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Introduction

The leitmotiv which characterizes this Ph.D. Thesis work has been visual
data compression. In fact, my work followed two main streams, wave-
let based video compression and multispectral and multitemporal image com-
pression, even though I briefly worked on low complexity video compression
and SAR image compression as well. This division, between compression
of video and remote sensed images, mirrors the binary structure of my
Ph.D. program, which has been developed between Napoli University
(Italy) and Nice-Sophia Antipolis University (France), in the framework
of a cotutelle doctoral project. The topic I spent most of the time on, has
been wavelet video compression, at the University of Nice, while my time
at Napoli University was shared among remaining topics, with a clear pri-
ority to the multispectral image compression problem.

With the exception of low complexity video coding and SAR image
compression (on which anyway I worked only for a short period), the
common framework of this thesis has been the three-dimensional trans-
form approach. In particular, my work focused on three-dimensional wa-
velet transform (WT), and its variations, such as motion-compensated WT
or shape-adaptive WT. This approach can appear natural, as both video se-
quences and multispectral images are three-dimensional data. Neverthe-
less, in the video compression field, 3D-transform approaches have just
begun to be competitive with hybrid schemes based on discrete cosine
transform (DCT), while, as far as multispectral images are concerned, the
scientific literature misses a comprehensive approach to the compression
problem. The 3D WT approach investigated in this thesis has drawn a
huge attention by researchers in the data compression field because they
hoped it could reply the excellent performance its two-dimensional ver-
sion achieved in still image coding [4} 74, 81, 90| 92]. Moreover, the WT
approach provides a full support for scalability, which seems to be one of
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the most important topics in the field of multimedia delivery research. In
a nutshell, a scalable representation of some information (images, video,
...) is made up of several subsets of data, each of which is an efficient
representation of the original data. By taking all the subsets, one has the
“maximum quality” version of the original data. By taking only some sub-
sets, one can adjust several reproduction parameters (i.e. reduce resolution
or quality) and save the rate corresponding to discarded layers. Such an
approach is mandatory for efficient multimedia delivery on heterogeneous
networks [56]].

Another issue which is common to video and multispectral image cod-
ing, is the resource allocation problem which, in a very general way, can
be described as follows. Let us suppose to have M random processes
X1,X5 ..., Xp toencode, and a given encoding technique. The resource al-
location problem consists of finding a rate allocation vector, R* = {R;}M,
such that, when X; is encoded with the given encoding technique at the
bit-rate R} for each i € {1,2,..., M}, then a suitable cost function is min-
imized while certain constraints are satisfied. This allocation is then opti-
mal for the chosen encoding technique and cost function.

These random processes can be the spatiotemporal subbands resulting
from three-dimensional wavelet transform of a video sequence, as well as
the objects into which a multi spectral image can be divided. In both cases
the problem allows very similar formulation and then very similar solu-
tion. The approach we followed is based on rate-distortion (RD) theory,
and allows an optimal solution of the resource allocation problem, given
that it is possible to know or to estimate RD characteristics of the processes.

In the first part of this thesis, the video coding problem is addressed,
and a new video encoder is described, which aims at full scalability with-
out sacrificing performance, which end up being competitive with those
of most recent standards. Moreover, we set the target of achieving a deep
compatibility with the JPEG2000 standard. Many problems have to be
solved in order to fulfil these objectives, and the solutions we propose are
the core of the first part of this thesis.

The last chapter of the first part deals with low complexity video cod-
ing. Here the problem is to develop a video encoder capable of a full scal-
ability support but with an extremely reduced complexity, for real-time
encoding and decoding on low resource terminals. In this framework it is
not possible to perform such demanding operations as motion estimation
(ME) or motion compensation (MC), and then temporal compression is
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performed by means of conditional replenishment. My attention was then
directed to a special form of vector quantization (VQ) [30] called hierar-
chical vector quantization, which allows to perform spatial compression
with extremely low complexity. The main contributions in this problem
lie in the introduction of several table-lookup encoding steps, address vec-
tor quantization (AVQ) and predictive AVQ, and in the development of a
multiplication-free video codec.

The second part of this work is about multispectral and SAR image
compression. The first topic has been approached with the aim of defin-
ing a comprehensive framework with the leading idea of defining a more
accurate model of multispectral images than the usual one. This model
assumes that these images are made up of a small number of homogenous
objects (called regions). An efficient encoder should be aware of this char-
acteristic and exploit it for compression. Indeed, in the proposed frame-
work, multispectral images are first subdivided into regions by means of
a suitable segmentation algorithm. Then, we use an objected-oriented com-
pression technique to encode them, and finally we apply a resource allo-
cation strategy among objects.

The model proposed for multispectral images, partially matches the
one for SAR images, in the sense that SAR images as well usually consists
in homogeneous regions. On the other hand, these images are character-
ized by multiplicative noise called speckle, which makes harder processing
(and in particular, compression). Filtering for noise reduction is then an
almost mandatory step in order to compress these images. Anyway a too
strong filter would destroy valuable information as region boundaries. For
these reasons, an object based approach, preserving object boundaries and
allowing an effective de-noising could bring in several advantages.

Notation

Let us define some notation and conventions used through out the thesis.

As far as data compression is concerned, we can define the perfor-
mance of a generic algorithm by providing the quality of reconstructed
data and the cost at which it comes. Note that, in the case of lossless com-
pression, in which reconstructed data perfectly match the original, only the
coding cost is of concern. This cost is measured in bits per pixel (bpp) in the
case of single-component images:
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N
Rppp = ﬁp

where Nj is the number of bit in the encoded stream and N, is the number
of pixels of the original image. For multi-component images we usually
use the same measure, where Ny refers now to the number of pixel of a
single component. In the case of multispectral and multitemporal images,
all components (or bands) have the same dimensions, and sometimes this
expression of rate is said to be in bits per band (bpb). When color images
are concerned, we still use the same definition, but now N, refers to the
largest (i.e. luminance) component dimension, since different components
can have different sizes, as for images in 4 : 2 : 0 color spaces.

For video, the rate is usually expressed in bit per second (bps) and its
multiples as kbps, and Mbps.

Rbps = T

_ N
B N¢Np
= RyppNpF
where Nj, is the number of bitstream bits, T = N¢/F is the sequence dura-
tion, Ny is number of frames in the sequence, F is the frame-rate in frame

N,F

per second (fps), N, is the number of pixel per frame, and Ry, = % is
the mean frame bit-rate expressed in bit per pixel.

Anyway, here we are mostly interested in lossy compression, in which
decoded data differ from encoded ones, and so we have to define a qual-
ity measure, which is usually related to a metric among original and recon-
structed information. The most widespread quality measures is the mean
square error (MSEW defined as follow:

MSE(x, &) = 1 i (x; — £;)* 1)
4 - N ~ 1 1

1

! Anyway, the MSE is not a metric, in the sense that it does not satisfy the triangular
inequality. The square root of MSE is a metric.
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where x and X represent, respectively, original and decoded data sets, both
made up of N samples. Thisis a distortion or rather, a quality measure, and,
of course, it is the squared Euclidean distance in the discrete signal space
RYN. If we define the error signal € = x — %, the MSE is the square of the
error signal.

A widely used quality measure, univocally related to the MSE is the
peak signal-to-noise ratio (PSNR), defined as:

@' -1)’

PSNR(X, 5\() = 1010g10 m

(2)
where d is the dynamic range of signal x, expressed as the number of bits
required to represent its samples. For natural images and videos, d = 8.
For remote sensing images, usually d is between 8 and 16.

Another very common quality measure is the signal-to-noise ratio, de-
fined as the ratio among signal and error variances:

N Ly (% — %)?
MSE(x, X)

SNR(x, %) = 10log;, 3)

assuming a zero-mean error and where ¥ = 4 YN | x;.

MSE and related distortion measure are very common as they are easily
computable and strictly related to least square minimization techniques,
so they can be used in analytical developments quite easily. As they de-
pend only on data and can be univocally computed, they are usually re-
ferred to as objective distortion measures. Unluckily, they do not always
correspond to subjective distortion measures, that is the distortion per-
ceived by a human observer. For example, a few outliers in a smooth image
can affect the subjective quality without increasing significantly the MSE.
Anyway, it is not easy to define an analytical expression for subjective
quality of visual data, while subjective measures are successfully applied
for aural signals. For this reason, in the following we limit our attention to
objective quality measures.

Outline

Here we give a brief overview about the organization of this thesis.
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Chapter [l introduces video coding. The techniques in the literature are
reviewed, focusing on hybrid DCT based algorithms (which are the
fundament of all current video standards), on “first generation” wa-
velet based encoders (i.e. before the lifting-scheme based approach),
and on low-complexity video encoding.

Chapter[2|depicts the general structure of the proposed encoder, and out-
lines the main problems and relative solutions.

Chapter [3lis about the temporal filtering stage of the encoder. Here we
use some recently proposed temporal filters, specifically designed
for video coding.

Chapter [ describes the motion estimation problem. Several different
techniques are shown, including a theoretical approach to the opti-
mal motion estimation strategy in the context of WT based encoders.

Chapter[5/shows several techniques for motion vector encoding. The pro-
posed techniques have a tight constraint, i.e. JPEG2000 compatibility,
but, nevertheless, they are able to attain quite good performance.

In Chapter 6l we focus on the spatial analysis stage. Two main problems
are approached: how to encode WT data; and how to achieve opti-
mal resource allocation. A model-based approach allows to analyti-
cally solve the resource allocation problem, allowing our encoder to
achieve interesting performance. Performances and details on scala-
bility are given as well.

In Chapter[7lwe make a short digression, in order to investigate the the-
oretical optimal rate allocation among motion vectors and motion-
compensated WT coefficients. Here it is shown that, under some
loose constraints, it is possible to compute optimal MV rate for the
high resolution case.

In Chapter[8lwe investigate some problems and solution in video stream-
ing over heterogeneous networks. In particular, we address the issue
of very-low complexity and highly scalable video coding.

Chapter 9l we report some result for an object-based framework in the
tield of SAR data compression.
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Chapter [10/ focuses on multispectral and multitemporal image compres-
sion with an object-based technique, which uses the shape-adaptive
wavelet transform.

In Appendix [Al we compute an efficiency measure for generic wavelet
transform compression, extending the definition of coding gain.

Appendix [Bl contains some results of the subband allocation algorithm
described in Chapter[6l

In the Appendix|[Cwe provide the structure and syntax of the bit-stream
produced by the proposed video encoder. This will allow us to better
explain how scalability features are implemented in this scheme.

Appendix[Direports a list of acronyms.

Finally, bibliographical references and the index complete this thesis.






Chapter 1

Video Coding

Television won't be able to hold on to any market it captures after
the first six months. People will soon get tired of staring at a plywood
box every night.

DARRYL F. ZANUCK
President, 20th Century Fox, 1946

Compression is an almost mandatory step in storage and transmission
of video, since, as simple computation can show, one hour of color video
at CCIR 601 resolution (576 x 704 pixels per frame) requires about 110 GB
for storing or 240 Mbps for real time transmission.

On the other hand, video is a highly redundant signal, as it is made
up of still images (called frames) which are usually very similar to one an-
other, and moreover are composed of homogeneous regions. The simi-
larity among different frames is also known as temporal redundancy, while
the homogeneity of single frames is called spatial redundancy. Virtually all
video encoders perform their job by exploiting both kinds of redundancy
and thus using a spatial analysis (or spatial compression) stage and a tem-
poral analysis (or temporal compression) stage.
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1.1 Hybrid video coding

The most successful video compression schemes to date are those based
on hybrid video coding. This definition refers to two different techniques
used in order to exploit spatial redundancy and temporal redundancy.
Spatial compression is indeed obtained by means of a transform based
approach, which makes use of the discrete cosine transform (DCT), or
its variations. Temporal compression is achieved by computing a motion-
compensated (MC-ed) prediction of the current frame and then encoding
the corresponding prediction error. Of course, such an encoding scheme
needs a motion estimation stage in order to find motion information nec-
essary for prediction.

A general scheme of a hybrid encoder is given in Fig. [LIl Its main
characteristics are briefly recalled here.

The hybrid encoder works in two possible modes: intraframe and in-
terframe. In the intraframe mode, the current frame is encoded without
any reference to other frames, so it can be decoded independently from
the others. Intra-coded frames (also called anchor frames) have worse com-
pression performance than inter-coded frames, as the latter benefit from
motion-compensated prediction. Nevertheless they are very important as
they assure random access, error propagation control and fast-forward de-
coding capabilities. The intra frames are usually encoded with a JPEG-like
algorithm, as they undergo DCT, quantization and variable length cod-
ing (VLC). The spatial transform stage concentrates signal energy in a few
significative coefficients, which can be quantized differently according to
their visual importance. The quantization step here is usually tuned in
order to match the output bit-rate to the channel characteristics.

In the interframe mode, current frame is predicted by motion com-
pensation from previously encoded frames. Usually, motion-compensated
prediction of current frame is generated by composing blocks taken at dis-
placed positions in the reference frame(s). The position at which blocks
should be considered is obtained by adding to the current position a dis-
placement vector, also known as motion vector (MV). Once current frame
prediction is obtained, the prediction error is computed, and it is encoded
with the same scheme as intra frames, that is, it undergoes a spatial trans-
form, quantization and entropy coding.

In order to obtain motion vectors, a motion estimation stage is needed.
This stage has to find which vector better describe current block motion
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Input
Video
Sequence
*4’@ - Spatial Quantization - VLC =
Transform
T Py
] \
Motion
Estimation
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Compensation Spatial Quantization
Transform

Moation Vectors

Figure 1.1: General scheme of a hybrid video encoder

with respect to one (or several) reference frames. Motion vectors have to
be encoded and transmitted as well. A VLC stage is used at this end.

All existing video coding standards share this basic structure, except
for some MPEG-4 features. The simple scheme described so far does not
integrate any scalability support. A scalable compressed bit-stream can be
defined as one made up of multiple embedded subsets, each of them rep-
resenting the original video sequence at a particular resolution, frame rate
or quality. Moreover, each subset should be an efficient compression of the
data it represents. Scalability is a very important feature in network deliv-
ering of multimedia (and of video in particular), as it allows to encode
the video just once, while it can be decoded at different rates and quality
parameters, according to the requirements of different users.

The importance of scalability was gradually recognized in video cod-
ing standards. The earliest algorithms (as ITU H.261 norm [39}51]) did not
provide scalability features, but as soon as MPEG-1 was released [36], the
standardization boards had already begun to address this issue. In fact,
MPEG-1 scalability is very limited (it allows a sort of temporal scalabil-
ity thanks to the subdivision in group of pictures (GOP). The following ISO
standards, MPEG-2 and MPEG-4 [37, 38, 82] increasingly recognized scal-
ability importance, allowing more sophisticated features. MPEG-2 com-
pressed bit-stream can be separated in subsets corresponding to multiple
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spatial resolutions and quantization precisions. This is achieved by in-
troducing multiple motion compensation loops, which, on the other hand,
involves a remarkable reduction in compression efficiency. For this reason,
it is not convenient to use more than two or three scales.

Scalability issues were even more deeply addressed in MPEG-4, whose
fine grain scalability (FGS) allows a large number of scales. It is possible to
avoid further MC loops, but this comes at the cost of a drift phenomenon
in motion compensation at different scales. In any case, introducing scal-
ability affects significantly performance. The fundamental reason is the
predictive MC loop, which is based on the assumption that at any mo-
ment the decoder is completely aware of all information already encoded.
This means that for each embedded subset to be consistently decodable,
multiple motion compensation loops must be employed, and they inher-
ently degrade performance. An alternative approach (always within a hy-
brid scheme) could provide the possibility, for the local decoding loop at
the encoder side, to lose synchronization with the actual decoder at certain
scales; otherwise, the enhancement information at certain scales should ig-
nore motion redundancy. However, both solutions degrade performance
at those scales.

The conclusion is that hybrid schemes, characterized with a feedback
loop at the encoder, are inherently limited in scalability, or, according to
definition given in Section[6.7} they cannot provide smooth scalability.

1.2 Wavelet transform based video coding

Highly scalable video coding seems to require the elimination of closed
loop structures within the transformations applied to the video signal.
Nevertheless, in order to achieve competitive performance, any video en-
coder has to exploit temporal redundancy via some form of motion com-
pensation. For more than a decade, researchers” attention has been at-
tracted by encoding schemes based on the wavelet transform (WT). In
particular, we focus on the discrete version of WT, called discrete wave-
let transform (DWT).

Here we recall very briefly some characteristics of the WT, while, for
a full introduction to wavelets, the reader is referred to the large scien-
tific production in this field [86) 72} 24} 102, 87, 55]. The generic form of
a one-dimensional (1-D) discrete wavelet transform is shown in Fig.
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G §o2

Figure 1.2: Scheme for single level 1-D wavelet decomposition

L

Figure 1.3: An example of single level 2-D wavelet decomposition

Here a signal undergoes low-pass and high-pass filtering (represented by
their impulse responses h and g respectively), then it is down sampled by
a factor of two. This constitutes a single level of transform. Multiple lev-
els can be obtained by applying recursively this scheme at the low pass
branch only (dyadic decomposition) or with an arbitrary decomposition
tree (packet decomposition). This scheme can be easily extended to two-
dimensional (2-D) WT using separable wavelet filters: in this case the (2-D)
WT can be computed by applying a 1-D transform to all the rows and then
repeating the operation on the columns.

The results of one level of WT transform are shown in Fig.[1.3] together
with the original image. We see the typical subdivision into spatial sub-
bands. The low frequency subband is a coarse version of the original data.
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The high frequency subbands contain the horizontal, vertical and diago-
nal details which cannot be represented in the low frequency band. This
interpretation is still true for any number of decomposition levels. When
several decomposition levels are considered, WT is able to concentrate the
energy into a small number of low frequency coefficients, while the re-
maining details are represented by the few relevant high frequency coef-
ficients, which are semantically important as, in the case of image coding,
they typically carry information about object boundaries.

A common measure of transform coding efficiency is the coding gain
(CG). It has the meaning of distortion reduction achievable with trans-
form coding with respect to plain scalar quantization, or PCM (pulse code
modulation) coding [30]. The definition of coding gain is then:

Dpcm
CG = 1.1
Drc (1.1)

where Dpcy is the distortion of scalar quantization and D¢ is the mini-
mum distortion achievable by transform coding.

In the case of an orthogonal linear transform and at high rates, it can
be shown that the coding gain is the ratio between arithmetic mean and
geometric mean of transform coefficients variances. This justifies the in-
tuitive idea that an efficient transform should concentrate energy in a few
coefficients, as in this case the geometric mean of their variances become
increasingly smaller.

In the case of orthogonal subband coding and at high rates, it can be
shown that CG is the ratio among arithmetic and geometric mean of sub-
band variances. So, in this case as well, an effective transform should con-
centrate energy in a few subbands.

In the general case of WT, the coding gain is the ratio of weighted arith-
metic and geometric means of subband normalized variances. The normal-
ization accounts for non-orthogonality of WT, and the weights for the dif-
ferent number of coefficients in different subbands. This allows us to ex-
tend to the WT case the intuitive idea that energy concentration improves
coding efficiency. A simple proof of this result is given in Appendix

WT has been used for many years in still image coding, proving to of-
fer much better performance than DCT and a natural and full support of
scalability due to its multiresolution property [4, 81,74, 90]. For these rea-
sons, WT is used in the new JPEG2000 standard [92], but the first attempts
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to use subband coding, and in particular WT, in video coding date back to
late 80s [41]].

It is quite easy to extend the WT to three-dimensional signals: it suffices
to perform a further wavelet filtering along time dimension. However, in
this direction, the video signal is characterized by abrupt changes in lu-
minance, often due to objects and camera motion, which would prevent
an efficient de-correlation, reducing the effectiveness of subsequent en-
coding. In order to avoid this problem, motion compensation is needed.
Anyway, it was soon recognized that one of the main problems of WT
video coding was how to perform motion compensation in this frame-
work, without falling again into the problem of closed loop predictive
schemes, which would prevent to exploit the inherent scalability of WT.
Actually, in such schemes as [41) 42} [43] three-dimensional WT is applied
without MC: this results in unpleasant ghosting artifact when a sequence
with some motion is considered. The objective quality is just as well un-
satisfactory.

The idea behind motion compensated WT is that the low frequency
subband should represent a coarse version of the original video sequence;
motion data should inform about object and global displacements; and
higher frequency subbands should give all the details not present in the
low frequency subband and not catched by the chosen motion model as,
for example, luminance changes in a (moving) object.

A first solution was due to Taubman and Zakhor [93], who proposed
application of an invertible warping (or deformation) operator to each
frame, in order to align objects. Then, they perform a three-dimensional
WT on the warped frames, achieving a temporal filtering which is able to
operate along the motion trajectory defined by the warping operator. Un-
luckily, this motion model is able to effectively catch only a very limited
set of object and camera movements. It has been also proposed to violate
the invertibility in order to make it possible to use more complex motion
model [95]. However, preventing invertibility, high quality reconstruction
of the original sequence becomes impossible.

A new approach was proposed by Ohm in [59, 60], and later improved
by Choi and Woods [21] and commonly used in literature [106]. They
adopt a block-based method in order to perform temporal filtering. This
method can be considered as a generalization of the warping method, ob-
tained by treating each spatial block as an independent video sequence.
In the regions where motion is uniform, this approach gives the same
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results than the frame-warping technique, as corresponding regions are
aligned and then undergo temporal filtering. On the contrary, if neighbor-
ing blocks have different motion vectors, we are no longer able to correctly
align pixels belonging to different frames, since “unconnected” and “mul-
tiple connected” pixels will appear. These pixels need a special process-
ing, which does not correspond anymore to the subband temporal filtering
along motion trajectories. Another limitation of this method is that motion
model is restricted to integer-valued vectors, while it has long been recog-
nized that sub-pixel motion vectors precision is remarkably beneficial.

A different approach was proposed by Secker and Taubman [76), [77,
78, [79] and, independently by Pesquet-Popescu and Bottreau [66]. This
approach is intended to resolve the problems mentioned above, by using
motion compensated lifting schemes (MC-ed LS). As a matter of fact, this ap-
proach proved to be equivalent to applying the subband filters along mo-
tion trajectories corresponding to the considered motion model, without
the limiting restrictions that characterize previous methods. The MC-ed
LS approach proved to have significatively better performance than pre-
vious WT-based video compression methods, thus opening the doors to
highly scalable and performance-competitive WT video coding.

The video encoder we developed is based on MC-ed LS; it proved to
achieve a very good scalability, together with a deep compatibility with
the emerging JPEG2000 standard and performance comparable to state-of-
the-art hybrid encoders such as H.264. We describe in details the MC-ed
LS approach in chapter[3l

1.3 Video coding for heterogeneous networks

Recent years have seen the evolution of computer networks and the steady
improvements of microprocessor performance, so that now many new
high-quality and real-time multimedia applications are possible. How-
ever, currently, computer and network architectures are characterized by
a strong heterogeneity, and this is even more evident when we consider
integration among wired systems and mobile wireless systems. Thus, ap-
plications should be able to cope with widely different conditions in terms
of network bandwidth, computational power, visualization capabilities.
Moreover, in the case of low-power devices, computational power is
still an issue, and it is not probable that this problem will be solved by
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advances in battery technology and low-power circuit design only, at least
in the short and mid term [11].

In order to allow this kind of users to enjoy video communications on
heterogeneous environments, both scalability and low-complexity become
mandatory characteristics of both encoding and decoding algorithm.

Scalability can be used jointly with multicast techniques in order to per-
form efficient multimedia content delivery over heterogenous networks
[56, 10] [88]. With multicast it is possible to define a group of user (called
multicast Group, MG) which want to receive the same contents, for exam-
ple certain video at the lowest possible quality parameters. The multicast
approach assures that this content is sent through the network in a opti-
mized way (provided that network topology does not change too fast), in
the sense that there is the minimum information duplication for a given
topology. Then we can define more MG, each of them corresponding to
a subset of the scalable bitstream: some MG will improve resolution, oth-
ers quality, and so on. In conclusion, each user, simply choose the quality
parameters for the decoded video sequence, and automatically subscribes
the MGs needed in order to get this configuration. Thanks to the multi-
cast approach, the network load is minimized, while the encoder does not
have to encode many times the content for each different quality settings.
This scenario is known as multiple multicast groups (MMG).

The scalability problem has been widely studied in many frameworks:
DCT based compression [82),50], WT based compression [93} 91} [80], Vec-
tor Quantization based compression [17], and many tools now exist to
achieve high degrees of scalability, even if this often comes at the cost of
some performance degradation, as previously mentioned.

On the other hand, not many algorithms have been recently proposed
in the field of low-complexity video coding. Indeed, most of proposed
video coding algorithms make use of motion compensated techniques.
Motion compensation requires motion estimation which is not suited to
general purpose, low power devices. Even in the case of no ME encoders,
current algorithms are usually based on transformation techniques, which
require many multiplication to be accomplished (even though integer-
valued version of WT and DCT exist, removing the necessity of floating
computation at the expenses of some performance degradation). Never-
theless, it is interesting to develop a fully scalable video codec which can
operate without motion compensation neither any multiplication. This
can achieved if we dismiss the transform based approach for a different
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framework.

The solution we explored is based on vector quantization. This could
sound paradoxical, as VQ major limit lies just in its complexity. Never-
theless, it is possible to derive a constrained version of VQ [20] where
quantization is carried out by a sequence of table look-ups, without any
arithmetical operation. We built from this structure, achieving a full scal-
able and very low complexity algorithm, capable of performing real-time
video encoding and decoding on low power devices (see chapter §).



Chapter 2

Proposed Encoder Architecture

Quelli che s’innamoran di pratica sanza scienza son come 'l noc-
chier ch’entra in navilio sanza timone o bussola, che mai ha certezza
dove si vadall

LEONARDO DA VINCI
Code G 8r.

2.1 Why a new video encoder?

The steady growth in computer computational power and network band-
width and their diffusion among research institution, enterprises and com-
mon people, has been a compelling acceleration factor in multimedia pro-
cessing research. Indeed, users want an ever richer and easier access to
multimedia content and in particular to video. So, a huge amount of work
has been deployed in this field, and compression has been one of the most
important issues. This work produced many successful international stan-
dards, including JPEG and JPEG2000 for still image coding, and the MPEG
and H.26x families for video coding. In particular, MPEG-2 has been the

IThose who fall in love with practice without science are like a sailor who enters a
ship without helm or compass, and who can never be certain wither he is going



12 2.1 WHY A NEW VIDEO ENCODER?

enabling technology for digital video broadcasting and for optical disk dis-
tribution of high quality video contents; MPEG-4 has played the same role
for medium and high quality video delivery over low and medium band-
width networks; the H.26x family enabled the implementation of telecon-
ferencing applications.

Nevertheless, recent years have seen a further impressive growth in
performance of video coding algorithms. The latest standard, known as
MPEG-4 part 10 or H.264 [75, [105], is by now capable of 60% and more
bit-rate saving for the same quality with respect to the MPEG-2 standard.

This could lead one to think that most of the work has been accom-
plished for video coding. Some problems, however, are still far from being
completely solved, and, among them, probably the most challenging one
is scalability. As we saw, a scalable representation should allow the user
to extract, from a part of the full-rate bit-stream, a degraded (i.e. with a
reduced resolution or an increased distortion) version of the original data.
This property is crucial for the efficient delivery of multimedia contents
over heterogenous networks [56]. Indeed, with a scalable representation
of a video sequence, different users can receive different portions of the
full quality encoded data with no need for transcoding.

Recent standards offer a certain degree of scalability, which is not con-
sidered as completely satisfactory. Indeed, the quality of a video sequence
built from subsets of a scalably encoded stream is usually quite poorer
than that of the same sequence separately encoded at the same bit-rate,
but with no scalability support. The difference in quality between scalable
and non-scalable versions of the same reconstructed data affects what we
call “scalability cost” (see section [6.7] for details). Another component of
the scalability cost is the complexity increase of the scalable encoding al-
gorithm with respect to its non-scalable version. We define as smoothly
scalable any encoder which has a null or a very low scalability cost.

Moreover, these new standards do not provide any convergence with
the emerging still-image compression standard JPEG2000. Thus, they are
not able to exploit the widespread diffusion of hardware and software
JPEG2000 codecs which is expected for the next years. A video coder
could take big advantage of a fast JPEG2000 core encoding algorithm, as
it assures good compression performance and a full scalability. Moreover,
this standard offers many network-oriented functionalities, which would
come at no cost with a JPEG2000-compatible video encoder.

These considerations have led video coding research towards the wa-
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velet transform, as we saw in Section WT has been used for many
years in still image coding, proving to offer superior performance with
respect to DCT and a natural and full support of scalability due to its mul-
tiresolution property [4} 81, [74]. For these reasons, WT is used in the new
JPEG2000 standard, but the first attempts to use WT in video coding date
back to late 80s [41]]. As we saw before, it was soon recognized that one of
the main problems was how to perform motion compensation in the WT
framework [60, 21]. The motion-compensated lifting scheme [76] repre-
sent an elegant and simple solution to this problem. With this approach,
WT-based video encoders begin to have performance not too far from last
generation DCT-based coders [8].

Our work in video coding research was of course influenced by all of
the previous considerations. So we developed a complete video encoder,
with the following main targets:

e full and smooth scalability;
¢ a deep compatibility with the JPEG2000 standard;
e performance comparable with state-of-the-art video encoders.

To fulfil these objectives, many problems have to be solved, such as the
definition of the temporal filter (chapter [3), the choice of a suitable motion
estimation technique (chapter 4)), of a motion vector encoding algorithm
(chapter§). Moreover, it proved to be crucial to have an efficient resource
allocation algorithm and a parametric model of rate-distortion behavior of
WT coefficient (chapter[6). In developing this encoder, several other inter-
esting issues were addressed, such as the theoretical optimal rate alloca-
tion among MVs and WT coefficients (chapter [/)), the theoretical optimal
motion estimation for WT based encoders (Section [4.5), and several MV
encoding techniques (Sections 5.2 -[G.5). The resulting encoder proved to
have a full and flexible scalability (Section[6.7).

These topics are addressed in the following chapters, while here we
give an overall description of the encoder.

Some issues related to this work were presented in [100, (16, 3], while
the complete encoder was first introduced in [8, 9]. Moreover, an article
has been submitted for publication in an international scientific journal [2].
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Figure 2.1: General structure of the proposed video encoder.

2.2 General encoder structure

In figure 2.1] we show the global structure of the proposed encoder. It
essentially consists of a temporal analysis (TA) block, and a spatial analysis
(SA) block.

The targets previously stated are attained by using temporal filters ex-
plicitly developed for video coding, an optimal approach to the problem
of resource allocation, and a state-of-the-art spatial compression. More-
over, we want to assure a high degree of scalability, in spatial resolution,
temporal resolution and bit-rate, still preserving a full compatibility with
JPEG2000, and without degrading performance.

The TA Section should essentially perform a MC-ed temporal trans-
form of the input sequence, outputting the temporal sub-bands and the
MVs needed for motion compensation. To this end, a motion estimation
stage and a MV encoder are needed.

The SA Section encodes the temporal sub-bands by a further WT in the
spatial dimension. Then, WT coefficients are encoded by EBCOT (embed-
ded block coding with optimized truncation) [90], thus obtaining a deep
compatibility with the JPEG2000 standard. A crucial step in the SA stage
is resource allocation among WT subbands. In other word, once we have
chosen to encode sub-bands with JPEG2000, we have to define what rate
allocate to them.
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2.3 Temporal analysis

The general scheme of the temporal analysis stage is shown in Fig.
The input sequence undergoes motion estimation, in order to find motion
vectors. These are needed in order to perform a motion compensated wa-
velet transform. Motion vectors are finally encoded and transmitted to the
decoder, while temporal subbands feed the SA stage.

= g LLL
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Temporal SBs

MC-ed Tempora = @ LH
Input Transform
Video — H
Sequence
: Motion info
L . Motion MV encoding
Estimation ]
Motion
Vectors

Figure 2.2: General scheme of the motion-compensated temporal analysis.

2.3.1 Temporal filtering

Since a video sequence can be seen as a three-dimensional set of data, the
temporal transform is just a filtering of this data along the temporal di-
mension, in order to take advantage of the similarities between consec-
utive frames. This filtering is adapted to the objects” movements using
motion compensation, as described in chapter[3

This is possible by performing the time-filtering not in the same posi-
tion for all the considered frame, but by “following the pixel” in its motion.
In order to do this, we need a suitable set of motion vectors (MV). Indeed,
a set of vectors is needed for each temporal decomposition level.

A new class of filters, the so-called (N, 0) [46, /3], has been implemented
and studied for this kind of application. These filters are characterized by
the fact that the Low-Pass filter actually does not perform any filtering at
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all. This means, among other things, that the lowest frequency subband is
just a subsampled version of the input video sequence. This has remark-
able consequences as far as scalability is concerned (see Section[6.7.2)).

2.3.2 Motion estimation

Motion estimation is a very important step in any video encoder, but for
very low complexity schemes. The motion estimation stage has to provide
the motion vectors needed by the motion compensation stage, which, in
the case of hybrid coders is the prediction stage, while in the case of WT
coders is the motion compensated temporal filter.

Many issues have to be considered when designing the ME stage. First
of all, we have to choose a model for the motion. The simplest is a block-
based model, in which frames are divided into blocks. Each block of the
current frame (i.e. the one we are analyzing for ME) is assumed to be a
rigid translation of another block belonging to a reference frame. The mo-
tion estimation algorithm has to find which is the most similar block of
the reference frame. In this encoder we used this simple block-based ap-
proach, in which motion is described by two parameters, which are the
components of the vector defining the rigid translation.

Of course, more complex and efficient models can be envisaged, based
on an affine (instead of rigid) transformations or on deformable mesh.

With respect to the chosen motion model, the ME stage has to find a
set of motion parameters (e.g. motion vectors) which minimize some cri-
terion, such as MSE between the current frame and the motion compen-
sated reference frame. The MSE criterion is the most widely used, but is
not necessarily the best possible. Indeed, a compromise between accuracy
and coding cost of MV should be considered.

2.3.3 Motion vector encoding

Once ME has been performed, we have to encode MVs. Here we con-
sider mainly lossless encoding, so that the encoder and decoder use the
same vectors, and perfect reconstruction is possible if no lossy operation
is performed in the spatial stage. However, lossy compression has been
considered as well.
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Here the main problem is how to exploit the high redundancy of mo-
tion vectors and, at the same time, preserve some kind of compatibility
with JPEG2000 encoding. Indeed, MVs are characterized by spatial cor-
relation, temporal correlation, and, in the case of WT video coding, the
correlation among MV belonging to different decomposition levels.

We studied and tested several encoding techniques, all of them char-
acterized by MV encoding by JPEG2000, after having suitably rearranged
and processed these data.

2.4 Spatial analysis

The TA stage outputs several temporal subbands: generally speaking, the
lowest frequency subband can be seen as a coarse version of the input
video sequence. Indeed, as long as (N,0) filters are used, the low fre-
quency subband is a temporally subsampled version of input sequence
(see Section [3.4). On the other hand, higher frequency subbands can be
seen as variations and details which have not been caught by the motion
compensation. The general scheme of the spatial analysis stage is repre-
sented in Fig. 2.3l

2.4.1 Spatial filtering and encoding

The temporal subbands are processed in the SA stage, which performs a
2D transform, producing the MC-ed 3D WT coefficients which are then
quantized and encoded. The encoding algorithm should allow good com-
pression performance and scalability. To this end, the most natural choice
appears to be JPEG2000. Indeed, this standard provides a state-of-the-art
compression and excellent support for scalability. Furthermore, as it is
an international standard, many affordable hardware and software imple-
mentations of JPEG2000 are expected to appear in the next few years.
Moreover, as we will see later, with the proposed architecture allows
any JPEG2000 implementation to do much of the decoding work for the
proposed bit-stream, even providing a low frame-rate version of the orig-
inal input sequence, without any further computation. This interesting re-
sult is due to the peculiar family of filters we used for the temporal stage.
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Figure 2.3: Spatial analysis: processing of the temporal subbands pro-
duced by a dyadic 3-levels temporal decomposition.

2.4.2 Resource allocation

A suitable algorithm must be used in order to allocate the coding resources
among the subbands. The problem is how to choose the bit-rate for each
SB in order to get the best overall quality for a given total rate. This prob-
lem is addressed by a theoretical approach in order to find the optimal
allocation. Moreover, we use a model in order to catch rate-distortion
characteristics of SBs without a huge computational effort. Therefore this
model allow us then to find optimal rates for subbands with a low com-
putational cost.

2.5 Open issues

While developing the video encoder, some interesting topics have been
encountered and only partially explored.

A first interesting problem is that of an optimal ME criterion for WT-
based video encoders. Usually, one resorts to a criterion based on the min-
imization of MSE or some similar distortion measure. MSE is optimal for
predictive hybrid video coders, but not necessarily for WT-based schemes.
We analyzed this problem in some details, discovering that, for (N, 0) fil-
ters it is possible to derive a theoretically optimal ME criterion, which also
justifies why MSE performs pretty well even for WT video encoders.

Another optimality problem is related to allocation among MVs and
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WT coefficients. The proposed encoder assumes that a convenient rate is
chosen for MV, and it performs an optimal allocation among subbands of
the residual rate. We analyzed this allocation problem, and we found that,
under some quite loose hypotheses, it is possible to find a theoretical opti-
mal allocation for the high bit-rate region. If some model for MV influence
on WT coefficient statistics is given, an analytical expression of optimal
MV allocation can be computed.
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Chapter 3

Temporal Filtering

Die Zeit ist eine notwendige Vorstellung, die allen Anschauun-
gen zum Grunde liegt. Man kann in Ansehung der Erscheinungen
tiberhaupt die Zeit selbst nicht autheben, ob man zwar ganz wohl
die Erscheinungen aus der Zeit wegnehmen kann. Die Zeit ist also a
priori gegeben!l

IMMANUEL KANT
Kritik der reinen Vernunft, 1781

3.1 Temporal filtering for video coding

In this chapter, we present in details the temporal filtering performed in
the temporal analysis (TA) stage of the proposed coder. The remaining
block of the TA stage, namely the motion estimation and the motion vec-
tor encoding blocks, are described in the following chaptersidland 5l The
scheme of TA is reported in Fig.3.1ljust for reference.

!Time is a necessary representation, lying at the foundation of all our intuitions. With
regard to appearances in general, we cannot think away time from them and represent
them to ourselves as out of and unconnected with time, but we can quite well represent
to ourselves time void of appearances. Time is therefore given a priori.
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Figure 3.1: Motion-compensated temporal analysis stage

Here we describe the problem of temporal filtering in WT video coding
and we shortly review a lifting scheme (LS) implementation of teh wave-
let transform [25], and how to apply it to video signals. Then motion-
compensated (MC-ed) version of LS is introduced, highlighting its major
features [76, 166]. In developing our encoder, we used a particular class
of MC-ed LS, called (N, 0) LS [46), 3], which are here described in details.
Finally, a few words are given on a memory efficient implementation of
temporal filtering, called scan-based WT [63].

An effective exploitation of motion within the spatio-temporal trans-
form is of primary importance for efficient scalable video coding. The
motion compensated filtering technique should have some very impor-
tant characteristics. First of all it should be perfectly invertible, in order to
extend the range of bit-rates where it can effectively work. Indeed, even
if only lossy coding is of concern to our work, a non-invertible temporal
transform would seriously affect performance in a wide range of bit-rates,
preventing high quality reproduction at medium-to-high bit-rates. More-
over, as usual in the field of transform coding, the transform should have
a high coding gain, which means high frequency subbands with as little
energy as possible, i.e. free from spurious details and changes not catched
by the motion model. Finally, a high quality low frequency subband is
needed. In particular, there should not be any ghosting and shadowing
artifacts, and the quality should be comparable to that obtained by tem-
porally subsampling the original sequence. This is important for two rea-
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sons. First, we obtain temporal scalability in this framework by only de-
coding low frequency temporal subbands, which then should be as good
as possible. Second, if the quality of these bands is preserved, iterative
application of the temporal decomposition on them are likely to lead to a
multiresolution hierarchy with similar properties.

The motion compensated lifting scheme proved to be able to accom-
plish all these requirements. In the next Section we review the basics of
this technique by starting with ordinary (i.e. without MC) lifting schemes.

Before this, let us establish some notation. Let p = (p1, p2) € Z? be a
generic position in the discrete bi-dimensional space. A gray level video
signal is indicated with

x:(p1,p2k) € 73 — xe(p) € R (3.1)

For the moment we will neglect the problem of chrominance coding.
Sometimes, to emphasize temporal dependencies, we will indicate the
video signal with x; instead of x . We will also consider the case of p € R?
for sub-pixel MC. The domain of p will be clear from the context or, other-
wise, explicitly stated. Although digital video signal assumes values only
in a discrete subset of IR, for example in {0, 1, ...,255}, we assume the def-
inition in (3.I) so that we can treat homogeneously the video signal and
its mathematical elaborations. For example, the high and low frequency
subband resulting from temporal filtering of x; will be treated as “video
signals”. They will generally indicated with h; and [, respectively.

A motion vector field is defined as a correspondence between a spatial
location p and a vector:

v:p € Z?* - v(p) € R?

We will denote with vi_,, the displacement vector which defines the
position that, the pixel p in the frame k will assume in the frame /.

This definition is quite general, as we assumed v € IR%2. When integer-
precision motion estimation is used, we have that v € 72, while, sub-pixel
precisions are characterized by v € D C IR? where D is a discreet subset
of R?.
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Figure 3.2: A single lifting stage of a lifting scheme

3.2 Lifting scheme and temporal transform

The lifting scheme is an efficient implementation of the wavelet transform.
As shown in [25], a wavelet filter bank (both for analysis and synthesis)
can be implemented by a lifting scheme, or, according to the original ter-
minology, it can be factored into lifting steps.

Basically, the lifting scheme implementation of the wavelet transform
consists in dividing the input signal into odd and even samples (i.e. sam-
ples from odd and even frames in the case of temporal video analysis),
on which a couple of linear operators is recursively applied. This general
scheme is shown in Fig.

The first operator performs the prediction step, as it tries to predict the
current odd sample from a linear combination of even samples. For exam-
ple, in the LS implementation of the Haar wavelet, the prediction is just
the current even sample, while in the case of Daubechies 5/3 filter the pre-
diction is the average of the two nearest even samples. The prediction step
outputs the prediction error. A suitable combination of prediction errors
is used to update the current even value. This stage is called update step.
For the Haar wavelet, the update is obtained by just adding the prediction
error scaled by one half to the even sample. Applying this to the temporal
filtering of a video sequence x; we will obtain the following formulas for
the high pass and low pass sequences:
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hy = Xok41 — Xok

1
I = xor + 5 hy (3.2)

This is the simplest lifting scheme, made up of a single lifting step A
couple of prediction and update stages is a lifting step. By combining a
suitable number of lifting steps, it is possible to obtain any wavelet filter.
The output of the last prediction stage constitutes the high-pass band of
the corresponding WT filter; the output of the last update step is the low-
pass band.

A LS is often named after the length of prediction and update stages,
taken in order from the successive lifting steps. So the Haar filter can be
called a (1,1) LS as well.

Let us now see how the biorthogonal 5/3 filter can be implemented by
a lifting scheme. Keeping the same notation as before, we have:

1
h = Xop41 — > (%K + Xok42)

1
ik = xo1 + 1 (hg—1 + hy) (3.3)

The filter is then implemented by adding to the current frame samples
the output of two linear operators (both of length two) which in turn de-
pends on previous and next frames samples. The 5/3 filter is also referred
to as a (2,2) lifting scheme.

The lifting scheme implementation of WT filters suggests immediately
the reverse transform formulas. From (3.2) we get the inverse Haar LS
formulas:

1
Xok = I — Ehk

Xok+1 = Xok + hy

while from (3.3) we can obtain the formulas to reverse the (2,2) filter.



26 3.3 MOTION COMPENSATED (2,2) LIFTING SCHEME

1
Xok = Iy — 1 (hg—1 + hy)
1
Xok41 = N + 5 (xok + X2k12) (3.4)

We have considered till now the Haar wavelet as its very simple for-
mulas allow us an easy development and interpretation. However, the
(2,2) LS proved to give far better performance [76, 54} 66], so, in our video
encoder, we considered only (2,2) and its variations.

3.3 Motion compensated (2,2) lifting scheme

If we consider a typical video sequence, there are many sources of move-
ment: the camera panning and zooming, the object displacements and de-
formations. If a wavelet transform were performed along the temporal
dimension without taking this movement into account, the input signal
would be characterized by many sudden changes, and the wavelet trans-
form would not be very efficient. Indeed, the high frequency subband
would have a significant energy, and the low frequency subband would
contain many artifacts, resulting from the temporal low-pass filtering on
moving objects. Consequently, the coding gain would be quite low, and
moreover, the temporal scalability would be compromised, as the visual
quality of the low temporal subband would be not satisfactory. In order
to overcome these problems, motion compensation is introduced in the
temporal analysis stage, as described in [76] and [66].

The basic idea is to carry out the temporal transform along the motion
directions. To better explain this concept, let us start with the simple case
of a constant uniform motion (this happens e.g. with a camera panning
on a static scene). Let Ap be the global motion vector, meaning that an
object (or, rather, a pixel) that is in position p in the frame k will be in
position p + hAp “in the frame k + h. Then, if we want to perform the wa-
velet transform along the motion direction we have to “follow the pixel”
in its motion from one frame to another [100]. This is possible as far as
we know its position in each frame. This means that motion estimation

2In this simple example, we do not consider the borders of the frames.
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must provide positions of the current pixel in all of the frame belonging
to the support of the temporal filter we use. So we must replace in the
equations (3.3) all the next and previous frames’ pixels with those at the
correct locations:

he(p) = Xk (p) — % [xok(p — Ap) + Xok42(p + Ap)]

Ik(p) = 532(p) + § i1 (p — Ap) + h(p + Ap)]

Now let us generalize these formulas to an unspecified motion. For
that, we use backward and forward motion vector fields. According to
our notation, v,_x(p) is the motion vector of the pixel p in the frame ¢
that denotes its displacement in the frame k. Then, if motion is accurately
estimated, we could say that the following approximation holds: x;(p) ~
xk(p + VZ—>k(p)>‘

We observe that in order to perform a single level of MC-ed (2,2) fil-
tering, we need a couple of motion vector field for each frame. Namely for
the frame x; we need a backward MVF, indicated with By = vj_;_1 and
forward MIVF indicated with F = vy 1.

In the general case, we can then modify equation (3.3) as follows:

1
hi(p) = xpk+1(p) — 5 (X0 (P + Vorr1—2k(P)) + X2k12(P + Vorr12k42(P))]

lk(p) = xk(p) + }L [Me—1(p + Var—2k—1(P)) + hx(p + var—2k+1(P))]
(3.5)

or, simplifying the notation by using By and F, MV, we have:
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e(p) = Xaki1 () — 5 [eak(p + Facr1(P)) + a2 (p + Bt (p))]

I(p) = ¥(p) + 4 i1 (p + Fulp)) +hu(p + Bu(p)] (39

The resulting motion compensated (2,2) lifting scheme, for a one-level
decomposition, is represented in Fig.[3.3l Let us see for completeness the
equations of the Haar LS. We have:

he(p) = x2r41(P) — X2k (P + Fars1(p))

lk(p) = x(p) + %hk(P + Fx(p))

This means that the (2,2) LS needs the double motion information that
would be necessary for a MC-ed version of the Haar filter, which requires
only forward MVs. Anyway this motion information is quite redundant
and in the following chapter we will see some technique to reduce its cost.

Note that the lifting scheme in (3.5) is perfectly invertible. The equa-
tions of reverse transform can be easily deducted the same way as (3.4) is
deducted from (B.3). A second worthy observation is that MC-ed (2,2) LS
is by no means limited to integer precision MVE. Indeed, should motion
vectors in (3.5) be fractional, we assume the convention that when p € R?,
then x(p) is obtained by original data by using a suitable interpolation.
This feature is very important because sub-pixel MC can bring in a sig-
nificant improvement in performance. Of course, it comes at some cost:
sub-pixel motion estimation and compensation are far more complex than
integer-pixel versions, as they involve interpolations; moreover, sub-pixel
MVs require more resources to be encoded. Usually, bilinear interpola-
tion achieves good results without a great complexity while spline-based
interpolation [97] has better results but is more expensive.

If the motion estimation is accurate, the motion compensated wavelet
transform will generate a low-energy high-frequency subband, as it only
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Figure 3.3: The (2,2) motion-compensated LS

contains the information that could not be reconstructed by motion com-
pensation. The low-frequency subband will contain objects with precise
positions and clear shapes. So, thanks to motion compensation, we are
able to preserve both high coding gain and scalability.

34 (N,0) filters

Since the papers by Secker and Taubman [76] and by Pesquet-Popescu and
Bottreau [66], the MC-ed (2, 2) lifting scheme has been largely and success-
fully applied in WT video coding [76} 54} 66, 5, 103} 62} 77, 78, 29, 96, [100].
Nevertheless, it presents some problems and, indeed, its performance is
still worse than those of the H.264 encoder, which, thanks to a large num-
ber of subtle optimizations, achieves currently the best compression per-
formance and currently is the state of the art in video coding.

The main problems of MC-ed (2,2) filter can be summarized as fol-
lows.

First, it requires a considerable bit-rate for motion vectors. This turns
out to be significantly larger than what is needed by H.264 for motion com-
pensation. Indeed, for L temporal decomposition levels with the (2,2) LS,
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Figure 3.4: The (2,0) motion-compensated LS

Y% (2/L) motion vectors Fields per frame are needed, instead of just one.
Moreover, higher decomposition level motion vectors are quite difficult to
estimate, as they refer to frames which are very distant in time. This re-
sults in wide-dynamics, chaotic motion fields, which usually require many
resources to be encoded.

Moreover, multiple-level, sub-pixel MC-ed temporal filtering is charac-
terized by a large computational complexity, and this could prevent real-
time implementation even for the decoder.

Lastly, as shown by Konrad in [46], the commonly used MC-ed lifting-
based wavelet transforms are not exactly equivalent to the original MCWT,
unless the motion fields satisfy two conditions, which are invertibility and
additivity. These conditions are very constraining and generally not verifi-
able. Thus, the resulting transform is inaccurate, and some errors propa-
gate in the low-pass subbands, reducing the coding gain and causing visi-
ble blocking artifacts to appear.

For all of these reasons, alternatives to the (2,2) were proposed in the
literature. Among them, the so-called (N, 0) lifting schemes [3] appear
quite interesting. In general, the (N, 0) lifting schemes can be derived by
the corresponding (N, M) by removing the update step (this justifies the
name). For example, we derive the (2,0) lifting scheme from the original
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(2,2), by removing the update operator. The analytical expression of MC-
ed (2,0) LS is the following:

(p) = X2k (P) — 5 [eak(p + Faca(P)) + 2 (p + Baren (p))]
Ik(p) = xx(p) (3.7)

Removing the update step involves several advantages. First of all, we
reduce the MV rate, as we do not need to perform any motion compensa-
tion at the Update Step: the (2,0) LS requires only the half the number of
MVs needed by the original (2,2) LS. Indeed, as we can see by comparing
from Fig.[3.4l (representing the (2,0) LS) and Fig. 8.3} the new LS does not
requires backward and forward MV for even frames.

Moreover, as no filtering is performed on the “low frequency” sub-
band, temporal scalability is remarkably improved, as it is highlighted
in Section Third, these filters perfectly correspond to their bank-
filter WT counterpart, independently from MVF characteristic, and so they
are not affected by the blocking artifacts due to non-invertible and non-
additive motion vectors.

Taubman [91] noticed that at deeper levels of temporal decomposition,
frames are quite different, and therefore, using a low pass filter as the (2, 2)
(even if motion-compensated) can result in noticeable blurring of low-pass
subband. Nevertheless, he claimed a performance superiority of (2,2) fil-
ters on (2,0), above all on noisy sequences, and proposed some mixed
structure, characterized by the possibility to chose the temporal filter ac-
cording to the temporal decomposition level, or by some form of adaptive
filtering which results in a kind of intermediate filter between (2,2) and
(2,0). This adaptive scheme should be able to modify the impact of the
prediction stage accordingly with the input data.

Indeed, we saw that at low to medium bit-rate, the (2,0) LS benefits
from lower MV rate, and as usually better performance, above all when
the sequence considered has considerable motion and low noise contents.
Note that, even if (2,0) LS gave worse performance than (2,2), it would be
interesting to further investigate it, because it assures a better scalability
(see Section [6.7.2) and, because its formulation is so simple, that it allows
some theoretical development otherwise impossible (see Sect. [4.5).
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Sequence

3.5 Implementation issues

So far we have considered the problem of temporal filtering with a sin-
gle decomposition level. However, remarkable improvements in perfor-
mance are obtained if more complex decompositions are considered. Fur-
ther decompositions are obtained by applying the MC-ed LS to temporal
subbands. As the high frequency subbands are usually scarcely correlated
and have low energy content, the LS is applied to the lower subband. This
process is commonly repeated for three or four levels, as in the scheme in
Fig. B.5 giving rise to a decomposition tree. This scheme is referred to as
dyadic decomposition. Any scheme which is not dyadic is generically called
packet decomposition. Dyadic decomposition is the most common choice
for images, even though packet decomposition has been proposed in lit-
erature [101, [70]. The JPEG2000 standard provides dyadic decomposition
as default, but extensions allow generic decomposition trees. In our en-
coder we will consider only the dyadic decomposition for the temporal
stage. This means that only the lower frequency subband will be further
decomposed.

It is worth noting that, in order to perform multiple temporal decom-
positions, we need adequate motion information. In fact, all the operations
performed in order to obtain the [} and hj sequences must be repeated on
the low frequency subband. Namely, we need to perform a new ME on
the [ sequence, and then a new filtering stage. This means a sequential ar-
chitecture of the encoder, and a deep interdependence among subbands,
which requires very complex optimization processes, see Fig. Here an-
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other advantage of (N,0) LS is highlighted. Indeed, as the I; sequence is
just a subsampled version of the input sequence, different decomposition
levels can be obtained with parallel processing from the input sequence.
Namely, ME and temporal filtering can be performed independently and
in parallel for each level, see Fig. This is favourable not only for imple-
mentation, but also for the optimization of ME, since MV for each subband
can be optimized independently level by level, see Section

A practical problem in temporal WT implementation is related to mem-
ory requirements of time filters. When WT filtering is implemented by
loading all the data in memory and then performing WT filtering, it re-
quires a huge memory and moreover, in the case of temporal filtering of
video, this implies an encoding delay as long as the sequence duration
itself.

A simple solution to the temporal filtering problem is to crop the input
sequence in several short subsequences and than compute temporal WT
on them. This allows one to implement temporal filtering at low cost, but
introduces important impairments to coding efficiency. Indeed for each
short sequence we have to manage some kind of border effects. In partic-
ular, in order to perform WT we need to extend in some way the data “be-
yond the border”. Indeed, if we consider an even-length short sequence,
when computing the prediction step on the last frame (that has to be con-
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sidered as odd, since, conventionally, the first frame has a zero, and then
even, index), we need a further even frame. At this end we actually repli-
cate the penultimate frame. This means that this prediction is actually
performed by using data of a single frame instead of two.

The scan-based approach allows to overcome this problem, by com-
puting the temporal transform as it would be by considering all the video
sequence as a whole, i.e. without cropping it in subsequences neither cre-
ating spurious and unnecessary subsequence borders. Moreover this tech-
nique does not requires large memory amounts.

Initially proposed to reduce the blocking artifacts in the case of spa-
tial WT [64], this technique has then been adapted to the temporal motion
compensated WT as well [61} 62]. Figure shows the differences be-
tween the block-based and the scan-based approach. In[3.5(a),block-based
temporal WT is shown. In order to perform a single level of decomposi-
tion on 8 frames, these are subdivided into two GOP of 4 frames. Each
GOP is independently filtered, but, at this end, we need a symmetrical ex-
tension of the sequence, obtained by the replication of border frame. On
the contrary, the scan-based approach, shown in Fig. B.5(b),produces the
same coefficients that we would get by transforming all the sequence as a
whole, without a huge memory occupation. This is achieved by keeping
in memory only data necessary for computing next coefficients.
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Figure 3.7: Comparison among block-based and scan-based temporal WT.
Arrows represent the required motion vectors and dashed frames are ob-
tained by symmetry.
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Chapter 4

Motion Estimation Issues
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4.1 A brief overview of motion estimation

Motion estimation (ME) is a very important step in any video encoder, ex-
cept for very low complexity schemes. In a very general way, we can say
that motion estimation is a process which accepts a video sequence as in-
put and produces a description of movement which occurred in that video.
This motion information has many applications, and video compression
is just one of them. In particular, in video compression, ME is of course
necessary in order to perform motion-compensated operations, such as
motion-compensated prediction in the case of hybrid coding schemes, or
motion-compensated temporal filtering in the case of wavelet transform
coding. However, several other applications exist in the field of video pro-
cessing. ME is very important in such fields as video segmentation, video
surveillance, video restoration. In segmentation problems, ME helps in
recognizing objects, since all pixels belonging to the same object presents

1Everything flows
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coherent motion characteristics [35, 1]. For video surveillance application,
ME is often considered in its most basic form, that is motion detection.
In this case the relevant motion information is just the presence of mov-
ing objects. In video restoration, ME is used in order to perform MC-ed
temporal filtering for noise reduction or temporal interpolation [6].

ME algorithms can be classified according to three main characteristics:
the motion model, the cost criterion, and the search strategy. Many pos-
sible choices exist for each of these items, and it is not possible to define
the best one, as this strongly depends on applications, and, very often, on
input data. In the following, we review shortly some of the most common
choices for these three aspects of ME algorithms.

A first model is the global motion model, which provides just a single
motion information for each frame. This model is extremely simple, but
it is well fitted to describe some very common situations such as camera
panning on fixed background. Of course, this model is also very cheap in
terms of coding resources needed by motion information: we need just one
motion vector (MV) (that is two scalar parameters) per frame. The model
can be made slightly more complex by introducing an affine transforma-
tion (i.e. including zoom and rotation) instead of a simple translation. In
this case we have six motion parameters per frame. The global motion
model is very simple and is able to catch a substantial amount of motion
in a generic video sequence. However, in order to achieve a better repre-
sentation of motion, it is often used together with more complex models,
e.g. global motion and block-based motion, or global motion and object
motion.

The previous model fails when several objects are present in the scene.
A straightforward extension is the block based motion model, where each
frame is decomposed in rectangular blocks of pixels, and each block is
treated as frames were treated in the previous case. This means that for
each block we can consider simple movements such as rigid translations,
or more complex ones, as affine transformations. The most common ap-
proach provides just a translation vector for each block. It is worth not-
ing that the block size can be fixed for the whole frame (this is the motion
model compatible with the MPEG-1 and 2 syntax [36] 37]) or it can change,
allowing to adaptively describe the motion, according to its local charac-
teristics (the H.264 standard syntax [75,105] allows variable sized blocks).

Despite its simplicity, translational block-based ME (BBME) is quite ef-
fective, and is therefore the most common ME technique. Nevertheless,
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the affine model is also used sometimes. It is considerably more complex
than the translational model, but it is able to catch correctly zooms and
rotations. On the other hand, it requires the transmission of three times
as many parameters than the previous method, so it turns out to be quite
expensive in terms of both computational complexity and coding rate.

Another common model is based on meshes. A mesh is used to cover
the frame. The model provides a motion vector (two scalar parameters)
per mesh vertex, while the motion vectors for other points are obtained
by a suitable interpolation, that is, a bilinear interpolation for rectangular
meshes, and an affine interpolation in the case of triangular meshes. The
mesh motion model is supported by the MPEG-4 syntax [38,65] and used
in some recently proposed video encoders [79].

Finally, we cite object-based models and dense motion vector fields.
The first model provides a subdivision of video sequence into moving ob-
jects: the motion information amounts then to the motion parameters for
each object. In the dense MVF case, a vector is provided for each pixel.
This is the most general model, as any of the previous ones can be de-
scribed by a dense MVE. The main problem of dense MVF is they can re-
quire a huge amount of resources to be encoded, leaving a meagre budget
for coefficient coding. Nevertheless, this approach has some interesting
properties, and has been envisaged in scientific literature [85, 67]. We will
describe some dense MVF coding technique in Section A representa-
tion of these motion models is given in Fig. A.11

The choice of a specific motion model involves a trade-off between ac-
curacy of motion description on a hand and coding cost, computational
and implementation complexity on the other. The best option strongly
depends on application and data, but, as previously mentioned, transla-
tional BBME is the most common motion model for ME. In our work we
mainly used this approach, which jointly presents reasonable complexity
and good performance, and is quite robust with respect to input data. In
the rest of this Section, for the sake of simplicity, we will mainly refer to
BBME, but our considerations apply to the other motion models as well.

The second classification criterion for ME techniques is the cost func-
tion. The estimation process is carried out by searching for motion pa-
rameters minimizing a given cost function, which usually is related to a
distance measure (a metric) between the motion-compensated version of
the current frame or block and some reference frame or block. In Section
we will describe in detail some of the most common ME criterion, like
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Figure 4.1: Schematic representation of motion models: (a) global motion;
(b) block based; (c) dense MVF; (d) object based.
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the sum of squared differences (SSD) between current and reference data,
and a variation of it. We remark that the SSD criterion is equivalent to the
MSE. Another very common criterion is based on the sum of absolute dif-
ferences (SAD) which is simpler to compute and more robust in the pres-
ence of outliers. Of course, these are only some of the possible approaches
and not necessarily the best ones. In Sectiond.5|lwe will study the problem
of optimal ME criterion in the case of WT video coding.

The third classification parameter for ME algorithms is the search strat-
egy. Once the motion model and the optimal criterion are established,
we have to decide how to find out the motion parameters. For the block
based motion model, the block matching (BM) approach appears to be the
most natural choice: the current block is compared with a suitably (i.e.
according to the motion model) transformed version of a block of the ref-
erence frame. The cost function for this couple of blocks is computed and
we choose the motion parameters which minimize this cost. If we con-
trol all the possible MV and chose the best one, it is said that an exhaustive
search has been performed. This is the most computationally demanding
method, but of course the one that gives the best results. However, the
computational burden of exhaustive search can be unacceptable for some
applications, like real-time video or streaming on low-power devices. For
this reason, sub-optimal search strategies for block-matching have been
proposed in literature, like the the log-search, (sometimes called three-step
search), and the diamond search [44]. These techniques usually allow a re-
markable complexity reduction without too much impairing motion infor-
mation accuracy. In our work we used mainly full search ME techniques,
as computational complexity was not a major issue in our research. Three-
step search was considered as well, since it has good performance, little
computational cost and it provides a progressive description of motion
vectors.

Besides block matching, other methods have been proposed in liter-
ature, such as phase correlation [94], optical flow, and statistical (MAP
estimation) methods [85].

Several other parameters have to be set when choosing a ME technique.
Among them, we have the block size, the search area and the precision. Let
us spend a few words to describe the impact of different precisions on a
ME algorithm. The first ME algorithms considered only integer compo-
nent MVs, but this is actually a tight constrain for the movement of video
objects. In fact, objects move independently from the spatial subsampling
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grid of a video frame, and this calls for sub-pixel motion vectors. They can
be computed by suitably interpolating the original video sequence and
applying the full-pixel ME algorithm on the increased-resolution images.
Sub-pixel motion compensation is then obtained using the interpolated
images instead of the original.

It has been early recognized that sub-pixel ME and MC can improve
significatively the performance of a video encoder [31], and, therefore,
they have been included in all video coding standards from MPEG-2 on.
MPEG-2 uses a simple bilinear interpolation for half pixel accuracy ME
and MC. The most recent standard H.264 uses a 6-tap filter for half pixel
accuracy and a further bilinear interpolation to reach quarter pixel accu-
racy. Of course, sub-pixel accuracy is more demanding in terms of compu-
tational power then full-pixel accuracy that, in turn, is already one of the
most complex parts of a generic video encoder.

In conclusion, the choice of operational values for all the considered
parameters (block size, search area, precision) involves a trade-off between
accuracy on one hand, and complexity and encoding cost on the other.

Even when all the ME parameters have been chosen in the best possi-
ble way, we are far from being sure that the best motion vector field will
be found. Actually, a crucial compromise between accuracy and cost of
MV has to be considered. Usually, we look for the MV which minimizes
a given criterion: this would be the best MV according to such a criterion,
but we might have to spend many resources to encode it. It could hap-
pen that a slightly less accurate vector could be encoded at a much lower
price, allowing to spare resources for coding coefficients, and thus attain-
ing better overall performance. The vector which allows the best overall
performance would be the best one in a rate-distortion sense.

This compromise is somehow represented in Fig. Here we report
the rate-distortion curve of motion vectors, with the rate needed to en-
code motion vectors (this is the cost) on the abscissas, and the correspond-
ing prediction distortion, expressed in terms of MSE (this is the accuracy)
on the ordinates. We can imagine to obtain less accurate vectors by in-
creasing the block-size, by reducing the precision, by introducing some
regularization constraints in ME, or even by a lossy encoding of MVs. The
motion vector field (MVF) which minimize MSE corresponds to the cir-
cled point of the graph, characterized by the best accuracy and the highest
cost. Nevertheless, this might prove not to be the the best possible MVF
in a rate-distortion sense, since we can reduce significantly the MVF rate
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Figure 4.2: Possible behavior of motion compensated prediction error in
function of motion rate

without too much sacrificing its accuracy, by choosing a point at the left of
the first one. If we have a limited amount of coding resources, it is prob-
able that the best operational point is placed somewhere at the left of this
extreme point, for example it could be the point marked by a X in this
graph. Sections 4.3]and 4.4l are about the quest of this optimal point.

4.2 Block based motion estimation

We introduce here some notation for block handling. Let B]EP) be a block

of size? (n x 1) in the frame k, centred on pixel p = (p1, p2). We consider

even values for n. Moreover, we define B = {—-n/2,...,n/2 — 1}2, and

B;EP)(%U) = x(p1+u,p2+v) Y(u,0) € By

To compute our motion vectors, we first need a distortion measure be-
tween blocks, d(B1, B2). A common one is the MSE, or equivalently, the

2Square blocks are not necessary. They are used here just for the sake of simplicity.
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SSD, defined as:

2
SSD(B(p),B(q)) — B(P)(u’v) _ B(q)(u,v)
k h k h

The relationship among MSE and SSD is simply:
(p) pla)y _ 1 (p) pla)
MSE(B,*’, B,V = —l SSD(B;*’, B,¥)

Another common criterion is the SAD:

SAD(B,((P),B}(lq)) = ) ‘Bép)(u,v) — Bp(lq)(u,v))
(u0)eBf

These criteria provide good results as long as the mean intensity in both
frames is the roughly same. But in real video shots, intensity may vary be-
tween two consecutive frames, in which case these criteria can produce
inaccurate motion estimations. To overcome this problem, we use also
another criterion, the zero-mean normalized sum of squared Differences
(ZNSSD), as it is robust to affine intensity transformations while remain-
ing easy to compute [100]. In order to define this criterion, let us introduce

the zero-normalized version of a block B]Ep), indicated with B,(CP):

~ 1
B]EP)(u,v) = B,((P)(u,v) - ( )ZB B,Ep)(u,v)
u,v)EBy

that is the block minus its average value.
For two given blocks B,(cp) and B,Sq) the ZNSSD formula is given by:

~ ~ 2
Z(u,v)eBg [Bl((p)(u/ U) - B]Sq)(u/ ’0)]

[E(u,v)elg(’,’ B (u,0)? Y(u,0)eBy B\ (u,v)?

ZNSSD(BP, B\ —

For a given block B]Ep) in frame k, we look for the best corresponding

block B}(IPJFV) in frame h by minimizing the following criterion:

Tni(v) =d (B, BF™) @)
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where d is a distortion measure like SAD, SSD or ZNSSD. We will drop the
subscripts from criterion | when this information can be deducted by the
context. Finally we can define the estimated vector v;_,, ., (p) for pixel p:

Viok+1(P) = arg min Jei1(v) (4.2)

where W = {—w, ..., w}2 is the search window for block matching and w
is then the maximal allowed search distance.

Using the symbols of previous chapter, we can call F; the vector com-
puted by (£.2). The estimated MVF is then :

F(q) = vi_k1(P)  Vq € By
where

By ={pr—m/2,...,p1+m/2 -1}
x{pz—m/Z,...,p2+m/2—1}

and m < n. For m = n, we have the usual non-overlapped block-matching
criterion, while if we set By = {p} we compute a different motion vec-
tor for each pixel, i.e. a Dense MVE. The advantage of overlapped block-
matching (m < n) with respect to non-overlapped block-matching is that,
at the cost of a slightly increased computational burden, we achieve a
smoother (less sensitive to noise) MVE.

We will refer to the criterion (4.I) as unconstrained ME, since no par-
ticular constraint is imposed on vectors. The MVF we can compute in
this way is the best possible with respect to the chosen criterion, but not
necessarily the best MVF overall. In other words, we can find a very accu-
rate vector (e.g. the one minimizing the MSE) but it cost could be so high
that overall performance suffers from this motion representation. We can
represent this situation as the rightmost (circled) point in Fig. In this
context, it would be interesting to look for a less precise, but also less ex-
pensive motion representation, moving toward the optimal point of the
curve in Fig. 1.2l The next two Sections are dedicated to this issue.

It is also worth noting that the optimal rate for MVs is also dependent
on the global available bit-rate: it is obvious that the optimal bit rate for
MVF at 64 kbps cannot be the same as at 1 Mbps. The relationship be-
tween total available bit-rate and optimal motion bit-rate is investigated
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in chapter[7, where some interesting results are derived in the case of high
resolution (that is, high total bit-rate).

We performed many experiments in order to better understand which
criterion would perform better for the proposed encoder, and which are
the best values for the several ME parameters such as block-size, search
area radius, and block overlap. Here we summarize the main results.
The two criterion SSD and ZNSSD proved to give almost identical per-
formance in terms of impact on the overall rate-distortion performance,
with a very small (and for all practical interests negligible) advantage for
ZNSSD. On the other hand, SAD confirmed its greater robustness in pres-
ence of noise (outliers) with respect to SSD. Considering the higher com-
putational cost of ZNSSD, we mainly used SAD and SSD (MSE) for our
codec.

As far as block size is concerned, we considered only fixed block size
ME. With this settings, it turns out that in most cases a block size of 16 pix-
els provides the best compromise between cost and accuracy of MVE, at
least for total bit-rates less that 1.5Mbps. The optimal value for the search
area radius is between 12 and 16 pixel for consecutive frames: larger val-
ues would increase computational complexity without giving a remark-
able benefit. For more distant frames this value should be increased pro-
portionally to the temporal distance. Finally, block overlap proved to
slightly increase performance, but at cost of a complexity increase. Usu-
ally, an overlap within 25% of the block size proved to be a good choice.

4.3 Constrained motion estimation

When MC-ed (2,2) LS is used, we need a backward MVF and a forward
MVF for each frame (see Fig. B.3). For the (2,0) LS, half the MVFs are
needed, and namely, a backward and a forward MVF for each even frame
(see Fig.[3.4).

This side information can grow up to represent a remarkable share of
the total bit-rate. Here we have a resource allocation problem: we can
use our bit budget to encode the MVFs, but we can also try to have a less
accurate description of them, using the spared bits to better encode the WT
coefficients. This problem calls for an optimal rate-distortion solution, but
it seems quite difficult to take into account MVF encoding and residual
encoding at the same time, as the second term depends on the first one.
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With a different approach, we try to answer this question in chapter[7l

Here we look for some suboptimal solution. An interesting one is what
we call constrained motion vectors. We impose some constraints on MVFs
that allow us to significantly reduce the rate needed for MVF’s encoding,
but, on the other hand, prevent us from achieving the best motion estima-
tion. Initially, we impose a very simple constraint: we want the backward
MVF to be the opposite of the forward one. Then we look for a displace-
ment vector, which under this constraint minimizes a quantity depending
on both the forward and the backward error, e.g. their sum:

v' =arg mivr\}](v) 4.3)
ve
with:
Jv) = |4 (B, BP) +d (B, BETY)) (4.4)

Where d(Bj, By) can be any suitable distortion measure. The advantage of
constrained search is that we obtain symmetrical MVF, so we can send just
every second MVE, using the spared bit budget to better encode wavelet
coefficients [100].

On the other hand, constrained search does not allow us to get the best
estimation, except for some specific motion configurations. This reflects
the fact that the proposed criterion is based on a very simple model, in
which the motion is constant and then B, = —F; (i.e. zero acceleration).
The effectiveness of this ME criterion is then tightly bounded to the cor-
rectness of the zero-acceleration model. If the motion is regular in the con-
sidered video sequence (i.e. only rarely the acceleration is significant), our
model will correctly catch motion information. Otherwise, when acceler-
ation is important, the proposed model will fail and compute suboptimal
motion vectors. Nevertheless, their cost will always be less than in the
case of unconstrained ME.

In order to better understand the trade-off between accurate MVF de-
scription and improved wavelet coefficient encoding, some experiments
were performed. In the first one we compared our codec performance
when the MVFs were estimated with the unconstrained and with the con-
strained search. The experiments were carried out on the first 64 frames
of the sequence “foreman”, with a block size of 16 pixels. The results are
shown in Fig. Note that the constrained search method requires
about half the rate for MVF with respect to the unconstrained method.
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Figure 4.3: Comparison between ME methods (a) and their impact on
codec performance (b)

However, in this figure we do not take into account the rate needed for
MVF encoding, as we want just to understand how much the worse mo-
tion estimation affects the motion compensated wavelet transform. The
graph shows that the loss is quite small, as the MSE increase varies from
1% to 9%.

In order to perform a thorough comparison between the two methods,
in Fig. 4.3(b)| we considered also the cost of MVF encoding. Moreover, the
performance of the codec without motion compensation were also added.
The graph shows that the constrained method has the best performance
at low and medium rates, and it is roughly equivalent to unconstrained
search method at high rates.

These results can be interpreted as follows: the unconstrained MVFs
corresponds (for a given set of ME parameters, as block size and precision)
to the rightmost point of the curve in Fig. When we impose some con-
straint, we begin to move toward the left in this graph, hopefully towards
the optimal point. Indeed, for low-to-medium bit-rates, the constrained
MVF gives better overall performance than the unconstrained one, so we
are actually getting near the optimal operation point.
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Figure 4.4: Irregular motion vector estimation

4.4 Regularized motion estimation

In this Section we keep exploring the left part of the curve in Fig. 4.2 with
the goal of further decreasing the bit-rate needed by MVF, without de-
grading the motion information too much. We try to achieve this goal by
introducing MVF regularization.

The basic idea is to impose some reasonable constraints to the ME cri-
terion, in order to get a MVF that can be efficiently encoded and that how-
ever remains a good estimation of motion. In a previous section we pro-
posed a simple symmetry constraint, which led to the cost function (&.4).
Here we modify the estimation criterion by adding a regularization con-
straint to the cost function, with the aim of obtaining a more efficiently en-
codable MVE. Indeed, even though the symmetry constraint implies some
smoothing, MVFs estimated by the criterion (4.4) can still suffer from some
irregularities: see for example Fig. 4.4, where it is reported an estimated
MVF for the “foreman” sequence: in the quite homogeneous helmet area,
the MVE, even if minimizes the metric, has a remarkable entropy.

The problem is that in a homogeneous area, many motion vectors can
have very low and very close values for the cost function. In this case,
choosing a suboptimal vector does not significatively increase prediction
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Figure 4.5: Regularized motion vector field

error, while it can help in reducing MVF entropy. Hence we introduce a
couple of new constraints: a length penalty and a spatial variation penalty.
The new criterion is expressed as follows:

2
v* = arg min ](V)+“|]|‘|/‘\,]|2| + B(||Vox|[* + ||V, | ?) (4.5)

veW hax

where J(v) is still expressed by (#.4). In a homogeneous area, null or ho-
mogeneous vectors are then more likely to be chosen, reducing the oc-
currence of chaotic regions in the MVE. In Fig. the resulting MVF is
shown. It is clear that the constraints help in regularizing the MVE. Ini-
tial experiments showed the existence of values for a« and B which allow
a fair regularization without degrading too much the motion information.
We can gain a deeper insight on this phenomenon by evaluating the effect
of regularization on the first order entropy of regularized MVFs and the
respective prediction MSE, see Tab/4Il These results were obtained for
the test sequence “foreman”, with a block size of 16 x 16 and whole pixel
precision.

In this table we also reported the entropy of wavelet transformed (3
level dyadic decomposition) MVFs, in order to show that WT allows re-
ducing entropy, and that regularization is even more effective in the wa-
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« | B | Entropy of MVF | Entropy of WT | Prediction
[bits/vector] [bits /vector] MSE
0|0 4.33 0.56 48.22
0 | 4 3.72 0.35 49.90
0 |20 3.37 0.26 56.54
10 | O 3.93 0.47 48.24
10 | 4 3.61 0.34 49.97
10 | 20 3.30 0.25 56.44
30 | 0 3.81 0.45 48.35
30 | 4 3.58 0.34 50.08
30 | 20 3.28 0.25 56.54
100 | O 3.62 0.42 48.98
100 | 4 3.46 0.33 50.58
100 | 20 3.20 0.25 56.91

Table 4.1: Regularization parameters effect
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Figure 4.6: Impact of ME methods on codec performance
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velet domain. Those results suggest that we should look for an encoding
technique that makes use of the WT of regularized MVFs, like the one
described in Section We also remark that with a suitable choice of pa-
rameters, we can achieve an entropy reduction of 16% (and even 40% in
WT domain), while the prediction MSE increases only of 1.5%.

It is of course necessary to evaluate the impact of constrained ME on
the whole video coder. So, in Fig.l.6lwe compared global RD performance
of our video coder when the usual unconstrained ME and the proposed
constrained ME criteria are used. These results were obtained on the “fore-
man” sequence, with regularization parameters « = 10 and B = 5, preci-
sion of whole pixel, and block size of 16 x 16. The graph shows that the
proposed method yields globally better performance, especially at low to
medium rates, where we achieve up to 1.3 dB of improvement with re-
spect to the usual unconstrained technique. This result confirm the intu-
itive idea that at low rates it is better to have an approximate but cheap
description (in term of needed encoding resources) of motion and to ded-
icate more resources to transform coefficients. This technique allows us to
get a bit closer to the optimal point of Fig. 4.2

4.5 Optimal ME for WT-based video coding

In this Section, we try to analyze the problem of optimal motion estimation
in the framework of wavelet video coding.

As mentioned above, motion compensation is of crucial importance
in order to obtain good performance in video coding, be it the classical
hybrid coding or the newer wavelet-based algorithms. A good ME is
equally very important. Nevertheless, the criterion for ME that is usu-
ally employed is the minimization of MSE (or related distortion measures)
between reference and predicted (motion compensated) frames. This ap-
proach is optimal as far as hybrid coding is concerned, but this is not nec-
essarily true for a generic wavelet video coder. In this case, a deeper anal-
ysis is needed, since we are no longer coding the prediction error, but the
transform coefficients, so minimizing the error energy could not be the
best approach anymore.

The need of an optimal approach to ME for wavelet video was early
recognized by Choi and Woods [21]. They asserted that while for hybrid
coders the objective of motion estimation is to minimize the mean squared
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prediction error, for MC-ed temporal analysis, the objective should be
changed to maximization of the coding gain (CG). As the filter they used
for temporal analysis (Haar filter) is orthogonal, the CG is expressed as
the ratio of the arithmetic and geometric means of subband variances. The
maximum CG is nearly achieved by minimizing the energy (variance) of
the temporal high frequency subband, since the variance of the temporal
low frequency subband is relatively constant. Using the Haar filter for
temporal analysis, the temporal high frequency subband is just a scaled
version of the prediction error signal. Thus, the minimization of MSE turns
to be nearly optimal in their case.

Nevertheless, when a generic temporal filter is used, a further analy-
sis is needed. Here, indeed, we want to analyze the problem of optimal
ME for MC-ed lifting scheme video coders in a more general way. We will
use a general approach as far as possible, then we will turn to (N, 0) fil-
ters, which allow a deeper analysis, and even an analytical solution of the
optimal ME criterion problem.

4.5.1 Notation

Let us now define some notation in order to manage MVs related to mul-
tiple decomposition levels. As usual, we use vi_j,(p) to refer to the dis-
placement that the pixel p in frame k will have in frame h. The k-th frame

of input sequence is referred to as x;(p). We indicate with h]({O) (p) the first

high frequency (H) temporal subband sequence, with h](cl) (p) the second

high frequency (LH) subband sequence, and so on. Analogously ZIEO) (p),

l,gl)(p) are the low frequency subband sequences. We consider L levels
of dyadic temporal decomposition, resulting in M = L + 1 temporal sub-
bands; we indicate with v(?) the set of all motion vectors needed to com-
pute the first temporal decomposition from the input sequence, and in
general, with v{?) the set of vectors needed to compute the (i 4 1)-th tem-
poral decomposition from the previous level. These vectors are shown in
Fig. .7 for the case of (2,2) LS and two levels of temporal decomposition.
We see that in this case v(?) is made up of all vectors vi_ 1 and vii 1
for all k, while v(1) is constituted by vectors voi_ok12 and vogi ook for all

(1)

k. It is clear moreover that in order to compute each frame of ;" we need
all vectors of the sets v(?) and v(1).
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Figure 4.7: Scheme of a two-levels temporal decomposition with the (2,2)
LS. In this case V; = {v(0),v(D1,

More in general, in order to compute a single level of temporal de-
composition with a (N, M) LS we need N vectors per frame for the high
frequency subband and M vectors per frame for the low frequency sub-
band. Let us call V; the set of all vectors necessary to compute the i-th
decomposition level. In general, we need all the vectors from previous de-

composition levels in order to compute h,(ci), ie, V= {v0, v, v}
This means that in the general case, as far as motion vectors are concerned,
all SBs depend on one another.

4.5.2 Optimal criterion

ME is used in order to find MVs that describe displacement of objects from
a frame to another. The optimality criterion in subband coding is the max-
imization of the coding gain [30, 21], which is defined (see chapter [1l as
well) as the ratio among Dpcy (the distortion of scalar quantization, i.e.
PCM coding, of input signal) and D7 (the minimum distortion achiev-
able by transform coding). The optimal ME criterion should maximize the
CG instead of minimizing the MSE of prediction error. In particular, Dpcy
does not depend on motion compensation, since it refers to the input, i.e.
non-transformed, signal. Therefore we can focus on minimization of Dtc.

We show in Appendix [Alhow to express D7 for generic WT coding
with M subbands, see Eq. (A.11). Let M be the number of subbands, N;
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the number of coefficients of band i, N the total number of WT coefficients,
and a; = N;/N. We have:

Djc = WHp?2 ™% (4.6)
where b is the available bit rate in bpp and:

M

W=]]w
i=1
M

H=]]h
i=1
M a;

p? = H <0’l~2> (4.7)

Here, w; is a weight accounting for possible non-orthogonality of WT fil-
ters, see section (6.4} 11; is the subband shape factor, see Eq. (A.3).

We should consider three-dimensional (i.e. spatiotemporal) SBs, but ac-
tually we will consider only temporal SBs. Indeed, some earlier studies on
this problem showed that considering spatiotemporal SBs instead of tem-
poral SBs gives little or no gain [21].

We observe that W and b do not depend on motion vectors; moreover,
we make the hypothesis that the shapes of subband pdfs do not depend
on MV either. In this case all the h; and H are not affected by ME. This
means that the optimal ME strategy should be the minimization of p?, that
is a kind of weighted geometric mean of temporal subband variances; as
a matter of fact, it would coincide with the geometrical mean of subband
variances if ; = 1/M and w; = 1Vi € {1,2,..., M}: this happens in the
case of orthogonal subband coding.

Unfortunately, in the general case, the minimization of p? is not an easy
task. This problem is quite complex because motion vectors related to the
i-th decomposition level affect all subbands {i,i +1,..., M}. This means
that we cannot simply chose v(!) such that ¢? is minimized, as this set of
vectors influences higher frequency subband variances as well. Therefore,
in the general case, this problem calls for a joint optimization of motion
vectors of all levels in order to minimize (4.7).

The joint optimization problem is difficult to approach analytically and
extremely demanding in terms of computational power. But, with a suit-
able choice of temporal filters, it is possible to simplify it remarkably. In
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Figure 4.8: Scheme of a two-levels temporal decomposition with the (2,0)

LS. In this case V; = {v(V}, as h]((l) is computed directly from x; indepen-

dently from h,(co)

particular, we consider the class of (N, 0) LS. In this case, the low pass out-
put of WT is just the input sequence with temporal subsampling, then it
does not depend on motion vectors. Another crucial consequence is that
the i-th high frequency subband is computed directly from the input se-
quence, independently from other SBs.

An example is shown in Fig. 4.8 for the (2,0) LS and two level of tem-

poral decomposition. We see that we can compute h,(cl) directly from the

input sequence and from the vectors v(1), More in general, as we com-

(1) (i-1)

pute /" from [;° * which in turn is just the input sequence undersam-
pled by a factor 2/, this subband depends only on v?) instead of all the
v(0 v v This means also that all the subband variances are ac-
tually independent of one another, and that they can be minimized sep-
arately. In other words, each v{) can be optimized separately, providing
that it minimizes the i-th high frequency SB variance. The optimal ME for
a (N,0) LS has to estimate v} which is the trajectory of current pixel in a
subset of frame centred on current frame, and made up of N + 1 frames of
the original sequence subsampled with a factor 2.

As the optimization is carried out in the same way for each decompo-
sition level, we will refer from now on to the first one, and will drop the
superscript from hy for the sake of simplicity.
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4.5.3 Developing the criterion for a special case

Further analytical developments are possible if we refer to a specific (N, 0)
LS as the (2,0). Let us recall the equation for this special case.

he(p) = x2k+1(p) — % [0k (P + Vor+1-2k(P)) + X2k2(P + Vars1-2k4+2(P))]
l(p) = x2x(p)

This mean that, in this case, the trajectory v for the frame 2k and for
the first decomposition level is just a couple of vectors

0
v = {var 10k Va1 aki2)
This expression can be generalized to the i-th decomposition level:

i _ . . . .
i) = {V21—1(2k+1)—>21—12k/ V21—1(2k+1)—>21—1(2k+2)}

The optimal trajectory v{)* is the one minimizing the high frequency
band variance. Since this subband has zero mean, this is equivalent to
minimize its energy.

We can refer to the first high frequency subband without losing gen-
erality as for the other band it suffices to refer to the suitably subsampled
version of the input sequence. For the high frequency subband, we can
simplify the notation of the lifting scheme as follows

he(p) = k1 (p) — % [0k (P + Fak41(P)) + X2x42(P + Boxs1(p))]

Ik(p) = x2x(p)

where By = vi_x_1 and Fy = vi_,1 as usual. The optimal trajectory is
given by:
O —arg min & {(p)}

Bokt1,Fokt1

v
Where we have

he(p) = Xk (p) — % [k (P + Fak41(P)) + X2x42(P + Boxs1(p))]

_ ; a1 (p) — X2k (p + Faks1 (p))+

X0k+1(P) — Xok42(P + Boxs1(p))]

1
= 5 (er +e5)
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and er [ep] is the forward [backward] motion-compensated prediction er-
ror:

er = Xok11(p) — X2k (p + Faxt1(p))
€ = Xok+1(P) — X2k+2(P + Bak+1(P))

This means that the optimal trajectory minimizes the energy of the sum
of this errors. Further developing, we have to minimize

In conclusion,

B For =arg min (28 (es) + o€ (ep) + (ener)|  (48)
2k+1/2k+1

Equation (.8) is what we need in order to compare the optimal ME
criterion to the usual MSE based criterion. With the usual MSE based cri-
terion, we independently minimize £ (ep) and £ (er), so we probably at-
tain a low value of the optimal criterion but not necessarily the minimum,
as we do not take into account the mixed term. This term grows larger
when the two errors images are more similar. This means that the op-
timal backward and forward vector are not independent as they should
produce error images as much different as possible, being not enough to
barely minimize error images energies. In other words, regions affected
by a positive backward error, should have a negative forward error and
viceversa.



Chapter 5

Motion Vector Encoding

There are more things in heaven and earth, Horatio, than are
dreamt of in your philosophy.

WILLIAM SHEAKSPEARE
Hamlet, prince of Denmark, 1601

This chapter summarizes main results obtained in motion vector field
(MVEF) coding with JPEG2000-based techniques. Motion information ob-
tained by a generic ME algorithm is usually highly redundant, so, in order
to obtain an efficient coding, the motion vectors have to be compressed. In
the previous chapter we saw several techniques for changing MV entropy
directly at the ME stage. Afterward, MVs are supposed to be losslessly en-
coded and transmitted to the receiver, and, indeed, lossless methods are
the object of the first and largest part of this chapter. However, an alter-
native approach is considered in Section 5.6, in which we perform ME
without caring for MV rate, that is we look for the most accurate motion
information, but then consider lossy MV coding techniques.

Another issue we considered in MV encoding was compatibility with
JPEG2000 standard. Since our target is to implement a video encoder with
the highest possible compatibility with this standard, we felt that also MVs
should be encoded by means of JPEG2000. Of course, as this is a still
image coding algorithm, we cannot expect to provide the best possible
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performance, but this appears to be compensated for by the compatibility
with the standard.

Before describing the techniques for MV encoding, we present a first
section where some statistics of MVs are given and analyzed. Then our
techniques are described, together with experimental results. We tested
proposed techniques in many different configurations, in order to bet-
ter understand their potential performance. Therefore, several sequences
were considered, and motion estimation precision and block size were
changed in order to investigate the influence of these parameters on vector
coding.

5.1 Motion vector distribution

We evaluated the distribution of motion vector fields in the sequences
“flowers and garden” (250 frames),“bus” (150 frames), and “foreman” (300
frames). All these sequences have a relevant motion content, but in the
first one, motion is pretty regular, in the second one, it is regular but com-
plex, as many moving objects appear on the scene, and in the third one,
motion is quite chaotic.

Full pixel and half pixel precisions were considered. In figures 5.1H5.6,
backward and forward vectors for the first three temporal decomposition
levels are shown. The log,, of relative frequency is reported, with null
vector frequency situated at image center. We remark that for successive
temporal levels the search area increases, since temporally distant frames
can involve wide movements. This results in a more spread MV distri-
bution at higher temporal levels. Anyway, the distributions show a good
regularity, and are pretty concentrated around the null vector. This comes
from regularization techniques, which tend to assign a null vector when
estimation is not accurate.

From the analysis of these distributions, we can get information on
motion content of the sequences and some hint about how to encode those
motion vectors.

Figures[5.1land 5.2 shows that motion in the “flowers and garden” se-
quence is quite regular, with a dominant horizontal motion toward the left
direction. This sequence is actually a camera panning on an almost statical
background.

From Fig.5.3land b5.4lwe can deduce that in the “bus” sequence motion
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is more complex, even though we have mainly horizontal movements. In-
deed, in this sequence we have an horizontal camera panning on a bus
and moving cars.

The “foreman” sequence is characterized by a more complex motion,
as it appears from Fig. 5.5 and Many null vectors are estimated, but
the distribution exhibits several secondary peaks, coming from different
movements of the objects and of the camera in this sequence.

By analyzing these distributions and by taking a look to the video se-
quences themselves, we can conclude that MVFs for these sequences are
quite spatially correlated, but can present relevant temporal variations.
We note also that the distributions have often high values on the axes,
i.e. many vectors with a single null component are estimated. As the ME
algorithm we use does not allow vectors pointing outside the frame, the
estimation of vectors near the border of the image has often a null value

for the component orthogonal to the border, see an example in Fig. 5.7]
(left).

5.2 Encoding techniques: space compression

We have proposed, implemented and tested some methods to encode mo-
tion vectors with the JPEG2000 algorithm. The basic idea is that motion
vector fields exhibit a remarkable spatial correlation, that has to be re-
duced in order to achieve compression. A still image compression algo-
rithm would accomplish the job, and so JPEG2000 is used. Of course, it
has to be adapted to these peculiar data and to our requirements. There-
fore, we used the following general settings for the JPEG2000 encoder:

e no wavelet decomposition (0 decomposition levels);
¢ no psychovisual weighting of components;

e all bitplane encoded.

This configuration assures reversible (lossless) coding, as, indeed we use
the EBCOT encoder on MV data. Anyway, there are several way to arrange
the data before sending them to the encoder. In this section, we consider
three simple encoding strategies, trying to take advantage from spatial
correlation of MV. We choose to not perform wavelet decomposition since
this operation proved to increase the encoding cost for the lossless case.
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Figure 5.1: MVF distribution: “flowers and garden”, full pixel precision
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Figure 5.2: MVF distribution: “flowers and garden”, half pixel
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Backward MVF Distribution — Level 1 Forward MVF Distribution — Level 1

Figure 5.3: MVF distribution: “bus”, full pixel
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Figure 5.4: MVF distribution: “bus”, half pixel
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Backward MVF Distribution — Level 1 Forward MVF Distribution — Level 1

Figure 5.5: MVF distribution: “foreman”, full pixel
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Figure 5.6: MVF distribution: “foreman”, half pixel
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Figure 5.7: Example of MVF and corresponding images for the JP2K Single
Image technique

The first strategy is the most straightforward: we consider the horizon-
tal and vertical component of a MVF as a couple of images, and the two
resulting files feed as two input components the JPEG2000 encoder, which
outputs the encoded stream and the lossless encoding rate. This is re-
peated for each MVE. An example is shown in Fig. 5.7, where we report
a MVF for the “flowers” sequence, and the corresponding couple of im-
ages. We note that these images are scaled by the block size with respect
to the video frames (as a “pixel” is obtained for each block), so the larger
the blocks, the smaller these MVF images. We refer to this first strategy as
JP2K Single Image.

The second strategy aims avoiding the problem of managing too small
images, that is what can happen with the first strategy. Let N be the num-
ber of MVFs; the horizontal components of all MVFs are pasted together in
a large image, made up of M; x My MVFs where N = Mj - My. The same
is done for the N vertical components. Then the two images are given in
input to the encoder, as two components of a single image. An example
of these MV images is given in Fig. 5.8] where we show a couple of im-
ages taken from the “flowers and garden” sequence. This example shows
how these images can be in fact quite regular, and so we can expect pretty
good performance if motion is regular. We refer to this strategy as JP2K
Big Image.
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Third strategy: each vector field gives two components images, as in
Fig. 5.7l All of these images in a group of pictures (GOP) are regarded as
components in a multi-component image, and jointly encoded. We refer
to this last technique as JP2K Spectral.

5.2.1 Experimental results

We considered the following test sets: we encoded MVFs computed on
the first 64 frames of the gray-level “foreman” sequence, with full and
half pixel precision, and block sizes 8 x 8 and 16 x 16. The MVs have
been computed with a block matching algorithm, which minimizes a MSE
based criterion, with a slight regularization (i.e. low values of a and S, see
Section 4.4). Up to three temporal decomposition levels have been con-
sidered, and results are provided for each of them. Indeed, as we saw
in previous Section, MV belonging to different decomposition levels can
have quite different characteristics: first the dynamics increases with the
level; moreover, at increasing levels, ME involves frames which are quite
distant in time, and then can be quite different. This means that estimated
vectors for these levels can be irregular and chaotic, in other words, diffi-
cult to encode. This will be confirmed by the increase in entropy of MV, as
observed in this test.

In order to assess the effectiveness of the proposed strategies, we com-
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No. of Time Dec. Levels
Method 1 2 3

Joint entropy 4.27 4.61 4.93
Difference entropy | 4.53 4.98 5.35
JP2K Single Image | 4.86 5.34 5.86

JP2K Big Image 4.32 4.61 4.91

JP2K Spectral 4.71 5.15 5.55

Table 5.1: Experimental results: full pixel precision, block size 8 x 8

No. of Time Dec. Levels
Method 1 ‘ 2 ‘ 3
Joint entropy 3.33 3.61 3.86
Difference entropy 3.44 3.83 3.99
JP2K Single Image | 5.69 6.15 6.64
JP2K Big Image 3.55 3.92 4.25
JP2K Spectral 3.81 4.28 4.80

Table 5.2: Experimental results: full pixel precision, block size 16 x 16

pared the coding cost to the first order entropy of MVFs, called here “joint
entropy” in order to emphasize that we are considering the vectors com-
ponents jointly. Further on we will consider the component marginal en-
tropy as well. Moreover, for this test, we also computed the entropy of the
differences between each MVF and the previous one. This entropy value
represents a lower bound for a temporal predictive encoding technique.
We compute this quantity in order to assess wether such a strategy could
be favourable.

The results of our tests are synthesized in Tab. 5.Jlto[5.4l In these tables,
we report the encoding cost per vector expressed in terms of bits needed
for encoding a single vector. The entropy is expressed in bits per vector as
well. Bold types are used for the lowest value for a specific decomposition
level. Italic types are used for the best encoding technique.

From these results we can draw some conclusion.

e Difference entropy is always larger than joint entropy. This suggest
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No. of Time Dec. Levels
Method 1 ) 3

Joint entropy 4.90 5.18 5.43
Difference entropy | 5.14 5.51 5.81
JP2K Single Image | 5.83 6.30 6.77

JP2K Big Image 5.35 5.63 5.86

JP2K Spectral 5.69 6.13 6.48

Table 5.3: Experimental results: half pixel precision, block size 8 x 8

No. of Time Dec. Levels
Method 1 2 3

Joint entropy 4.23 4.46 4.66
Difference entropy 4.29 4.63 4.87
JP2K Single Image 6.98 7.46 7.92

JP2K Big Image 4.88 5.25 5.52

JP2K Spectral 5.10 5.60 6.09

Table 5.4: Experimental results: half pixel precision, block size 16 x 16

us that differential coding techniques are not well suited for MV en-
coding. Moreover, as we expected, entropy increases with temporal
decomposition levels.

e The first JPEG2000 strategy (JP2K Single Image) has the worst per-
formance, as it has to compress quite small images, with peculiar dy-
namics. Indeed, it performs especially badly when bigger blocks (i.e.
smaller MVF images) are considered. Moreover it performs badly
with full pixel and sub-pixel precisions.

e The JP2K Big Image strategy has coding cost close to the entropy
when small blocks with full pixel precision are considered, as in this
case we have bigger and more correlate MVF images. In one case
JP2K Big Image has a coding cost lower than the joint entropy. This is
not surprising, as we consider a first order entropy, while the EBCOT
coding technique takes advantage of contextual information [90]. In
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any case it is always better than the other techniques.

e The JP2K Spectral strategy performs worse than the JP2K Big Image.
A possible explanation is the small dimensions of each component,
that is in this case, only 19 x 22 pixels.

e The encoding cost per vector always increases when block size is re-
duced (but for the JP2K Single Image strategy, as already poitned
out). This could be surprising, as reducing block size increase corre-
lation between vectors. Probably this behavior is due to irregularities
in motion estimation, that affect a larger number of vector if we have
smaller block sizes.

e Encoding cost per vector always increases with better precision, as
we could expect. This increment is about 1 bit.

e Experiments provide evidence that at least one among these tech-
niques is able to get coding rates close to MVF entropy, and, in one
case, to improve upon it. This is an encouraging result, as the “fore-
man” sequence has quite an irregular motion. We expect even better
results on more regular sequences. Further tests, shown later in this
chapter, prove this intuition to be true.

5.3 [Encoding techniques: time compression

In the previous section, we compressed MVFs essentially by exploiting
their spatial redundancy. In this section we analyze other JPEG2000-based
encoding techniques which also try to take advantage from the temporal
correlation of MVFE.

However, we saw that a simple temporal prediction technique is not
likely to bring better performance, as difference MVFs have a larger en-
tropy than the original. So we proposed and analyzed some other tech-
niques, which are characterized by different arrangements of MVF data.

Moreover, it is worth noting that proposed techniques do not take ad-
vantage of the correlation between MV components, as these are encoded
independently. This suggests that marginal components entropy would
be a more fair benchmark for our technique than joint (or vector) entropy.
Marginal entropy is the sum of the two component entropies, and it is of
course always greater than or equal to their joint entropy.
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5.3.1 Experimental results

In this experiment we assess performance of two new techniques:

Fourth strategy. We consider separately vertical and horizontal compo-
nents, as usual. For each component, we consider the value in position
(0,0) for each MVF to encode. With this values we build a first rectangu-
lar block. Then we do the same for all values in position (0, 1), obtaining
a second block. We continue until (0, N, — 1), obtaining N, blocks (N, is
the number of column in a MVF image). Then we align all these block in
a row. We build a second row with values in positions (1,0), (1,1), ...,
(1, N — 1). We continue until all rows the MVF image are scanned. This
technique puts in near spatial positions MVF values that are temporally
near, trying to transform the temporal correlation of MVF in a spatial cor-
relation, to exploit with the JPEG2000 encoder. This technique is referred
to as JP2K Scan.

Fifth strategy. Let us consider the MVF images as in Fig.[5.7l Instead of
pasting them together, as in the JP2K Big Image technique, we take a the
tirst row from each of them and we compose a first image; then we do the
same with successive rows. Finally, we past together those images, as we
do in the JP2K Big Image technique. In this way we exploit the temporal
correlation existing among rows at the same position in successive MVFs.
Indeed, we transform this temporal correlation into a spatial correlation,
and we use JPEG2000 on the images. We refer to this method as JP2K Rows.

We considered once again the first 64 frames of “foreman” sequence,
with a block size of 16 x 16. We considered full pixel and half pixel preci-
sions.

Experimental results are shown in Tab. .5 and 5.6 where, for compar-
ison, we reported previous techniques performance as well. Typographic
conventions are the same that in tables 5.11-5.4

JP2K Single Image and JP2K Scan seem to be the worst techniques,
since they have a coding cost always larger than the marginal entropy.
JP2K Spectral has a coding cost always lower than marginal entropy, but
very close to it. JP2K Big Image and JP2K Rows attain the best perfor-
mance (with JP2K Big Image better than JP2K Rows but for a case). They
have a coding cost significatively lower than the marginal entropy, and not
very far from the joint entropy.
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No. of Time Dec. Levels
Method 1 ) 3

Joint entropy 3.33 3.61 3.86
marginal entropy 3.97 4.45 4.88

JP2K Single Image | 5.69 6.15 6.64
JP2K Big Image 3.55 3.92 4.25

JP2K Spectral 3.81 4.28 4.80
JP2K Scan 4.42 5.08 5.81
JP2K Rows 3.57 4.17 4.79

Table 5.5: Vector coding cost in bit per vector: full pixel precision

No. of Time Dec. Levels
Method 1 2 3

Joint entropy 4.23 4.46 4.66
marginal entropy 5.29 5.72 6.10
JP2K Single Image 6.98 7.46 7.92
JP2K Big Image 4.88 5.25 5.52

JP2K Spectral 5.10 5.60 6.09
JP2K Scan 5.88 6.50 7.19
JP2K Rows 4.81 5.49 6.07

Table 5.6: Vector coding cost in bit per vector: half pixel precision
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5.4 Validation of MVF coding techniques

Previous experiments highlighted JP2K Big Image and JP2K Rows as the
best techniques in the case of “foreman” sequence. Then we performed
further tests on more sequences: we considered the first 128 frames of the
sequences “foreman”, “flowers and garden”, and “bus”. Moreover, we in-
troduced also a slight variation of the JP2K Big Image technique, consist-
ing of the use of a simple median-prediction algorithm applied on each
MVF image, in order to exploit the spatial correlation among neighbour-
ing vectors. Then, the prediction error images are used to build the large
image which is given as input to the JPEG2000 encoder. This technique is
referred to as JP2K Spatial Prediction.

The coding costs of these techniques are compared to the joint entropy
and to the marginal entropy of MVs, computed with respect of two dif-
ferent representations of MVs: as cartesian components or as polar com-
ponents. In conclusion we consider three statistical information about
motion vectors: the entropy of motion vectors, i.e. joint entropy of hori-
zontal and vertical component (called vector joint entropy), as usual; the
sum of marginal entropies of vector components in rectangular coordi-
nates (called (X, Y) marginal entropy); and the sum of marginal entropies
of vectors components in polar representation (called (p,0) marginal en-
tropy). In this case vectors are represented as an energy level (i.e. the norm)
and a label which singles out the vectors among those with the same en-
ergy level. We note that in Z? there are usually only a few vectors with the
same energy level [23].

The first quantity represents a limit for first order encoding techniques
operating on a vector as a single symbol. The second represents a limit for
encoding techniques operating on horizontal and vertical components of
MV. The third one represent a limit for techniques which encode the norm
and the angle of each vector. This experiment is performed in order to
understand whether such a representation could improve motion vector
encoding. We note that none of the proposed techniques exploits directly
the dependence between horizontal and vertical components of MVFs.

5.4.1 Experimental results

These techniques were tested on the first 128 frames of the “foreman”,
“flower and garden”, and “bus” sequences. A block size of 16 x 16 pixels
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and full or half pixel precision have been considered.

Results are shown in tables from 5.7 to 5.12] where we reported the
encoding cost expressed in bits per vector. In each table we set in bold the
absolute lowest value, among both entropies and coding costs; we set in
italic both the best coding technique and the best marginal entropy.

We note that all of three proposed techniques have in any test config-
uration cost lower than marginal entropy of cartesian components, which
is almost always the higher value: only in a few cases the (p, f) Entropy is
greater. Of course both of them are always greater then joint entropy. This
suggests that we could take advantage of a technique encoding vectors
represented by norm and angle rather than vectors in cartesian represen-
tation. This issue is addressed in Section5.5

The following remarks are related to specific sequences.

For the “flower and garden” sequence, which is characterized by a very
regular motion, at full pixel resolution, all proposed techniques performs
always better than joint entropy, and the JP2K Rows technique has the
best performance. At half pixel resolution, proposed techniques performs
better than entropy but for the four decomposition levels case. Spatial
prediction and JP2K Rows are the best encoding techniques, but JP2K Big
Image has close performance.

Results obtained for the “bus” sequence are a little different. We see
that proposed techniques have good performance for 1 and 2 decomposi-
tion levels, and that spatial prediction is almost always the best. Moreover,
(p, 0) entropy is almost always lower than (X, Y) entropy:.

Finally, for the “foreman” sequence, where we see that proposed tech-
niques performs always worse than both joint entropy and (p, ) entropy,
which is always better than (X, Y) entropy. This difference is greater when
we increase precision and time decomposition level. Among proposed
techniques, JP2K Big Image performs always better than others.

In conclusion, experimental results show that, considering different
kinds of video sequences, proposed techniques keep an encoding cost
lower than MV marginal entropies (both for cartesian and polar represen-
tation). Moreover, for more regular sequences, they are able to achieve an
encoding cost lower than MV joint entropy. We can conclude that all of
these techniques are good enough for the proposed video coder. Anyway,
we expect that algorithm explicitly designed for MV encoding perform
better than the proposed techniques. This is the price we pay to achieve
JPEG2000 compatibility.
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No. of Time Dec. Levels

Method 1 2 3 4

Vector joint entropy 2.27 2.62 2.85 3.00

(X,Y) marginal entropy || 2.37 2.82 3.14 3.39

(p, 0) marginal entropy 2.59 2.98 3.23 3.39

JP2K Big Image 1.71 2.21 2.55 2.83
JP2K Spatial Pred. 1.86 2.35 2.70 3.00
JP2K Rows 1.27 1.77 2.21 2.57

Table 5.7: Sequence “flower”, precision 1 pixel

No. of Time Dec. Levels

Method 1 2 3 4

Vector joint entropy 3.54 4.01 4.34 4.54

(X,Y) marginal entropy | 3.89 4.55 5.06 5.43

(0, 0) marginal entropy 3.98 4.45 4.77 4.96

JP2K Big Image 3.20 3.97 4.57 5.01
JP2K Spatial Pred. 3.29 3.95 4.47 4.90
JP2K Rows 3.34 423 4.93 5.40

Table 5.8: Sequence “bus”, precision 1 pixel

No. of Time Dec. Levels

Method 1 2 3 4

Vector joint entropy 3.12 3.47 3.74 3.91

(X,Y) marginal entropy | 3.74 4.26 4.70 5.01

(p, 0) marginal entropy 3.60 3.94 4.22 4.39

JP2K Big Image 3.30 3.84 4.34 4.70
JP2K Spatial Pred. 3.50 4.03 4.53 4.92
JP2K Rows 3.40 4.05 4.65 5.05

Table 5.9: Sequence “foreman”, precision 1 pixel
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No. of Time Dec. Levels
Method 1 2 3 4

Vector joint entropy 3.74 4.18 4.46 4.56

(X,Y) marginal entropy 4.08 4.69 5.13 5.31

(p, 0) marginal entropy 4.18 4.63 4.91 4.99

JP2K Big Image 3.26 3.95 4.46 4.69
JP2K Spatial Pred. 3.31 3.94 4.39 4.62
JP2K Rows 2.92 3.89 4.58 4.88

Table 5.10: Sequence “flower”, precision % pixel

No. of Time Dec. Levels

Vector joint entropy 4.67 5.11 5.40 5.55

(X,Y) marginal entropy || 5.24 5.90 6.38 6.70

(0, 0) marginal entropy 5.04 5.48 5.76 5.91

JP2K Big Image 4.57 5.39 5.98 6.38
JP2K Spatial Pred. 4.38 5.02 5.50 5.86
JP2K Rows 4.72 5.57 6.24 6.65

Table 5.11: Sequence “bus”, precision 3 pixel

No. of Time Dec. Levels

Vector joint entropy 4.13 4.41 4.61 4.73

(X,Y) marginal entropy || 5.12 5.58 5.95 6.19

(0, 8) marginal entropy 4.62 4.89 5.09 5.20

JP2K Big Image 4.66 5.19 5.65 5.94
JP2K Spatial Pred. 4.82 5.34 5.78 6.07
JP2K Rows 4.65 5.35 5.93 6.28

Table 5.12: Sequence “foreman”, precision % pixel
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Among the proposed techniques, no one clearly emerges as the best
one. Nevertheless, the JP2K Big Image is the most robust and the simplest
(it has always good performance and other techniques derive from it), so
it is the most reasonable choice.

5.5 Vector coding via energy and position

MVFs can be represented in both rectangular and polar coordinates. Ex-
periments presented in the previous Section showed that this representa-
tion is often convenient with respect to the usual cartesian representation.
A simple variant of polar representation is called “Energy and Position”
representation. Each vector has an “energy”, which can be variously de-
fined. Common choices are E = 02 + vi or E = |vy| + [vy|. When vectors

are a subset of Z? (or can be reduced to such a kind of subset, as always
happens with 27"-precision vectors) we can enumerate the possible en-
ergy level: let £ be the set of such levels.

For each energy level e € £, the set of possible vectors is finite and uni-
vocally defined. So we can choose an arbitrary indexing for each energy
level, which allows one to single out each vector of this level. Let Z, be
the set of possible indexes for the e-th energy level. Then a vector is com-
pletely described by the couple energy level, index (e,i) € & x Z, C Z>.
We also call position the index i of a vector.

If the energy is the £2 squared norm (that is E = 02 + vi), it can be
shown that only a few vectors exist for each energy level [23, 53], that
is, the number of admissible positions, |Z,|, is usually 4 or 8, and, very
rarely, larger. Therefore, positions can be described with a few bits. On the
other hand, in this case the number of possible energy levels, ||, grows
with quadratic law with respect to the size of the largest vector compo-
nent, while usually only a few of the possible energy levels are actually
occupied. So it is expensive to represent energy components.

Some results for the energy-position representation are in table
Tests were performed on first 32 frames of the “foreman” sequence using
up to three levels of temporal decomposition. In the table we reported the
Entropy of Energy and Position information, and the corresponding cod-
ing cost. Moreover we report the Joint Vector Entropy, which is lower than
the sum of Energy and Position Entropies, and, for comparison, the global
coding cost per vector, which instead is the sum of Energy and position
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1 2 3
Entropy | Cost | Entropy | Cost | Entropy | Cost
Energy 2.79 5.64 3.10 6.07 3.36 6.47
Position | 1.04 1.16 1.00 1.18 1.00 1.23
Vector 3.33 6.80 3.61 7.24 3.86 7.70

Level

Table 5.13: Vectors entropy and encoding cost with energy-position repre-
sentation

Figure 5.9: Example of energy and position for first 16 MVF in “foreman”

coding costs.

Energy and positions are encoded by grouping them from several mo-
tion vector Fields. A single image is then created and sent as input to a
JPEG2000 encoder: in figure 5.9, we reported an example of Energy and
Position “images”.

We see that while position is fairly well encoded, this is not the case for
energy, as, even though actually only a few values of energy are present,
very large value can occur, requiring a suitable dynamics, which makes
the encoder job more difficult. For this, example only 93 different energy
levels were observed, while the dynamics was 12 bit (i.e. the max energy
value observed was 2047).

If the energy is the £! norm (thatis E = |vx| + |vy|), it can be shown that
many vectors exist for each energy level, namely, the number of admissible
positions, |Z,|, is 4e. In this case thus, positions can be described with
log, e + 2 bits. On the other hand, |£| grows linearly with respect to the
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maximum vector component, and usually not many of the possible energy
levels are actually occupied. So it is less expensive to encode energy, but
unfeasible to encode positions. First experiments in this sense revealed
worse performance than the previous case.

We conclude that the Energy-Position representation is not suitable for
JPEG2000 compatible coding of motion vectors, even though it could be in
general a good alternative to the usual Cartesian representation.

5.6 Scalable motion vector encoding by wavelet
transform

In this Section we deal with a problem that is slightly different from what
we saw in the previous Sections of this chapter. Namely, we are interested
in scalable and possibly lossy coding of Dense motion vector Fields.

As already pointed out, an efficient representation of motion informa-
tion can not be the same both at high and at low bit-rates, and when the
resources are scarce, a lossy encoding technique for MVFs becomes inter-
esting. Moreover, if we think about the heterogeneity of networks and
users, scalability also assumes an increasing importance. Hence we pro-
pose an embedded encoding algorithm, which should then assure low cost
encoding when low encoding resources are available, and the ability of
lossless encoding when a high bit-rate is available.

5.6.1 Technique description

Let us see how the proposed technique meets these demands. First of all
we compute a dense MVF (that is, a vector for each pixel) at high precision
(i.e. quarter pixel or better), obtained by spatial B-Spline interpolation [97]
of original sequence; indeed, we are going to encode MVFs with a scalable
technique allowing both lossless and lossy reconstruction, so we leave to
the MVF encoder the job of rate reduction, while in the ME we simply get
the most complete information about movement. With respect to Fig. 4.2]
we choose a ME algorithm which assures the rightmost point in the RD
curve. Then the MV encoding algorithm is charged of finding the “best”
operational point, or at least a good compromise among precision and
cost.
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Once a dense MVF is computed, its vertical and horizontal compo-
nents undergo a JPEG2000 compression scheme: bi-dimensional WT is
performed on them, with a decomposition structure that can vary, but that
we initially chose as the usual dyadic one. We can use both integer filter
like the Daubechies 5/3 filter, which allows perfect reconstruction even
with finite precision arithmetics, and non integer filter like the Daubechies
9/7 filter which guarantees better performance, implemented by lifting
scheme. First experiments suggested us to use three decomposition lev-
els on each component. The resulting subbands are encoded by EBCOT,
which gives an efficient and scalable representation of MVFs: by increas-
ing the number of decoded layers, we get an ever better MVF, and, when
all layers are used, we get a lossless reconstruction, thanks to the use of
integer filters.

5.6.2 Proposed technique main features

The proposed technique aims to reproduce and generalize the behavior of
variable size block matching (VSBM): thanks to the multi-resolution prop-
erties of WT, lossy compression of WT coefficients tends to discard data
from homogeneous area in high frequency subbands, and to preserve high
activity areas: this is conceptually equivalent to adapting the resolution of
motion information representation to its spatial variability, that is, to in-
crease or decrease the block size like in VSBM, but with the advantage of a
greatly extended flexibility in representation of uniform and non uniform
areas, which are no longer constrained to rectangular or quad-tree-like ge-
ometry. This is shown in Fig. and 5.11] where a dense and regularized
(¢ = 10,8 = 5) MVF and its lossy-compressed version are shown. The
value of each component is represented in gray scale, with medium gray
standing for null component.

Another advantage of the proposed technique is that it supplies a way
to degrade gracefully motion information, so that it becomes easier to find
the best allocation of the total available rate Rt between MVFs Ry and
coefficients Rgp (see also Chapter[/). In fact it is clear that an optimal split
must exist: performance always improve from the case we do not use MC
(Ryp = 0) to the one in which it is used (R;;; > 0), and it is also clear that
performance decreases when R, tends to saturate Rt. With the proposed
technique we are able to smoothly vary the rate dedicated to MVFs, and so
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Figure 5.10: Original dense MVF, frame 5, horizontal and vertical compo-
nent. Entropy > 10 Mbps, rate 3.5 Mbps with lossless compression

o]

Figure 5.11: Decoded MVFE, frame 5, horizontal and vertical component.
Encoding rate 0.02 bit/vector, or 75 kbps with lossy compression
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Figure 5.12: Scalable Lossy coding of MVFs

we can more easily find the optimal allocation. In [21] it was proposed to
change MVF bit-rate by modifying the quad-tree representation of MVFs,
while in [71] the MV bit-rate was varied in function of MV precision.

Some other results of this coding technique in the lossy case are shown
in Fig. here we report the prediction MSE of lossy-encoded MVFs
as a function of the coding rate, when the filter used for WT is changed.
We note that it is possible to strongly reduce the rate without too much
increasing the MSE. We also remark that the 9/7 filter has better perfor-
mance in a wide range of rates.

In [5] scalability of MVFs was obtained by under-sampling and approx-
imating the estimated vectors, and by refining them in the enhancement
layers, and the scalability was strictly related to subband decomposition.
Here, instead, the proposed algorithm ensures a more flexible embedded
description of MVFs.

In conclusion the proposed MVF coding technique presents the advan-
tages of providing a scalable and JPEG2000 compatible representation of
MVFs. As it is a lossy technique it cannot be directly compared to the
technique previously described in this chapter. Anyway it presents some
disadvantages as well. First, it requires a Dense MVF, which is very heavy
to compute; but the main problem is that when lossy coding is performed,
we lose sensibility on the real error introduced in motion compensation by
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the error on motion vectors. Secker and Taubman [80] showed that if the
error on MV is small, then the motion compensation error is proportional
to MV error. Anyway, this cannot be generalized to arbitrarily large errors:
it is intuitive indeed that a large error on MV in an homogeneous region
causes a smaller error than a small error in a border region does.

For these reasons, even though the proposed technique is quite inter-
esting, it has not been possible until now to find a suitable configuration
which assures good overall performance for a wide range of input video
sequences.
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Chapter 6

Space Analysis Stage and the
Resource Allocation Problem

Yo afirmo que la Biblioteca es interminable. Los idealistas ar-
guyen que las salas hexagonales son una forma necesaria del espacio
absoluto o, por lo menos, de nuestra intuicion del espacio. Razonan
que es inconcebible una sala triangular o pentagonal. [...] Bdsteme,
por ahora, repetir el dictamen cldsico: La Biblioteca es una esfera
cuyo centro cabal es cualquier hexdgono, cuya circunferencia es in-
accesible!l

JORGE LUIis BORGES
La Biblioteca de Babel, 1941

6.1 Spatial filtering and encoding

In the spatial analysis stage, the temporal subbands (SBs) produced by the
temporal analysis stage undergo a spatial WT, resulting in a global three-

IT affirm that the Library is interminable. The idealists argue that the hexagonal sa-
lons are a necessary form of absolute space, or, at least, of our intuition of space. They
rationalise that a triangular or pentagonal salon is inconceivable. [...] It suffices, for now,
to repeat the classical dictate: “the Library is a sphere whose exact center is whichever
hexagon, whose circumference is inaccessible.”
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dimensional WT. Then, these WT coefficients have to be encoded, and this
is accomplished by using JPEG2000. We report for reference the scheme of
the space analysis stage in Fig.

Each subband can be seen as a set of images. Thus, we can encode each
SB with the EBCOT algorithm. This assures very good performance for
the lowest temporal subband, which is a subsampled version of the input
sequence if (N,0) LS is used, or otherwise a subsampled and filtered ver-
sion of the input. On the other hand, higher frequency subbands are not
natural images, nor have similar characteristics. Indeed, when MC-ed LS
are used, high frequency SBs represent the variations of details, luminos-
ity, and motion, which have not been caught by the MC-ed temporal filter.
Several examples of this kind of images are given in Fig. Nevertheless,
the application of JPEG2000 on this kind of data proved to have compet-
itive performance. Of course some tuning of the algorithm parameters
is required, concerning color management, the number of decomposition
levels and the floating point data representation.

Color sequences are managed as follows. Our codec can accept both
4:2:0and 4 :0:0YUV sequences as input. If chrominance is present,
MC-ed filtering is performed on it by using suitably scaled MVs. Then the
temporal subband are composed by luminance and chrominance frames.
The allocation algorithm is performed on luminance frames only. The rate
allocation for chrominance is in a fixed ratio with the rate for the corre-
sponding luminance temporal band. More details on color management
are given in[B] with some complete examples of allocation as well.

Once the encoding technique has been chosen, the main problem is the
resource allocation. In other words, we have to decide what rate to assign
to each SB, in order to achieve the best possible performance.

In this chapter, we make the basic assumption that the total rate avail-
able for subband encoding is given a priori. Actually, the choice of an opti-
mal subdivision of resources between MV and SB coding is anything but
a simple problem. Two possible approaches can be envisaged. According
to the first one, we split the problem into two steps: we look for the best
allocation among MV and subbands considered as a whole (i.e. we look for
an optimal subdivision of R among R;;» and Rg,); then we try to allocate
Rsp among subbands. This is the implicit model we used through this and
the previous chapters. Namely, we give details of the second step of this
algorithm in this chapter, while some hints about the first step are given
in Section [Z.3] This approach is also the most common in the scientific
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LLL Temporal
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LLH JPEG2000
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H
- Rate

Allocation

Figure 6.1: Spatial analysis: processing of the temporal subbands pro-
duced by a dyadic 3-levels temporal decomposition

literature [21].

Despite the simplification of subdividing the allocation process into
two steps, this problem is quite challenging, as it requires to model ac-
curately the encoder, to find an analytical description of the problem, to
solve it and to find a feasible implementation of the solving algorithm. We
address these topics in the remainder of this chapter.

The second approach aims at jointly allocating MVs and all subbands
rates. We developed some aspect of this problem from a theoretical point
of view: results are given in Section 7.4l

6.2 The resource allocation problem

The problem of allocating the coding resources among subbands presents
two kind of difficulties: first we need to define and to model a general
framework; then we have to cope with the computational complexity and
implementation issues of possible solutions.

The resource allocation problem is very common in data compression
[30]. We can generically describe this problem as follows. Let us suppose
to have a given encoding technique, and M signals to encode, produced
by as many random processes. We can consider the spatiotemporal SBs
resulting from MC-ed WT as these signals. The resource allocation prob-
lem consists in finding a rate allocation vector, R* = {R;"}f\i , such that,
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Figure 6.2: Examples high frequency temporal subband (H) frames

when the i-th signal is encoded with the given encoding technique at the
bit-rate R} for eachi € {1,2,..., M}, then a suitable cost function is mini-
mized while certain constraints are satisfied. Then, for the given encoding
technique, this is the optimal allocation.

Let us apply this generic definition to our problem. As previously men-
tioned, the M signals are the SBs; as cost function, we can choose the dis-
tortion of the decoded sequence, and in this case, the constraint is imposed
on the total bit-rate, which should be lower than a given threshold (rate al-
location problem). However, the total rate could be our cost function, as
well. In this case, there will be a constraint on the total distortion (dis-
tortion allocation problem). These two problems show a deep symmetry,
and, as we will see later, in our approach they have very similar solutions.

Our target is then to define a general framework for optimal resource
allocation in the context of motion-compensated WT-based video coding.
We need several tools in order to approach this problem, as we have to
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model the global distortion, to solve analytically the allocation problem
and to find an algorithm that attains the optimal solution. Once such an
algorithm has been found, a further problem is to find a limited complex-
ity implementation.

Before describing the proposed framework and solutions, we briefly
review the scientific literature about the resource allocation problems (sec-
tion [6.3). Then we introduce our contribution (Sections 6.4}, 6.5, and [6.6)
which mainly consists of: defining an analytical approach for resource
allocation in the framework of WT-based video coding; extending exist-
ing models for distortion in the case of (N, 0) temporal filtering; develop-
ing an analytical solution to both rate allocation and distortion allocation
problems; defining a model for subband RD curves, which makes the al-
gorithm computationally feasible.

6.3 Existing solutions for the resource allocation
problem

The problem of allocating coding resources dates back to the 60s, when
it was recognized as a key issue in transform coding and subband cod-
ing problems. A first analytical approach is due to Huang and Schultheiss
who, in [34], stated the theoretical optimal bit-rate allocation for generic
transform coding in the high-resolution hypothesis. They derived a for-
mula which defines the optimal bit-rate to allocate to each random vari-
able, depending on their variances. Unfortunately, this simple and elegant
solution holds on only when a high rate is available for encoding.

An analytical expression of optimal rates has not been found for the
general case, and different approaches have been applied. The most suc-
cessful and widespread among them try to achieve optimal allocation by
modelling the relationship between RD characteristics of random vari-
ables and global RD characteristic. The goal is to find an optimal allocation
condition on the rates of the random variables, which assures the mini-
mization of distortion [rate] for a given maximal rate [distortion] of the
reconstructed data. For example, the well known SPIHT algorithm implic-
itly aims at optimal allocation by modelling the relationship between WT
coefficient quantization and reconstructed image distortion. The most re-
cent still images compression standard JPEG2000 divides WT coefficients
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in code-blocks, and then defines an optimality condition on code-blocks
RD curves which assures the minimum distortion of reconstructed image.
A crucial step of this rate allocation algorithm is the assessment of code
block RD curves, which however, is performed in a quite rough way.

The proposed encoder follows a similar route. We want to find a con-
dition on SB encoding which assures optimal reconstruction for the video
sequence. Two main problems arise. The first one is to model the rela-
tionship among reconstructed video distortion (or global distortion) and
SB distortion. The second one is to compute or estimate SB RD curves.
These problems are not new in the scientific literature, and some solutions
already exist. For the first problem, we propose a new extension to some
existing solution which takes into account the peculiarities of our case, i.e.
the use of (N, 0) lifting scheme for temporal filtering. For the second we
propose a brand new solution, a spline-based modelling and estimation of
RD curves.

Let us now review some existing solutions for our problems. For the
case of orthogonal subband coding, in [30] Gersho and Gray showed that
global distortion can be expressed as sum of subband distortions:

D(R) =) Dj(R;) (6.1)

Then, Usevitch [98] extended this result to the case of biorthogonal WT,
and gave some examples for the Daubechies filters. When the filters are
not orthogonal, (6.I) should be modified by using suitable weights which
account for non-orthogonality.

The model for global distortion is useless if we do not have the SB RD
curves, or an approximation of them. Actually, obtaining a reliable repre-
sentation of RD curves for each random variable is a common problem in
many optimization algorithms.

A brute-force simple approach could be to evaluate the curve in a large
number of points: each signal (generated by each random variable) is en-
coded and decoded many times at different rates, and then resulting dis-
tortions are computed and stored. Unfortunately, in order to have accurate
estimates in the whole range of possible rate allocation values, many test
points are required. So this approach requires a very high complexity.
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6.4 Rate allocation problem

Let us make the hypothesis that the technique for SB encoding is assigned,
which, in our scheme will be JPEG2000. Let D; = D;(R;) be the Distortion-
Rate curve for the i-th SB and for the given encoding technique. We as-
sume the MSE between original and decoded subband as distortion mea-
sure, while the rate R; is expressed in bits per pixel. We make also the
hypothesis that such RD curves are convex, which is reasonable since we
use the JPEG2000 encoder.

In the rate allocation problem, the cost function is the distortion of the
reconstructed sequence, indicated with D = D(R), as it depends on the
rate allocation vector R = {R;}M,. The constraint, in this case, is imposed
on total subband bit-rate Rgg, which should not be larger than a given
value Ryax. The relationship between total bit-rate Rsg and SB bit-rates
R; (all of them expressed in bpp) is

M

Rsg = ) aiR; (6.2)
i=1

where a; indicates the fraction of total pixels in the i-th subband. Namely,
if P; is the number of pixel in the i-th SB,

p;
1 Zf\il P i
Thus, the constraint to impose can be written as:
M
Y aiR; < Ryax (6.4)

i=1

In order to develop our analysis, an expression for global distortion
D as a function of the vector rate R is needed. To this end, we can take
advantage from the results obtained by Usevitch [98], who developed the
expression of distortion for the case of WT decomposition by Daubechies
9/7 or 5/3 filters, and gave the tools for extending this solution to other
filters. He showed that global distortion can be expressed as a weighted
sum of subband distortions when Daubechies 9/7 or 5/3 filters are used:

D(R) = %wiDi(Ri) (6.5)
i-1



94

6.4 RATE ALLOCATION PROBLEM

Subband
Filter H LH LLH | LLLH | LLLL
9/7 | 1.040435 | 1.022700 | 1.005267 | 0.988131 | 0.933540
5/3 | 14375 | 1.07813 | 0.808594 | 0.606445 | 0.316406
1/3 2 15 1.125 | 0.84375 | 0.316406

Table 6.1: Temporal subband weights (4 levels decomposition) for some
biorthogonal filters

The weights depend on the filter and on the decomposition scheme.
We extended this result to the case of (N, 0) lifting schemes, and we com-
puted these weights for the biorthogonal Daubechies 9/7 and 5/3 filters
and for the (2,0) lifting scheme, i.e. the 1/3 filter. The results are reported
in Table [6.1] where we consider four levels of temporal decomposition. It
is worth noting that, while Daubechies” 9/7 (and, to a certain extent, also
5/3) filters are very near to be orthogonal (as their weights are near to the
unity) [99], this is not true at all for (N, 0) lifting schemes. Correct weight-
ing is then crucial in order to achieve a correct model for distortion, and
then to attain optimal allocation.

In conclusion, the rate allocation problem amounts to find the rate vec-
tor R which minimizes the cost function (6.5) under the constraint (6.4).

This problem can be easily solved using the Lagrange approach. We
introduce the Lagrangian functional J(R, A):

M

M
J(R,A) =) wiDi(R;) — A()_ aiR; — Ryax)
i=1 i=1

By imposing the zero-gradient condition, we find that the resulting op-

timal rate allocation vector R* = {R!}M, satisfies the following set of
equations:

w; aDi .

— RY)=A v 1,....M 6.6

where A is the Lagrange multiplier. We can read (6.6) this way: the op-
timal allocation rates correspond to points having the same slope on the
“weighted” curves (R;, 7£D;).

A simple dichotomic search algorithm is proposed to find the optimal
rate allocation vector. Let us introduce the set of functions R;(A), defined
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implicitly by equation:

% aDi Ri) — A
a; OR;i " lR=r,(1)

assuming that D; is differentiable. In other words, the value of R;(A) is the
i-th subband’s rate which corresponds to a slope A on the weighted RD
curve for that SB. The rate allocation problem consists in finding the slope
value A* such that the total rate is equal to Ryax:

M
Y Ri(A*) = Ruax
i=1
The solution is found by an iterative algorithm. Let ¢ be a suitable

tolerance, and j represent the number of attempts. It is sufficient to find
the first value AU) such that

M .
Rmax — € < Y Ri(AY) < Ryiax (6.7)
i=1
We start by choosing an interval for slope values, say [)\fﬂoi)n, A,S?gx], in

which the solution certainly lies. Then, we initialize j = 0, and we set
A0 = l()\(0) + /\,(1923(). Now, while (6.7) is not met, if }; R;(A)) < Rypax,

2\ min
we set

AUFD 4 0)

AGED = Al (6.8)

otherwise:

/\(jJFl) _ /\(])

AU () 6.9)

Finally, the new attempt value for slope is

A 1 (A(Hl) +A,(1£;§1)> (6.10)

2 min

In the hypothesis of convex RD curves, we are sure that this algorithm
converge to a unique solution.
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6.5 Distortion allocation problem

Let us consider now the dual problem, that is the distortion allocation
problem. In this case, the cost function is the SB total rate Rgp

M
Rsg(R) = ) a;R; (6.11)
i=1

which should be minimized while a constraint is imposed on distortion:
M
D(R) =) w;D;(R;) < Dyax (6.12)
i=1

By using the same approach as before, we obtain the Lagrangian func-
tional

M M
J(R,A) =Y a;R; — A()_ w;Dj(R;) — Dyax) (6.13)
i=1 i=1
and, by imposing again the zero-gradient condition, we get:

wiaDi ¥\ l .
TR, (R}) = Vie{1,...,M} (6.14)

A

This means, once again, that the optimal condition is the uniform slope
on the weighted curves (R;, %Di)' The algorithm proposed to find the
best allocation vector is then quite similar to the previous one. Indeed, it
is sufficient to change the termination condition which will be now

M .
Dviax — € < Y w;D;(Ri(AY))) < Dyax (6.15)
i=1

while the interval updating now is described by (6.8) if }; w;D;(R;) >
Dyiax and by (6.9) otherwise. The new A value is determined again by
(6.10). In this case as well convexity assures convergence to the unique
solution.

We remark explicitly that, in order to use this algorithm, we should be
able to compute, for each A and for each subband, the function R;(A), i.e.
we should know the slope of the RD curves of every subband.
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Figure 6.3: Spline approximation of real RD curve

6.6 Model-based RD curve estimation

The problem of RD curve estimation is solved by introducing a paramet-
ric model [8], based on splines, which allows us to describe accurately
these curves with a few parameters, that is just a few points of the real
curve which, together with a tolerance parameter in the case of smoothing
splines, completely describe the spline. We tested two kinds of spline as
RD curve model: interpolation splines or smoothing splines [97].

Once this parametric representation is obtained, it is straightforward
to get the analytical expression of the RD curve first derivative, which is
what we need in order to apply the proposed rate allocation algorithm.
We note explicitly that the spline description of RD curve first derivative
is very compact and can be obtained from sample points with a very small
computational effort.

Many experiments were carried out in order to verify the effectiveness
of this representation. In all our experiments, spline proved to provide a
very good fit to any RD curve, even if different SBs have quite different
curves. For example, lowest frequency SB has a very steep curve at low
rates and a much more flat curve at higher rates. On the contrary, high
frequency SBs have more regular RD curves. Nevertheless, the proposed
approach is able to well represent any RD curve, usually with as few as
7 =10 points.
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Figure 6.4: Spline approximation of RD curve first derivative

In Fig.[6.3l we give an example of this method effectiveness. Here, we
report as a reference the “true” RD curve for the highest frequency SB com-
puted after 4 levels of motion-compensated temporal decomposition on
the first 16 frames of the “foreman” sequence (solid line). This curve has
been obtained by encoding and decoding the SB at two hundred different
rates. In the same graph we also reported the parametric representations
of this curve (dotted lines). These curves have been obtained by using just
7 points, those highlighted with a circle. We used both interpolation and
smoothing splines, and the results in both cases appear to be satisfying, as
the original curve and its parametric representations are almost indistin-
guishable.

In Fig. 6.4} for the same curve, we reported the “real” first derivative
and the first derivative of splines. Computation of splines derivatives can
be easily accomplished analytically. The resulting curves do not show the
irregularities which characterize experimental data. This mean that when
the allocation algorithm looks for points with the same derivative, we have
more robust results, especially at lower bit rates.

In conclusion, the model-based representation of RD curves is compu-
tationally very cheap (most of its complexity lies in computing test points
of RD curve) but, at the same time, it is very reliable, appearing to be a
very useful tool for applying the proposed optimal allocation algorithm.
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6.7 Scalability issues

We defined scalability as the property of a bit-stream to be decodable in
many different ways, with different visual parameters. When from an en-
coded video sequence it is possible to extract a reduced-resolution version
of the original data, the bit-stream is said to have spatial scalability. When
we can decode several versions at different frame-rates (for example only
even frames), the bit-stream is said to have time scalability. Finally, when
it is possible to decode only a part of the bit-stream, obtaining a version
of the original sequence at the same spatial and temporal resolution but
with a lower quality, we say that the bit-stream has bit-rate scalability or
quality scalability, or SNR scalability. Scalability is easily obtained with WT
based techniques. Let us consider Fig.[1.3| showing a one-level 2D WT of
an image. If we decode only the low frequency subband, we obtain imme-
diately a version of the original image at reduced resolution (there is also
a low pass filtering effect). Analogously, if we consider the WT temporal
decomposition scheme of Fig. [3.5and we do not decode the H subband,
we obtain a temporally subsampled (and temporally filtered) version of
the input sequence. On the other hand, bit-rate scalability is a bit more
difficult to obtain. Nevertheless, the EBCOT algorithm in JPEG2000 pro-
vides a very finely scalable representation of WT coefficients, thanks to a
bit-plane representation. MPEG-4 quality scalability is obtained with bit-
plane encoding as well.

As we will see in the remainder of this chapter, the proposed codec
provides temporal, spatial, and quality scalability, ending up with a re-
markable flexibility for usage over heterogeneous networks. Temporal
and spatial scalability is easily obtained by choosing which WT subband
to decode. Quality scalability is obtained thanks to the embeddedness of
JPEG2000 bitstream.

Generally speaking, a scalable bitstream has no better performance
than what we can achieve by encoding directly the sequence at the de-
sired resolution, frame-rate and bit-rate. Moreover, the introduction of
scalability involves an increase of complexity in the encoding algorithm.
This is all the more true for hybrid video encoders, where time scalability
requires multiple prediction loops, which increase complexity and reduce
performance with respect the case where scalability is absent, in particular
for time and space scalability. For example, MPEG-4 fine grain scalability
suffers from a performance impairment of 2 to 3 dB when temporal scal-



100 6.7 SCALABILITY ISSUES

ability is used [50]. For this reason, in hybrid encoders, there are usually
only a few levels of temporal and spatial scalability. On the contrary, bit-
rate scalability is less critical.

It appears from previous considerations that introducing scalability
features in a video encoder causes some impairments. We define scalabil-
ity cost as the difference between the quality (expressed in terms of PSNR)
of the scalable bitstream decoded at a different resolution, frame-rate or
bit-rate from the original, and the quality that could have been achieved
by directly encoding the original sequence with the desired parameters.
A second component of the scalability cost is the increase in encoder al-
gorithm complexity. A smoothly scalable [9] encoder should have a null or
small scalability cost, i.e. the same (or almost the same) performance of its
non-scalable version with the same (or almost the same) complexity. In
the rest of this section we analyze in detail the scalability features of the
proposed encoder, showing that its scalability cost is quite small and that
it is in fact a smoothly scalable video encoder.

As for the notation, we indicate with R(%) the total bit-rate available for
the SBs. The non-scalable encoder must allocate these resources among
the M SBs, finding the optimal rate vector R(?) = { RSO) }M. , with the con-
straint Zf\£1 aiRZ(O) = RO,

For a given total rate Rt, the rate available for SBs is RO = Ry —
Ryy where Ryy is the rate required to encode MVs. As we saw earlier
in this chapter, a Lagrangian algorithm can be used in order to find the
best allocation among SBs i.e. the allocation which minimizes the output
distortion for a given total rate. This algorithm takes as input the desired
target rate and a parametric model of subband rate-distortion (RD) curves,
and outputs the optimal rate allocation vector. If D;(R;) is the distortion of
the i-th SB encoded at a rate R;, we saw that the optimal allocation vector

R*(0) = {Rf(o)}f\i | satisfies the equations:

w; dD; 1 +(0) :
——(R;") = 1,... 1
aiaRi(Z )=A Vie{l,..., M} (6.16)
where A is the Lagrange multiplier, M is the number of SBs, and w; is a
suitable set of weights. The complexity of the rate allocation algorithm is
negligible with respect to other parts of the encoder, such as the wavelet
transform or the motion estimation.
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6.7.1 Bit-rate scalability

Bit-rate scalability (or quality scalability) should allow us to decode the
bitstream at a set of predefined bit-rates RY) (with j=1,...,N) different
from the encoding bit-rate R(?). We assume conventionally that

RN « RN-D < <« R < RO

As each SB is already scalably encoded with JPEG2000, we could truncate
its bitstream at an arbitrary rate Rl(] ) (where the index i refers to the i-th SB),

provided that YM, aiRl(j ) = RO, However, with such a simple strategy;,
there is no optimal bit-rate allocation among the SBs when decoding at the
j-th bit-rate. The solution is to compute in advance the bit-rate allocation

for each target bit-rate RU) to find the optimal vector RUV) = {ng ) M.
Then we encode the i-th subband with N quality layers that correspond to

the bit-rates Rl.(j ) forj =1,...,N. At the decoder side, when we want the

total bit-rate R(), it is sufficient to decode each SB at the quality level j. We
note that the MV information is not affected by the bit-rate scalability, as
we still need the same vectors as in the non-scalable case.

Thus, the scalably decoded bitstream for each target rate is almost iden-
tical to the non-scalable bitstream, as SB allocation is still optimal. The
only difference is the additional headers required for the quality layers.
As shown in Table[6.2] and in Fig.[6.5] this leads to a very small and prac-
tically negligible performance degradation. Here, we tested the SNR scal-
ability by non-scalably encoding the “foreman” sequence at 10 different
rates with our encoder. Then, we compared the resulting RD performance
with that obtained by scalably encoding the input sequence and decoding
it at the desired rates. The performance degradation is less than 0.1dB.

Another cost factor of the scalability is the complexity increase. In this
case, we must run N times the allocation algorithm instead of only once.
However, its complexity is much lower than the complexity of ME and
WT, and thus can be safely neglected.

6.7.2 Temporal scalability

As our codec produces temporal SBs by WT, it is straightforward to obtain
a temporally subsampled version of the compressed sequence from the en-
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Rate | PSNR [dB] | PSNR [dB] | Scalability
kbps || non-scalable | scalable Cost [dB]
600 34.59 34.52 0.07
800 35.65 35.62 0.03
1000 36.53 36.47 0.06
1200 37.25 37.18 0.07
1400 37.87 37.81 0.06
1600 38.45 38.36 0.09
1800 38.95 38.88 0.07
2000 39.43 39.36 0.07

Table 6.2: Cost of SNR scalability (“foreman” sequence)

coded bitstream: it suffices to decode the lower temporal SBs only. How-
ever, when a generic temporal filter is used, reconstructing only lower
temporal SBs is equivalent to reconstructing a subsampled and filtered ver-
sion of the input sequence. This temporal filtering causes ghosting arti-
facts which can be very annoying to the final user. On the contrary, when
(N, 0) filters are employed, the temporal low pass filtering is indeed a pure
subsampling. Thus, reversing the WT of a sequence by taking into ac-
count only lower temporal subbands is equivalent to reversing the WT of
its temporally subsampled version. Moreover, the optimal rate allocation
among SBs is preserved through the temporal subsampling: recalling the
optimality condition (6.16), we note that discarding a SB means only de-
creasing M, but the optimality condition still holds for surviving SBs. The
only problem to deal with is the following: if we simply discard higher
temporal SBs, we loose control on the final total bit-rate. The solution is
once again to run the allocation algorithm only for the desired number of
temporal SBs, with the suitable target rate. This will generate a new set
of quality layers. A simple signaling convention can be established for
the decoder to choose correctly the quality layers according to the desired
level of temporal (and possibly quality) scalability. We point out that MV
can be easily organized in different streams for each temporal scalability
layer, as they are encoded separately accordingly to the temporal decom-
position level.

We remark that, in this case as well, the complexity increase is only



CHAPTER 6. SPACE ANALYSIS AND RESOURCE ALLOCATION 103

40—

39r

w
@
T

PSNR - dB
w
N
T

w
(=2
T

=0~ Non Scalable
=% PSNR Scalable

35

341 1 1 1 1 1 1
500 750 1000 1250 1500 1750 2000
Rate — kbps

Figure 6.5: Cost of SNR scalability

Rate || PSNR [dB] | PSNR [dB] | Scalability
kbps || non-scalable | scalable Cost [dB]
375 35.22 35.05 0.17
500 36.40 36.27 0.13
625 37.35 37.22 0.13
750 38.19 38.07 0.12
1000 39.54 39.50 0.04
1250 40.70 40.67 0.03

Table 6.3: Cost of temporal scalability (“foreman” sequence)

due to the fact that now we need to run several more times the allocation
algorithm. But, as mentioned before, its computational cost is negligible
with respect to other parts of encoder.

A second set of experiments was performed in order to assess the cost
of temporal scalability. We encoded the sequence at full frame-rate, and
we decoded it at half the frame rate. Then we compared the results with
those obtained by encoding the temporally subsampled sequence (Table
and Figure[6.6). Again, we have a small scalability cost (less than 0.2
dB), as expected from theoretical considerations. This difference is ascrib-
able to quality layer overhead. It is worth noting that if filters other than
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Figure 6.6: Cost of time scalability

(N,0) had been used, a much larger performance cost would have been
observed, due to the temporal filtering. This objective quality impairment
would correspond to annoying subjective effects such as shadowing and
ghosting artifacts.

6.7.3 Spatial scalability

Subband coding provides an easy way to obtain spatial scalability as well.
Indeed, it is sufficient, once again, to discard high frequency SBs, in this
case spatial frequencies. However, as far as the scalability cost is con-
cerned, spatial scalability is more difficult to handle. The first problem
is how to choose an “original” reduced-resolution set of data. We could
act as we did for temporal scalability, and consider a spatially subsampled
version of input data, but this choice would hardly account faithfully for
subjective quality of reconstructed data. Indeed, this “original” sequence
would be characterized by annoying spatial aliasing, and thus it would be
a flawed reference for a performance test. We can use the corresponding
QCIF sequence as a reference for a CIF input video, but a more general
solution is needed. A filtered and subsampled version of input data can
be considered, but, in this case, performance would become dependent on
the spatial low-pass filter we choose. In our codec, the low-pass spatial
analysis filter is the classical 9-taps Daubechies filter, which produces a



CHAPTER 6. SPACE ANALYSIS AND RESOURCE ALLOCATION 105

low resolution sequence whose visual aspect is pleasantly smooth.

Thus, fairly assessing the spatial scalability cost is not straightforward.
Nevertheless, once a reference “original” data set is established, our algo-
rithm allows theoretically to adapt to it, by allocating resources between
spatio-temporal SBs in an optimal way. However, as we actually encode a
filtered version of reduced resolution input sequence, we cannot obtain as
good performance as if we would encode directly the subsampled version
of input data.

We run experiments similar to those presented for temporal and qual-
ity scalability. We decoded the sequence at an inferior resolution, and com-
pared the resulting performance with those obtained by directly encoding
the reduced-resolution sequence. In this case, as we expected, the objec-
tive scalability cost is quite large (up to 2dB), even though the subjective
quality is comparable.

Note that we used the same motion vectors for the half-resolution se-
quence as for the original one. We simply divided their values as well as
the blocks size by two. This motion representation is not scalable.

6.8 Experimental results

So far we have described all of the main aspects of the proposed encoder.
Now we can give some experimental results of the proposed coder.

We use our encoder to compress the “foreman”, “flowers” and “water-
fall” sequences. Here we sum up the main setting for our encoder:

e motion estimation has been performed with a block size of 16 x 16
pixels, with half pixel precision;

e four level of temporal decomposition are used;
e for each level the motion-compensated (2,0) LS is employed;
e optimal rate allocation is performed;

e full scalability is enabled, with ten layers of quality scalability, four
layers of temporal scalability and five layers of spatial scalability;

e smoothing splines are used for RD curves modelling with seven test
points.
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Figure 6.7: Compression performance of the proposed encoder on the
“flowers and garden” sequence

We compare the proposed encoder with a state-of-the-art encoder as
H.264 and with the most widespread industrial standard MPEG-2.
The main settings for the H.264 encoder are the followings

e B frames are disabled;

e Variable block size is disabled;

¢ In-loop deblocking filter is enabled;

e CABAC arithmetic encoding is enabled.

These settings have been chosen in order to force the H.264 motion model
to be similar to ours.

Compression performance is shown in Fig. [6.7 - We see that the
proposed encoder has better performance than H.264 for a regular-motion
sequence like “flowers and garden”; for the “waterfall” sequence, we ob-
serve comparable performance at low bit-rates while at higher rates the
proposed encoder has better results than the standard. This sequence has
a very regular motion content, as it is indeed constituted by a zoom out
on an almost fixed background. On the contrary, for a sequence like “fore-
man”, characterized by a more complex motion content, our encoder is
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Figure 6.8: Compression performance of the proposed encoder on the
“foreman” sequence

worse than H.264. Anyway, we can say that performance of the two en-
coders is quite close for the test sequences considered.

As far as the older MPEG-2 standard is concerned, our codec performs
several dB better. More precisely, the PSNR is usually 4 or 5 dB higher, and
the gap is never less than 3 dB.

These results are quite interesting, as the proposed encoder has some
interesting functionality that neither H.264 or MPEG-2 have. These are:

o A deep compatibility with JPEG2000;
o A high degree of scalability.

JPEG2000 compatibility needs more comment. From the encoder archi-
tecture it follows that a JPEG2000 decoder is all we need in order to decode
temporal subbands and MVFs. Moreover, if (N,0) LS is used, the lowest
temporal subband is just a (compressed and) temporally subsampled ver-
sion of the input sequence. This means that user can partially decode the
video sequence and access to the first temporal layer of the video sequence
just by using a JPEG2000 decoder (and knowing the bit-stream syntax, see
Appendix[C). Indeed, the JPEG2000 decoder performs most of the decod-
ing job, since, after obtaining temporal SBs and MVs , we only need to
perform the inverse temporal transform.


