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Abstract—The rate-distortion performance of a distributed
video coding system strongly depends on the characterisscof
the side information. One could naively think that the best &e
information is the one with the largest PSNR with respect to
the original corresponding image. However, previous workshave
shown that this is not always the case and a reduction of the !
side information MSE does not always translate into better ate- . D
distortion performance for the complete system. The scopefo @ @ !
this paper is to explore a set of metrics other than the PSNR
and explicitly designed to classify the side information Wh iy 1 pscoverDVC architecture.
respect to its impact on the end-to-end compression perforamnce.

A first contribution is to define an experimental framework

that can be used to meaningfully compare different metrics

for side information evaluation. As a second contribution,our new image without knowing which images are available to the
analysis allows to understand why in some cases PSNR-basetjecoder (this happens when the user is allowed to inteedgtiv
metrics provide a fairly reliable estimation of the side information change the displayed view).

quality, while in other cases they do not. This analysis also . .
allows us to introduce a set of new metrics that are better  IN this work we consider one of the most popular schemes
adapted for side information effectiveness evaluation, ahthat for DVC, firstly proposed in [6]. This scheme has become
are based on a suitable power of the absolute difference beéen very popular also thanks to its adoption within thesDovER

side information and the original image, or on the Hamming project [13], [14]. Very briefly, the principle of BCOVER

distance between the respective transform coefficients. Beles 5 piiocrre (represented in Fig. 1) relies on the soalle
their theoretical interest, these new metrics can also impmve

the rate-distortion performance of some distributed videocoding Wyner-Ziv (WZ) coding of a subset of the video frames.
systems such as the hash-based ones. We observe improvemer®ecoding a WZ frame consists in two steps: first an estimation
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up to 74 % rate reduction in a simple study case. of it, called side information(SI) is generated at the receiver;
Index Terms—Distributed video coding, side information, qual- S&cond, the side information is corrected using parity bits
ity evaluation from a suitable channel code, such as a turbo code [15]-[17].

One of the major issues of such a scheme is to produce a
“good” Sl [18]-[20]. Indeed, this has a large impact on the
performance, since the more the side information is similar

Based on theoretical results obtained in the 70's, [1], [2fo the original frame (or Wyner-Ziv Frame, WZF), the less
distributed video coding (DVC) [3], [4] schemes allow tacorrection bits will be sent to decode it. On the other hahd, i
avoid the complex motion estimation process at the encodge Sl is a bad estimation of the WZF, many correction bits
and to shift most of its computational load to the decodakill be necessary to recover it, inconveniently increading
without affecting the rate-distortion (RD) performanceubd coding rate. The effectiveness of the Sl is usually measured
with respect to the case of joint encoding, provided tharms of Mean Square Error, MSE (or equivalently in terms
joint decoding of correlated frames can be performed. Th¢ PSNR) with respect to the original WZF, and it is observed
interest in distributed coding has been revitalized whemn tithat an improvement of this metric often corresponds to an
first practical implementations of DVC appeared in 2002 [Simprovement in end-to-end RD performances.
[6]. They decrease the computational burden of the encoderyet, this is not always true: sometimes, a higher SI PSNR
and also allow to encode multiple sources without need ghes not translate into better end-to-end RD performance.
communication among them, which may be essential in somgr example, Kubasov [21] presented some cases where one
applications such as wireless sensor networks [7], muliide information has a better PSNR than another, but after
camera systems, multiterminal networks [8], [9] and medicgecoding, the second one achieves a better reconstruction f
imaging [10]. Moreover, DVC techniques have recently foungl jower bit rate. We present also an artificial example, using
a new exciting application in the context of interactive thul the foremansequence (CIF, frame numbed). We generate
view video streaming [11], [12] since they allow to encode fo images, playing the role of side information: the first

. . o one is obtained as a motion-compensated interpolationeof th
Copyright (c) 2013 IEEE. Personal use of this material isnyed.

However, permission to use this material for any other psegomust be _preViou_s and follow_ing fra_mes (Fig. 2 (a)); _the second i_m_age
obtained from the IEEE by sending an email to pubs-permisgieee.org. IS obtained by adding uniform random noise to the original
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one (Fig. 2 (b)). Then each of the two images is used as sigdeual video quality metrics, which have to be compared with
information in the DscoveR decoder and then we computehuman subjective experiments for reliability assessmsde
the number of parity bits that the decoder needs in ord@formation quality measures should be correlated with the
to correct the two images. Results are presented in Fig.r&e-distortion performance of the codec. In particulagpad
and show that, despite an almost identical PSNR, the tweetric should be able to classify an estimation of a given
images used as side information have quite different degodimage with respect to the resulting RD performance obtained
performance: the first one needs only 137 kbits to achievenden the estimation is used as side information in the DVC
PSNR of 39.29 dB, while for the second, even after sendisgheme.
more than 192 kbits, the PSNR only attains 35.40 dB. Our framework is the following. The problem is how to
Since the side information quality is a major issue in DVG;ompare two images that are to be used as side information
we would like to understand whether in practical conditionsf a third one. The latter is typically a WZ frame in a
the PSNR could fail in differentiating between a good an@VC system, while the former two are typically produced
a bad SlI, whether in this case more reliable metrics exisising motion-compensated interpolation or extrapolatidre
and whether we can foretell which metric is best suited totwo Sls are compared by running the DVC system twice,
given situation. The scope of this paper is to answer to thessing the first or the second image as side information. The
interesting questions, which at the authors best knowleddiference in global RD performance allows us to rank the two
have not yet been fully addressed in the scientific liteegtuimages according to their effectiveness as side informatio
the only partial exception being the work by Kubasov [21]This process is detailed in the following.
We propose new metrics based on a suitable power of theMe compare two estimations of a given WZ image by
absolute difference between the original image and the sigealuating the average coding bitrate variation resultiyg
information, or on the Hamming distance between the corrdte use of one or the other estimation. The coding bit-rate is
sponding transform coefficients. The conclusions of ourkwothe end-to-end bit-rate, comprehensive of KF and WZ coding
may be useful for future studies aiming at improving theates. The average is computed over four RD points using the
general DVC performance. For example, using the apprapriatell-known Bjontegaard metric [43]. This is arguably thesnho
distortion measure may help to obtain a better descriptfon meaningful comparison between two estimations, and then we
the errore.g, a more accurate noise correlation at the Slepianse it as a kind of “ground-truth”: practical metrics shoblel
Wolf decoder. Moreover, the proposed metrics can be useda® correlated as possible to this one.
improve the rate-distortion performance of a DVC system: we The first element in our framework is the association be-
show in this work a simple but realistic scheme that is abteveen an image, used as Sl for an original frame, and an RD
to exploit the new metrics. The basic idea is that knowingurve. Let us define a decoder functidec which takes two
a reliable quality measure between the estimation and tiwages as input: the first, denotedfasis the original frame,
original frame leads to sensible improvements in the hastAd the second, denoted &s is the side information. The
based DVC schemes [22] where some information about théginal image is first compressed usidggiven quantization
original WZ frame is sent to the decoder for enhancing trgteps, then channel-decoded usin@s side information. This
motion interpolation and the Slepian-Wolf decoding. Theme results in a set of four rate-distortion poin&R;, d; );=1..4),
many hash-based systems in the scientific literature [2@]{ which is the output of thelec function.
[38] and potentially all of them could take advantage from th The next step consists in associating an average bit-rate
new metrics. More generally, the proposed metrics can bet useriation to a couple of RD point sets. This is easily achieve
when both the original image and the side information (or &2y using the Bjontegaard metric. The Bjontegaard metric
estimation of it) are available. Besides the hash-basadmgs allows to compute the average bit-rate reduction of a set of
also the Witsenhausen-Wyner video coding systems [39] afedir RD points with respect to another set of four RD points,
the DVC with shared encoder/decoder complexity [40]-[4Zjrovided that the rate intervals are not disjoint. More [wely,
could benefit from our study. if (R!,d!)iz1..4 and (R?,d?);—1. 4 are two sets of 4 RD
The remainder of this paper has the following structurestFirpoints, we can use the Bjontegaard metric to compute:
st|e mtro_duce a novel framework allowing to compare différen AR = bim((R}, dV)ier. 4, (B2, d2)ier.. 1)
metrics. Then we propose our own measures and we show
through some experiments that they are more reliable thdnAR is positive, the curve sampled at poitt8;, d; )i—1...4
the PSNR. This is followed by a discussion highlighting thean be considered as “better” than the second curve, since
conditions which favor one metric or the other. Finally, wéhe latter requires a positive increment in bit-rate in ore
depict one potential application of the new metrics and tf&ehieve the same average quality in the intersection ofwbe t
corresponding rate-distortion improvements, and we catecl coding rate intervals.
the paper by outlining some possible future developments ofNow we can introduce our reference quality measure, re-
this work. ferred to as. It compares two Sl imageg; and I, i.e. two
estimations of a given reference imagg as follows:

[I. METHODOLOGY FOR METRIC COMPARISON r(lo, I1, I2) = bjm [dec(1y, I1), dec(Ip, I2)]

In this section, we introduce a new methodology to evalualéne reference metric is our “ground-truth” that can be used t
the reliability of side information metrics. In opposititm the evaluate the quality of a generic metrid-, -), for instance the
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Fig. 2. The two side informations and their decoding resu(es) Discoverand (b) uniform random noise. Similar initial PSNR lead totvery different
decoded quality.

PSNR, by introducing a confidence criterion. For a given sBbm a certain bit plane of a transform coefficient, gnds

of imagesI;, I, and I, the metricm respects the confidencethe estimated probability thak is equal to zero, the LLR
criterion if and only ifr(Io, I1, Io) andm(Io, 1) — m(Io, I2) is defined asLLR = log t%-. Now, this function is strictly
have the same sign. This is easy to interpret. #Hanction increasing, and for reasonable valuespofi.e. p < 0.5), it

is positive if the side information/; leads to better RD is concave: it varies fast for low values pfand slower for
performance than the side informatifn In this case, a metric high values. This behavior is therefore similar to thaorms,
should assign a better score Ig than to I, otherwise it which for « € (0,1] are concave as well; on the contrary
is not able to correctly point out the best estimation of ththe quadratic norm (the MSE) is convex, and then tends to
imagel,. Moreover it could be shown that a metric satisfyingmphasize large errors.

this “same-sign” condition, also satisfies a stronger daonli  In conclusion, we consider the idea that the Siamily

on the values: in other words, large values foimply large could better reproduce the characteristics of the decduhés.
differences between corresponding metric values. Finally idea was only explored for the cage= 1/2 by Kubasov [21].
observe that the confidence criterion can be used only pedvidOne of the contribution of the present work is to extend the
that the rate intervals produced by thHec function for the analysis to other possible values @f While it is obviously
two images to be compared are not disjoint. However thisipossible to test all the values far, we consider the
condition is very often satisfied in practice, as we obseiedfollowing cases:

our experiments. e a = 1, which corresponds to the mean-absolute-error

(MAE or ¢;-norm), commonly used in signal processing.

IIl. ALTERNATIVE METRICS FOR SIDE INFORMATION

Here, we give up strict concavity, it thus constitutes an

EVALUATION interesting limit case to study.
1 X . _—
A. Family of SIQ metrics . ?2;] 5, for which Kubasov has given some initial results
An MSE-related metric such as the PSNR depends on, , - 1, in this case we try to further enhance the

the second power of the error. As shown later, this can be gifference between small error values.
ineffective for the quality evaluation of side informatioso

we introduce a class of metrics where the power of the error

is a parameter. We consider the class of metrics,Skgth B. A metric based on the Hamming distance

€ (0,1], defined as As explained before, the S}Qmetrics are mostly inspired

2552 from the LLR calculated at the WZ decoder. Since the best
S () — 1) value fc_)r thea parameter could mismatch the qorrelation noise
NM ~p model implemented in the WZ decoder, we introduce a new
wherel and I, are respectively the side information and thenetric, which intends to fit the decoder structure. In a tgpic
original (reference) images, of siz& x M pixels. These DVC system, the WZ frame quantized transform coefficients
metrics are defined as a strictly decreasing function of tlaee represented by bit planes. We adopt the same quantizatio
a-norm of the erroe(p) = |Iy(p) — I(p)|. Inits turns, thex- matrix as in DISCOVER [13], [14], which states a number
norm|le||s = 3~ |e(p)|* is a concave function afin RV > of quantization bins for every band, fér levels of quality.
(strictly concave ifa < 1). As a consequence the proposedll the bit planes are then encoded successively (the most
metrics are convex (strictly convex if < 1) functions of significant first). At the receiver side, the correlation s&i
the error image. This property is interesting since at at tlfiee., the difference between Sl and original WZF) is modeled
receiver side, the side information is used to produce the loas a zero-mean Laplace random process, and the standard
likelihood ratio (LLR) used by the channel decoder for thdeviation is estimated band-per-band, following an apghoa
bit planes reconstruction. In particular, X is a decoded bit very popular in literature [44].

SI1Q, (Ip, I) = 10logy,



For each bit plane, the decoder receives a first set of paritgnsformed and quantized coefficients) and, at least ity par
bits and starts the channel decoding algorithm of the cort&e fact that parity bits are transmitted in chunks. Theesfm
sponding bit plane of the side informatiohe( the decoder contrast to the PSNR and SJQhe HSIQ provides something
uses the received parity bits to correct the side informati@loser to a rate measure than to a distortion one, and alserclo
bit planes). The channel decoder uses the so-called grtrit® what the turbo decoder does when establishing an error
information {.e. the probability that a bit i) or 1 given probability threshold. Nevertheless, it is still a qualitetric
the side information) to decode the first bit plane. Then, the the sense that it associates a real, non-negative humiaer t
residual error probability is estimated. If it is larger mhacouple of images. Moreover, another advantage of the HSIQ
a given threshold (a common value 1973), the decoder metric is that it explicitly takes into account the quantiaa
requests one more set of parity bits (referred to as a “churdgid the transform, while the SIQ only compares the original
[13]), and restarts the decoding until the estimated err@/ZF and the Sl. We observe here that pixel-domain DVC
probability drops under the threshold. When this happdres, tsystems that directly perform the channel encoding of WZF
current bitplane is considered to have been correctly destodpixels have been proposed in literature, but they have worse
Using relatively large chunks allows to reduce the numbeerformance than transform-domain systems [44], [48].s€he
of parity bits requests and of channel decoder iteratidnss t advantages are somewhat counterbalanced by the fact ¢hat th
improving the complexity and the rate requirements of thdamming distance is not the best suited for the Min-Distance
system [45], [46]. reconstruction stage. Moreover, in some cases, very close

Each following bitplane is decoded taking into account thealues of transform coefficients may have a relatively large
previously decoded ones: the extrinsic information is nbe t Hamming distance. In this case, estimating the paritydti-is
probability that a bit isD or 1 given the Sland the previous rather difficult: the bit plane propagation of extrinsicanina-
bit planes. These probabilities are easily computed gihen ttion suggests that few bits are needed; but since the Hamming
distribution of the correlation noise, as described formegke distance is large, actually the probability of triggeringnew
in [4] or in [47]. The propagation of extrinsic informationchunk is high. In summary, HSIQ may over-estimate the parity
through bit planes makes it easier to correct individual biit rate, but considering only the coefficient differenceslaot
errors if they correspond to a small difference among thakes into account the chunk effect. However, experimental
original and the SI coefficient. However each wrong bit masesults clearly show that the benefits of the HSIQ metric
trigger a new chunk of parity bits to be sent, with potenyiallusually surpass the drawbacks, therefore this metric has th
a large increase of the number of transmitted bits, evereif tpotential for improving real system performances, as shown
conditional probability would indicate a low parity rate. in Section VI.

We observe that the usual metrics such as the PSNR do
not take into account this decoding process; they compute a
sum of differences in thepatial domain, emphasizing large .
error contributions because of the second power in the Mgfe. Experimental setup
Moreover, a pixel-wise difference in the spatial domain is In this section we compare the metrics for Sl quality in
not exactly what the channel decoder will try to correct: thgne proposed framework. In order to perform these tests, we
error correction is performed in the transform domain arfitstly generate some sets of images that will be used as
on quantized coefficients. Therefore we introduce a metside information. For this experiment, we generate a more
that simply counts the number of wrong bits in the sideealistic data set than the one used in Fig 2. To this end, we
information, i.e. we use a Hamming distance. In particulambserve that the most popular methods for S| generation are
we consider the case of a decoder working bit-plane by bliased on motion estimation and compensation. More prggcisel
plane in the transform domaing. exactly on the same datathe side information is virtually always generated by metio
used to compute the parity bits. In this way we also accoutwmpensation of one or two reference images, which in turn
for the transmission of parity bits in chunk, since each Wrorare compressed versions (via transformation and quaictigat
bit in a quantized transform coefficient may trigger the $egd of the original ones.
of a new chunk. In conclusion, a realistic Sl is potentially affected by two

In order to establish the notation, IEndI, be respectively kinds of degradations: errors from quantizatidre.(com-
the transformed and quantized versions (with a given quangression) of reference frames, and errors from incorrectly
zation step QI) of the Sl and of the reference imadyg;:.s estimated trajectories.é. motion vectors) [49]. Therefore, in
the number of bits used to represdnand Iy, anddy (I,1) the following, we consider two different sets of images to
the Hamming distance between these two representations. W¥eused as Sl. Both of them are constructed by altering a
define theHamming Side Information Quality (HSI@)etric motion-compensated image generated by a motion estimation
as: algorithm which disposes of the original Wyner-Ziv frame.

HSIQ(Io, I) = 10log;, <&) , (1) More precisely, we randomly modify some of the estimated

du(1,1o) vectors, this emulates the unavoidable errors occurrirthen

which is the relative number of wrong bits expressed in motion estimation process. These errors mainly result fitgam
logarithmic scale. The advantage of this metric is that it fact that in SI generation the actual WZF is not availablez Th
more related to the channel decoding process, in the seosdy difference between the two sets is that in this first dhe a
that it takes into account the actual data to be correctesl (the reference images are quantized with the same quaatizati

IV. METRIC VALIDATION



S . TABLE |
step, while in the second these steps are different. Res@tS  percentacE OF VALIDATION OF THE CONFIDENCE CRITERION FOR

given respectively in Sec. IV-B and IV-C. SEVERAL SEQUENCES AND SEVERAL QUANTIZATION STEPS FOR THE
This method for image generation aims at simulating actual ~REFERENCE FRAMES USED TO GENERATE THE| DATABASES.

estimations and moreover allows regulating the balance be — — ——

tween errors from quantization and errors from bad vectors & 3 3 40 | 31 37 40 | 31 3 40 | Avg

PSNR 90.1 90.4 87.3 | 89.9 92.0 90.5 90.9 92.0 90.0 [ 90.5

(blocking errors). It could be argued that randomly placed P o B B S S < R M B
blocking artifacts are not realistic since motion errore ar o> | go a5 70| s83 927 87| 900 925 ses| ses
correlated with the characteristics of object texturesyeno HsiQ | 891 877  865| 889 933 890 | 904 929 901 | 900
ments, bordersetc. However, this observation holds mainly

for motion-compensated prediction; in the case of motion- TABLE Il

compensated temporal interpolation, the induced erroes ar PERCENTAGE OF VALIDATION OF THE CONFIDENCE CRITERION FOR

N . SEVERAL SEQUENCES AND FOR THE SECOND DATABASE
much less regular, since we do not have the original WZF,

the eSt'maUOn IS based on trajectory Interp0|atlon andl’Sl’r Sequence | breakdancer outdoor book arrival Average
. . . PSNR 66.09 61.65 74.99 67.57

related to occlusions cannot be easily avoided. Therefore siQ, 92.27 91.90 95.66 03.27
. . . . . SIQ ¢ 90.83 91.88 95.27 92.66
trajectory errors and occlusions sum up with motion esiiomat o woss | orst | oire | ovar
inaccuracies, giving place to unpredictable errors. Aeoth Hsid s0sa | oz | oses | ez7s

relevant case of irregular errors in Sl is when multi-view©V

is considered [50], [51]. In this case the Sl is produced from

merging two independentimages, resulting in a non-station gng the HSIQ obtain similar resultse. the five metrics are

distribution of errors. This results in more frequ_ent angble all equally reliable for this type of database. Thereforaew

correlated block errors, as very often observed in practice e reference frames have all the same quantization step and
the estimation is obtained by motion estimation/compénisat

B. Sl database with reference frames at the same QP the PSNR metric is a reasonable choice for assessing side

In this first experiment, all reference frames used to buil@formation effectiveness. We also observe that the ,SIQ
the side information database were compressed with the sdifdrics have no clear ranking among them: any of them
quantizaﬁon step. We generate an |ma@an estimation) for outperforms the other two in some cases. As we observed
each of the firstV = 100 frames oforeakdancerbook arrival,  before, we interpret this as the fact that the best value:for
andoutdoorsequences, and for each quantization step (refé-related to the correlation noise model.
ence frames are quantized with H.264 Intra at P37 and
40 [52]). We have chosen to work with these three sequences s| database with reference frames at variable QP
as they present very different characteristics (motioiviggt . :

o : : In these experiments, the reference frames are quantized
camera positions and alignment, indoor/outdoor). Once the

entire database is created, for each frame of each sequ W%g different quantization steps (QP = 31, 34, 37, 40).

o owever, the number of blocks affected by vector errors is
at each quantization level, all the SI§' are decoded at

diff N . h dto 4 = reduced when the reference frames are roughly quantized,
different quantization points that correspond t0 4 QU g jncremented when they are better represented. The ra-
indexes (QI) in the DsCOVER quantization matrix. This

N ) tionale behind this constraint is to avoid freely varyin ,
matrix gives f{he ”“”ﬁber of b'ts. allpcated to _each band fWhich could result in pathological configuratio)rqs. Hyowm
8 Ql, wherel is low bit rate ands is high resolution. In other observe explicitly that we obtained very similar resulterev
words, we comput’k € {1,..., N}, when removing this constraint on the introduced error.
(RF, d¥);_q. 4 = dec(jojk\si)’ Once the database is created, we perform the same kind
of experiments as those presented in the previous Section,
wherel, is the original image we are considering. Note thapptaining the statistics presented in Table II. In this case
in order to compare the RD curves using the method definggtice a remarkable difference among metrics: while SIQ
in Section Il, we need that the intersection of the curvgnd HSIQ are still reliable, this is no longer the case for the
supports is not empty. Therefore the QI and QP parametefSNR, which estimates the right quality order between two
were set such that to generat&};d});—1..4 With large side informations in only two cases over three on the average
support intersections for att € {1..N}. Finally, for each On the other hand, HSIQ and SIQ are correct in more than
metric m to be tested, and for each couple of image indexe§¥, of the cases for the same images. We also remark that
k.t € {1,...,N} we compute the percentage of cases i8|Q, performs better than other S}Qnetrics. This could be
which the following equivalence is satisfied: ascribed to the fact that using the absolute value in (IIH8&s
T o T T not amplify small errors (as it would be fer < 1) or large
m(Ii) < m(I3") & r(lo, I, I7') < 0. errors (215 form > 1); or to the fact that it better matches the
The corresponding results are presented in Table |. Thaplacian law for the correlation error. These results hgtt
percentages correspond to the success rate of the metric:tf@t even in realistic cases, the PSNR could fail in deteingin
example, if one estimation has a higher PSNR than a secdhd best side information, and therefore the introductibn o
one, in more than 90% of cases it will also have better rateew metrics could be advantageous. We observe explicitly
distortion performance. We remark that the PSNR, the,SI@Ghat Wyner and Ziv proved that the reconstruction quality



Increasing bit rate saving behavior for all the images of all the video sequences in the

(@) (b) database.
31 Let us consider a specific original frame, namely the third
<4 @‘ ) N Al 7 one of the outdoor sequence, and refer to it ag. We
g =30 P consider theN = 100 estimations for this image from the
%) L | prmemmnpund m 7 . .
oo i %QC 0 second database, and we sort them in the decoding perfor-
01 o~ "P mances growing order; we also humber them accordingly: if
5 i < j are two natural numbers betwee¢rand 100, we have
imag5e0index 100 imagseoindex 100 bjm(dec(Io, I*), dec(Io, If")) < 0, and we refer to the sort
37 © 45 (d) indexj asimage indexFor thej—th side information[;‘i, we
= % & 44 e calculate itscumulative rate saving (CR8)ith CRS(I5%) =0
T 3§ < A and:
O 34 g “ S . Tsi
» 3 D 42 Vi > 1, CRS(IJ*- )=
% 50 [T ——- I 100 bjm <(Rfa d))iz1..4, (R dffl)z‘:1m4) + CRS(I3%,).
image index image index )
s (e) 1 (0
—~ 44 & f‘/ This is equivalent to say that the CRS value for jfie side
% 455 ﬁfﬂ T4 M’a information corresponds to the rate saving with respechéo t
g ]MJ g e side information of the lowest quality’{’). In Fig. 3 (a), we
Dk e I3 plot the CRS values. Between the worst and the best side
. —— 12 information, we observe a CRS difference of approximately
imag index ' ° imagsindex ° 4%, which allows to say that the database is significantly

wide from the point of view of decoding quality. Fig. 3 (b)-
Fig. 3. Metric values as a function of the number of estinvatitor frame3 () present the plots of respectively the PSNR, SIQIQ.,
of 0utdoorsequen_ce{512 x 384). The estimations are sorted in the Qecoded&Ql and HSIQ against the image index. A good metzﬁx;
performance growing order (real quality). Solid cyan anttetbpurple circles 3 : : . P . .
indicate the examples illustrated in Fig. 4 and 5. should preser/v\e the '”CEaS'ng ordee, if i < j then it

should bem(I3*) < m(I;"), and thus we should observe

increasing curves in Fig. 3 (b)-(f). When this inequality is
is a decreasing function of the side information MSE [2hot verified, the metrien is not able to correctly discriminate
However, we observe that the Wyner-Ziv theorem only appliégtween two estimations and the amplitude of the resulting
to the case of memoryless Gaussian sources. Even thoughrtegative gap quantifies this malfunction. We can conclude
theorem has been extended to other statistical laws [58], [Sthat HSIQ and the SIQ metrics have a satisfying behavior,
the hypothesis of stationary signal must hold in order festh while the PSNR plot shows many consecutive estimations
extensions to apply. However, since a generic video sigasl twith a negative variation (sometimes of more thandB)
statistics that do not perfectly match with theorem hypséise instead of an improvement. Moreover, one can notice that SIQ
and moreover it is not stationary, we conclude that the MSEig. 3 (c)) and HSIQ (Fig. 3 (f)) are the two metrics which
may be not the best Sl quality estimator, and this would nevolve the most similarly to the CRS behavior (Fig. 3 (a)),
contradict the well-established Wyner-Ziv theory. especially in the second part of the plot. One of the possible

In summary, these two experiments allows us to concludeason for the slightly-non-monotonic behavior of the HSIQ

that the HSIQ metric performs very well in all situationss the mismatch with the Min-Distance reconstruction stage
(but it is more complex to compute). The Sl@etrics have However the results shown here and in the following section
somewhat similar performance, with SIQeing slightly better let us conclude that the introduction HSIQ brings more gains
for the second database. We observe that 33 also the best than losses.
results in the average, but for some cases it is outperfobiped  Let us focus now on a specific couple of estimation images,
SIQy /2 or SIQy /5. We conclude that there is not an absolutgamely 75 and Ig.. The associated values of the metrics are
best value qiz, since_it depends on the correla_ttion noise mod&lighlighted respectively by solid cyan and dotted purpleles
but the choice: = 1 is usually quite robust. Finally the PSNRj, Fig. 3. Even thoungRS(Ig;i) < CRS(I&%), the PSNR

is reliable only when the errors are homogeneous. gives the opposite ordere. PSNR(Izi) > PSNR(Z:), and
with a very wide gap of more thah4 dB. SIQ, and HSIQ
V. DiscussION predict the right order for these estimations.

In the following, we try to understand why the PSNR is The two estimations both present distortions coming from
sometimes wrong in S| quality estimation by investigatingey frame quantization and from the motion errors, but not
some representative examples from the second set of imadie$he same proportion. The blocking artifact errors areenor
For the sake of conciseness, in the following we only show thelevant inZ$: while I} has a higher quantization noise (more
results for a specific image; however we observed the saprecisely, the reference frames were quantized with Q7 =



©

©

for the latter image and4 for the former image). Since the x10
PSNR is based on the MSE, we show in Fig. 4 (a) and (b)
the square error image. One can see that the square error is
heavily affected by high errors associated to blockingaots, #8
while the smaller but more widespread quantization errar ha 2
a smaller impact. This explains why the PSNRIgf is much
smaller than the PSNR df:. b

On the contrary, if we compute the pixel-wise S;Q‘or i
example, Fig. 5 (a) and (b), we can perceive that the quan-
tization error is taken into account almost as much_as the °
block errors, which explains wh§1Q: (g;) < SIQi (I§). o
Indeed, the PSNR metric mainly accounts for high amplitude
errors present in the image, which in turns mainly come @ (73 — 1)?, 30.63 dB (BSNR)
from blocking artifacts. On the other hand, the differer@sI oot
metrics are based on a lower error powerso that they can
better take into account smaller but more frequent errors. O
its side, the HSIQ, which also fits well the CRS, offers a
different compromise, because it considers the magnitcrde e “
information only when an error in a bit plane propagates to 2
the next bit plane. .

In conclusion, when the number of block errors are of the '
same order of magnitude for two estimations, the PSNR gives '
a reliable quality value, but if the error types are diffdren o
e.g. a locally highly concentrated error (like the blocking
artifacts due to the motion compensation) or a diluted error 0
(like the quantization noise), the PSNR would penalize the
highly concentrated errors whereas they would be moreyeasil () (T — )%, 29.20 dB (PSNR)
corrected by the turbo decoder. . , _ _ ,

Fig. 4. Pixel domain error image associated to the PSNR meafur the
estimations64 and 65 (respectively solid cyan and dotted purple circles in

Fig. 3).
VI. HASH-BASED SCHEME IMPROVEMENT

Based on the conclusions of Sec. IV and V, we provide here
some experiments which prove that, in addition to being moreComing back to our system, state-of-the-art hash-based
reliable, the proposed metrics have some interesting ipact SChemes produce a very simple estimation of the side infor-
applications. More precisely, we use the novel metrics, afiggtion at the encoder, for example by averaging the referenc
especially the HSIQ, to modify and improve a hash-baséds. Then, the MSE (or equivalently the PSNR) between the
DVC scheme. This kind of schemes [23], [26], [32] is base@¥iginal frame and this rough estimation is computed, ared th
on the idea that the WZ frame estimation error obtained @@sh is sent for the blocks with low PSNR. At this point it
the decoder is not stationary and some regions present a \ér§asy to conceive an application of our metrics, using them
important distortion because of h|gh motion, occlusiorts, einstead of the PSNR for selecting the blocks to be coded with
For these regions, hash-based schemes send some additi&¥ahash.
information €.g. a quantized version of the corresponding The proposed metrics can also be used to improve the
macroblock transform coefficients), callédsh in order to solution to problem b)j.e. how to efficiently use the hash
improve the WZ frame estimation at the receiver. Thereforat the decoder side. In the state-of-the-art scheme, in the
a hash-based scheme has to solve two main problems: a)lftlorck matching algorithm performed at the decoder in order
which regions hash information has to be sent and b) hdw find out the object trajectories, instead of calculatihg t
to use efficiently this information at the receiver. The firstrror between the compensated blocks, the transmitteditash
problem cannot be solved in the classical DVC frameworkpmpared with the average of the two compensated blocks.
where the encoder is completely unaware of the estimati®@his comparison is usually done with MSE. We can then
available to the decoder. Therefore the hash based scheneptace the MSE with the HSIQ, which is much better suited
slightly relax the DVC paradigm: the WZF encoder has accessthis end, since the hash are transmitted as quantized DCT
to key frames and can produce a very rough estimation of tbeefficients. We explicitly observe that all the candiddtecks
side information available to the decoder; however it cannare tested with the new metric, i.e. we do not use HSIQ to
produce the same Sl as the decoder. In summary, strigigrform an early stop of the matching algorithm. Our work in
speaking a hash-based coding scheme should be classifiethadDCT domain constitutes a good complement to those who
a low-complexity encoder rather than a DVC system, but litave already tested the Hamming distance in a wavelet-based
shares with the latter much of its structure. hash DVC scheme [55].
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Fig. 6. Influence of metrics in the design of hash-based seh@mash
2 selection + side information generation) in case of 5% ohhaansmitted.

test sequence it achieves larger rate reductions thap, i
an average o026 %. PSNR improvents are in line with rate

12 reductions, with an average gain®b dB for SIQ, and1.5 dB
for HSIQ. These experimental results confirm that the HSIQ
10 is a good metric of Sl quality, thanks to the fact that it takes
s into account the quantized transform coefficients, whil®,SI
does not.

However, both metrics have large gains with respect to

4 PSNR. This is explained by the fact that the frame estimation

that are used as side information have similar charadteyist

with those of the second database in Sec. I\i€, they

contain different types of errors (quantization, motiores)

that the PSNR does not take into account with appropriate
(®) |13 — 1% 4312 48 (S1Q;) weight. It should also be noted that in some caseg.(
containe), the gain can be huge because of the very specific

Fig. 5. Pixel domain error image associated to the %Slmeasure, for the motion activity (fixed background and rapid motion in the
estimations64 and 65 (respectively solid cyan and dotted purple circles "Toreground).
Fig. 3).

Finally, we report here a comparison with some reference
schemes, giving the average Bjontegaard rate variation on

In order to validate this approach we have implementedt3€ SiX sequences. First, we compared the HSIQ hash-based

simple hash-based system, which uses MSE at the encogéfiem With DISCOVER. We expect to achieve some gain with
and the decoder. This scheme, mainly inspired from [32], {§SPeCt to DISCOVER, since the latter does perform a strictl

an extension of the well-known reference DVC scheme Digistributed encoding, while hash-based systems have scces
COVER, and constitutes the reference scheme that we imprd@e?0th key frames and Wyner-Ziv frames. The experiments
by changing the metrics. The hash blocks are quantized DE§Nfirmed this intuition: the hash-based systems provide an
coefficients and are selected and used as described begore 37€rage rate reduction (in the sense of Bjontegaard mgtrics
the sake of simplicity, we do not test a hash-based scheffe20-4 %-. As far as the complexity is concerned, it is not

with all the proposed metrics. We have experimentally setec INcréased very much in the proposed system with respect

the ones fitting best to the problem. In an hash-based systdth PISCOVER. The complexity increase of the encoder is
the encoder has typically a very small available computatio comparable to the one of any hash-based system; the decoder

power. For this reason, since HSIQ and SIqbtain similar 1S More complex than the one of DISCOVER, but with the
performance, at the encoder we use St@hich is much less SaMe order of magnitude. Finally we observe that the decoder

complex. On the contrary, at the decoder there is typicaffPmMPlexity is seldom an issue in DVC or in hash-based

much more available computational power, so we have chos¥f$tems-

the HSIQ, since it performs a better block matching for figdin We have also compared the hash-based schemes with
out the object trajectories. In order to perform a more catgpl H.264/AVC in different configuration: INTRA-only, Zero-
analysis, we have also considered the case when the decadetion (IPIP), Inter (IPIP). In general, DISCOVER has bet-
uses SIQ. Rate-Distortion curves are shown in Fig. 6 for twder performance than H.264/AVC Intra, it is comparable to
CIF sequences. In Tab. lll we present the Bjontegaard gaii264/AVC Zero-motion and worse the H.264/AVC Inter.
(in rate and in distortion) when using the new metrics witlMe have found that the proposed system using HSIQ has
respect to the reference PSNR metric. Both proposed metrigs average rate reduction 88 % and 4.5 % respectively
achieves very significant improvements: the bitrate rédact with respect to H.264/AVC Intra and H.264/AVC Zero-motion,
ranges fromd.3 % to 30.5 % for SIQ,, with an average rate while it increases the bit-rate of onB.4 % with respect to
reduction equal td1.9 %. HSIQ is even better: for any singleH.264/AVC Inter.



TABLE Il
BJONTEGAARD GAINS OF PROPOSED SCHEMES.R.T. THE REFERENCE
PSNRBASED ONE

rate saving (%) PSNR improvement (dB)

Sequence | SIQ; HSIQ SIQ1 HSIQ
city 5.2 12.4 0.24 0.62
coastguard | 10.4 23.9 0.43 1.05
container | 30.5 74.7 1.41 5.19
eric 13.3 20.8 0.62 1.13
football 4.3 8.3 0.22 0.42
foreman | 7.5 16.6 0.33 0.81

VIl. CONCLUSION

In this paper we have studied the problem of measurirpg
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