

Block fading channel

0 and ~ are time-varying!

Coherence Time
(typically 1ps for 1000km fiber)

Assuming transmission over B = 50GHz, so Ts = 20ps
@ Channel static over 50,000 symbols!
@ Channel known at RX (at very low cost)
@ In contrast, channel unknown at TX due to propagation duration

Lps
==

Channel known at TX
but outdated
>

— outdated Channel State Information at the Transmitter (CSIT)
— TX has to view channel as random
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Capacity for random channels

@ How defining capacity (which is channel-dependent) when
channel is time-varying !
@ Solution provided for wireless channel in [Shamai1994]

First case: when a codeword encounters every channel realization

Ergodic capacity

C = Echanne/ [C(Channe/)]

Example: codeword of length 4320 with QPSK =- 43.2ns
@ without interleaver, one codeword views one channel realization:
ergodic capacity not suitable

@ with interleaver of size 200Mbits, each bit within one codeword
views one channel realization:

— latency: 2.16 ms = yes
— interleaver size = no
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Capacity for random channels
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MIMO channels

Definition of outage probability

Second case: when a codeword encounters one channel realization

Outage probability

Codeword for which C(channel) is less than the spectral efficiency R
is in “outage”
Pout. = Prehannei(C(channel) < R)

@ Realistic scheme when channel is slow block fading = yes
@ Realistic scheme according to our interleaver size = yes

outage capacity suitable

What do we need for deriving outage capacity:
@ Closed-form expression for C(channel)
@ Statistical model for the channel (through either 6 or ~)
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MIMO channel capacity

Let us assume
Y (f) = H(f)X(f) + W(f)
with
@ X(f) white Gaussian process with energy E.
@ W(f) white Gaussian noise with variance N, per real dimension

Channel capacity [Telatarl1995]

B/2 Ec
C(channel) = / log, (det ('2 + H(f)H(f)H>) df
—B/2 2No

Application to PMD
@ As Hpyp is a rotation, we have HpypHEp = |2
@ Consequently

C= 2B|092(1 + EC/ZNO) ~ 2Css0

@ Capacity is PMD insensitive and is twice due to PolMux

Philippe Ciblat DIP: Information Theory 26/34



Capacity in PDL case

We have
C(y) = Blog, (1 + p)* — p*7)
with p = E¢/2Ny

@ Channel capacity depends on PDL value

@ Outage probability is needed
@ A statistical model of PDL value is required!

I Maxwellian model

\/7*33 252 X>O o7t |
otherwise sl ||

with o = \/7/8E[r] - /\ S

27/34
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MIMO channels

Outage probability derivations [Delesques2012]

with T = (20/log(10))atanh (\/1 —(2R7B — 1 — 2p) /p2)

1

0

if p < V2R/B 1
Pou. = 2O(I)+\/ZT6%2 if V2R/B 1 < 1(2f/8 — 1
out. - o? o p< 2( )

otherwise
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Outage propability

@ far away from constant
model

@ beyond a SNR
threshold, no outage

@ fit well with simulations
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MIMO channels

Numerical illustrations (I)

>, -~ -~-"-"-"°-"/-- - " !
pomatontis | LDPC || Interleaver |JQPSK| | PT code | .|OFDMI | |
| encoder TX | | | Optical
e " | channel
! J QPSK hard-ML E PDL models
! RS [ Maxwellian
| >demod!”” |PT decod!". po— |
decodedtits | | LDPC  |__|Deinterleaver? * ']
' | decoder crmter ‘\\ 1 RX :
! > Soft PT decoder ”* |
RX | * 1

@ FEC Code: LDPC Code
@ Modulation scheme: QPSK
@ Polarization-Time code: Silver Code
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MIMO channels

Numerical illustrations (1)
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——Outage Prob. (R=3)

—8-LDPC(Soft) +PT

—6—LDPC(Soft)
LDPC(Hard) + PT
LDPC(Hard)

-8-PT

-$&-No code

Outage probability or BER

@ Soft decoding is significantly better than hard
@ Gain offered by PT Codes and FEC are cumulative
@ Best practical system is at 1.5 dB from the outage
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MIMO channels

What can we do with CSIT: an example (I)

N o pio — Data rate maximization
P | [H(1)! Jan .
N — Power constraint:
a2 N
P(n) )2
2] ()] P Z P(n) = Prax
n=1
0_2
PV [H(N)P? () with maximum power Ppax
— — — Perfect CSIT

Problem: capacity optimization

. . u P(n)
[P(1)*,---,P(N)*] = arg P“)rn‘a)’()(N)nz:;log2 <1 + H(n)|202>

LA
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MIMO channels

What can we do with CSIT: an example (lI)

Solution: waterfilling [Shannon1948]

with

@ vchosens.t. YN . P(n)* = Prax
@ (o)™ = max(0,e)

\ —

— \ -
\\/\\ /\;;/ 7777/
o \ o/ 1
\ o/
\/ ——IH(]
\‘\ / ——P(n) constant (C=1.36)
\/

Y —e—P(n)" (C,, =272)

2 . . s o 2 w 6
# channel
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Conclusion

@ On nonlinear impairments
— Strong degradation of the performance if Gaussian-distributed

@ On MIMO impairments

— Only PDL leads to an issue
— Powerful practical techniques almost achieve the fundamental limit

@ Future works

— What's really happened for capacity when QAM employed
— Best waveform (and so probability distribution) for nonlinearity
— Other MIMO issues : multi-modes fibers [Awwad2015]
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