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Abstract—The side information in distributed video coding is lance, multimedia sensor networks, wireless PC camerals, an
estimated using the available decoded frames, and exploited for mobile phone cameras. In these new applications it is éasent

the decoding and reconstruction of other frames. The quality of {5 have a low complexity encoding, while possibly affording
the side information has a strong impact on the performance . . - '
a high complexity decoding.

of distributed video coding. Here we propose a new approach I ) . . .
that combines both global and local side information to improve  Distributed Video Coding (DVC) is a recent paradigm in
coding performance. Since the background pixels in a frame video communication that fits well in these scenarios, sitce

are assigned to global estimation and the foreground objects to enables the exploitation of the similarities among sudeess
local estimation, one needs to estimate foreground objects in the frames at the decoder side, making the encoder less complex

side information using the backward and forward foreground C tiv. th lex tasks of ti timati d
objects, the background pixels are directly taken from the global ~ONS€quently, the complex 1asks or moton estimation an

side information. Specifically, elastic curves and local motion compensation are shifted to the decoder.
compensation are used to generate the foreground objects nes Note that the Slepian-Wolf theorem from information the-

in the side information. Experimental results show that, as far ory [2] states that for a lossless compression it is possible

as the rate-distortion performance is concerned, the proposed to encode correlated sources (let us call them X and Y
approach can achieve a PSNR improvement of up t@.39 dB for ( )

a GOP size of2, and up to 4.73 dB for larger GOP sizes, with independently and decode them joir_ltly, V\_’h”e achieving t_h_e
respect to the reference DISCOVER codec. same rate bounds that can be attained in the case of joint
Index Terms—Distributed Video Coding, Wyner-Ziv Frames, encoding and deCOdl.ng' The case of Iogsy compr_essmn was
Key Frames, Side Information, Global Estimation, Local Es- Subsequently dealt with by Wyner and Ziv [3]. Their popular
timation, Elastic Curves, Foreground Objects, Rate-Distortion result states that, under mild constraints, the theoletate-
Performance. distortion bounds for distributed coding are the same asetho
for joint coding, provided that joint decoding is possible.
Based on these theoretical results some practical imple-

I. INTRODUCTION g g
mentations of DVC have been proposed in [4], [5]. The

The digital video coding standards ISO/IEC MPEG-X ang,;,hean project DISCOVER [6], [7] resulted in one of the
ITU-T H.26x are mainly based on the Discrete Cosine Trangjqt efficient and popular existing architectures, wheee th

form .(DCT) gnd inter-frame_, _intra-fra}me pred!ctive codingpscOVER codec is based on the Stanford scheme [5]. More
Additionally, in the High Efficiency Video Coding (HEVC) specifically, the sequence images are split into two sets of

international standard, that has recently emerged as assmc frames: key frames (KFs) and Wyner-Ziv frames (WZFs).
to H.264/AVC, the encoder exploits the spatial and temporﬂ1e Group of Pictures (GOP) of size is defined as a set
redundancies existing in a video sequence. Here the enco&'ieframes consisting of one KF and— 1 WZFs. The KFs
is significantly more complex than the decoder (with a typicg, . independently encoded and decoded using such Intra-
factor of 5 to 10 [1]) and its architecture is We”'SUite%oding techniques as H.264/AVC Intra mode or JPEG2000.
for applications where the video sequence is encoded ORGe, \yzFs are separately transformed and quantized, and a
and decoded many times, such as in broadcasting or VidgQyematic channel code is applied to the resulting coeffisi
streaming. ) ) Only the parity bits are kept and sent to the decoder upon
In the recent years this architecture has been Cha"e”gedr@juest. This can be seen as a Slepian-Wolf coder applied
several emerging applications such as wireless video Mrv?’o the quantized transform coefficients. At the decoder, the
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a coding performance similar to the best available hybrgknerate the foreground objects in Sl. In the second apiproac
video coding schemes. However, DVC has not reached thelocal motion estimation method is proposed to generate
performance level of classical inter-frame coding yet.sTisi foreground objects in S| exploiting the backward and fodvar
in part due to the quality of SI which has a strong impact diereground objects. Here we use a local motion-estimation
the final Rate-Distortion (RD) performance. technique which a variation of the classical one used in
In this paper we propose new methods to enhance Biscover. The details of this method will be discussed in
through a combination of the global and local motion estBec. 11I-C2.
mations. The parameters of the global model are estimated alext, a mask is generated using the estimated foreground
the encoder, and sent to the decoder in order to generate aljécts in SI. Based on the mask, two approaches are proposed
based on Global Motion Compensation (GMC), and referréd combine global and local motion estimations. The first one
to as GMC SI. On the other hand, another Sl is estimata@ins at directly using the estimated foreground objects and
using the MCTI technique (local motion compensation) witlBMC SI. The second one consists of using MCTI SI for the
spatial motion smoothing, exactly as in DISCOVER codegixels in the object mask and GMC Sl for the remaining pixels.
this Sl is referred to as MCTI Sl. Thus, the two estimations We clarify that the proposed technique allows to efficiently
MCTI Sl and GMC SI are generated at the decoder, using thee a contour predictor in the context of compression; more-
reference frames and the global parameters. over, as we will show in the experimental section, the aadev
Normally, the background pixels must be compensated wgins are relatively immune to the segmentation process. Th
ing the global motion and the foreground objects using the lis partly due to the fact that the contours are estimatedeat th
cal motion. However, the traditional motion compensatisesu decoder and need not to be transmitted. As a consequence they
block-based algorithms, resulting in possible codingfaats can be irregular without greatly impacting the compression
above all around object edges. We propose, therefore, dotreperformance. This is in contrast to the classical objeseda
to segmentation maps in order to discriminate the backgroucompression techniques where a non-ideal segmentation, or
and the foreground, and to apply to each one the suitalg¢en an ideal segmentation with complex contours, is one of
motion model. We underline here that we are not propositige main reasons for the inferior compression performance
a segmentation tool, but rather a coding algorithm that vgith respect to block-based coding [11]. In other words, our
able to efficiently exploit the information provided by themethod is a contour-based compression technique thatsconsi
segmentation. More precisely, we are able to accurate8r intently outperforms the block-based state-of-the-art ratigms,
the segmentation maps of the WZFs given the segmentatamd this holds even when the segmentation produces imperfec
maps of the KFs, thanks to the elastic deformation of objest complex contours. Finally, we note that the additional
contours. This is the main contribution of this article. Ircomplexity related to the computation of the elastic curve
this context, our method could be referred as "ideal” sinafects only the decoder. This perfectly fits the DVC paredig
we use manual segmentation maps. However, in order toThe rest of this paper is structured as follows. The related
validate our technigue in a more realistic scenario, we alsmrk is described in Section Il. Specifically, DISCOVER
provide the experimental results using an actual yet simpledec is presented in Section Il-A, generation of the global
automatic segmentation algorithm, showing promising IltesuSl is described is Section 1I-B, and relevant Sl improvement
even without ideal maps. techniques are presented in Section II-C. The proposed-meth
First, we propose a new method based on elastic shagus for the fusion of global and local motion estimations are
analysis of curves [9], [10] for estimating the foregroundescribed in Section Ill. More specifically, the removal of
objects masks in the previously-estimated Sl. Then, thelpix artifacts affecting the GMC Sl is described in Section ILI-A
in the estimated masks are selected from MCTI Sl, while GMfaision using elastic curves in Section IlI-B, fusion usiogal
Sl is used to cover all the remaining pixels in the estimatadotion compensation in Section 1lI-C, and the oracle fusion
Sl. More specifically, the foreground objects masks are gena Section IlI-D. Experimental results are shown in Sectign
ated using the segmented foreground objects in the refereic order to evaluate and compare the RD performance of the
frames. Then, the foreground objects contours are consttucproposed approaches. Finally, conclusions and future aark
from the generated masks. Furthermore, the contours aresented in Section V.
considered as closed curves and the algorithm in [10] is used
to generate the curves in the estimated Sl using curves from [l. RELATED WORK
thg reference frames. Finally, the objects masks are Mr  DISCOVER Architecture
using these generated curves. We observe that while elastic
deformations have been used ear]ier, the 0rigina| apmmt We start with a brief presentation of the DISCOVER codec
were in shape analysis, face recognition, shape probbilid6], [7]. Here the input video sequence is divided into WZFs
models, and shape inference for pose modification. The ed KFs, and the latter are encoded using H.264/AVC Intra
of elastic deformations for predicting the temporal, metio coding. The WZF encoding and decoding procedures are
related deformation of object boundaries is novel to thisepa described below.
We propose two different approaches for generating fore-« Wyner-Ziv encoder - At the encoder side, the WZF is
ground objects in Sl, based on the local motion-compensatio  first transformed using & x 4 integer Discrete Cosine
In the first approach, the MCTI technique is directly applied  Transform (DCT). The integer DCT coefficients of the
to the backward and forward foreground objects, in order to whole WZF are then organized inié bands. Next, each



Beckuard L * * * applied toRp and Rr. The GMC Sl is simply defined as the

reference frame =S N BaCkward Bi—dire.ctional Spatial Bi'direlCtional average of the frameéB and RF
Filler Mofon = Moo 1o iing || Mofon =S Consequently, we have now two S| frames (MCTI Sl and
o tane | Estmaton | | “Esimaton CE TS GMC SI) for the current WZF, therefore a fusion technique

! ! } is needed. In [12] we proposed an algorithm for the fusion,
based on the residual of the compensated reference frames.
Let Rz and Rr be the backward and forward compensated
reference frames estimated by MCTI technique. For each
4 x 4 block b, we perform a fusion by observing pixels in

integer DCT coefficient is uniformly quantized. The re- .
sulting quantized symbols are split into bit planes, which 8 > 8 window. Namely, we compute two sums of absolute
gerences (SADS)femc and fuci:

are then independently encoded using a rate-compatiﬂf
Low-Density Parity Check Accumulate (LDPCA) code.
The parity information is stored in a buffer and pro- 3030 . .
gressively sent (upon request) to the decoder, while the ~ fomc = Y > [Rr(X:,Y;) — Rp(X,,Y;)|
systematic bits are discarded. i=—dj=—d 1)
« Generation of side information - In the DISCOVER 3.3 . N
scheme, the MCTI technique [8] is used to generate S fmcm = > IRe(X4,Y)) — Rp(X4,Y5))
at the decoder side. Fig. 1 shows the architecture of i=—dj=—4
the MCTI technique. The frame interpolation framework Here (X;,Y;) = (zo + 4,50 + j), and (zo,y0) is the
is composed of four modules to obtain high qualitgoordinate of the center pixel of the current bldcK he fusion
Sl as follows: Both reference frames are first low-pasa [12] is then given by:
filtered in order to improve the motion vector reliability, GMC S| it <f
followed by backward motion estimation between the SI(b) —{ R el )
backward and forward reference frames, bi-directional
motion estimation to refine the motion vectors, spatidlereafter, we refer to this method by ‘SADbin’.
smoothing of motion vectors in order to achieve higher We observe that the GMC technique demands a relatively
motion field spatial coherence, and finally bi-directionamall complexity increase, since the number of SIFT feature
motion compensation. is usually low. More precisely, the encoder complexity is
« Wyner-Ziv decoder - A block-based4 x 4 integer higher than DISCOVER+30%) [12] but it remains signif-
DCT is carried out over the generated Sl in order tmantly smaller than Intra coding with H.264/AVC. This is
obtain the integer DCT coefficients. Then, the LDPCAerfectly compatible with a low-complexity encoder scémar
decoder corrects the bit errors in the DCT transformed SI, This method for Sl information fusion has quite good
using the parity bits of WZF requested from the encod@erformance with respect to previous technigues. We have
through the feedback channel. even improved it using a fusion based on support vector
« Reconstruction and inverse transform -The reconstruc- machine [13]. Nevertheless, the block-based motion compen
tion corresponds to the inverse of the quantization usirsgtion can produce some unpleasant artifacts near thetobjec
Sl DCT coefficients and the decoded Wyner-Ziv DCTEontours. In order to reduce these artifacts, we proposkein t
coefficients. After that, the inversé x 4 integer DCT current paper to resort to image segmentation into backgrou
transform is carried out, and the entire frame is restoreshd foreground and to use this information to perform a
in the pixel domain. suitable fusion. We propose a novel tool to efficiently es-
timate the object contours (and therefore, to determine the
segmentation map), based on elastic deformation of curves.

Finally we remark that the new technique does not require a

In [12] a new approach for generating GMC Sl is propose,jification in the encoder and therefore its complexity (as
Here, we give the main characteristics of this techniquestFi for [12]) remains relatively low.

the feature points of the original WZ and reference frames

are extracted, at the encoder, using Scale Invariant Feeatur ) ) )

Transform (SIFT). Then, a matching between the featufe Improved Side Information Generation

points is carried out. Second, an efficient algorithm is pemul The Sl is usually generated through an interpolation of the

to estimate the affine parameters between the WZF and theckward and forward reference frames. The quality of Sl

backward (and forward) reference frame. LB and T» is poor in certain regions of the video scene, like in areas

be the affine transforms between the original WZF and tleé partial occlusions, fast motion, etc. In VISNET Il codec

backward and forward original reference frames, respelgtiv [14], a refinement process of Sl is carried out after decoding

The parameters of those transforms are encoded and serdltdCT bands in order to improve reconstruction [15]. In

the decoder. [16][17], approaches are proposed for transform-domailcDV
Let us denote the backward and forward reference framessed on the successive refinement of Sl after each decoded

respectively askp and Ry for short. Moreover, we indicate DCT band. In [18], a solution is proposed based on the

with R and R the results of GMC transforniz and T successive refinement of Sl using an adaptive search area,

Fig. 1. MCTI technique [8].

B. Global Motion Compensation
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Fig. 2. Overall structure of the proposed DVC codec.

for long duration GOPs, in transform-domain DVC. Highand decoder. Results have shown that the cooperation of the
order motion interpolation has been proposed [19] in ordencoder and decoder can reduce the overall computational
to cope with object motion with non-zero acceleration. lnomplexity, while improving the coding efficiency. Finallg
[20], global motion is estimated at the decoder in order ©VC scheme proposed by Dufaex al. [29] consists in com-
adapt temporal inter-/extrapolation for Sl generation[2h], bining the global and local motion estimations at the encode
a Sl and noise learning approach is proposed, in order Itothis scheme, the motion estimation and compensation are
enhance Sl generation and noise modeling using optical fiperformed both at the encoder and decoder.
and clustering. The Sl generation problem is very similar to In contrast, in this paper, both global and local S| are
the one of frame-rate up conversion. In this context, Qiamly generated in the decoder. It is important to note that
and Bajic [22] have introduced a region-based interpatatiahe encoding complexity is kept low. The global parameters
technique with global, local and affine perspective motioare sent to the decoder to estimate the GMC SI, and the
model. In fact, region-based representation allows a matembination between the GMC Sl and MCTI Sl is made at
coherent motion compensation, resulting in an improvedalis the decoder side.
quality of synthesized frames. The problem of Sl fusion has been addressed in Multiview
Other solutions were proposed for SI enhancement, thay/C, where two Sl are usually generated. The first SL)SI
require a hash information to be transmitted to the deCOdg. generated from previous|y decoded frames in the same
However, the encoder needs to determine in advance {}jgw, while the second one (Slis estimated using previously
regions where the interpolation at the decoder would faaecoded frames in adjacent views. The paper [30] proposed
i.e. regions corresponding to a poor Sl. In [23][24], hashew techniques for the fusion of Sand S),. Dufaux [31]
information is extracted from the WZF being encoded and Sqﬂfoposed a solution that consists in Combining Shd SL
only for the macroblocks where the sum of squared differencgsing Support Vector Machine (SVM). In [13], a solution is
between the previous reference frame and the WZF is gregdedposed for combining global and local SI using SVM, in

than a certain threshold. the context of Monoview DVC.
In [25] the authors proposed a Witsenhausen-Wyner Video

Coding (WWVC) that employs forward motion estimation at

the encoder and sends the motion vectors to the decoder to [1l. PROPOSED METHODS

generate Sl. This WWVC scheme achieves better performance

than H.264/AVC in noisy networks and suffers a limited The block diagram of our proposed codec architecture is

loss (up to 0.5 dB compared to H.264/AVC) in noiselesdepicted in Fig. 2. It is based on the DISCOVER codec [6],

channel. The authors in [26] proposed a novel framewolKl-

that integrates the graph-based segmentation and matthing For the segmentation of the foreground objects, the authors

generate interview Sl in Distributed Multiview Video Codin in [32], [33] propose a coarse-to-fine segmentation method
In [27][28][29], the authors presented DVC schemes théar extracting moving regions from compressed video. In the

consist in performing the motion estimation both at the eiproposed methods, we consider that the foreground objects i

coder and decoder. In [27], the authors propose a pixel-doméhe Backward Reference Frame (BRF) and Forward Reference

DVC scheme, which consists in combining low complexity-rame (FRF) are already segmented. Here, we are interested

bit plane motion estimation at the encoder side, with motidh the combination of global and local motion estimations.

compensated frame interpolation at the decoder side. hepro Let F§ andFi. (i = 1,2,..., N,, N, is the number of fore-

ments are shown for sequences containing fast and compiggund objects) be the foreground objects already segmhente

motion. The authors in [28] present a DVC scheme whefem the backward and forward reference frames, respégtive

the task of motion estimation is shared between the encoderthermore, the foreground objects mask$ and M are



Onglnal frame Foreground object

Let J\//.TB and J/LTF be the results of the GMC transforrif;
andTr applied to the maskd/p and M respectively.Mp
and M are used in order to remove the artifacts of the pixels
in the background around the foreground objects. Firsth eac
pixel in the transformed frame&g and Ry is assigneAd to
either_the background or the foreground objects, usifg
and M. Then, in order to avoid the averaging between the
background and the foreground objects, the GMC Sl can be
updated as follows:

Foreground object maskl{) Foreground object contoufs) if ]\//.TB(x y) = 1 and ]/pr(x y) =0
GMC Sl(z,y) = Rp(z,y)
otherwise

if Mp(z,y)=0andMp(z,y) =1

In these situations, only the background is taken for GMC SlI.
Fig. 4 shows the updated GMC SI (top right) and the updated
GMC Sl with the object mask, for frame numb&iof Stefan
sequence. It is clear that the artifact effect is removedrzdo
the foreground object, compared to the GMC SlI.

Fig. 3. Original frame, Foreground objedt), Foreground object mask(),
and Foreground object contous)(of frame numberl of Stefan sequence.

generated from the foreground objects according to: B. Fusion using elastic curves
‘ 0 if Fiy(z,y) =0 In this section our goal is to estimate the contour in SI
Mp(z,y) = using backward and forward contours. As described in [10],
1 othng|se (3) @ contour can be analyzed using an elastic metric, leading up
Mi(z,y) = 0 if Fp(z,y)=0 to a contour in Sl. Then, the estimated contour is used to
AT 1 otherwise generate a mask in Sl that is useful in the fusion of GMC Sl

and MCTI SlI.

Then, the foreground objects contours are extracted fromThe curves is characterized as follows:
the foreground objects masks. The contours can be condidere 5
as closed curves. Leti, and % be the representations of f:D—R
the backward and forward foreground objects contours. As t— (z.y)
an example, Fig. 3 shows the original frame, the foregroungheret € D = [0,1] and (x,y) represent the coordinates of
object, the foreground object mask generated from the forgach point in the contour. For the purpose of studying the
ground object, and the generated foreground object cantostiape off, it is represented using the Square Root Velocity
for frame numbern of Stefan sequence. (SRV) function defined ag : D — R? [10]:

Bt)

t

The GMC Sl is simply defined as the average of the frames Bl
RB and RF [12]. Fig. 4 shows an example of a GMC Swhere||.|| is the Euclidean norm ii2 and g = df. The curve
(top center) and the GMC SI with the object mask (bottori can be obtained using as follows:
center), for frame numbed of Stefan sequence. As we can t
see, the background around the foreground object in GMC B(t) :/ q(s)|lg(s)||ds @)
Sl is affected by the shifted foreground objects due to dloba 0
motion. In this case, the background in one of the referenée are given backward and forward curygsand 3}, treated
frames is averaged with the foreground objects of the oth&s closed curves, and our goal is to find an estimated curve
reference frame. We propose to remove this artifact effeéf between these two curves. The algorithm used to estimate
around the foreground objects using the obtained segmentgd(Fig. 5) is described as follows (we refer the reader to
foreground objects of the reference frames. [10] for the theory behind this estimation): First, the SRV

The masksMp and My are defined as the union of allrepresentation of the curvé/ is computed as follows:
foreground objects mask® 4 and M respectively: .

®)

q(t) = (6)

A. Artifact removal in GMC Sl using foreground objects masks

N, gy (1) = —=—= ®)
Mp = U Mj 1Bl

) At the beginning of this algorithm the parametéfs,, ot,

N, .
Mp =\ Mg and k. are respectively set t?r, -, and zero.

i=1



Original frame (3)

Object mask (3)

Updated GMC SI

Fig. 4. Original frame, GMC SI, updated GMC SI, Object mask, GECwith mask, and updated GMC Sl with mask for frame numbesf Stefan

sequence.

Initialization (k = 0, 0, = 27 and 6t = 1)

[ Computeqi(t) using 5i(t)

NO

Set3i(t) = Bi(t — k(5t)) and computej (¢)
ComputeR; usinggj(t) and g4 (t)
Updateg’ () = Ry.g%(t)

Compute agairb}(t) using the updatedy ()
Computey(t) by applying DP algorithm usingj (t) and ; (t)
Re-sample5(t) = 5}(v(1)) and computef ()
Computed) = cos™* UD qé(t)d}(t)dt]

E=k+1

YES

( Omin =0,kc =k,R= Ry and(j}(t) = (j}(t)

Computeg: (t) = a(%) =

(—m (460 + 58]

Then, estimates?(t) = [ (Red:(s))||(Red:(s))||ds

Fig. 5. Algorithm proposed in [10] for estimatingf (¢).

Step 1 -A circular shift of k(6t) is applied on the

forward curvefs(t) as follows:

Bi(t) = Bi(t — k(3t))

Then, the SRV representation 6;;(13), denoted by

qy(t), is computed using Eq. 6.

Step 2 - Rotation: The optimal rotation betweedj,
and (jj; is given by R; as follows:

R, =UIVT (10)

where[U, S, V] = SVD(B), B = [, q;(t)q}(t)"dt
and I = (}9). Here SVD stands for the Singular
Value Decomposition of a matrix. tet(B) < 0, the
last column ofI changes sign before multiplication
in Eq. 10. Thengj; is multiplied by R, as follows:

g5 (t) = R1.q5(t) (11)

Following that,g (t) is used to reconstrugﬁ}(t) as
follows:

Bit) = /0 FEIEE)ds  12)

Step 3 - Reparameterization: This step consists
of using ¢, and ¢} to find a functiony(t) that is
important in matching the two curves, by applying
the Dynamic Programming (DP) algorithm. The ob-
tained function~(t) is used to re-samplé}(t) as
follows:

Bi(t) = B (1(1)) (13)

Consequentlyg}(t) is recomputed for the updated

Bi(t) (using Eq. 6).
Step 4 - Compute the length of the geodegicas
follows:

6 — cos! { /D a0 (t)dt] (14)

If & < 0,,:n, the parameters,,;,,, k., R and q}(t)



Fig. 6. The backward curvég(t) (left, frame numbed), the forward curve Fig. 7. The backward curv,ég(t) (left, frame numbei of Stefan sequence),
B}(t) (right, frame numbeB) and the estimated cung (¢) (center,r = %) the forward curveﬂ} (t) (right, frame numbers) and the three estimated
between the backward and forward curves.

curvesgi(t) for = 1,2 and 2 (center curves).

are updated as follows: whereg. = £. The curvesi(t) can be estimated as

Opnin = 0 follows:
ke =k ) t ) )
nn (15) 510 = [ (Real()IIRG ) ds ()

a5 (t) = 4y (t)

Then, k is set tok + 1. If k is smaller tham, go to Fig. 6 shows an application exam‘ple of this algorithm,
Step 1 Otherwise, go tStep 5 where we show the backward curvg(t) (left curve) of
Step 5 -The geodesiex(7), 7 € [0,1] that connects frame numberl of Stefan sequence, the forward cur¥g(t)
qi(t) and q}(t), is defined as follows: (right curve) of frame numbeB of this sequence, and the

estimated curve3i(t) (center curve) between the backward
o) 1 [8in (Omin (1 — 7))gi (1) and forward curves using this algorithm. Moreover, Fig. 7
sin (Omin) shows the backward curvg;(t) (left) of frame numberl
+ sin (GmmT)q}(t)] (16) of Stefan sequence, the forward cur&je(t) (right) of frame

) , y ~ number5 of Stefan sequence and the estimated cups/gs)
Itis clear thata(0) = ¢;(#) anda(1) = g;(1). This for - — 1 2 and 3(center curves).

equation allows predicting the curves between the The obtained curvesdi(t) are then used to obtain the
backward curves; and the forward curvgf; at any foreground objects masksl! by covering all the pixels lying

time 7 € _[0, 1]. Here, we aim to estimate the curvepgide the curves. The masi, is defined as the union of all
in the middle between the backward and forwarghgsksyysi:

curves. For this reason, we computé;) to obtain

N,
q'(t) as follows: M. =M (19)
; 1 =1
q.(t) = a(g) 17) Then, to generate SI, the pixels inside the madk are
1 . Omin\ selected from MCTI Sl and the background pixels from GMC
— sin (Ohin) [sm( 2 0 (?) Sk:
. emin ~f _ MCTI Sl(l’,y) if Me(xay) =1
+sin (=5 )Qf(t)} Sl(z,y) = { GMC Sl(z,y)  otherwise (20)
1 i " . . . , -
_ T (i (t) + d4(t)] This fusion method is referred to as 'FusElastic’.
2

_ _ C. Fusion using local motion compensation
Then, ¢’ (¢t) is projected [10] inC¢ to obtain g’ (t)

ce s the closed In this section, we propose to apply the MCTI technique [8]
(St r%pre_?;zn Sb' etF: osef trc]:grv?s). is to obtain th to the foreground objects in order to estimate the local omoti

ep o -1he o ]ef Ive of this step 1S 1o obtain eThen, a new scheme for local motion estimation is proposed.
curve BL(¢t) using ¢:(t) with the rotation matrixR.

. ; . ) 1) Applying MCTI on the foreground objectsin this
The rotation matrix can be written as follow: approach, the MCTI technique is applied to the backward
_ (cos(p) —sin(p) foreground objec#’; and the forward foreground objeét.,
~ \sin(p)  cos(yp)

in order to estimate the foreground objéG}., in Sl. In this
. . . ._case, there are blocks entirely black, partly black, orrelyti
whereq is the_ angle of rotation. The _rotatlon rnaltrlXv_vhite. Fig. 8 shows foreground objects for frames number
R, for the estimated curve can be written as followsI and 9 of Foreman sequence, split int® x 16 blocks. In
no— cos(de) —sin(oge) contrast, the classical MCTI Sl is estimated by applying the
¢ \sin(de)  cos(de) MCTI technique to the whole (Background and Foreground)
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Fig. 8. Foreground objects of frames numbexnd9 of Foreman sequence,
split into 16 x 16 blocks.

v

Bi-directional
Motion
Compensation

f

Fy L Low-Pass—* Backward Motion
) ) Motion —> Vector >
Fp T Filter . Estimation| | Splitting

™SI

Fig. 9. Proposed method for foreground objects estimation.

reference frames. Lekyct be the union of all foreground
objects in SI, which are estimated using the MCTI technique:

No
Fuen = | Fien (21)
i=1

The mask MycT is generated from the estimated fore-
ground objectsFyct as follows:

0 If FMCTI(x,y) = 0

. (22) .
1 otherwise

Mycri(z,y) = {
Here, we propose two approaches for the combination of
global and local motion estimations, based on the generated
mask Mycti. The first approach consists in fusing GMC Sl
with the estimated foreground objedtfct) using:

_ if Mucti(z,y) =1
Sl(z,y) = { otherwise

Fueni(z,y)
GMC Sl(z,y)
(23)
This method is referred to as 'FOMCTI'.
The second approach makes the fusion of GMC SI and®
MCTI SI (taken within the masks) and is defined as follows:

S|($ y) _ { MCTI Sl(x,y) If MMCTI(I,y) =1
’ GMC Sl(z,y) otherwise
(24)
This method is referred to as 'FOMCTI2'.
2) Proposed local motion estimatiorin this section, we
propose a new method for estimating the foreground objects
in Sl, using the backward and forward foreground objects.

The proposed scheme is illustrated in Fig. 9. This techniqd®® Frowc iS estimated for each foreground objecti

is referred to as Foreground Object Motion Compensatiém?vm
using:

(FOMC).

« Low-Pass Filtering: The backwardF; and foreground
F}, foreground objects are low-pass filtered in order to
improve the motion vectors reliability.

« Backward Motion Estimation: A Block Matching Algo-
rithm (BMA) is applied to estimate the backward motion
vector field. This estimation is done using a block size
16 x 16, a search are&] of £32 pixels, and a step size of

2 pixels. First, if all the pixels in the current blodkn F'%
and the co-located block iR, are black (corresponding
to non-object pixels), the motion vector is set Qofor
this block (see Fig. 8). In the case when the blacis
partly black, the BMA is used to find the corresponding
block (.e., BMA can find the most similar shape).

In the BMA, the Weighted Mean Absolute Difference
(WMAD) criterion is used to compute the similarity
between the target block in the forward foreground
object frameF., and the shifted block in the backward
foreground object framé; by the motion vectow =
(vz,vy) € S, as follows:

1

@ (1 + AM)

> |Fi(p) — Fi(p + V)|
pPEEB

WMAD (b, v)

(25)

X

A a penalty factor used to penalize the MAD by the length
of the motion vectot|v|| = , /vZ + vZ (it is empirically
set t00.05). An extended blockE s of (164 2¢, 16+ 2¢)

(e being empirically set t®) is used in the WMAD, and

p = (x,y) represents the coordinates of each pixel in the
extended block’'s. The best backward motion vectdi,

for the blockd is obtained by minimizing the WMAD as
follows:

Vp = argmirS1 WMAD (b, v;). (26)
Vi€

Motion Vector Splitting: Here, the obtained motion
vectors are divided in such a way to obtain bi-directional
motion vectors for the blocks in the estimated foreground
object F{qye- For each block in Fiy,,c, the distances
between the center of the blodkand the center of each
obtained motion vector are computed. The closest motion
vector to the block is selected. Then, the selected motion
vector is associated to the center of the bldgkand
divided by symmetry to obtain the bidirectional motion
field.

Bi-directional Motion Compensation: Once the final
bidirectional motion vectors are estimated, i@, can

be interpolated using bidirectional motion compensation
as follows:

Fiouc(p) = 3 (Fh(p +,) + Fi(p — ), (@)

where s, and —s;, are the bidirectional motion vectors,
associated to the positign= (z, y), toward theF;, and
F respectively.

,N,). Then, all Fio,,c are combined to formFromc

N,

i
Fromc = U FFOMC
=1

(28)

Furthermore, the mask{romc is generated usingromc as
follows:

0 if FFOMc(JJ,y) =0

29
1 otherwise (29)

Mrowmc(z,y) = {



Fig. 11. Comparison between the original curve and the estiinatirve

Fig. 10. The foreground objects in the test sequences: rSefae object), using the elastic curve [10] for frame numkizof Stefan sequence.

Foreman (one object), Bus (three objects), and Coastguacddbjects). TABLE |

CONFUSION MATRIX (PER—IMAGE AVERAGE) FOR THE
BACKGROUND/FOREGROUND CLASSIFICATION USED THE ELASTIC
Here, two approaches are proposed to combine the global and DEFORMATION OF OBJECT CONTOURSFOR ALL GOPSIZES

local motion estimations usin§/romc. The first one aims at

L o Foreground Background Accuracy(%)
combining GMC SI andFromc USing: ’ (Predicted) | (Predicted)
. _ GOP = 2
S| _ Frowmc(z,y) if Mromc(z,y) =1 Foreground (Actual) | 2718 122 9352
z,y ;
x, IS Background (Actual) | 200 22302 98.96
GMC Sl(z,y otherwise
(30) Overall Accuracy (%) 98.73
This method is referred to as 'BmEst’. GOP =4
. . .. Foreground (Actual) 2708 147 92.45
The second approach consists in combining GMC S| and—gackground (Actual) | 228 22759 98.81
MCTI SI as follows: Overall Accuracy (%) 98.52
. GOP = 8
SI( ) _ MCTI S'(l“, Z/) if MFOMC(xa y) =1 Foreground (Actual) | 2690 179 90.66
“Y) =\ GMC Sl(z,y) otherwise Background (Actual) | 249 20224 98.72
’ (31) Overall Accuracy (%) 98.31

This method is referred to as 'BmMCTI'.

obtained results of the proposed methods are compared to the
D. Oracle fusion method DISCOVER codec, VISNET Il, GMC technique, and to our
In this section, we describe the oracle fusion method whigtievious fusion technique SADbin.
consists in fusing GMC Sl and MCTI Sl using the foreground 1) Sl performance assessmetffiig. 11 shows the original
objects masks of the original WZFs. L&f\zr be the union curve and the estimated curve using the elastic curve algo-

of all foreground objects masks in the original WZF : rithm [10], for frame numbeg® of Stefan sequence, for a GOP
N size of2. It is clear that the difference between the two curves
Mz = U Mipe (32) s small.

We performed a first set of experiments in order to assess
o , , the effectiveness of the elastic deformation tool in pronwgd
Mz is the i*" foreground object mask in the WZF. Theyn accurate segmentation map of the WZFs. Since we use the
oracle fusion method combines GMC Sl and MCTI Sl agyntours to classify the pixels as background or foregrpand
follows: relevant metric is the confusion matrix [34]. More pregsel

Si(z, y) = { MCTI Sl(z,y) if Mwze(z,y) =1 (33) we consider the ground-truth classification and we compare

’ GMC Sl(z,y) otherwise it to the classification obtained with the elastic curvese Th

This method is of course impractical, but it allows us tglassmcatlon results (averaged over all the data set ig)age

estimate the ideal upper bound limit that can be achievgfri)‘(e eIglvfgmlanctrerg:ngi]:‘ieguzspf% srglvreosu;ﬁ.) th,falgogegg;uﬁ?s
by combining GMC SI and MCTI SlI, using the foregroun y g '

objects masks of the original WZF. foreground pixels p!assuﬁed as background),“ false pmt’ )
(background classified as foreground) and “true negatives

Finally, we compute the foreground accuracy as the number of
IV. EXPERIMENTAL RESULTS true foreground pixels over the number of actual foreground
Here, the segmentation masks for the reference franmgels, and similarly for the background. These results are
are assumed to be known. The performance of the proposegorted in Tab. |, for all GOP sizes. We observe that the
methods are assessed using extensive simulations undercthssification produced with the elastic deformation istejui
same test conditions as in DISCOVER [6], [7]. An examaccurate, and this explains the good rate-distortion perfo
ple is illustrated in Fig 10 for several test sequences withance of our technique and we can observe that the accuracy
the corresponding foreground objects: Stefan (one objéct, is decreased with the GOP size.
frames), Foreman (one objetf0 frames), Bus (three objects, Table Il shows the average PSNR of S| obtained with
75 frames), and Coastguard (two objects0 frames). The MCTI, GMC, SADbin, FusElastic, BmEst, BmMCTI, FoM-

i=1
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TABLE I
S| AVERAGE PSNRFOR A GOPSIZE EQUAL TO2, 4, AND 8 (QI =8).

SI Average PSNR [dB] |

Method [ MCTI [ GMC [ SADbin [ FusElastic | BmEst [ BmMMCTI [ FoMCTI [ FoMCTI2 [ Oracle fusion |
GOP =2
Stefan 25.17 27.70 28.16 28.43 28.72 28.53 28.69 28.49 28.71
Foreman 29.38 30.70 30.82 31.09 30.97 31.11 30.99 31.13 31.15
Bus 25.37 23.10 27.30 27.30 26.92 27.56 27.30 27.48 27.90
Coastguard 31.47 29.28 32.00 31.80 31.91 31.91 32.03 31.89 32.07
GOP =4
Stefan 23.49 27.22 27.18 27.72 27.95 27.86 27.87 27.79 28.14
Foreman 27.64 29.62 29.27 29.79 29.71 29.82 29.71 29.83 29.88
Bus 24.00 22.53 26.27 26.29 26.02 26.54 26.28 26.39 26.91
Coastguard 29.91 28.19 30.76 30.68 30.77 30.73 30.88 30.72 30.88
GOP =8
Stefan 22.84 27.06 26.91 27.35 27.67 27.55 27.55 27.46 27.80
Foreman 26.29 28.62 28.09 28.74 28.64 28.75 28.65 28.77 28.83
Bus 22.95 21.95 25.26 25.33 25.13 25.55 25.36 25.45 25.94
Coastguard 28.82 27.50 29.85 29.77 29.88 29.83 29.96 29.82 30.00

SADbin - PSNR= 23.66 dB FusElastic - PSNR= 26.61 dB

Fig. 12. Visual result of Sl estimated by SADbin (PSNR23.66 dB) and FusElastic (PSNR 26.61 dB), for frame numbe®7 of Stefan sequence, for a
GOP size of4 (QI = 8). The bottom images represents the visual differences sktl$ frames.

CTI, FOMCTI2, and Oracle fusion for Stefan, Foreman, Busor Coastguard sequence, the SADbin can achieve a slight gai
and Coastguard sequences, for GOP size2,0f, and 8. compared to FusElastic.
The average PSNR of the KFs (& 8) is up to 33.45 dB,
39.25 dB, 34.41 dB, and 37.11 dB for Stefan, Foreman, Concerning BmEst and BmMCTI fusion methods, BmEst
Bus, and Coastguard sequences respectively. It is clear tban achieve a gain compared to BmMCTI for Stefan and
the proposed fusion methods can improve the quality of Sioastguard sequences, while BmMCTI outperforms BmEst for
compared to MCTI and GMC for all test sequences and &lbreman and Bus sequences. According to this comparison,
GOP sizes. The proposed method FusElastic can achieveeacan say that the estimation of the foreground objects in
gain compared to the previous fusion SADbin for Stefan adCTI Sl is better than the estimation of the foreground otsjec
Foreman sequences. For Bus sequence, the PSNR averagésiolg our FOMC method for Foreman and Bus sequences.
the two approaches SADbin and FusElastic is almost the sarhewever, FOMC is better than MCTI in the estimation of the
foreground objects for Stefan and Coastguard sequences.
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TABLE Il
RATE-DISTORTION PERFORMANCE GAIN FORStefan Foreman Bus AND CoastguardSEQUENCES TOWARDDISCOVERCODEC, USING BJONTEGAARD
METRIC, FOR AGOPSIZE OF2, 4, AND 8.

[ Method [ VISNET I [ GMC [ SADbin [ FusElastic | BmEst | BmMCTI [ FoMCTI [ FoMCTI2 [ Oracle fusion |
GOP =2
Stefan
Ar (%) 4.02 -18.21 -17.97 -19.72 -20.06 -19.98 -20.05 -19.79 -20.38
Apsnr [dB] ‘ -0.26 ‘ 1.25 ‘ 1.23 ‘ 1.36 ‘ 1.39 ‘ 1.38 ‘ 1.39 ‘ 1.37 ‘ 1.41
Foreman
Ar (%) -2.87 -8.42 -7.58 -9.65 -8.51 -9.67 -8.37 -9.70 -10.07
Apsnr [dB] ‘ 0.13 ‘ 0.52 ‘ 0.45 ‘ 0.59 0.52 ‘ 0.59 ‘ 0.49 ‘ 0.59 ‘ 0.61
Bus
Ar (%) 5.96 6.36 -12.94 -12.51 -10.25 -13.34 -10.75 -11.25 -14.51
Apsnr [dB] ‘ -0.35 ‘ -0.32 ‘ 0.79 ‘ 0.75 ‘ 0.61 ‘ 0.80 ‘ 0.64 ‘ 0.68 ‘ 0.87
Coastguard
Ar (%) 2.01 10.32 -4.60 -4.32 -4.34 -4.74 -4.40 -4.33 -5.36
Apsnr [dB] ‘ -0.10 ‘ -0.48 ‘ 0.23 ‘ 0.22 ‘ 0.22 ‘ 0.24 ‘ 0.22 ‘ 0.21 ‘ 0.27
GOP =4
Stefan
AR (%) -4.08 -44.05 -40.66 -45.18 -45.73 -45.74 -45.80 -45.71 -46.42
Apsnr [dB] ‘ 0.17 ‘ 3.26 ‘ 2.93 ‘ 3.38 3.42 ‘ 3.44 ‘ 3.44 ‘ 3.45 ‘ 3.51
Foreman
AR (%) -11.68 -22.53 -15.54 -21.72 -20.91 -21.81 -20.34 -21.93 -22.41
Apsnr [dB] ‘ 0.52 ‘ 1.37 ‘ 0.90 ‘ 1.33 1.25 ‘ 1.32 ‘ 1.19 ‘ 1.33 ‘ 1.36
Bus
AR (%) 1.95 -1.82 -25.95 -25.97 -24.10 -27.45 -22.19 -23.67 -28.60
Apsnr [dB] ‘ -0.17 ‘ 0.11 ‘ 1.60 ‘ 1.57 ‘ 1.41 ‘ 1.67 ‘ 1.34 ‘ 1.40 ‘ 1.78
Coastguard
AR (%) -0.27 8.43 -14.91 -16.48 -16.37 -16.59 -16.24 -15.70 -17.94
Apsnr [dB] ‘ -0.00 ‘ -0.35 ‘ 0.61 ‘ 0.68 ‘ 0.68 ‘ 0.69 ‘ 0.67 ‘ 0.65 ‘ 0.75
GOP =8
Stefan
AR (%) -8.85 -55.20 -51.56 -55.95 -57.12 -57.04 -57.10 -56.94 -57.84
Apsnr [dB] ‘ 0.43 ‘ 451 ‘ 4.05 ‘ 4.60 ‘ 4.72 ‘ 4.72 ‘ 4.73 ‘ 4.72 ‘ 4.83
Foreman
AR (%) -18.84 -31.81 -22.29 -31.24 -30.09 -31.01 -29.12 -30.78 -31.80
Apsnr [dB] ‘ 0.81 ‘ 2.02 ‘ 1.29 ‘ 1.93 1.84 ‘ 1.92 ‘ 1.76 ‘ 1.91 ‘ 1.97
Bus
Ar (%) -4.15 -10.33 -32.07 -32.82 -31.58 -34.16 -27.87 -28.53 -35.50
Apsnr [dB] ‘ 0.06 ‘ 0.58 ‘ 2.04 ‘ 2.07 ‘ 1.97 ‘ 2.19 ‘ 1.72 ‘ 1.74 ‘ 2.31
Coastguard
Ar (%) ‘ -8.59 ‘ -5.57 ‘ -26.32 ‘ -29.50 ‘ -30.37 ‘ -29.73 ‘ -29.48 ‘ -28.19 ‘ -31.32
Apsnr [dB] 0.33 0.15 1.10 1.24 1.27 1.26 1.23 1.18 1.35

Concerning FOMCTI and FOMCTI2, we can see the same The RD performance of the proposed methods GMC, SAD-
comparison as between BmEst and BmMCTI. Therefore, whbm, FusElastic, BmEst, BmMCTI, FoMCTI, and FOMCTI2
the MCTI technique is only applied on the foreground objects shown along with VISNET Il and the Oracle fusion, for
the quality of the estimated foreground objects is bettanthStefan, Bus, Foreman, and Coastguard sequences in Table Ill
the quality of MCTI S, for Stefan and Coastguard sequences.comparison to the DISCOVER codec, using the Bjontegaard
For Foreman and Bus sequences, the estimation of the fameetric [35], for GOP sizes o, 4, and8.
ground objects in MCTI Sl is better than the quality of the All the fusion methods can achieve a gain compared to
generated foreground objects by applying MCTI only on theISCOVER codec. The proposed method FusElastic allows a
foreground objects. gain compared to SADbin for Stefan and Foreman sequences

It is important to note that the oracle fusion method repréer a GOP size oR, and for all test sequences for a GOP size
sents the fusion of GMC Sl and MCTI Sl using the foregroundf 8. The gain is up tel.6 dB compared to DISCOVER codec
objects of the original WZF. However, BmEst and FOMCTand0.55 dB compared to SADbin, for a GOP size &f The
methods represent the fusion of GMC Sl and the estimatleds is up t00.04 dB compared to SADbin for Bus sequence
foreground objects. Thus, the oracle fusion represents thih a GOP size ob.
upper bound limit that can be achieved by the proposed fusionThe remaining fusion methods almost achieve the same
methods excluding BmEst and FOMCTI. For this reason, tlyains compared to DISCOVER. The gain is up4a3 dB
average PSNR obtained by BmE28(72 dB) is slightly better compared to DISCOVER codec for Stefan sequence, for a
than that the average PSNR of the oracle fusim7l dB), GOP size of8.
for Stefan sequence, with a GOP size2of Figs. 13, 14, and 15 show the RD performance curves of the

Fig. 12 shows the visual results and the visual differencB®8SCOVER codec, SADbin, FusElastic, and the Oracle fusion
of Sl for frame number oR7 of Stefan sequence, for a GOPmethod, for Stefan, Foreman, Bus, and Coastguard sequences
size of 4. The Sl obtained by SADbin fusion may contairfor GOP sizes of2, 4, and 8 respectively. The proposed
block artifacts (top-left -23.66 dB). The proposed fusion fusion methods SADbin and FusElastic always achieve a gain
FusElastic can improve the quality of Sl for this frame (topcompared to DISCOVER codec for all test sequences. The
right - 26.61 dB), with a gain 0f2.95 dB compared to SADbin. proposed fusion FusElastic can achieve a gain up 18 dB,
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Fig. 13. RD performance comparison among DISCOVER, SADIlinHrastic, and Oracle fusion method for Stefan, Foreman, BusCarastguard sequences,
for a GOP size oP.
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Fig. 14. RD performance comparison among DISCOVER, SADIinHrastic, and Oracle fusion method for Stefan, Foreman, BusCarastguard sequences,
for a GOP size oft.

0.45 dB, and 0.55 dB compared to SADbin fusion for aof 2, 4, and8. For Bus and Coastguard sequences, the two
GOP size of2, 4, and 8 respectively, for Stefan sequencemethods SADbin and FusElastic almost achieve the same RD
For Foreman sequence, FusElastic fusion allows a gain upperformance.

0.14 dB, 0.43 dB, and0.64 dB respectively for a GOP size ) ) ) ) ) o
Finally, in order to validate our technique in a more readist
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Fig. 15. RD performance comparison among DISCOVER, SADIlinHrastic, and Oracle fusion method for Stefan, Foreman, BusCarastguard sequences,
for a GOP size oR.

scenario, we evaluated the effect of using non-ideal segméareground objects. In the first one, elastic curves are used
tation maps. More precisely, we implemented a simple vidéo estimate the contour of the foreground objects. Based on
segmentation algorithm, based on mathematical morpholagne estimated contour, the fusion of GMC SI and MCTI Sl
processing of the difference between the current image asdperformed. Second, the foreground objects are estimated
the background (the latter obtained by global motion compensing MCTI and FOMC techniques. In this case, for the local
sation on previous frames). This algorithm gives acceptabhotion, MCTI Sl and the estimated foreground objects are
segmentation masks, even though some inaccuracy is visilailable. Thus, two approaches for the fusion are proposed
from time to time. However, using the computed segmentatidine first one aims at fusing GMC SI with the estimated
maps instead of the ideal ones in our system does not degréafeground objects. The second one combines GMC Sl and
too much the global rate-distortion performance: we otegrvMCTI SI.
a rate increase d9.2% (GOP= 2) to 0.8% (GOP= 8). This
preliminary experiment shows that the proposed method hasThe proposed fusion methods allow consistent performance
the potential of good coding gains even when the segmentatigains compared to DISCOVER codec and to our SADbin
is not perfect. fusion method. The gain is up td.73 dB compared to

To measure the encoding complexity of the proposddSCOVER codec, and up 10.68 dB compared to SADbin,
method, we use a machine with a dual core Pentium fOr a GOP size equal 8. It is important to note that compared
processor, a8.4 GHz, with 2048 MB of RAM. We take the to SADbin, no complexity is added to the encoder, in all
average of the obtained encoding times of the Coastguard dinel proposed fusion techniques, since contours and masks
Foreman sequences (150 frames each). The encoding tipeseration, as well as foreground object estimations, tre a
of DISCOVER, the proposed method, H.264/AVC Intra, angerformed at the receiver side. Besides, since the qudliB} o
H.264/A/C No motion are respectively equal 28.4, 36.9, is enhanced by the new fusion techniques, a smaller number of
49.9, and50.4 seconds. These results prove that the increagecoder runs is generally required for the channel decader t
in complexity in our proposed technique, w.r.t. DISCOVERoONverge ie. less requests of parity bits through the feedback
encoder, remains moderate, and that the complexity of tbleannel).
new encoder is still much lower than that of H.264/AVC Intra
and H.264/AVC No motion. Future work will be focusing on further improvement of the
fusion in order to achieve a better RD performance. We will
investigate the use of the estimated contours by elastiesur
in the estimation of the foreground objects. In addition, we

In this paper, new approaches have been proposed to cawill apply an efficient algorithm to segment the foreground
bine the global and local motion estimations, based on tbbjects from the decoded reference frames.

V. CONCLUSION
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