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Abstract—The rate-distortion performance of a distributed
video coding system strongly depends on the characteristics of
the side information. One could naively think that the best side
information is the one with the largest PSNR with respect to
the original corresponding image. However, previous workshave
shown that this is not always the case and a reduction of the
side information MSE does not always translate into better rate-
distortion performance for the complete system. The scope of
this paper is to explore a set of metrics other than the PSNR
and explicitly designed to classify the side information with
respect to its impact on the end-to-end compression performance.
A first contribution is to define an experimental framework
that can be used to meaningfully compare different metrics
for side information evaluation. As a second contribution,our
analysis allows to understand why in some cases PSNR-based
metrics provide a fairly reliable estimation of the side information
quality, while in other cases they do not. This analysis also
allows us to introduce a set of new metrics that are better
adapted for side information effectiveness evaluation, and that
are based on a suitable power of the absolute difference between
side information and the original image, or on the Hamming
distance between the respective transform coefficients. Besides
their theoretical interest, these new metrics can also improve
the rate-distortion performance of some distributed videocoding
systems such as the hash-based ones. We observe improvement
up to 74 % rate reduction in a simple study case.

Index Terms—Distributed video coding, side information, qual-
ity evaluation

I. I NTRODUCTION

Based on theoretical results obtained in the 70’s, [1], [2],
distributed video coding (DVC) [3], [4] schemes allow to
avoid the complex motion estimation process at the encoder
and to shift most of its computational load to the decoder,
without affecting the rate-distortion (RD) performance bound
with respect to the case of joint encoding, provided that
joint decoding of correlated frames can be performed. The
interest in distributed coding has been revitalized when the
first practical implementations of DVC appeared in 2002 [5],
[6]. They decrease the computational burden of the encoder,
and also allow to encode multiple sources without need of
communication among them, which may be essential in some
applications such as wireless sensor networks [7], multi-
camera systems, multiterminal networks [8], [9] and medical
imaging [10]. Moreover, DVC techniques have recently found
a new exciting application in the context of interactive multi-
view video streaming [11], [12] since they allow to encode a
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Fig. 1. DISCOVER DVC architecture.

new image without knowing which images are available to the
decoder (this happens when the user is allowed to interactively
change the displayed view).

In this work we consider one of the most popular schemes
for DVC, firstly proposed in [6]. This scheme has become
very popular also thanks to its adoption within the DISCOVER

project [13], [14]. Very briefly, the principle of DISCOVER

architecture (represented in Fig. 1) relies on the so-called
Wyner-Ziv (WZ) coding of a subset of the video frames.
Decoding a WZ frame consists in two steps: first an estimation
of it, calledside information(SI) is generated at the receiver;
second, the side information is corrected using parity bits
from a suitable channel code, such as a turbo code [15]–[17].
One of the major issues of such a scheme is to produce a
“good” SI [18]–[20]. Indeed, this has a large impact on the
performance, since the more the side information is similar
to the original frame (or Wyner-Ziv Frame, WZF), the less
correction bits will be sent to decode it. On the other hand, if
the SI is a bad estimation of the WZF, many correction bits
will be necessary to recover it, inconveniently increasingthe
coding rate. The effectiveness of the SI is usually measuredin
terms of Mean Square Error, MSE (or equivalently in terms
of PSNR) with respect to the original WZF, and it is observed
that an improvement of this metric often corresponds to an
improvement in end-to-end RD performances.

Yet, this is not always true: sometimes, a higher SI PSNR
does not translate into better end-to-end RD performance.
For example, Kubasov [21] presented some cases where one
side information has a better PSNR than another, but after
decoding, the second one achieves a better reconstruction for
a lower bit rate. We present also an artificial example, using
the foremansequence (CIF, frame number10). We generate
two images, playing the role of side information: the first
one is obtained as a motion-compensated interpolation of the
previous and following frames (Fig. 2 (a)); the second image
is obtained by adding uniform random noise to the original
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one (Fig. 2 (b)). Then each of the two images is used as side
information in the DISCOVER decoder and then we compute
the number of parity bits that the decoder needs in order
to correct the two images. Results are presented in Fig. 2
and show that, despite an almost identical PSNR, the two
images used as side information have quite different decoding
performance: the first one needs only 137 kbits to achieve a
PSNR of 39.29 dB, while for the second, even after sending
more than 192 kbits, the PSNR only attains 35.40 dB.

Since the side information quality is a major issue in DVC,
we would like to understand whether in practical conditions
the PSNR could fail in differentiating between a good and
a bad SI, whether in this case more reliable metrics exist,
and whether we can foretell which metric is best suited to a
given situation. The scope of this paper is to answer to these
interesting questions, which at the authors best knowledge
have not yet been fully addressed in the scientific literature,
the only partial exception being the work by Kubasov [21].
We propose new metrics based on a suitable power of the
absolute difference between the original image and the side
information, or on the Hamming distance between the corre-
sponding transform coefficients. The conclusions of our work
may be useful for future studies aiming at improving the
general DVC performance. For example, using the appropriate
distortion measure may help to obtain a better description of
the error,e.g., a more accurate noise correlation at the Slepian-
Wolf decoder. Moreover, the proposed metrics can be used to
improve the rate-distortion performance of a DVC system: we
show in this work a simple but realistic scheme that is able
to exploit the new metrics. The basic idea is that knowing
a reliable quality measure between the estimation and the
original frame leads to sensible improvements in the hash-
based DVC schemes [22] where some information about the
original WZ frame is sent to the decoder for enhancing the
motion interpolation and the Slepian-Wolf decoding. Thereare
many hash-based systems in the scientific literature [10], [22]–
[38] and potentially all of them could take advantage from the
new metrics. More generally, the proposed metrics can be used
when both the original image and the side information (or an
estimation of it) are available. Besides the hash-based systems,
also the Witsenhausen-Wyner video coding systems [39] and
the DVC with shared encoder/decoder complexity [40]–[42]
could benefit from our study.

The remainder of this paper has the following structure. First
we introduce a novel framework allowing to compare different
SI metrics. Then we propose our own measures and we show
through some experiments that they are more reliable than
the PSNR. This is followed by a discussion highlighting the
conditions which favor one metric or the other. Finally, we
depict one potential application of the new metrics and the
corresponding rate-distortion improvements, and we conclude
the paper by outlining some possible future developments of
this work.

II. M ETHODOLOGY FOR METRIC COMPARISON

In this section, we introduce a new methodology to evaluate
the reliability of side information metrics. In oppositionto the

usual video quality metrics, which have to be compared with
human subjective experiments for reliability assessment,side
information quality measures should be correlated with the
rate-distortion performance of the codec. In particular, agood
metric should be able to classify an estimation of a given
image with respect to the resulting RD performance obtained
when the estimation is used as side information in the DVC
scheme.

Our framework is the following. The problem is how to
compare two images that are to be used as side information
of a third one. The latter is typically a WZ frame in a
DVC system, while the former two are typically produced
using motion-compensated interpolation or extrapolation. The
two SIs are compared by running the DVC system twice,
using the first or the second image as side information. The
difference in global RD performance allows us to rank the two
images according to their effectiveness as side information.
This process is detailed in the following.

We compare two estimations of a given WZ image by
evaluating the average coding bitrate variation resultingby
the use of one or the other estimation. The coding bit-rate is
the end-to-end bit-rate, comprehensive of KF and WZ coding
rates. The average is computed over four RD points using the
well-known Bjontegaard metric [43]. This is arguably the most
meaningful comparison between two estimations, and then we
use it as a kind of “ground-truth”: practical metrics shouldbe
as correlated as possible to this one.

The first element in our framework is the association be-
tween an image, used as SI for an original frame, and an RD
curve. Let us define a decoder functiondec which takes two
images as input: the first, denoted asI0, is the original frame,
and the second, denoted asI1, is the side information. The
original image is first compressed using4 given quantization
steps, then channel-decoded usingI1 as side information. This
results in a set of four rate-distortion points,[(R1

i , d
1

i )i=1...4],
which is the output of thedec function.

The next step consists in associating an average bit-rate
variation to a couple of RD point sets. This is easily achieved
by using the Bjontegaard metric. The Bjontegaard metric
allows to compute the average bit-rate reduction of a set of
four RD points with respect to another set of four RD points,
provided that the rate intervals are not disjoint. More precisely,
if (R1

i , d
1

i )i=1...4 and (R2

i , d
2

i )i=1...4 are two sets of 4 RD
points, we can use the Bjontegaard metric to compute:

∆R = bjm((R1

i , d
1

i )i=1...4, (R
2

i , d
2

i )i=1...4)

If ∆R is positive, the curve sampled at points(R1

i , d
1

i )i=1...4

can be considered as “better” than the second curve, since
the latter requires a positive increment in bit-rate in order to
achieve the same average quality in the intersection of the two
coding rate intervals.

Now we can introduce our reference quality measure, re-
ferred to asr. It compares two SI images,I1 andI2, i.e. two
estimations of a given reference imageI0, as follows:

r(I0, I1, I2) = bjm [dec(I0, I1), dec(I0, I2)]

The reference metric is our “ground-truth” that can be used to
evaluate the quality of a generic metricm(·, ·), for instance the
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Fig. 2. The two side informations and their decoding results: (a) DISCOVERand (b) uniform random noise. Similar initial PSNR lead to two very different
decoded quality.

PSNR, by introducing a confidence criterion. For a given set
of imagesI1, I2 andI0, the metricm respects the confidence
criterion if and only ifr(I0, I1, I2) andm(I0, I1)−m(I0, I2)
have the same sign. This is easy to interpret. Ther function
is positive if the side informationI1 leads to better RD
performance than the side informationI2. In this case, a metric
should assign a better score toI1 than to I2, otherwise it
is not able to correctly point out the best estimation of the
imageI0. Moreover it could be shown that a metric satisfying
this “same-sign” condition, also satisfies a stronger condition
on the values: in other words, large values forr imply large
differences between corresponding metric values. Finallywe
observe that the confidence criterion can be used only provided
that the rate intervals produced by thedec function for the
two images to be compared are not disjoint. However this
condition is very often satisfied in practice, as we observedin
our experiments.

III. A LTERNATIVE METRICS FOR SIDE INFORMATION

EVALUATION

A. Family of SIQa metrics

An MSE-related metric such as the PSNR depends on
the second power of the error. As shown later, this can be
ineffective for the quality evaluation of side information, so
we introduce a class of metrics where the power of the error
is a parameter. We consider the class of metrics SIQa, with
a ∈ (0, 1], defined as

SIQa(I0, I) = 10 log10
2552

1

NM

∑
p
|I0(p)− I(p)|

a

whereI andI0 are respectively the side information and the
original (reference) images, of sizeN × M pixels. These
metrics are defined as a strictly decreasing function of the
a-norm of the errore(p) = |I0(p)− I(p)|. In its turns, thea-
norm||e||aa =

∑
p
|e(p)|a is a concave function ofe in RN×M

(strictly concave ifa < 1). As a consequence the proposed
metrics are convex (strictly convex ifa < 1) functions of
the error image. This property is interesting since at at the
receiver side, the side information is used to produce the log-
likelihood ratio (LLR) used by the channel decoder for the
bit planes reconstruction. In particular, ifX is a decoded bit

from a certain bit plane of a transform coefficient, andp is
the estimated probability thatX is equal to zero, the LLR
is defined asLLR = log p

1−p . Now, this function is strictly
increasing, and for reasonable values ofp (i.e. p < 0.5), it
is concave: it varies fast for low values ofp and slower for
high values. This behavior is therefore similar to thea-norms,
which for a ∈ (0, 1] are concave as well; on the contrary
the quadratic norm (the MSE) is convex, and then tends to
emphasize large errors.

In conclusion, we consider the idea that the SIQa family
could better reproduce the characteristics of the decoder.This
idea was only explored for the casea = 1/2 by Kubasov [21].
One of the contribution of the present work is to extend the
analysis to other possible values ofa. While it is obviously
impossible to test all the values fora, we consider the
following cases:

• a = 1, which corresponds to the mean-absolute-error
(MAE or ℓ1-norm), commonly used in signal processing.
Here, we give up strict concavity, it thus constitutes an
interesting limit case to study.

• a = 1

2
, for which Kubasov has given some initial results

[21].
• a = 1

3
, in this case we try to further enhance the

difference between small error values.

B. A metric based on the Hamming distance

As explained before, the SIQa metrics are mostly inspired
from the LLR calculated at the WZ decoder. Since the best
value for thea parameter could mismatch the correlation noise
model implemented in the WZ decoder, we introduce a new
metric, which intends to fit the decoder structure. In a typical
DVC system, the WZ frame quantized transform coefficients
are represented by bit planes. We adopt the same quantization
matrix as in DISCOVER [13], [14], which states a number
of quantization bins for every band, for8 levels of quality.
All the bit planes are then encoded successively (the most
significant first). At the receiver side, the correlation noise
(i.e., the difference between SI and original WZF) is modeled
as a zero-mean Laplace random process, and the standard
deviation is estimated band-per-band, following an approach
very popular in literature [44].
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For each bit plane, the decoder receives a first set of parity
bits and starts the channel decoding algorithm of the corre-
sponding bit plane of the side information (i.e. the decoder
uses the received parity bits to correct the side information
bit planes). The channel decoder uses the so-called extrinsic
information (i.e., the probability that a bit is0 or 1 given
the side information) to decode the first bit plane. Then, the
residual error probability is estimated. If it is larger than
a given threshold (a common value is10−3), the decoder
requests one more set of parity bits (referred to as a “chunk”
[13]), and restarts the decoding until the estimated error
probability drops under the threshold. When this happens, the
current bitplane is considered to have been correctly decoded.
Using relatively large chunks allows to reduce the number
of parity bits requests and of channel decoder iterations, thus
improving the complexity and the rate requirements of the
system [45], [46].

Each following bitplane is decoded taking into account the
previously decoded ones: the extrinsic information is now the
probability that a bit is0 or 1 given the SIand the previous
bit planes. These probabilities are easily computed given the
distribution of the correlation noise, as described for example
in [4] or in [47]. The propagation of extrinsic information
through bit planes makes it easier to correct individual bit
errors if they correspond to a small difference among the
original and the SI coefficient. However each wrong bit may
trigger a new chunk of parity bits to be sent, with potentially
a large increase of the number of transmitted bits, even if the
conditional probability would indicate a low parity rate.

We observe that the usual metrics such as the PSNR do
not take into account this decoding process; they compute a
sum of differences in thespatial domain, emphasizing large
error contributions because of the second power in the MSE.
Moreover, a pixel-wise difference in the spatial domain is
not exactly what the channel decoder will try to correct: the
error correction is performed in the transform domain and
on quantized coefficients. Therefore we introduce a metric
that simply counts the number of wrong bits in the side
information, i.e. we use a Hamming distance. In particular,
we consider the case of a decoder working bit-plane by bit-
plane in the transform domain,i.e., exactly on the same data
used to compute the parity bits. In this way we also account
for the transmission of parity bits in chunk, since each wrong
bit in a quantized transform coefficient may trigger the sending
of a new chunk.

In order to establish the notation, letI andI0 be respectively
the transformed and quantized versions (with a given quanti-
zation step QI) of the SI and of the reference image,Nbits

the number of bits used to representI andI0, anddH(I, I0)
the Hamming distance between these two representations. We
define theHamming Side Information Quality (HSIQ)metric
as:

HSIQ(I0, I) = 10 log10

(
Nbits

dH(I, I0)

)
, (1)

which is the relative number of wrong bits expressed in a
logarithmic scale. The advantage of this metric is that it is
more related to the channel decoding process, in the sense
that it takes into account the actual data to be corrected (the

transformed and quantized coefficients) and, at least in part,
the fact that parity bits are transmitted in chunks. Therefore, in
contrast to the PSNR and SIQa, the HSIQ provides something
closer to a rate measure than to a distortion one, and also closer
to what the turbo decoder does when establishing an error
probability threshold. Nevertheless, it is still a qualitymetric
in the sense that it associates a real, non-negative number to a
couple of images. Moreover, another advantage of the HSIQ
metric is that it explicitly takes into account the quantization
and the transform, while the SIQ only compares the original
WZF and the SI. We observe here that pixel-domain DVC
systems that directly perform the channel encoding of WZF
pixels have been proposed in literature, but they have worse
performance than transform-domain systems [44], [48]. These
advantages are somewhat counterbalanced by the fact that the
Hamming distance is not the best suited for the Min-Distance
reconstruction stage. Moreover, in some cases, very close
values of transform coefficients may have a relatively large
Hamming distance. In this case, estimating the parity bit-rate is
rather difficult: the bit plane propagation of extrinsic informa-
tion suggests that few bits are needed; but since the Hamming
distance is large, actually the probability of triggering anew
chunk is high. In summary, HSIQ may over-estimate the parity
bit rate, but considering only the coefficient difference does not
takes into account the chunk effect. However, experimental
results clearly show that the benefits of the HSIQ metric
usually surpass the drawbacks, therefore this metric has the
potential for improving real system performances, as shown
in Section VI.

IV. M ETRIC VALIDATION

A. Experimental setup

In this section we compare the metrics for SI quality in
the proposed framework. In order to perform these tests, we
firstly generate some sets of images that will be used as
side information. For this experiment, we generate a more
realistic data set than the one used in Fig 2. To this end, we
observe that the most popular methods for SI generation are
based on motion estimation and compensation. More precisely,
the side information is virtually always generated by motion
compensation of one or two reference images, which in turn
are compressed versions (via transformation and quantization)
of the original ones.

In conclusion, a realistic SI is potentially affected by two
kinds of degradations: errors from quantization (i.e. com-
pression) of reference frames, and errors from incorrectly
estimated trajectories (i.e. motion vectors) [49]. Therefore, in
the following, we consider two different sets of images to
be used as SI. Both of them are constructed by altering a
motion-compensated image generated by a motion estimation
algorithm which disposes of the original Wyner-Ziv frame.
More precisely, we randomly modify some of the estimated
vectors, this emulates the unavoidable errors occurring inthe
motion estimation process. These errors mainly result fromthe
fact that in SI generation the actual WZF is not available. The
only difference between the two sets is that in this first one all
the reference images are quantized with the same quantization
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step, while in the second these steps are different. Resultsare
given respectively in Sec. IV-B and IV-C.

This method for image generation aims at simulating actual
estimations and moreover allows regulating the balance be-
tween errors from quantization and errors from bad vectors
(blocking errors). It could be argued that randomly placed
blocking artifacts are not realistic since motion errors are
correlated with the characteristics of object textures, move-
ments, borders,etc. However, this observation holds mainly
for motion-compensated prediction; in the case of motion-
compensated temporal interpolation, the induced errors are
much less regular, since we do not have the original WZF,
the estimation is based on trajectory interpolation and errors
related to occlusions cannot be easily avoided. Therefore
trajectory errors and occlusions sum up with motion estimation
inaccuracies, giving place to unpredictable errors. Another
relevant case of irregular errors in SI is when multi-view DVC
is considered [50], [51]. In this case the SI is produced from
merging two independent images, resulting in a non-stationary
distribution of errors. This results in more frequent and less
correlated block errors, as very often observed in practice.

B. SI database with reference frames at the same QP

In this first experiment, all reference frames used to build
the side information database were compressed with the same
quantization step. We generate an image (i.e.an estimation) for
each of the firstN = 100 frames ofbreakdancer, book arrival,
andoutdoorsequences, and for each quantization step (refer-
ence frames are quantized with H.264 Intra at QP31, 37 and
40 [52]). We have chosen to work with these three sequences
as they present very different characteristics (motion activity,
camera positions and alignment, indoor/outdoor). Once the
entire database is created, for each frame of each sequence
at each quantization level, all the SIŝIsik are decoded at4
different quantization points that correspond to 4 quantization
indexes (QI) in the DISCOVER quantization matrix. This
matrix gives the number of bits allocated to each band for
8 QI, where1 is low bit rate and8 is high resolution. In other
words, we compute∀k ∈ {1, . . . , N},

(Rk
i , d

k
i )i=1...4 = dec(I0, Îsik ),

whereI0 is the original image we are considering. Note that,
in order to compare the RD curves using the method defined
in Section II, we need that the intersection of the curve
supports is not empty. Therefore the QI and QP parameters
were set such that to generate(Rk

i ; d
k
i )i=1...4 with large

support intersections for allk ∈ {1...N}. Finally, for each
metric m to be tested, and for each couple of image indexes
k, ℓ ∈ {1, . . . , N} we compute the percentage of cases in
which the following equivalence is satisfied:

m(Îsik ) ≤ m(Îsiℓ ) ⇔ r(I0, Îsik , Îsiℓ ) ≤ 0.

The corresponding results are presented in Table I. The
percentages correspond to the success rate of the metric: for
example, if one estimation has a higher PSNR than a second
one, in more than 90% of cases it will also have better rate-
distortion performance. We remark that the PSNR, the SIQa

TABLE I
PERCENTAGE OF VALIDATION OF THE CONFIDENCE CRITERION FOR

SEVERAL SEQUENCES AND SEVERAL QUANTIZATION STEPS FOR THE
REFERENCE FRAMES USED TO GENERATE THESI DATABASES.

breakdancer outdoor book arrival
QP 31 37 40 31 37 40 31 37 40 Avg
PSNR 90.1 90.4 87.3 89.9 92.0 90.5 90.9 92.0 90.0 90.5
SIQ1 89.9 89.3 87.0 89.1 93.1 89.0 92.2 92.0 91.1 90.5
SIQ1

2

89.7 89.4 86.0 89.0 93.0 88.9 91.6 92.2 90.6 90.3

SIQ1

3

89.0 87.5 87.0 88.3 92.7 88.7 90.0 92.5 89.8 89.6

HSIQ 89.1 87.7 86.5 88.9 93.3 89.0 90.4 92.9 90.1 90.0

TABLE II
PERCENTAGE OF VALIDATION OF THE CONFIDENCE CRITERION FOR

SEVERAL SEQUENCES AND FOR THE SECOND DATABASE.

Sequence breakdancer outdoor book arrival Average
PSNR 66.09 61.65 74.99 67.57

SIQ1 92.27 91.90 95.66 93.27
SIQ1

2

90.83 91.88 95.27 92.66

SIQ1

3

90.53 91.81 94.79 92.37

HSIQ 90.84 93.82 93.68 92.78

and the HSIQ obtain similar results,i.e. the five metrics are
all equally reliable for this type of database. Therefore, when
the reference frames have all the same quantization step and
the estimation is obtained by motion estimation/compensation,
the PSNR metric is a reasonable choice for assessing side
information effectiveness. We also observe that the SIQa

metrics have no clear ranking among them: any of them
outperforms the other two in some cases. As we observed
before, we interpret this as the fact that the best value fora
is related to the correlation noise model.

C. SI database with reference frames at variable QP

In these experiments, the reference frames are quantized
with different quantization steps (QP = 31, 34, 37, 40).
However, the number of blocks affected by vector errors is
reduced when the reference frames are roughly quantized,
and incremented when they are better represented. The ra-
tionale behind this constraint is to avoid freely varying errors,
which could result in pathological configurations. Howeverwe
observe explicitly that we obtained very similar results even
when removing this constraint on the introduced error.

Once the database is created, we perform the same kind
of experiments as those presented in the previous Section,
obtaining the statistics presented in Table II. In this casewe
notice a remarkable difference among metrics: while SIQa

and HSIQ are still reliable, this is no longer the case for the
PSNR, which estimates the right quality order between two
side informations in only two cases over three on the average.
On the other hand, HSIQ and SIQ are correct in more than
90% of the cases for the same images. We also remark that
SIQ1 performs better than other SIQa metrics. This could be
ascribed to the fact that using the absolute value in (III-A)does
not amplify small errors (as it would be fora < 1) or large
errors (as fora > 1); or to the fact that it better matches the
Laplacian law for the correlation error. These results highlight
that even in realistic cases, the PSNR could fail in determining
the best side information, and therefore the introduction of
new metrics could be advantageous. We observe explicitly
that Wyner and Ziv proved that the reconstruction quality
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Fig. 3. Metric values as a function of the number of estimations for frame3
of outdoor sequence(512× 384). The estimations are sorted in the decoded
performance growing order (real quality). Solid cyan and dotted purple circles
indicate the examples illustrated in Fig. 4 and 5.

is a decreasing function of the side information MSE [2].
However, we observe that the Wyner-Ziv theorem only applies
to the case of memoryless Gaussian sources. Even though the
theorem has been extended to other statistical laws [53], [54],
the hypothesis of stationary signal must hold in order for these
extensions to apply. However, since a generic video signal has
statistics that do not perfectly match with theorem hypotheses,
and moreover it is not stationary, we conclude that the MSE
may be not the best SI quality estimator, and this would not
contradict the well-established Wyner-Ziv theory.

In summary, these two experiments allows us to conclude
that the HSIQ metric performs very well in all situations
(but it is more complex to compute). The SIQa metrics have
somewhat similar performance, with SIQ1 being slightly better
for the second database. We observe that SIQ1 has also the best
results in the average, but for some cases it is outperformedby
SIQ1/2 or SIQ1/3. We conclude that there is not an absolute
best value ofa, since it depends on the correlation noise model,
but the choicea = 1 is usually quite robust. Finally the PSNR
is reliable only when the errors are homogeneous.

V. D ISCUSSION

In the following, we try to understand why the PSNR is
sometimes wrong in SI quality estimation by investigating
some representative examples from the second set of images.
For the sake of conciseness, in the following we only show the
results for a specific image; however we observed the same

behavior for all the images of all the video sequences in the
database.

Let us consider a specific original frame, namely the third
one of the outdoor sequence, and refer to it asI0. We
consider theN = 100 estimations for this image from the
second database, and we sort them in the decoding perfor-
mances growing order; we also number them accordingly: if
i ≤ j are two natural numbers between1 and 100, we have
bjm(dec(I0, Îsii ), dec(I0, Îsij )) ≤ 0, and we refer to the sort

indexj asimage index. For thej−th side information,̂Isij , we

calculate itscumulative rate saving (CRS)with CRS(Îsi
1
) = 0

and:

∀j > 1, CRS(Îsij ) =

bjm
(
(Rj

i , d
j
i )i=1...4, (R

j−1

i , dj−1

i )i=1...4

)
+CRS(Îsij−1

).

(2)

This is equivalent to say that the CRS value for thejth side
information corresponds to the rate saving with respect to the
side information of the lowest quality (̂Isi

1
). In Fig. 3 (a), we

plot the CRS values. Between the worst and the best side
information, we observe a CRS difference of approximately
4%, which allows to say that the database is significantly
wide from the point of view of decoding quality. Fig. 3 (b)-
(f) present the plots of respectively the PSNR, SIQ1, SIQ1

2

,
SIQ1

3

and HSIQ against the image index. A good metricm
should preserve the increasing order,i.e., if i < j then it
should bem(Îsii ) ≤ m(Îsij ), and thus we should observe
increasing curves in Fig. 3 (b)-(f). When this inequality is
not verified, the metricm is not able to correctly discriminate
between two estimations and the amplitude of the resulting
negative gap quantifies this malfunction. We can conclude
that HSIQ and the SIQa metrics have a satisfying behavior,
while the PSNR plot shows many consecutive estimations
with a negative variation (sometimes of more than1 dB)
instead of an improvement. Moreover, one can notice that SIQ1

(Fig. 3 (c)) and HSIQ (Fig. 3 (f)) are the two metrics which
evolve the most similarly to the CRS behavior (Fig. 3 (a)),
especially in the second part of the plot. One of the possible
reason for the slightly-non-monotonic behavior of the HSIQ
is the mismatch with the Min-Distance reconstruction stage.
However the results shown here and in the following section
let us conclude that the introduction HSIQ brings more gains
than losses.

Let us focus now on a specific couple of estimation images,
namelyÎsi

64
and Îsi

65
. The associated values of the metrics are

highlighted respectively by solid cyan and dotted purple circles
in Fig. 3. Even thoughCRS(Îsi

64
) < CRS(Îsi

65
), the PSNR

gives the opposite order,i.e.PSNR(Îsi
64
) > PSNR(Îsi

65
), and

with a very wide gap of more than1.4 dB. SIQa and HSIQ
predict the right order for these estimations.

The two estimations both present distortions coming from
key frame quantization and from the motion errors, but not
in the same proportion. The blocking artifact errors are more
relevant inÎsi

65
while Îsi

64
has a higher quantization noise (more

precisely, the reference frames were quantized with QP =37
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for the latter image and34 for the former image). Since the
PSNR is based on the MSE, we show in Fig. 4 (a) and (b)
the square error image. One can see that the square error is
heavily affected by high errors associated to blocking artifacts,
while the smaller but more widespread quantization error has
a smaller impact. This explains why the PSNR of̂Isi

65
is much

smaller than the PSNR of̂Isi
64

.
On the contrary, if we compute the pixel-wise SIQ1

2

, for
example, Fig. 5 (a) and (b), we can perceive that the quan-
tization error is taken into account almost as much as the
block errors, which explains whySIQ 1

2

(Îsi
64
) < SIQ 1

2

(Îsi
65
).

Indeed, the PSNR metric mainly accounts for high amplitude
errors present in the image, which in turns mainly come
from blocking artifacts. On the other hand, the different SIQa

metrics are based on a lower error powera, so that they can
better take into account smaller but more frequent errors. On
its side, the HSIQ, which also fits well the CRS, offers a
different compromise, because it considers the magnitude error
information only when an error in a bit plane propagates to
the next bit plane.

In conclusion, when the number of block errors are of the
same order of magnitude for two estimations, the PSNR gives
a reliable quality value, but if the error types are different,
e.g. a locally highly concentrated error (like the blocking
artifacts due to the motion compensation) or a diluted error
(like the quantization noise), the PSNR would penalize the
highly concentrated errors whereas they would be more easily
corrected by the turbo decoder.

VI. H ASH-BASED SCHEME IMPROVEMENT

Based on the conclusions of Sec. IV and V, we provide here
some experiments which prove that, in addition to being more
reliable, the proposed metrics have some interesting practical
applications. More precisely, we use the novel metrics, and
especially the HSIQ, to modify and improve a hash-based
DVC scheme. This kind of schemes [23], [26], [32] is based
on the idea that the WZ frame estimation error obtained at
the decoder is not stationary and some regions present a very
important distortion because of high motion, occlusions, etc.
For these regions, hash-based schemes send some additional
information (e.g. a quantized version of the corresponding
macroblock transform coefficients), calledhash, in order to
improve the WZ frame estimation at the receiver. Therefore,
a hash-based scheme has to solve two main problems: a) for
which regions hash information has to be sent and b) how
to use efficiently this information at the receiver. The first
problem cannot be solved in the classical DVC framework,
where the encoder is completely unaware of the estimation
available to the decoder. Therefore the hash based schemes
slightly relax the DVC paradigm: the WZF encoder has access
to key frames and can produce a very rough estimation of the
side information available to the decoder; however it cannot
produce the same SI as the decoder. In summary, strictly
speaking a hash-based coding scheme should be classified as
a low-complexity encoder rather than a DVC system, but it
shares with the latter much of its structure.

Fig. 4. Pixel domain error image associated to the PSNR measure, for the
estimations64 and 65 (respectively solid cyan and dotted purple circles in
Fig. 3).

Coming back to our system, state-of-the-art hash-based
schemes produce a very simple estimation of the side infor-
mation at the encoder, for example by averaging the reference
KFs. Then, the MSE (or equivalently the PSNR) between the
original frame and this rough estimation is computed, and the
hash is sent for the blocks with low PSNR. At this point it
is easy to conceive an application of our metrics, using them
instead of the PSNR for selecting the blocks to be coded with
the hash.

The proposed metrics can also be used to improve the
solution to problem b),i.e. how to efficiently use the hash
at the decoder side. In the state-of-the-art scheme, in the
block matching algorithm performed at the decoder in order
to find out the object trajectories, instead of calculating the
error between the compensated blocks, the transmitted hashis
compared with the average of the two compensated blocks.
This comparison is usually done with MSE. We can then
replace the MSE with the HSIQ, which is much better suited
to this end, since the hash are transmitted as quantized DCT
coefficients. We explicitly observe that all the candidate blocks
are tested with the new metric, i.e. we do not use HSIQ to
perform an early stop of the matching algorithm. Our work in
the DCT domain constitutes a good complement to those who
have already tested the Hamming distance in a wavelet-based
hash DVC scheme [55].
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Fig. 5. Pixel domain error image associated to the SIQ1

2

measure, for the
estimations64 and 65 (respectively solid cyan and dotted purple circles in
Fig. 3).

In order to validate this approach we have implemented a
simple hash-based system, which uses MSE at the encoder
and the decoder. This scheme, mainly inspired from [32], is
an extension of the well-known reference DVC scheme DIS-
COVER, and constitutes the reference scheme that we improve
by changing the metrics. The hash blocks are quantized DCT
coefficients and are selected and used as described before. For
the sake of simplicity, we do not test a hash-based scheme
with all the proposed metrics. We have experimentally selected
the ones fitting best to the problem. In an hash-based system,
the encoder has typically a very small available computational
power. For this reason, since HSIQ and SIQ1 obtain similar
performance, at the encoder we use SIQ1 which is much less
complex. On the contrary, at the decoder there is typically
much more available computational power, so we have chosen
the HSIQ, since it performs a better block matching for finding
out the object trajectories. In order to perform a more complete
analysis, we have also considered the case when the decoder
uses SIQ1. Rate-Distortion curves are shown in Fig. 6 for two
CIF sequences. In Tab. III we present the Bjontegaard gains
(in rate and in distortion) when using the new metrics with
respect to the reference PSNR metric. Both proposed metrics
achieves very significant improvements: the bitrate reduction
ranges from4.3 % to 30.5 % for SIQ1, with an average rate
reduction equal to11.9 %. HSIQ is even better: for any single

Fig. 6. Influence of metrics in the design of hash-based scheme (hash
selection + side information generation) in case of 5% of hash transmitted.

test sequence it achieves larger rate reductions than SIQ1, with
an average of26 %. PSNR improvents are in line with rate
reductions, with an average gain of0.5 dB for SIQ1 and1.5 dB
for HSIQ. These experimental results confirm that the HSIQ
is a good metric of SI quality, thanks to the fact that it takes
into account the quantized transform coefficients, while SIQ1

does not.

However, both metrics have large gains with respect to
PSNR. This is explained by the fact that the frame estimations
that are used as side information have similar characteristics
with those of the second database in Sec. IV-C,i.e. they
contain different types of errors (quantization, motion errors)
that the PSNR does not take into account with appropriate
weight. It should also be noted that in some cases (e.g.
container), the gain can be huge because of the very specific
motion activity (fixed background and rapid motion in the
foreground).

Finally, we report here a comparison with some reference
schemes, giving the average Bjontegaard rate variation on
the six sequences. First, we compared the HSIQ hash-based
system with DISCOVER. We expect to achieve some gain with
respect to DISCOVER, since the latter does perform a strictly
distributed encoding, while hash-based systems have access
to both key frames and Wyner-Ziv frames. The experiments
confirmed this intuition: the hash-based systems provide an
average rate reduction (in the sense of Bjontegaard metrics)
of 20.4 %. As far as the complexity is concerned, it is not
increased very much in the proposed system with respect
to DISCOVER. The complexity increase of the encoder is
comparable to the one of any hash-based system; the decoder
is more complex than the one of DISCOVER, but with the
same order of magnitude. Finally we observe that the decoder
complexity is seldom an issue in DVC or in hash-based
systems.

We have also compared the hash-based schemes with
H.264/AVC in different configuration: INTRA-only, Zero-
motion (IPIP), Inter (IPIP). In general, DISCOVER has bet-
ter performance than H.264/AVC Intra, it is comparable to
H.264/AVC Zero-motion and worse the H.264/AVC Inter.
We have found that the proposed system using HSIQ has
an average rate reduction of33 % and 4.5 % respectively
with respect to H.264/AVC Intra and H.264/AVC Zero-motion,
while it increases the bit-rate of only8.4 % with respect to
H.264/AVC Inter.
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TABLE III
BJONTEGAARD GAINS OF PROPOSED SCHEMES W.R.T. THE REFERENCE

PSNR-BASED ONE

rate saving (%) PSNR improvement (dB)
Sequence SIQ1 HSIQ SIQ1 HSIQ

city 5.2 12.4 0.24 0.62
coastguard 10.4 23.9 0.43 1.05
container 30.5 74.7 1.41 5.19

eric 13.3 20.8 0.62 1.13
football 4.3 8.3 0.22 0.42
foreman 7.5 16.6 0.33 0.81

VII. C ONCLUSION

In this paper we have studied the problem of measuring
the quality of the side information in DVC. In the literature,
this evaluation is generally performed with the PSNR. Our
work firstly demonstrated that the PSNR metric, despite its
acceptable behavior in some situations, presents important
drawbacks for comparing the qualities of two estimations when
different types of errors (high-value spatially concentrated
errors or low-value widespread errors) occur. We also propose
some alternative metrics: the family of SIQa metrics and
the Hamming-based HSIQ measure, which provide satisfying
results in the different tested settings, since the new metrics
better correspond to the turbo decoding behavior (the LLR
for the SIQa, and the transform plus quantization structure
for the HSIQ). From the results shown in this paper, we
observe that the SIQa and HSIQ have similar performances.
Both of these metrics seem to be well suited for measuring
the side information quality in a DVC context and are more
versatile than the PSNR. We also show a possible practical
application of the proposed metrics: they can be used to
improve the rate-distortion performance of low-complexity
hash-based schemes, with a bit-rate reduction up to74 % with
respect to the case where the PSNR is used to assess the SI
quality.
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