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ABSTRACT complexity suboptimal algorithmBower Allocation with Inferred
Solit Position (PAISP) andPower Allocation with Local Power Ad-
justment (PALPA) are presented in Section 3. They are compared in
Section 4. Section 5 concludes the paper.

Linear video coding (LVC) is a promising alternative to cliasl
video coding when video has to be transmitted to wirelessivers
experiencing different and time-varying channel condiioT his pa-
per addresses the LVC channel precoding and decoding nafgtrix
sign when the transmission channel consists of severatisabrels, 2. PROBLEM FORMULATION

each with its own power constraint. Such constraints maybed, ) ) )
eg., in multi-antenna, DSL, or powerline transmission systeins N SoftCast, video frames are grouped into GoPs which arestra

a previous paper, it has been shown that this matrix desigh-pr formed using a full-frame 3D-DCT. The resulting DCT coetiuis
lem may be addressed by an adaptation to LVC of a multi-levepf similar variance are grouped inteci chunks of sizenr x ne.
water-filling solution proposed for MIMO channels. Hereptaub- ~ FOr each GoP, a sequenceraf x nc vectors of dimensiomcy is
optimal low-complexity multi-level water-filling technigs are pro- ~ formed by selecting one coefficient per chunk for each vestee
posed, with different trade-offs between complexity arfitieincy. ~ Figure 1. These chunk vectors are assumed to be realizatfons
Extensive simulations show that the suboptimal solutiomsgom 7 X nc independent and identically distributed zero-mean Gaus-

very close to the optimal one, with a sensibly reduced corityle ~ Sian random vectors;, i = 1...7nr x nc with covariance matrix
A = diag(A1 ... Ang ). A is assumed to be diagonal, singerep-

resents decorrelated 3D-DCT transformed pixels. In practhe

1. INTRODUCTION non-zero mean values of chunks are transmitted as metadata.

Linear video coding (LVC) schemes such as SoftCast [1] anhiti- Chunk 1 Chunk 2 Chunk e,
ants [2—4] AAA rajouter d’autresZZZ have emerged as a priomis

alternative to classical video coding [5-7] when video haseé /
transmitted to wireless receivers experiencing differ@amd time-

varying channel conditions. In LVC, the video content is aded

with linear-only operators (such as a full-frame DCT anckdin t r—
channel precoding). Using a linear MMSE estimator at reseiv
side, users experience reconstructed video quality corsunate Fig. 1: Vectorization of the chunks

with their channel quality [1]. Since the first paper on Sef$C[1],
several developments have been considered. The chunke shap . ) o
and size has been optimized in [8]. The coding gain of thelpixe  One considers a wireless channel consistingnet pa2rallel )
domain transform is analyzed in [9, 10]. Hybrid digital-toga AWGN subchannels with noise covariance maf¥ix= diag(o7,. .., onc)
SoftCast-based architectures have been proposed in [2-#2]L  and individual power constrainig;, j = 1,...,nsc. To transmit
The characteristics of the transmission channel have alsp better e chunk vectors; over such channel, one has to find the optimal
taken into account. First papers considered a wideband AwGNRrecoding matrix and decoding matrié to minimize the MSE
channel [13]. Fading channels and MIMO channels [14-18khav &t receiver, while satisfying the per-subchannel poweristamts,
then been considered, mainly under a total transmissionepow Which can be represented as
constraint. . T

This paper addresses the LVC channel precoding and decod- Vi €{l,... nsch, (GAG )J'-,J' S Pi- (1)
ing matrix design when the transmission channel consistewdral
sub-channels, each with its own power constraint. Sucht@ints
may be foundge.g., in multi-antenna, DSL, or powerline transmis-
sion systems [19]. In a previous paper [20], it has been shban
this matrix design problem may be addressed by an adaptation
LVC of a multi-level water-filling solution [21] proposed féIMO
channels [22, 23]. Here, two suboptimal low-complexity thldvel
water-filling techniques are proposed, with different &audfs be-
tween complexity and efficiency.

The rest of the paper is organized as follows. The precodidg a -1
decoding matrix problem is introduced in Section 2. The tog-| H = AG” (GAGT + A) )

In what follows, the index of t; is omitted, since all vectorts have
similar distribution and undergo the same processing. Huotovt
is multiplied by a precoding transform matrix € R"™sc*"ck, The
received vector iy = Gt + v, wherev is a vector of channel noise
with E (v) = 0 andE (vv") = N. To recovert, y is multiplied
by a decoding matri¥] € R"ck*"sc to gett = Hy.

Assuming thatt and v are independent, the decoding matrix
minimizing the mean square reconstruction error (MSE) is



and the resulting MSE is

tr ((1 n (GA%)T N (C:A%)y1 A) )

see [24]. The precoding matrix design problem consistsitherin-
imizing (3) with the constraints (1).

3. PRECODING MATRIX DESIGN

We assume, without loss of generality, that the chunk imdgxi
is such that\; > ---
dexed by decreasing SNR constram% > iZSC.

—2...

nsc
One introduces the vector of channel SNR constraintss as
(p1/01, cee :pnsc/an SC)T'

The optimal precoding matrix design has been considered in 14

[22,24] and adapted to LVC in [20]. First, using water-figinone
computes an optimal diagonal precoding matrithat satisfies the
total equivalent channel power constraigg = > p; /o?. Then
one searches an orthogonal matZissuch thatZ G satisfies the per-
subchannel SNR constraints. Sufficient conditions on tlutovef
eigenvaluesn = (i, . ..,Mns.)” of GAGT are provided in [25,
9.B.2] to guarantee the existence of such ma#ixThe conditions
are expressed in Theorem 1.

Theorem 1. [25, 9.B.2] If the entries ofs andm, arranged in non-
increasing ordefiny > - -+ > Minge, S1 > -+ > Sngc, Satisfy

k k
d sy m (4)
i=1 i=1
forallk =1,2,...,nsc— 1and
nsc nsc
Z S; = Z m; (5)

then there exists a Hermitian matrix with diagorahnd vector of
eigenvaluesn.

If the sufficient conditions of Theorem 1 are satisfied ((Slis

ways satisfied whe6 is evaluated under total SNR constraint), sev-

eral techniques are available to obtairsolving a Structured Hermi-
tian Inverse Eigenvalue [26—28]. Then the optimal precgadiratrix

> Ang and that the subchannels are in-

Algorithm 1 G’ = PAISPQ, s)
1 = length(A) % number of components of
2 [@7 m] = OptTotalPowef, s)
3 [v, 7] = CheckSuffCond,s)
4 if v is true % Conditions (4) and (5) satisfied
5 Z= SHIE(f,s)
6 G' =2G
7 else % Uses hisection method find split position
8 azl,b:T,c':“;b,é—b—a
9 while (6 > 1)
10 c=c
11 A=(A1... ), s =(s1...5¢)
12 [@7 m} = OptTotalPowef, s)
13 [v, 7] = CheckSuffCond,s)

ifvistruea=c,d = |%2], 6 =]c— |

15 elseb=r1,c = |22 ], 6 =|c— |
16 ifc’ =1, thenc=1,6 =0

17 end

18 )\(1) = ()\1...)\c),8(1) = (81...86)

19 )\(2) = ()\C+1...A,’L),8(2) = (3c+1---3,u,)
20 GEI) :PA|SPO\(1), 8(1))

21 Gy =PAISPQ (), 5(2))

22 end

(X ands are split intonsc components), the complexity @ (ngc)
see [22, AppendixD].

Next, in Section 3.1, it is shown that by inferring the splisp
tions, the computation cost may be significantly reducet veispect
to optimal algorithm. A second suboptimal power allocaseheme
is presented in Section 3.2. In the following we assume tinaet
algorithmsare available OptTotal Power computes the optimal pre-
coding matrixG and power allocation under total SNR constraint.
CheckSuffCond verifies whether the sufficient conditions (4) are sat-
isfied. If this is not the case, it returns the largest inflesuch that
SF s > SoF | . SHIE (Structured Hermitian Inverse Eigen-
value) computes the orthogonal transform ma#ixMoreover, by a
proper chunk size selection, one assumesrbat nsc.

3.1. Power Allocation with Inferred Split Position (PAISP)

PAISP takes initiallyh = (A1...A\nge) @nds = (s1...Sng:) Of

is G = N2 ZG. If the sufficient conditions are not satisfied, the Op- length . = nsc as inputs. At f”-st the largest indexthat violates

timal Multi-level Water-filling method proposed in [22, Sien VI]
has been used in [20]. The vector of variangeand the vector of

SNR constraints are split into subvectors on which the conditions . — @+ js considered. If Conditions (4) are satisfied A . .

of Theorem 1 are tested again. If they are not satisfied, theesu
tors are split again recursively. At the end, the precodimadrixhas
the following block diagonal structure

’ /

G = N%BlockDiag (G;, G Gnsv) , (6)
wherensy is the number of subvectors, ag = Z1yGa is the
precoding matrix for each subvector where the condition§hafo-
rem 1 are satisfied.

In the optimal method, the split position in test correspota
the index that violates the conditions of Theorem 1 in the las
cursion. The complexity of each recursion (mainly due tosbe
lution of the water-filling problem) is proportional to therigth of
each subvector being tested. To find all subvectors in thetwaise

Conditions (4) is evaluated. Then PAISP searches the opsipli&
position the intervala, b] = [1, 7] by dichotomy. First, the midpoint
Ae)
and(31 sc), then PAISP updates = c¢; Else the largest index
that violates Conditions (4) is evaluated and PAISP updatesr.
These iterations are repeated until the difference betweersuc-
cessive midpoints is not larger thansee Algorithm (1).

To evaluate the complexity of PAISP to find all subvectorse Th
worst case is whem = p — 1 at each recursion and whenis
split into nsc components at the end. In such case, therenage
recursions and the total complexity is propornona@dlSC nand

hence isO (nc).

3.2. Power Allocation with Local Power Adjustment

The Power Allocation with Local Power Adjustment (PALPA)

is a recursive algorithm taking initiallA = (A1...Ang) and



> (0)

1711(1) —

Thsc
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T+1

Fig. 2. Initial (")) and updatedit.") allocated powers when
A is small (left) and whem\ () is large (right)

s = (81...8ng) Of length u = nsc as inputs. PALPA evalu-
ates first the precoding matrix with a total SNR constrainthe T
resulting allocated power vector has entm”eé,o), i =1,...,nsc
If the conditions of Theorem (1) are satisfied, the precodimay
trix is then build. Otherwise, let be the largest index for which

Condition (4) is violated. Sinc& "¢ m(” = Y7'¢s; one

i 0 0 _ T ™ ~(0) —
may introduceA”, where A = 7 s, — ST Y =
Yo m m'” — >5¢ | si, 1., o0 much power has been allo-

cated to the lastsc — 7 components oA.

The main idea of PALPA is to correct the valuesmfo)

1 =

T+1,...,nsc. One evaluates firgt= max, 1< <nsc ' SUCh that
A0) _ nscl 7 (0)
for ~‘(50) > J=t+41 e > 0.Thenfori =7+1,...,nsc,
the updated aIIocated powers are
(0) _s~nsc = (0)
_ o) ATTE LT [
I e L AN @)
0 otherwise

This correction corresponds to an increase of the watel, leve
Figure 2. It ensures that the source components with langanee
are still allocated a larger power [20, 24, 29].

Proposition 2. The power allocation adjustment performed by
PALPA using (7) is such that for ¥k = 7+ 1,...,nsc — 1,
ZI; T+1m / ZL T+ 131 and Zz T+l N(l) : ZZLSE'+1
Then the corresponding part of the precoding maxrlx can be com-
puted.
. n ~ (0
Proof. Using (7), one ha\(® = y°sc | (mf )

On the other hand, since is the largest index for which Con-
dition (4) is violated. One ha¥k € {r + 1,...,nsc — 1},

"

IR o ,Hﬁz(o) S si+ >0 s, and so
k
LI SRS ®
i=7+1 i=7+1
Now, ¥k € {t+1,...,nsc—1}, A = 37s¢ | (il — (") >

S (ﬁzz(.o) - mﬁ”) Thus from (8), one gets " m!” —

k
Zi:7+1

S5 .1 si. The proof of -7 |
same linesm

Then PALPA is called on the subvectors = (A:...
s=(s1...s-) oflengthy = 7, see Algorithm 2.

i=7+1
sizY (m,ﬁo) - mg”) ,thereforey"
m = s; follows the

it >

nsc
1=7+1

A-) and

Algorithm 2 G’ = PALPA (), 5)

1 = length(A) % number of components of

2 [@7 m] = OptTotalPowef, s)

3 [v, 7]= CheckSuffCondm, s)

4 if v is true % Conditions (4) and (5) satisfied

5 Z= SHIE(,s)

6 G =ZG

7 else

8 A(g) = ZZH:T+1 777“1 - Z"L“:T‘Fl Si

9 )\(1) = ()\1 A ) 8(1) = (81 e 87—)

10 m = (m .My), Si2y = (s Sp)
(2) T+1 - n)r5(2) T+1---9u

11 ) 7PALPA()\(1),3(1))

12 Usei(,) andA(2) in (7), one getsi,)

13 Z(Q)— SHIE(m(2),s(2))

14 Gloy = Z (2 diag (sqrt(ﬁzﬂl/)\TH, oW ))

15 end
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Fig. 3: SNR as a function of the subchannel index for Channel 1
from the ETSI STF 477 PLT channel database

4. SIMULATION RESULTS

In the following simulations, one assumes that video ha®tivdns-
mitted over an in-home power line channel [19]. The spacieg b
tween subchannels if&c = 24.414 kHz and the maximum num-
ber of subchannels that may be used for data transmissig is
3217. Not all subchannels are allowed for data transmission. In
OFDM-based PLT systems like AV2, typically SNRs per subehan
nel are available. A realization of the individual subchelr®NRs is
represented in Figure 3, which relates to a bad SISO link EJI8I
STF 477 database [30].

Since in SoftCast, analog QAM are used with root-raisedreos
Nyquist filters with, = 30 % roll-off, one obtains a per-subchannel
transmission ratesc = ffsc = 37.56 x 10° real-valued symbols
per second. The number of chunks a subchannel can transmit for
the duration of a GoP is evaluated from the video paramefiens é
size, frame rate), the chunk size, and the GoP $ize ¢ur simula-
tions). For the typical values of the parameters considerédese
simulationspck > 1, i.e, several chunks may be transmitted on the
same subchannel for the duration of a GoP. To apply the piegod
techniques, we partition theck chunks in groups ofick chunks of
similar variance. There are thugck = nck/vck groups of chunks.
This requires for each GoP to desigt smaller precoding matrices
of sizensc x ngck for ngck chunks of same index in each groups

To evaluate the complexity to find all subvectors with PALPA. of chunks. In the simulations, the besfcx subchannels are always
The worst case is = p — 1 at each recursion. Therefore the total ysed for the precoding matrix design. ffck > nsc, the lowest

complexity is proportional toZ”SC 1 (u is complexity of water-
filling in each recursion) and is agai (n3c).

variance chunks are discarded [1].
The video sequences of Classes B, C, D, E, and F used by the
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Fig. 4. Frame-by-frame PSNR for the optimal, PAISP, and SCS piiagatiatrix design techniques and the associated decoditixrfar
(a) Kimonol, (b) RaceHorses, (c) BasketballPass, (d) KnandSara, and (e) SlideShow.

PSNR (dB) Speed-Up
Cl. Name - Class Name
SCS Opt.Alloc/ PALPA Gain PAISP PALPA
PAISP Kimonol 8.6 13
Kimonol 42.79 47.57 47.56 4.78 BasketballDrive 6 14
BasketballDrive 38.83 39.54 39.53 0.71 B BQ Terrace
B BQ Terrace 34.83 35.86 35.85 1.03 Cactus 3.7 14
Cactus 36.53 38.47 38.44 1.94 ParkScene 6 12.5
ParkScene 41.83 44.06 44.03 2.23 PartyScene 3.3 2.6
PartyScene 40.89 42.94 42.94 2.05 c BasketballDrill 1.0 1.0
c BQMall 41.24 44.91 4491 3.67 BQMall 4.5 4.5
BasketballDrill 44.96 47.32 47.31 2.36 RaceHorses 1.0 1.0
RaceHorses 42.81 46.21 46.21 3.4 FourPeople 3.5 5
BQSquare 39.38 44.55 44,55 5.17 E Jonny 5
b RaceHorses 43.89 49.03 49.03 5.14 KristenAndSara 5 5
BlowingBubbles 42.26 47.90 47.90 5.64 F SlideShow 1.0 1.0
BasketballPass 45.03 49.55 49.55 4.52
FourPeople 40.74 47.13 47.13 6.39 Table2: Speed-up of PAISP and PALPA wrt optimal allocation.
E Jonny 40.56 48.43 48.43 7.87
KristenAndSara 39.77 46.95 46.95 7.18
F SlideShow 35.28 46.83 46.80 | 11.55 videos as a function of the frame index is shown. Since PAISP a

PALPA have close PSNR performance, only the results of PAIgP
Table 1: Simulation results with per-subchannel power constsaint represented. All approaches clearly outperform the SCS.
The simulations are performed using MatlabR2014b on an
Intel(R)Xeon(R)CPU E5-1603 v3 @ 2.8GHz. Table 2 provides
MPEG committee for the standardization of HEVC [31] are édns the speed-up factor for the precoding matrix design of PA4S&
ered in simulations (only the luminance compofgntThe chunk  PALPA compared to the optimal method. For RaceHorses oclas
size (uc X nr) is chosen ad0 x 30 for Class B, E ,F32 x 30 for C, SlideShow of Class F, the speed-up of the suboptimal ighgas
Class C and D. In the simulation, the subchannels are cedupt is close to one, since in most of the GoPs it is not necessgrgrto
independent white Gaussian noise sequences with uninearia form vector splitting. For videos of Class D, there is notspithin
PAISP and PALPA are compared to the optimal precoding maall GoPs, therefore the three methods again perform siyil&ut
trix design method presented in Sect. 3 and to a Simple Choak S  for the video sequences of class B, class E, and the video B@Ma
ing (SCS) approach, where each cunk is simply scaled to neaicth  class C, the speed-up is significant.
per-subchannel transmission power constraint. SCS caorimds
ered as an adaptation of the allocation considered in thgnati
SoftCast. The chunk of largest variance is transmitted thesub-
channel with the best SNR, the chunk with the second largest v
ance over the second best subchanetel, To fit the per-subchannel
power constraints, theth chunk is multiplied byyscs: = \/pi/ A,
i = 1...nsc. The four power allocation methods are all able to
adjust the transmission power of chunks on each subchamhelve
subchannel SNR matching those described in Figure 3. The-sim
lation results are shown in terms of average PSNR of thevedei
sequences in Tab. 1. PAISP has almost the same performatite as
optimal method. For PALPA, the PSNR gap to optimality is meve
larger than 0.03 dB. In Fig. 4, the evolution of the PSNR of som

5. CONCLUSIONS

This paper addresses the precoding matrix design probletnein
context of LVC, when the video has to be transmitted over a &M
channel with different per-subchannel power constrainth ss PLT
channels or multi-antenna systems. Two reduced-complexib-
optimal precoding matrix design techniques have been prede
These methods have a performance very close to the optiraal pr
coding matrix design algorithm. The complexity of this agpgrh
may vary with the characteristics of the video to encode. [ohe
complexity approach are particularly efficient when theropt pre-
coding matrix design approach is complex. Compared to ana-

1The precoding matrix design methods could be extended tw tyia  coding design, inspired by that of SoftCast, gains in terfBSNR
proper weighting of the distortion of the chrominance. range from 2.13 dB for class B videos to 11.55 dB for class Easd
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