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Abstract—Multiview distributed video coding (DVC) has

encoded, as soon as the decoding is done jointly [3], [4].

gained much attention in the last few years because of its One of the conditions for such a result is that the encoder

potential in avoiding communication between cameras withot
decreasing the coding performance. However, the current mults
are not matching the expectations mainly due to the fact that
some theoretical assumptions are not satisfied in the currén
implementations. For example, in distributed source codig the
encoder must know the correlation between the sources, whic
cannot be achieved in the traditional DVC systems without haing
a communication between the cameras. In this work, we prop@s
a novel multiview distributed video coding scheme, in which

knows the correlation betweek andY . Distributed codecs

are based on the idea of using channel coding tools for
source compression. Practical schemes for video have been
developed mainly relying on the so-called Stanford apgroac
[5], implemented within the DISCOVER project [6]. In this
scheme the images are either key frames (KFs) or Wyner-
Ziv frames (WZFs). KFs are INTRA coded and are used

the depth maps are used to estimate the way two views are at the decoder to generate an estimation Of the WZFs. Th|S

correlated with no exchanges between the cameras. Only thei
relative positions are known. We design the complete schenaad
further propose a rate allocation algorithm to efficiently share
the bit budget between the different components of our schem
Then, a rate allocation algorithm for depth maps is proposedn
order to maximize the quality of synthesizing virtual views We
show through detailed experiments that our scheme significaly
outperforms the state-of-the-art DVC system.

I. INTRODUCTION

estimation, called side information (Sl), is corrected layity

bits sent by the channel encoder. The underlying assungption
reflect those of the theory: i) the error between the side
information and the Wyner-Ziv frame (or betwe&hand X)

is stationary, and ii) the correlation between them is knawn
equivalently, the probability distribution function ofisherror

is known at the encoder. However, none of these assumptions
is completely verified in practice, which keeps the perfanoea

of distributed video coding schemes suboptimal compared to
traditional compression standards [7]. While i) might blved

Multiview video has recently gathered increased attentiogy jmnroving side information generation techniques [fg t
thanks to th_e availability of new acquisition an_d r?nde”nﬁractical distributed coding schemes generally circurhiign
systems. This paves the way to numerous applications, s using a feedback channel or by relying on a light com-

as 3D and free viewpoint TV [1]. In this context, the problemy hication between cameras: both of these solutions may be
of efficient compression is more urgent than ever, in sight %ry difficult to implement in practical DVC scenarios.
the huge amount of data storage and transmission required b

scenes, such as gport/musw events, museum, cities, et. (great potential for avoiding the two aforementioned liriitas
result, th_e a_ch|S|t|on system more tha_” ever cannot peovi multi-view DVC [10]. If both the depth and color images
communication between cameras, which makes the us & available for a given viewpoint, one can estimate any

oftFrad;tlo?haI cqmt)rgts&gnntvechmqyes |m$otf15|ble S":j@/ th ther viewpoints using depth-based image rendering (DIBR)
estimate the simiarity between views a the encoder si ]. In these synthesized viewpoint images we can find un-

relying on the knowledge of the content of every viewpoint, ccluded and occluded regions. The former are estimated

:n thde_last ddectadel,l an talttehr na_nj[/e paradigm has beent_ gfng the texture from the reference viewpoint. If the depth
Vveloped in order to alleviate the inter-camera Commureat! y., ., 5 q perfect, they can be recovered completely under the

problems. The distributed source coding theory ShOWS. tr]_""::{mbertian assumptidnOn the contrary, the occlusion areas
two correlated sourcesX and Y can be transmitted with

. o . re not estimated at all, since they are parts of the sceme tha
the same efficiency when they are jointly or independent re not visible in the reference viewpoint. In these regitims
mean square error is equal to the variance of the image, since
no estimation is provided. In summary, the knowledge of the
depth map for a given viewpoint allows to first reconstruct
part of other viewpoints and, second, localizes the ernors i
these estimations. The depth maps enable to estimate &le lev
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1The brightness of a point is the same if seen similarly froraepkers at
different viewpoints.



of similarity of the current view with any other viewpoints,framework has proven to be the most competitive, leading
without requiring any communication between them. to many more extensions such as the one developed by
In this paper, we develop a novel distributed coding archihe European project DISCOVER [16]. Recently, other DVC
tecture which relies on the depth information. As explaindechniques have been proposed in order to improve it, such
above, the idea is to use the depth maps to build the sige VISNET Il [17]. One of the key aspects of Stanford-like
information at the decoder and to estimate the level of sinlDVC is the estimation of the WZF at the decoder, called
larity between two views at the encoder side. The occlusiside information. It can be generated, according to the édram
areas to be sent are obtained by a double DIBR, and thegpartition, by temporal interpolation or inter-view ine-
areas are coded by a shape adaptive algorithm. The mkition or by a fusion of them [18]-[22]. Several solutions
advantage of our scheme is that we better fit to Wyner afi2B], [24] have been explored in the literature to improve
Ziv's assumption, namely a knowledge of the correlatiornat t the quality of the SI and consequently the RD performance,
encoder side, without communication between cameras. Tdespite improving the PSNR on S| does not imply directly
only assumption is that all cameras know the position of theaximizing RD performance [25]. As the quality of the inter-
other ones. This can be considered asagmiori knowledge. view generated Sl is often poor, the RD performance of these
Another improvement of our scheme is that it is not linked techemes is not better than the INTRA mode of H.264/AVC [7],
a particular error metric. More precisely, traditional i§tad- [26], [27]. Inter-view estimation methods suffer from akauf
based distributed schemes only aims at minimizing the MSkjowledge about the scene geometry. This can be handled by
due to the fact that channel coders as turbocodes or LDRSIng depth maps. Till now multiview video plus depth has not
are used for compression. On the contrary, our scheme avdigen deeply explored in the context of DVC. The information
the channel coder (as in [12]) and so it can be independ@fthe depth map can be used, for example, in order to improve
from the correlation model among the sources. This makéwe quality of the estimation of the WZF. DIBR algorithms
possible to construct the scheme under the perspectivecah be used along with the camera parameters, in order to
alternative error metrics without changing the architeztu generate other views. For example, Artigshsl. [6] propose
In our experimental section, we however provide some testsmethod for texture Sl generation based on depth maps.
in terms of Rate-PSNR and Rate-SSIM performance. Tksven the KF image, the associated depth map and the camera
obtained results with these two quality metrics show that oparameters, it is possible to create a virtual viewpointe Th
scheme significantly outperforms the traditional DVC sgste synthesized image suffers, nevertheless, from some dcksba
and intra coding. Moreover, it sometimes even competes witlicluded areas cannot be rendered, errors in depth maps gen-
schemes that do not respect distributed coding assumptienate annoying artifacts, and view-dependent image festur
such as the layered-depth format [13]. Finally, our novelch as reflections cannot be correctly interpolated. These
coding architecture allows to find a very effective solutton problems are mitigated by an image fusion algorithm [18]—
the rate allocation problem between key and non-key fram@d]. Recently, Salmistrar@t al. [10], [28] have proposed
in order to maximize the PSNR of texture images. We ar#fferent solutions in order to exploit depth informatioor f
able to provide an allocation algorithm whose performasce $I generation for both texture and depth signals. In paeicu
very close to an ideal full-search allocation. This is aHert they propose optical flow techniques exploiting informatio
improvement with respect to classical DVC systems, whegiven by the depth for the motion estimation. The generation
the optimization of the rate allocation is made difficult Imgt of the texture Sl jointly from texture and depth has not been
rigid constraints of the channel coder (i.e. parity bitstsgm further explored since it does not meet the essential hyseth
demand in large chunks). Since depth maps allow to perfoahDVC schemes based on DISCOVER [16]. First, the error
a free viewpoint navigation, we have also proposed a néetween the generated Sl and the real WZF is not Laplacian
technique for bit rate allocation for depth maps in order f§&9]. Second, this error is strongly non stationary: there a
maximize the PSNR on the virtual views. several regions not affected by errors and other ones affect
The rest of the paper is structured as follows: in Section Iy noise of high variance. Without these two hypotheses the
we position our work in the context of multiview distributedchannel bit allocation per band per bit plane is sub-optanal
video coding. In Section Ill the new distributed architeetior this erroneous allocation strongly affects the Rate-Difto
MVD is described and a rate distortion allocation algorithrperformance of the whole system. Several works [30]-[32]
is proposed that maximizes the PSNR on original and dvave also proposed to remove the feedback channel, that lead
virtual views (Section 1V). In Section V we show experiméntd0o some problems in practical implementations. The drawbac
results, while we draw conclusions and outline future wark iof these applications is that camera communication is reeede
Section VI. and a loss in RD performance is observed (from 8% to 16%
of bit rate increase). In this paper, we propose an altemati
to traditional DVC systems, where we exploit depth maps as
crucial information on the scene geometeyg( from which
Distributed video coding has been applied to multiviewwe derive a correlation model). This permits to completely
video mainly for avoiding inter-camera communication [14get rid of inter-camera communication and also to suppress
or equivalently, a centralized encoding process. Disteihu the feedback channel, without any communication between th
video coding schemes take mainly two forms in the literatureources at the encoder side. Therefore, the rate allocated f
the PRISM [15] and Standford [5] approaches. The latteon-key cameras can be varied more finely, allowing improved

II. RELATED WORK



rLeﬁ encoder

[34]. Using the resulting estimated depth nﬁp we perform
a back projection into the OC coordinate system. We obtain
thus the estimate of the occlusion map as seen by the KC, and

DIBR projection

" e N we refer to it asM. Fig. 2 shows an example of estimated
e e 4— @ occlusion map for the “dancer” MVD sequence. In principle,
e - . TR all the texture pixels corresponding to the points witly = 1
L ) should be encoded and sent, in order to allow the occlusion

filling. We observe that many small regions appear in the
Fig. 1. Structure of the encoder: thg right camera is claigiencoded. For estimated map (we define as a region a set of connected pierS
the left camera the occlusion mask is extracted by a doutlBRDUnN on the — . .
depth map. Only the regions selected by this mask are encanigédsent to Where Mo = 1). These small regions are relatively costly to
the decoder. encode, while the corresponding pixels can be effectividfi

in by inpainting at the decoder, since in many cases theytresu

from noise or depth errors, rather than from actual occhssio
results. For this reason, we remove frody the connected regions
smaller than a certain number of pixels. The thresholg
cannot be too large, otherwise we risk to loose important

) ] . information that cannot be recovered by the decoder. The
We consider two range cameras that provide a texture m@

IIl. PROPOSED ARCHITECTURE

¢ ; imal value of this parameter is empirically determined
and the corresponding depth map each, and we discuss I&lc(ion V). The second processing step consists in sfightl
in this section the case of a generic number of cameras. ffiarging the mask, in order to take into account the fadt tha
one view (say, the right-hand one), texture and depth &ffyre may be other actually occluded pixels falling outside
encoded in INTRA mode (as in Fig. 2)Using these tWo o estimated mask [35]. We show in Fig. 3 an example of
images, at the decoder side, DIBR is applied and the leftthagis phenomenon: we mark in red occluded pixels that are not
view can be reconstructed except for the occluded regiofs, s, These missing pixels will be hardly reconstructed by
i.e. the areas that are visible in the left view but not in th?npainting. The mask enlargement is performed by a dilation

right one. In order to fill in the occluded regions, the 'eftUsing a disk-shaped structuring element with a radius of

hand camera should know where the occluded regions gfige|s |ncreasing the disk radius would eventually assuae

in the right view; however inter-camera communication igy| the occluded pixels are included in the occlusion mask, b
impossible in the distributed coding paradigm. Therefore, oq also increase the coding cost of the occluded regions.
propose to estimate the occluded regions without intereram s for the minimum region arep, the best value for the disk

communication, by only exploiting the geometric inforneati 4,5, is determined by experiments, as shown in Section V.

such as the depth map and the camera parameters. The iffls occlusion mask resulting from the dilation is referred t

hand camera will only send an efficient representation of ﬂé%ﬂo- We compare in Fig. 4 the estimated occlusion mz@

occluded areas. _ _ . with the its refined version: the latter appears more stétabl
Let us now establish some notation for describing oyg, selecting the regions to be encoded.

system. The camera that is INTRA encoded is called key

camera (KC), a naming convention very common in the DVC The regions selected by the mask are encoded using the
literature. We call the other camera, for which only occlideshape-adaptive (SA) algorithm proposed in [36], [37]. A
regions are sent, an occlusion camera (OC). The texture apfy Wavelet transform [38] is carried out on each region.
the depth captured by the KC are referred talasand Zx ~ This transform preserves the spatial correlation and tife se
respective|y (Since our a|gorithm is independent from timeg S|m||ar|ty across subbands, which is crucial for the fOlIImI
we omit the dependence on a temporal variable). Likewiséero-tree coding algorithm. The resulting coefficients eme
texture and depth from OC are referred toZasand Zo. As coded by a SA version of SPIHT [39] that differs from the
already mentioned, KC coding is straightforward, therefet original in two major aspects: first, only nodes belonging to
us consider OC coding. It consists of two parts: estimation H1e support of the SA transform are considered while scgnnin
the occluded areas and their encoding by a Shape_adapgvgpatial orientation tree. Second, the baseband coefficien

algorithm. The occlusion mask/,, for the OC is defined as are no longer grouped int® x 2 square and a single root is
considered instead. Finally, an optimal rate allocatiorolagn

Mo(m.n) Loif t(m,tﬁ) iSK(‘éiSible in the OC but the different regions is performed.
o(m,n) = not in the _ _ o .
0 if (m,n) is visible to both cameras The decoder structure is depicted in Fig. 5. Using the

) ) _ ) decoded KC texture and depth, the actual occlusions can be
This mask. is not available at the OC, so it has to be e?@omputed and part (hopefully all) of them can be filled by
mated. To this end, we apply DIBR followed by a Bertalmigne regions encoded with the SA algorithm. If some areas in
inpainting [33] to Zo. Bertalmio inpainting is well suited for he texture image are still unfilled, they are recoveredgisin

the depth maps, since it consists in an anisotropic diffusi@riminisi inpainiting [40]. Differently from depth mapshat

are essentially textureless images, Criminisi inpainiggore
2We could also encode this view using temporal predictio, motion y 9 P

estimation. However, we consider in the following an AIMIRA encoding Suitable for textured image. Finally, the synthesized depap
in order to keep the complexity low. is also inpainted, obtaining a decoded depth migp to be



Fig. 2. Examples of occlusion regions in a detail from thecgarsequence
(view 9, frame 1): the occlusions whose area is smaller titapitels are in
blue; occlusions larger than the threshold are in red.

Fig. 3. A detail of an OC without dilation of occluded areagew 9, frame
1). The non-filled occlusion areas are in red.

used for synthesizing other viewpoints.

(b)

Fig. 4. The unprocessed (a) and the processed (b) occlusign(wew 9,
frame 1) from thedancer sequence
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Of%. 5. Structure of the decoder: the right texture and depthreconstruct

is totally independent of the number of cameras, perfecthe un-occluded regions of the left view. At the decoder ,stie occluded
abiding to the distributed coding paradigm. Of course, if wggions are filled by the objects sent by the encoder.
have many OCs and some of them are too far away from
a KC, their estimated occlusion area may cover a large part
of the scene, thus increasing the coding rate. However wtchitecture proposed in the previous section allows eebett
remark that with respect to the classical DVC architectwe, rate allocation procedure. We show here that the performanc
have more flexibility in positioning key cameras and non-keyf an “oracle” system, that knows the distortion associated
cameras. For example, in the common case of three-camany rate allocation choice, can be approached by a heuristic
configuration, we can use a central KC with two lateral OCgjgorithm based on the characteristics of both our systedn an
in the case of a classical DVC system instead, inter-vieof the MVD signal. In a first part (Sec. IV-A) we will explore
estimation works well enough only when a Wyner-Ziv framéhe effect of rate allocation on the original views. The irtipa

is interpolated from two adjacent key frames (extrapotaticon the synthesized views is investigated in Sec. IV-B.

gives worse performance [41]).

IV. BIT RATE ALLOCATION

Usually in DVC the rate allocation between KFs and WZF

is empirically obtained [16]: a quantization index for edtty
the transform coefficients of WZFs is chosen according
the quantization parameter used for the KFs, with the g

of having the same distortion both for KFs and WZFs. Tho§e
coefficients are fed into a channel coder to produce theypar
bits. The parity bits are sent on demand and in relativerx
large sets, called chunks, until the bit error rate BER at t

decoder side drops below a given threshold. In summary,

rate allocation between KFs and parity bits is suboptimdl atMinimize D = D+ Do

A. Rate allocation for original views
Let us start by the problem formulation. The total available

(0]

hit rate R must be allocated among the KC and the OC. Let
x and Rz be the rates associated 1o and Z, i.e. the
ey texture and depth respectively. Moreover, i&t, be the

rate associated to the SA coding of occluded regions in OC.

he

tﬁ%al rate:

requires a feedback channel to be implemented. The DVC

subject to

e call D and Dy the distortions for the KC and the OC
xtures, respectively. As metric for the distortion we tize

&SE, but we could use other additive metric. Our goal is to

inimize the total distortion subject to the constraint be t

Rsa+Rrx+Rz =R

)



We observe that the distortiol depends only oMk, to select the QP corresponding to the lowest curve at this
and the Di(Rk) function is in principle available at therate. This could be difficult in general, but we observe that
KC encoder. The ternDo is more complex to evaluate: it for a given QP, each curve is very steep at the beginning and
is made up of the distortion on the unoccluded (synthesizetien becomes practically horizontal. This means that the SA
areas,Dy, plus the distortion on the occluded areas, encodedding of occlusion areas is efficient with a few bits, butenc
with the shape adaptive algorithms 4. Both terms must be the occluded regions are “well coded”, it is practically lese
weighted by the relative sizes of the corresponding arems.tb increase their rate, and it is rather worth to use a higher
turn, the distortionD;; depends on the key texture and keWP, i.e. to “jump” on the next curve. Since a very small rate
depth rates:D;; = Dy(Rk, Rz). The relationship between Rg 4 is sufficient to minimize the distortion for a given QP, it
Rk, Rz and Dy is difficult to be mathematically modeled.looks like we should always use the smallest QP possible, i.e
However it is possible to numerically compute it, when onthe smallest such tha&x (QP)+Rz(QP) < R, and we have
has simultaneously access to all the data, Zx, To, Zo. to give only the residual rate to the shape-adaptive codfng o
Finally, Dsa(Rsa) is the rate-distortion curve of the shapecclusion.
adaptive encoder, and it is available at the OC encoder. InThis approach implies the assumption that a QP corre-

summary the total distortion may be written as: sponding to a given curve in Fig. 6 is optimal as soon as
D(Ri, Ry, Rsa) = Dc(Ric) + BDsa(Rsa) the total rate is Iarge_r than the minimum rate assomgted to

(2) the curve. However, if we look more closely to the figure,

+(1 = P)Du(Bx, Rz) we understand that this is not entirely true. For example, th

where 3 is the ratio between the number of pixels of theurve associated to QP=30 has a minimum rateyef0.100
occlusions and total the number of pixelsGh. The values bpp, but it is optimal only when a total rate at least as large
of 3 for our test sequences range fram0 % to 8.40 %, with asr;=0.109 is available. Therefore, we design an empirical
an average 08.68 %. rule to perform rate allocation: the KC must select the ldwes
The constrained minimization could in principle be solve@P such that the corresponding rdtg + Rz is smaller than
by a full-search minimization (i.e. trying all the possible R—f(R). In turn, f(R) is a part of the total rate reserved for
allocations). However this is only possible in a simulatiothe encoding of the occluded areas. For simplicity, we have
environment, not only for its complexity, but also becauseonsidered(R) = aR with « € [0, 1]; nevertheless, as shown
the distortion computation is only possible when all decbdén the experimental part, this allows RD performance very
and original images are available. An analytic minimizati® close to the upper bound given by the full-search approach.
difficult to perform since it is hard to find a reliable model ofThe parametet is experimentally determined, as shown later.
Dy (Rk, Rz). Therefore, we design an effective heuristic rate In conclusion, the heuristic rate allocation algorithmsists
allocation algorithm based on the characteristics of oatesy of the following steps. The KC camera encodes its data at the
and of the MVD data. We show that our algorithm gives Rlbwest possible QP such th&x + Rz < (1 — )R, i.e.
results that are very close to the full-search, at leastrdegg
the allocation between the KC and the OC data. QP = argmin Rr(9)+Rz(q) st-Ri(q)+Rz(q) < (1-)R
More precisely, we start on a very common assumption (4)
aboutRx and Rz, i.e. the rates needed to encode a textuféhen, the OC encodes its data using the residual available
and its depth map. The relationship between them has beate. A problem arises here: the OC should use aRate =
explored in many previous works [42]-[45], and in the refaR + (R — Rx — Rz), but it does not know the rate already
erence software of the upcoming 3D-HEVC coding standaaflocated to the key cametdx + R;. We refer to the case
it is implemented as a simple empirical rule that associatedere the OC uses exactly this rateideal allocation (1A).
the depth map quantization parameter to the one used fole consider three practical solutions to this problem. The
the texture [46], as shown in Tab. I. We use the same rudemplest one is to use onliRs4 = «R. This is equivalent
here and, as a consequence, rdtgsand Ry are functions to optimizing the rate allocation for a rate constraint dqua
of the single quantization parameter QP. Now, we have to Rx + Rz + aR. Then, for the resulting final rate the RD
find the relationship between the optimal QP dgls. Since performance is the same as IA, but we are not able to perfectly
we have reduced the dimensionality of our problem froselect this final rate. A second solution consists in havirgg t
a three-dimensional search space to a bi-dimensional o@& camera estimating the QP used by the KC, simply by
we can more easily compute the distortion in a simulatigmerforming a dummy Intra coding &fp and Z: if the two
environment. We represent the total distortion as a funatio views are similar enough the estimation would be often very

two parameters: close to the right value. We refer to this solution as local

D(QP, R — Dw(R P)) 4 8D (R est|mat|(_3n (L_E). A third possible ;olu_tlon is to implement

@ s4) K(Bx(QP)) + SDsa(Bsa) (3) a very light inter-camera communication such that the KC

+(1 =)Dy (Bk (QP), Rz(QF)) can tell the OC how much rate it has consumed. This would

We show in Fig. 6 the distortion vs. the total bit rate peexactly implement the IA but would however deviate from the
pixel r = % for several QPs and for a given sequencdistributed paradigm. In summary, the first solution is danp

(“poznan street”), whereV/ x N is the spatial resolution. gives ideal RD performance but does not allow a perfect rate
The same general behavior was observed on all the other msttrol. LE allows rate control and, as shown in the exper-
sequences. For a given total rake= R* we should be able imental section, has RD performance very close to the IA,



TABLE |
RELATIONSHIP BETWEEN THE QUANTIZATION PARAMETER FOR TEXTUE (Q Pr AND THE ONE FOR DEPTHQ Pz

QPr 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 627252
QPz 51 50 50 50 50 49 48 47 47 46 45 45 44 44 43 43 42 42 41 41 40 39 38 37 53@43

75 the occluded areas iip. The target will be to maximize the
—QP=2§ .. . . .

& o average PSNR of the original views and of the virtual views

o sy generated at the positiofg, 2, 3} of the baseline. The virtual

I ¥ views are obtained by interpolation algorithm of the view-
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synthesis reference software (VSRS), as for the 3D-HEVC
Tests. The references for the virtual views are obtained by
applying VSRS on the original texture and depth data (withou

oSS compression), as in [47].
32' Gl In order to explore the allocation problem betwen and
T Rz, we perform a full search (FS) allocation for several
o6 Th | distort he bi - P A combinations of values for the two parameters. The results
1g. 6. e total distortionD vs. the bit rate per pixet = s - For eac H H
different QP, we have a different color. This example isz?clfr]rvame of the for the dancer Sequence are shown in Fig. 7. Each red curve
poznan street sequence corresponds to a fixed value dt, and we varyRz,. As
a consequence, the horizontal axis is the total bit-ratee Th
vertical axis is the average PSNR on virtual views. We also
L . show the virtual viewpoint quality if the depth maps are not
it is mor mplex since th n rm rform S A .
but it is more complex since the OC encoder must perfo shcoded but only inpainted as shown in Fig. 5. The optimal

dummy Intra codmg. Finally the Fhqu solution implemertig t %Ilocation corresponds to the upper envelope of the redesurv
IA but demands a light communication between cameras. T L . . .
esigning an algorithm for optimal rate allocation would

choice among these solution is discussed in the experimenta e : .
section be even more difficult than the previous case, given the com-

: . . . Plex, non-linear relationships between depth rate andiairt
This rate allocation algorithm can be easily extended O wooint uality. As a consequence, we propose a reasepabl
three cameras, where the central camera is a KC and P 9 : g ' brop

he . . " : :
two lateral ones are OC. We will refer to this architecturhnesurilrst;[:jC SIIO[ZZI]IO\?VSIESmrl)n;:]tﬂ;??ﬁgi‘gﬁi/oggggv%eeﬁncccem ded
in the next section as OKO. We observe that, for symmetr P y ’ Pb

the quality of svnthesized reaions at left and at riaht will b épth rate and occluded texture rate is the same as the ratio
neag they samg Then. we e%( ect that the bit ratg for Cc)diRetween key depth and key texture. However, since this rate
y ’ ! P y be very small ifR, is close toRx + Rz, we add a

the occluded areas for the two OCs would be nearly the same. : . .
: ) . small term assuring a suitable coding rate for the occluded
Configuration tests with more than three cameras are Id%ss

common in the context of 3D-TV [46] and will be studie epth. This term is a fraction of the rafg. In conclusion we

assume:
as future works.

50

MSE

45

40

Roo = 22 Rsa + eRo (5)
K

The fractione of the total rate dedicated to the occluded

In the scheme of Fig. 1, the depth of the O, is not depth is optimized by experiments, as shown in Section V-C.
explicitly encoded, and as shown in Fig. 5, it is obtained &¥e show in Fig. 7 the results of the heuristic allocation: we
the decoder by DIBR and inpainting. Howev&y, has a huge observe that they are quite close to the optimal one, andrbett
impact on the quality of the synthesized virtual viewpoiats than those obtained by just inpainting the estimated depit m
the decoder side. In the previous discussion, the distodfo Similar results were obtained on all the test sequences (see
these viewpoints has not been considered, because othen@igction V-C).
the problem would not have been tractable. However here
we want to investigate about the following issues: is it Wwort
sending some more bits to improve the representatioti 5t
how much does it improve the virtual viewpoints quality? how In order to validate our proposed architecture and rate
can we allocate the total bit-rate considering the OC depth@llocation method, we have performed tests on several MVD

For simplicity, we assume that we have two cameras orggquences (see Tab. Il), using 3 views per sequence and 60
and that the bit-rate allocation betwedty,, Rp, Rsa has frames per view. The first 3 sequence®lile, dancer, GTFly)
been performed according to the previous discussion. We cale computer-generated and the depth data are perfechd-or t
Ry = Rix + Rp + Rgsa the rate allocated td'%, Zx and others depth maps have been computed by a dense disparity
To. We can improve the representation 4§ by encoding estimation algorithm and so they are affected by errors. We
its occluded areas with the SA algorithm exactly as done fase them since they are quite common in the literature, but
To. We have only to solve the rate allocation probléin=we underline that the intended use case is the one where the
Ry + Rz, where Rz, is the rate for the SA encoding ofdepth maps are provided by range cameras [8], [48]-[51].

B. Quality of virtual viewpoints

V. EXPERIMENTAL RESULTS
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TABLE Il Fig. 8. PSNR [dB] vs.R for different values ok for the sequenceoznan
THE MULTIVIEW PLUS DEPTH SEQUENCES TEST SETSOURCES: A. Street.
PHILIPS;B. NOKIA; c. TANIMOTO LABORATORY; D. GWANGJU
INSTITUTE OF SCIENCE AND TECHNOLOGY, E. POZNAN UNIVERSITY OF
TECHNOLOGY([52]
Sequence Resolution views Pa(')
mobile® 720 x 540 4,5, 6
dance? 1920 x 1088 1, 5,9
GTFly® 1920 x 1088 1,5, 9 1 Riaao
balloons 1024 x 768 0,1, 2 Au(Por(:), Pu(+) = 7 7 (Por (1) =P (r))dr
kends 1024 x 768 1,35 max min J Ryin
newspapet 1024 x 768 2, 4,6
poznan streét 1920 x 1088 3,4, 5

where[R,in, Rmaz] is the range of experiment rates. The best
value of« is the one that minimizeda,. We have computed

This section is organized as follows. In Sec. V-A we sholfe value ofA, as an average on 5 frames for 7 sequences, and

how to tune the our parameters to obtain the best resulfa results are in Tab. lil. The optimal value®is 0.1, which
Then. in Sec. V-B we show the RD results on the Originglorresponds to an average PSNR loss with respect to the full-

views, comparing the proposed architecture to many egstiﬁ?arch oracle case of just 0.Q4 QB. Thisis a remarkal:_:letresul
solutions. Finally, in Sec. V-C we provide the results foe thSince it means that our heuristic rule performs practically
virtual views. well as the full search allocation. We could achieve evetebet

results if we adapt the value af to the sequence but, on
one hand, this would give a very small gain even in the best
case and on the other hand, we do not have for the moment
any hint about how to select this parameter as a function of
We have to select the optimal values of the minimal regidA€ sequence. In conclusion, using a fixed valuexogives
size p and of the structuring element radips They should excellent performances without having to adapt it to each
be determined by considering their impact on the global REgquence: in the following we only refer to the case- 0.1.
performance, meaning that they should be computed jointlyFinally, we compare the different methods for deciding
with the other system parameters. This would be very complele rate of the occlusion camera. The first and the third
therefore we perform a greedy optimization: each of these tyyroposed solutions explained in Section IV have the same RD
parameters is varied while the other is kept fixed. We hagerformance as IA, the only difference being that the first
found that withp = 50 and p = 5 the best performance canis perfectly distributed and the third allows rate contfbhe
be obtained, and this result is independent from all therotheE solution is distributed and allows rate control, but may
system parameters with very good approximation. We will usetroduce a small RD loss with respect to the IA. We compute
these values fop andp in the rest of the paper. this PSNR loss likewise the previous casexofit is the mean
Next, we have to set the parameterintroduced in Eq. 4 value of the difference betwedh (-) and P g(-). According
for the bit-rate allocation. Let?,. be the ideal PSNR thatto our experiments, the PSNR loss ranges betwieh) 3
should be obtained if an oracle, full search rate allocatiand 8 - 10> dB and therefore is negligible. In conclusion,
is performed, and letP, be the obtained PSNR using thehe LE method performs practically as well as the IA, but
empirical rule in Eqg. (4) for a given. In Fig. 8 we compare introduces some increase in complexity. One should choose
P, and P, for different values ofa for a given sequence. among the three solutions according to the relative impega
Finally, we have computed the average PSNR Idss as of the constraints on rate, complexity or distributedndgbe
the mean value of the absolute difference betwBgni-) and system.

A. Parameter tuning



TABLE Il

THEPNSRLOSSA, [DB] WITH THE EMPIRICAL RULE 4 FOR DIFFERENT VALUES OFx.

Sequence a=0000 «o=0.050 a=0.075 a=0.100 «a=0.125 «o=0.200
mobile 0.53 0.01 0.03 0.10 0.18 0.50
dancer 0.28 0.01 0.01 0.02 0.05 0.18
GTFly 0.22 0.01 0.01 0.03 0.07 0.20
balloons 0.61 0.09 0.04 0.01 0.01 0.04
kendo 1.13 0.17 0.07 0.01 0.01 0.05
newspaper 1.20 0.40 0.21 0.14 0.07 0.01
poznan street 0.36 0.03 0.01 0.01 0.01 0.10
average 0.61 0.10 0.05 0.04 0.06 0.15

B. Rate-distortion performance on original views

In this section, we evaluate the RD performance of the
proposed architecture on the original views. The different
methods that we consider for comparison can be classified
into three families:

1) Distributed methods (exploiting only inter-view cor-
relation)

« our proposed method (OKO)- the central camera
(texture + depth) is H.264/AVC INTRA coded and
the two lateral ones are OC (see Fig. 9(b))

o Al INTRA - all the three cameras are Key cameras.
This comparison is made because this configuration
can be considered as a distributed one, since there
is no communication between the cameras. For this
case, cameras provide only texture images.

« DISCOVER - the central camera is WZF coded
(see Fig. 9(a)) in a classical DVC architecture: the
Sl for the central camera is obtained by the inter-
view interpolation from external cameras, which
in this setting are both K cameras [16]. A turbo
encoder is used for Wyner-Ziv coding. This esti-
mation is corrected by the turbo decoder through
the parity bits sent by the WZ encoder. As for
All INTRA, cameras provide only texture images.
Other distributed codecs (such as VISNET Il) have
better performance than DISCOVER, so it cannot
be considered as a state-of-the-art method; however
it is a relevant benchmark in sights of its popularity
and availability. In all the experiments we used
our own DISCOVER implementation, that allows to
manage large frame sizes and to change freely the
S| generation technique. Since we use turbo codes
as channel code, the modification is very small (we
do not need the LDPCA matrices).

o DISCOVERd-WKW - Here we test a different
KF/WZF arrangement for DISCOVER. The central
view (K) is INTRA coded (with its depth map) and
the two WZFs are estimated by DIBR applied on the
central camera. These two estimations are corrected
by parity bits, as usual. In this scheme, the occluded
zones on Sl are inpainted, before turbo decoding.

2) Simulcast methods (both distributed and not)
o DISCOVER simulcast - Each view is encoded sep-

dently by H.264/AVC, by exploiting only temporal
correlation. The GOP size is supposed equal to 2
(IBIB).

HEVC simulcast - Each view is encoded inde-
pendently by HEVC, by exploiting only temporal
correlation. The GOP size is supposed equal to 2
(IBIB).

3) Other methods
o« LDVa - A state-of-the-art Layered Depth Video

(LDV) (non-distributed) architecture [13] is imple-
mented from the MVD data and the different layers
are encoded by the aggregation method described
in [53]. This architecture is very similar to our
codec, but does not comply with the DVC paradigm:
indeed, the inter-camera correlation is exploited at
the encoder side. Another difference is the coding
technique of the occluded areas: they are encoded
by [53] and not by our shape adaptive coding
techniques.

LDVo - A LDV (non-distributed) architecture is
implemented and our shape adaptive coding is ap-
plied for the different regions. This architecture is
the same as the one for LDVa: the difference is
the coding technique for the occluded regions. In
this case shape adaptive algorithm is applied for
encoding the occluded areas.

MV-HEVC - the new model under test for Multi-
View coding HEVC based in the version HTM 6.2,
which is again not a DVC scheme, and is con-
sidered only for performance comparison purposes
[9], being a future standard in multiview and MVD
encoding. Inter-view residual prediction is used for
exploiting correlation among the views. This is a
not distributed architecture, because communication
among the cameras is allowed. Moreover, the IN-
TRA Frames are coded in HEVC INTRA mode.
DISCOVER fusion - WZFs and KFs are arranged in
a quincunx scheme. Each WZF is estimated both by
inter-view and temporal interpolation. Then, these
estimates are fused by the algorithm proposed by
[21]. The two side views only temporal interpolation
is performed because inter-view interpolation is not
possible.

arately by DISCOVER, by exploiting only temporal We have considered two quality metrics, the PSNR and
correlation. The GOP size is equal to 2. the SSIM [54], since the former is sometimes inconsistent
o H.264 simulcast - Each view is encoded indepenvith human perception. In particular, since we use DIBR for



TABLE V
ApsNRAND Aggiy W.R.T. ALL INTRA AT A FIXED RATE OF 0.1BIT PER

N

. O frame

I:' WZF the quality of those areas. This performance saturatiomis a
indirect consequence of giving up the feedback channelin ou
( scheme: when the geometric information about the 3D scene is
Fig. 9. Two DVC camera configurations: DISCOVER (a) and OKQ (b poor, we are not able to effectively correct the actual cbetu
areas. As a consequence, the proposed system is an effective
alternative to classical schemes when the depth maps are not
synthesizing new views, a small misplacement of certaiglIpix {gq poor. However, the steady improvement in both depth
may reduce significantly the PSNR of the synthesized framegquisition devices and in disparity estimation algorighmill
while their perceived quality is possibly not affected asctnu ke it reasonably easier to have high-quality depth maps fo
In Fig. 10, 11 and 12, we show the Rate-PSNR and Raigrctical distributed systems. These results are sumethiie
SSIM curves for the seven test sequences. The first figutgy |\, where we observe that our technique achieves an
refers to three computer-generated (CG) sequenuebile, ayerage bit rate reduction of 48.44% (and up to 66.94%) and
dancer, GTFly), while the other ones are natural sequencegn average PSNR improvement of 1.38 dB (and up to 3.50
The distributed method (exploiting only inter-view coagbn) dB) w.r.t. DISCOVER. In Tab. V, we have compared the gain
performances are indicated with a solid line, the simulcagt pSNR and in SSIM of our method w.r.t. All INTRA, when
methods have a dashed line, and the other methods a dagB-pit rate is equal to 0.1 bpp. We remark that, although for
dot line. Some results for Rate-PSNR improvement w.régme sequences we do not have a PSNR improvement, such
DISCOVER in terms of Bjontegaard metric [55] are also listegs in thenewspaper sequence (where we have a loss of 0.70

z

PIXEL.
] I:l I:l I:l Apsnr | Assiv
[dB]
ﬂ I:I I:I I:I mobile 4.08 0.091
dancer 0.93 0.062
( balloons -0.76 0.011
kendo -2.63 -0.002
GTFly 0.85 0.012
z K frame newspaper -0.70 | 0.013
poznan street| 0.34 0.032

—
—
—
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in Tab. IV°. _ o _ dB), in SSIM we have an improvement of 1.3%. Moreover,
Co_mpan;on with oth.er distributed methods (exploiting  this gain in SSIM is nearly the same as that of ®BEFly
only inter-view correlation). sequence where the corresponding PSNR improvement is of

From Fig. 10 we remark that for the CG sequences, tlegs gB. There does not exist a clear correspondence between
proposed method is the best within the distributed techesqupe gain in PSNR and in SSIM.
exploited only inter-view correlation, except for rela&ly |, order to improve the quality of the synthesized regions
high-rates, where All-INTRA has slightly better perfornean i our algorithm, we have also tried to send parity bits from
However, when we consider the SS_IM, the proposed technl%l%hannd coder just as in classical DVC [5], [16]. However
clearly outperforms all the competitors from the same familag shown in the previous results, using classical DVC on the
As expected, the PSNR may penalize our technique Sinc@p data is often even less efficient than INTRA coding:

small positioning error may result in a high MSE withouinerefore, as expected, adding parity bits to our data does n
necessarily a perceived quality loss. We also remark theat t,hrove the RD performance.

DISCOVER codec has always the worse performance both i”FinaIIy we spend a few words on a variant of DISCOVER

PSNR and in SSIM. This is due to the lack of erX|b|I|ty Ofca”ed DISCOVERd-WKW, where the depth and texture data
the classical DVC methods, sending large chunks of parfy; ihe central camera are INTRA coded and used for ob-
bits to correct badly estimated side information images. [ﬁining an estimation of the left and right views via DIBR
Fig. 11 and 12 we observe some_what.similar results for ”Iatué%rapolation. Then, the occluded zones are filled by Beital
sequences: the proposed technique is better than DBCOVi'ﬁBainting; the Sl is finally corrected by the parity bits of
in PSNR and SSIM, and almost always better than All-INTRfhe tyrho encoder. We observe that the DIBR extrapolation
in SSIM, while for the PSNR it depends on the rate and Qf \he DISCOVERA-WKW outperforms the extrapolation of
the sequence. We conclude that, as we may expected, BY§COVER if depth data are perfect (CG sequences). An
technique depends on the quality of the depth maps. Whghsite behavior is observed for natural sequences. Hawev
the depth maps are estimated (and then affected by errof)n are always worse than the proposed technique.

we observe a saturation effect in the PSNR (and partly in theComparison with simulcast methods (both distributed
SSIM). Our explanation is that errors in the depth may causf g non-distributed)

that some occluded areas are not correctly recognized &s suc Let us consider now the simulcast method performance in

as a consequence, increasing the bit-rate has little effect i, 14 (g 12 (dashed lines). As expected, simulcast HEVC has
3In order to compute the Bjontegaard metric, we have samyledRD (€ best performance (in P_SNR a_nd SSIM), but it is 6_1lso b_y
curves on four points far the most complex technique. Simulcast H.264/AVC is a bit
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TABLE IV
BJONTEGAARD METRIC FOR COMPARISON OF DIFFERENT TECHNIQUES.R/T. DISCOVER.

All INTRA OKO LDVa LDVo

AR ApsNR AR ApsNR AR ApsNR AR ApsnR

[%] [dB] [%] [dB] [%] [dB] [%] [dB]
mobile 1.31 -0.06 -66.94 3.50 -64.65 3.45 -79.45 3.92
dancer -29.03 0.96 -57.50 1.58 -55.60 1.56 -81.49 1.99
balloons -32.97 2.21 -22.48 -0.09 -17.10 0.07 -34.78 0.47
kendo -30.98 2.10 -29.83 0.40 -27.63 0.41 -26.80 0.98
GTFly -25.34 1.07 -65.47 1.96 -67.10 2.08 -81.46 2.44
newspaper -68.56 4.06 -51.50 1.40 -40.58 1.28 -65.85 1.92
poznan street| -20.63 0.94 -45.39 0.93 -45.10 0.89 -48.83 1.21
Mean -29.45 1.61 -48.44 1.38 -45.39 1.39 -59.80 1.84

worse and, for the computer-generated sequences, has & wesmation). Given the depth map, we obtain the disparitg.ma
SSIM than the proposed method. This is a good result for olinen, from intrinsic and extrinsic camera parameters, each
distributed technique. Our interpretation is that whereiint pixel of the reference frame is mapped in another pixel of the
view correlation is correctly exploited (e.g. because thptd synthesized frame. A fixed amount of operations per pixel is
maps are not affected by errors), it may give better reshi#ts t needed. Mask extraction is intrinsic in DIBR then no addigib
exploiting temporal correlation. A similar result is obged computations have to be performed. The morphological oper-
concerning simulcast DISCOVER: our technique has bettations are not computationally intensive. Fast algorittexist
SSIM (but worse PSNR) on CG images, while on two naturalith a complexity of a few (in the range 1.5 to 3) comparisons
sequences out of four DISCOVER is better. However wger pixel [56]. As for Bertalmio inpainting, since there istn
remark that the most relevant comparison is the one betwaemplate matching (such as in Criminisi), the complexity is
our method and the first family (distributed methods expigit very low. Finally, shape adaptive (SA) coding consists in a
only inter-view correlation)), since in our algorithm, we dot shape adaptive transform (whose complexity is basically th
take into account the temporal correlation. The goal of th&ame as for an ordinary transform) and in SPIHT-like bit
paper is to exploit geometrical information to get compiass plane coding (that is extremely simple). As a consequence,
Then, as future work, we can integrate a technique that @gplcSA coding has a per-pixel complexity comparable to INTRA,
temporal correlation. In this case, we can expect to improbet since only a small part of the image is encoded with
DISCOVER simulcast in all the configurations. this technique, its impact on the total complexity is redlce
Comparison with non distributed methods as such. In summary, all the elements of the OC encoder

For completeness, we have performed also a comparidiiy® @ complexity that i©)(N), where N is the number
with non distributed methods that allow a communicatioff occluded pixels in the image. Moreover, there is no time-
among the cameras. We can remark that our method perfo/fR§SUming matching operation, in opposition to the case of
also better than LDVa, partly thanks to the more effecti\/émt'_on estimation. l_\/Ioreqver, also at the decoder side the co
coding of the occluded areas. We have compared our algoritRf§Xity of our algorithm is much lower than the DISCOVER
also with a variant of LDV where occluded areas are encod@f€- The complexity of DIBR projection is negligible w.r.t.
with our SA algorithm (LDVo), and with the reference soft PISCOVER mt_erpolatlon, that _needs a full search algorithm
ware of the upcoming MV-HEVC standard, the HEVC-base®f Plock matching. In our architecture, we also suppress the

HTM 6.2 software [9]. Since in all the other schemes we deerative _channel decoding, which is responsible for thghhi
not exploit temporal correlation, we only use inter-viendanCOmMPplexity of the current DVC decoders (more complex even

inter-component prediction tools in the HTM. This methof@n the motion estimation). Moreover, the feedback chidane

has the best performance for CG sequences, as we can exjeeg, €liminated, making the whole architecture more aftrac

while HEVC Simulcast is better for three out of four naturdie” implementation in practical systems.

sequences. Finally, we have also performed comparisoris w.r

multiview DISCOVER codec with fusion of Sl proposed inC. Rate-Distortion performance on virtual views

[21]: in a quincunx scheme, each WZF can be estimated|n this section, we discuss the bit rate allocation methad fo

both by temporal and inter-view interpolation. Then, th&8® gepth map coding of OC in order to maximize the PSNR on

estimates are fused by the algorithm proposed by [21]. Wgtual views. At first, we have to select the best value: df

can observe that this method aIWayS Outpel’forms DISCOV% (5) We have performed a full search for the Va'ué{@ﬁ

simulcast, since the temporal estimation is enhanced by t@ximizing the PSNR on the synthesized views, by varying

inter-view one. We can remark that, even if our techniqufie value ofe. We have averaged the results on 10 frames for

(OKO) only exploits inter-view correlation, sometimes we a each of 7 sequences for the virtual views and we have found

able to outperform DISCOVER fusion method, namely for athat the bast value of is equal to 0.03. As shown in Fig. 7

the CG sequences. for dancer sequence, this choice may achieve a performance
Complexity issues: The encoder of our architecture pervery close to the optimum. Similar results have been obthine

forms a double DIBR, a Bertalmio inpainting, a mask prdor other sequences.

cessing and shape-adaptive encoding. DIBR has a complexitfter having tuned the rate allocation, we turn our attemtio

close to motion compensation (i.e. much less than motitm RD performance. We consider a configuration with three
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Fig. 10. Rate-PSNR and Rate-SSIM performancenfiobile, dancer and GTFly sequence

range cameras. Related to the baseline, we refer to the left performance benchmarking purposes. Inter-view residual
camera position as -1, to the central one’s as 0 and the prediction is used for exploiting correlation among the
right one’s as 1. Then, we consider the virtual viewpoints in  views. Depth INTRA mode (wedgelets) and view syn-
[+4,+4,£3] by the VSRS software version 6.2. thesis optimization are used [9].

We h;.ave compared the following methods (also listed in For comparison, we have evaluated the average PSNR for
Tab. VI): the virtual views vs. the overall bit rate. We evaluated the
o All INTRA(d) - All Frames are INTRA coded (both Bjontegaard metric w.r.t. All INTRA (d). The results are in
texture and depth independently). Tab. VII. The complete Rate-PSNR and Rate-SSIM curves for
o OKOi - We use our method (OKO) for coding the threeach sequence are in Fig. 13, 14 and 15. These results are very
original views and depth maps for O cameras are filleéchportant since they confirm the superiority of the proposed
by Bertalmio inpainting. approach with respect to comparable techniques. OKOalloc
o OKOalloc - We use our method (OKO) and we send depth largely better than comparable distributed methods (for
maps occluded areas at the bit rate given by Eqg. (5). PSNR and SSIM) and than the All-Intra approach (for SSIM
o DISCOVERd-WKW - it is the same as in the previousnd almost always for PSNR). Indeed, with respect to All
section (but the depth maps are sent for all cameras): ISITRA, we are able to obtain an average bit rate reduction
for WZFs is obtained by extrapolation on the central Krip to 38.77%. OKOalloc is on the average better than All-
o DISCOVER-V - Since the results of the previoudntra, even though for natural sequences it may have a smalle
scheme are not satisfactory, we have introduced a n®8NR. As in the case of the original views, also for virtual
DISCOVER-based codec, where all the depth maps wkews the performance are affected by the quality of the
the three views are INTRA coded. The left and the rigldepth maps, visible as a saturation of the PSNR for natural
texture views are INTRA coded (as in DISCOVER)sequences in Fig. 14(a-c) and 15(a). However we remark
Texture of central camera is Wyner-Ziv coded. At théhat this phenomenon affects much less the SSIM, since the
decoder side, the estimation of this central WZF iktter is less sensitive to small errors in objects’ positio
obtained by performing VSRS interpolation algorithmAs for the other methods, we remark also that DISCOVER-
on the two INTRA coded views. As usual, this Sl isv performs better than DISCOVERd-WKW. Indeed, even
corrected by parity bits. thought in DISCOVER-V we have two Key cameras instead of
o 3D-HEVC - the new model under test for Multi-Viewone (as in DISCOVERd-WKW), interpolation performs much
coding HEVC based in the version HTM 6.2, whichbetter than extrapolation. Moreover, correcting depth srap
is not a distributed scheme, and is considered only fparity bits increases significantly the total bit rate, heea
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depth data are not suitable for turbo encoding and decoding. VI. CONCLUSION AND FUTURE WORKS

Indeed, DVC turbo decoding would maximize the PSNR 0n |, this paper, we have proposed a distributed architecture f

the depth data, but we are interested in maximizing the PSNR multiview video plus depth format. Our system consists i
on the virtual views. The proposed techniques are alwa(¥ﬁcoding one view, called Key camera, in the INTRA mode
better than other DISCOVER-based systems in terms of SSHU sending only occluded areas of the other one, called O
and very often in terms of PSNR. As for real views, we ObserY,%lmera, which are obtained via a double DIBR. Differently
a saturation effect for large bit rate, due to artifacts amdr®n {0 classical DVC architectures, the proposed system is no
depth maps (in particular, for the sequences where the degfxeq on channel coding. Thus, it is not necessary to maglel th
map is estimated) . Finally, as expected, 3D-HEVC has tgistical properties of the error at the encoder side, els w
best performance, but for the CG sequences our techniqygShe feedback channel (typical of most DVC systems) which
have SSIM scores closer to 3D-HEVC than to distributeghn pe removed. Then, a rate allocation method between KC
competitors. and OC has been proposed: we have found that the choice of
the QP of the KC influences significantly the performance of
the whole system, because the quality of OC depends strictly
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TABLE VI
THE DIFFERENT TECHNIQUES USED IN OUR TESTS FOR VIRTUAL VIEWSSA: SHAPE-ADAPTIVE; |I: H.264 INTRA CODING; WZ: WYNER-ZIV; I-HEVC:
HEVC INTRA CODING; P: PREDICTIVE INTER-VIEW CODING.

technique Texture coding Depth coding Remarks
view left central right left central right
OKO i SA | SA . | . Depth maps for O cameras are inpainté¢d
OKO alloc SA | SA SA | SA
All INTRA (d) I | I I | I
DISCOVERd-WKW || WZ | wz wz | wz S| for WZF is obtained by extrapolation
DISCOVER-V | wz | | | | S| for WZF is obtained by interpolation
3D-HEVC P I-HEVC P P I-HEVC P
TABLE VII
AR AND ApsnyRW.R.T. ALL-INTRAD FOR SYNTHESIZED VIEWS(PSNRIS COMPUTED EXCLUSIVELY ON VIRTUAL VIEWS)
OKOalloc OKO-I DISCOVERd-WKW DISCOVER-V
AR ApsnRr Ar ApsNR AR ApsNR Ar Apsnr
[%] [dB] (0] [dB] [%] [dB] [%0] [dB]

mobile -69.36 4.26 -41.73 2.37 29.87 0.05 -18.87 1.24

dancer -23.65 0.06 6.87 -0.34 80.22 -0.34 -11.65 0.34

balloons -27.62 0.01 4.29 -0.07 114.11 -1.37 2.38 -0.21

kendo -34.36 -0.02 -35.84 1.69 167.15 -2.84 9.34 -0.74

GTFly -47.04 0.01 -34.92 2.02 81.23 0.21 0.11 0.02

newspaper -13.95 -0.53 -4.84 -1.22 139.11 -2.32 9.95 -0.57

poznan street| -55.42 1.59 -59.39 1.70 81.56 -0.07 -6.11 0.30

mean -38.77 1.44 -23.65 0.89 99.03 -0.96 -2.12 0.05
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