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ABSTRACT

Linear video coding (LVC) is a promising alternative to classical
video coding when video has to be transmitted to wireless receivers
experiencing different and time-varying channel conditions. This pa-
per addresses the LVC channel precoding and decoding matrixde-
sign when the transmission channel consists of several sub-channels,
each with its own power constraint. Such constraints may be found,
e.g., in multi-antenna, DSL, or powerline transmission systems. In
a previous paper, it has been shown that this matrix design prob-
lem may be addressed by an adaptation to LVC of a multi-level
water-filling solution proposed for MIMO channels. Here, two sub-
optimal low-complexity multi-level water-filling techniques are pro-
posed, with different trade-offs between complexity and efficiency.
Extensive simulations show that the suboptimal solutions perform
very close to the optimal one, with a sensibly reduced complexity.

1. INTRODUCTION

Linear video coding (LVC) schemes such as SoftCast [1] and its vari-
ants [2–4] AAA rajouter d’autresZZZ have emerged as a promising
alternative to classical video coding [5–7] when video has to be
transmitted to wireless receivers experiencing differentand time-
varying channel conditions. In LVC, the video content is encoded
with linear-only operators (such as a full-frame DCT and linear
channel precoding). Using a linear MMSE estimator at receiver
side, users experience reconstructed video quality commensurate
with their channel quality [1]. Since the first paper on SoftCast [1],
several developments have been considered. The chunks shape
and size has been optimized in [8]. The coding gain of the pixel-
domain transform is analyzed in [9, 10]. Hybrid digital-analog
SoftCast-based architectures have been proposed in [2–4, 11, 12].
The characteristics of the transmission channel have also been better
taken into account. First papers considered a wideband AWGN
channel [13]. Fading channels and MIMO channels [14–18] have
then been considered, mainly under a total transmission power
constraint.

This paper addresses the LVC channel precoding and decod-
ing matrix design when the transmission channel consists ofseveral
sub-channels, each with its own power constraint. Such constraints
may be found,e.g., in multi-antenna, DSL, or powerline transmis-
sion systems [19]. In a previous paper [20], it has been shownthat
this matrix design problem may be addressed by an adaptationto
LVC of a multi-level water-filling solution [21] proposed for MIMO
channels [22,23]. Here, two suboptimal low-complexity multi-level
water-filling techniques are proposed, with different trade-offs be-
tween complexity and efficiency.

The rest of the paper is organized as follows. The precoding and
decoding matrix problem is introduced in Section 2. The two low-

complexity suboptimal algorithmsPower Allocation with Inferred
Split Position (PAISP) andPower Allocation with Local Power Ad-
justment (PALPA) are presented in Section 3. They are compared in
Section 4. Section 5 concludes the paper.

2. PROBLEM FORMULATION

In SoftCast, video frames are grouped into GoPs which are trans-
formed using a full-frame 3D-DCT. The resulting DCT coefficients
of similar variance are grouped intonCk chunks of sizenr × nc.
For each GoP, a sequence ofnr × nc vectors of dimensionnCk is
formed by selecting one coefficient per chunk for each vector, see
Figure 1. These chunk vectors are assumed to be realizationsof
nr × nc independent and identically distributed zero-mean Gaus-
sian random vectorsti, i = 1 . . . nr × nc with covariance matrix
Λ = diag(λ1 . . . λnCk). Λ is assumed to be diagonal, sinceti rep-
resents decorrelated 3D-DCT transformed pixels. In practice, the
non-zero mean values of chunks are transmitted as metadata.

Chunk 1 Chunk 2 Chunk Ck

rc

Fig. 1: Vectorization of the chunks

One considers a wireless channel consisting ofnSC parallel
AWGN subchannels with noise covariance matrixN = diag

(
σ2
1 , . . . , σ

2
nSC

)

and individual power constraintspj , j = 1, . . . , nSC. To transmit
the chunk vectorsti over such channel, one has to find the optimal
precoding matrixG and decoding matrixH to minimize the MSE
at receiver, while satisfying the per-subchannel power constraints,
which can be represented as

∀j ∈ {1, . . . , nSC},
(
GΛGT)

j,j
6 pj . (1)

In what follows, the indexi of ti is omitted, since all vectorsti have
similar distribution and undergo the same processing. The vectort
is multiplied by a precoding transform matrixG ∈ R

nSC×nCk. The
received vector isy = Gt+v, wherev is a vector of channel noise
with E (v) = 0 andE

(
vv

T
)
= N . To recovert, y is multiplied

by a decoding matrixH ∈ R
nCk×nSC to gett̂ = Hy.

Assuming thatt andv are independent, the decoding matrix
minimizing the mean square reconstruction error (MSE) is

H = ΛGT
(
GΛGT + Λ

)
−1

(2)



and the resulting MSE is

ε = tr

((
I +

(
GΛ

1
2

)T
N−1

(
GΛ

1
2

))−1

Λ

)
, (3)

see [24]. The precoding matrix design problem consists thenin min-
imizing (3) with the constraints (1).

3. PRECODING MATRIX DESIGN

We assume, without loss of generality, that the chunk indexing
is such thatλ1 > · · · > λnCk and that the subchannels are in-
dexed by decreasing SNR constraints:p1

σ2
1

>
p2
σ2
2

> . . . >
pnSC
σ2
nSC

.

One introduces the vector of channel SNR constraints ass =
(p1/σ

2
1 , . . . , pnSC/σ

2
n_SC)

T .
The optimal precoding matrix design has been considered in

[22, 24] and adapted to LVC in [20]. First, using water-filling, one
computes an optimal diagonal precoding matrixG̃ that satisfies the
total equivalent channel power constraintpeq =

∑nSC
i=1 pi/σ

2
i . Then

one searches an orthogonal matrixZ such thatZG̃ satisfies the per-
subchannel SNR constraints. Sufficient conditions on the vector of
eigenvalues̃m = (m̃1, . . . , m̃nSC)

T of G̃ΛG̃T are provided in [25,
9.B.2] to guarantee the existence of such matrixZ. The conditions
are expressed in Theorem 1.

Theorem 1. [25, 9.B.2] If the entries ofs andm̃, arranged in non-
increasing order̃m1 ≥ · · · ≥ m̃nSC, s1 ≥ · · · ≥ snSC, satisfy

k∑

i=1

si 6

k∑

i=1

m̃i (4)

for all k = 1, 2, . . . , nSC− 1 and

nSC∑

i=1

si =

nSC∑

i=1

m̃i (5)

then there exists a Hermitian matrix with diagonals and vector of
eigenvalues̃m.

If the sufficient conditions of Theorem 1 are satisfied ((5) isal-
ways satisfied wheñG is evaluated under total SNR constraint), sev-
eral techniques are available to obtainZ solving a Structured Hermi-
tian Inverse Eigenvalue [26–28]. Then the optimal precoding matrix
isG = N

1
2ZG̃. If the sufficient conditions are not satisfied, the op-

timal Multi-level Water-filling method proposed in [22, Section VI]
has been used in [20]. The vector of variancesλ and the vector of
SNR constraintss are split into subvectors on which the conditions
of Theorem 1 are tested again. If they are not satisfied, the subvec-
tors are split again recursively. At the end, the precoding matrix has
the following block diagonal structure

G = N
1
2 BlockDiag

(
G

′

1, . . . , G
′

i, . . . G
′

nSV

)
, (6)

wherenSV is the number of subvectors, andG
′

i = Z(i)G̃(i) is the
precoding matrix for each subvector where the conditions ofTheo-
rem 1 are satisfied.

In the optimal method, the split position in test corresponds to
the index that violates the conditions of Theorem 1 in the last re-
cursion. The complexity of each recursion (mainly due to theso-
lution of the water-filling problem) is proportional to the length of
each subvector being tested. To find all subvectors in the worst case

Algorithm 1 G′ = PAISP(λ, s)

1 µ = length(λ) % number of components ofλ

2
[
G̃, m̃

]
= OptTotalPower(λ, s)

3 [v, τ ] = CheckSuffCond (̃m,s)
4 if v is true % Conditions (4) and (5) satisfied
5 Z= SHIE(m̃,s)
6 G′ = ZG̃
7 else % Uses bisection method find split position
8 a = 1, b = τ , c′ = a+b

2
, δ = b− a

9 while (δ > 1)
10 c = c′

11 λ = (λ1 . . . λc), s = (s1 . . . sc)

12
[
G̃, m̃

]
= OptTotalPower(λ, s)

13 [v, τ ] = CheckSuffCond (̃m,s)
14 if v is true,a = c, c′ =

⌊
a+b
2

⌋
, δ = |c− c′|

15 elseb = τ, c′ =
⌊
a+b
2

⌋
, δ = |c− c′|

16 if c′ = 1, thenc = 1, δ = 0
17 end
18 λ(1) = (λ1 . . . λc), s(1) = (s1 . . . sc)
19 λ(2) = (λc+1 . . . λµ), s(2) = (sc+1 . . . sµ)
20 G′

(1) =PAISP(λ(1), s(1))
21 G′

(2) =PAISP(λ(2), s(2))
22 end

(λ ands are split intonSC components), the complexity isO
(
n3

SC

)

see [22, AppendixD].
Next, in Section 3.1, it is shown that by inferring the split posi-

tions, the computation cost may be significantly reduced with respect
to optimal algorithm. A second suboptimal power allocationscheme
is presented in Section 3.2. In the following we assume that three
algorithmsare available.OptTotalPower computes the optimal pre-
coding matrixG̃ and power allocatioñm under total SNR constraint.
CheckSuffCond verifies whether the sufficient conditions (4) are sat-
isfied. If this is not the case, it returns the largest indexk such that∑k

i=1 si >
∑k

i=1 m̃i. SHIE (Structured Hermitian Inverse Eigen-
value) computes the orthogonal transform matrixZ. Moreover, by a
proper chunk size selection, one assumes thatnCk = nSC.

3.1. Power Allocation with Inferred Split Position (PAISP)

PAISP takes initiallyλ = (λ1 . . . λnSC) and s = (s1 . . . snSC) of
lengthµ = nSC as inputs. At first the largest indexτ that violates
Conditions (4) is evaluated. Then PAISP searches the optimal split
position the interval[a, b] = [1, τ ] by dichotomy. First, the midpoint
c = a+b

2
is considered. If Conditions (4) are satisfied for(λ1 . . . λc)

and(s1 . . . sc), then PAISP updatesa = c; Else the largest indexτ
that violates Conditions (4) is evaluated and PAISP updatesb = τ.
These iterations are repeated until the difference betweentwo suc-
cessive midpoints is not larger than1, see Algorithm (1).

To evaluate the complexity of PAISP to find all subvectors. The
worst case is whenτ = µ − 1 at each recursion and whenλ is
split into nSC components at the end. In such case, there arenSC

recursions and the total complexity is proportional to
∑nSC

µ=1 µ and
hence isO

(
n2

SC

)
.

3.2. Power Allocation with Local Power Adjustment

The Power Allocation with Local Power Adjustment (PALPA)
is a recursive algorithm taking initiallyλ = (λ1 . . . λnSC) and
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Fig. 2: Initial (m̃(0)
i ) and updated (̃m(1)

i ) allocated powers when
∆(0) is small (left) and when∆(0) is large (right)

s = (s1 . . . snSC) of length µ = nSC as inputs. PALPA evalu-
ates first the precoding matrix with a total SNR constraint. The
resulting allocated power vector has entriesm̃

(0)
i , i = 1, . . . , nSC.

If the conditions of Theorem (1) are satisfied, the precodingma-
trix is then build. Otherwise, letτ be the largest index for which
Condition (4) is violated. Since

∑nSC
i=1 m̃

(0)
i =

∑nSC
i=1 si, one

may introduce∆(0), where∆(0) =
∑τ

i=1 si −
∑τ

i=1 m̃
(0)
i =∑nSC

i=τ+1 m̃
(0)
i −

∑nSC
i=τ+1 si, i.e., too much power has been allo-

cated to the lastnSC − τ components ofλ.

The main idea of PALPA is to correct the values ofm̃
(0)
i , i =

τ +1, . . . , nSC. One evaluates firstℓ = maxτ+16ℓ′6nSC ℓ
′ such that

for m̃(0)

ℓ′
−

∆(0)
−

∑nSC
j=ℓ′+1

m̃
(0)
j

ℓ′−τ
> 0. Then fori = τ + 1, . . . , nSC,

the updated allocated powers are

m̃
(1)
i =





m̃

(0)
i −

∆(0)
−

∑nSC
j=ℓ+1

m̃
(0)
j

ℓ−τ
if i 6 ℓ

0 otherwise.
(7)

This correction corresponds to an increase of the water level, see
Figure 2. It ensures that the source components with large variance
are still allocated a larger power [20,24,29].

Proposition 2. The power allocation adjustment performed by
PALPA using (7) is such that for k = τ + 1, . . . , nSC − 1,∑k

i=τ+1 m̃
(1)
i >

∑k

i=τ+1 si and
∑nSC

i=τ+1 m̃
(1)
i =

∑nSC
i=τ+1 si.

Then the corresponding part of the precoding matrix can be com-
puted.

Proof. Using (7), one has∆(0) =
∑nSC

i=τ+1

(
m̃

(0)
i − m̃

(1)
i

)
.

On the other hand, sinceτ is the largest index for which Con-
dition (4) is violated. One has∀k ∈ {τ + 1, . . . , nSC − 1},∑τ

i=1 m̃
(0)
i +

∑k

i=τ+1 m̃
(0)
i >

∑τ

i=1 si +
∑k

i=τ+1 si, and so

k∑

i=τ+1

m̃
(0)
i −

k∑

i=τ+1

si > ∆(0). (8)

Now,∀k ∈ {t+1, . . . , nSC−1},∆(0) =
∑nSC

i=τ+1

(
m̃

(0)
i − m̃

(1)
i

)
>

∑k

i=τ+1

(
m̃

(0)
i − m̃

(1)
i

)
. Thus from (8), one gets

∑k

i=τ+1 m̃
(0)
i −

∑k

i=τ+1 si >
∑k

i=τ+1

(
m̃

(0)
i − m̃

(1)
i

)
, therefore

∑k

i=τ+1 m̃
(1)
i >

∑k

i=τ+1 si. The proof of
∑nSC

i=τ+1 m̃
(1)
i =

∑nSC
i=τ+1 si follows the

same lines.
Then PALPA is called on the subvectorsλ = (λ1 . . . λτ ) and
s = (s1 . . . sτ ) of lengthµ = τ , see Algorithm 2.

To evaluate the complexity to find all subvectors with PALPA.
The worst case isτ = µ − 1 at each recursion. Therefore the total
complexity is proportional to

∑nSC
µ=1 µ (u is complexity of water-

filling in each recursion) and is againO
(
n2

SC

)
.

Algorithm 2 G′ = PALPA (λ, s)

1 µ = length(λ) % number of components ofλ

2
[
G̃, m̃

]
= OptTotalPower(λ, s)

3 [v, τ ]= CheckSuffCond(m̃, s)
4 if v is true % Conditions (4) and (5) satisfied
5 Z= SHIE(m̃,s)
6 G′ = ZG̃
7 else
8 ∆(2) =

∑µ

i=τ+1 m̃i −
∑µ

i=τ+1 si
9 λ(1) = (λ1 . . . λτ ), s(1) = (s1 . . . sτ )

10 m̃
(0)

(2)
= (m̃τ+1 . . . m̃µ), s(2) = (sτ+1 . . . sµ)

11 G′

(1) =PALPA(λ(1), s(1))

12 Usem̃(0)
(2) and∆(2) in (7), one gets̃m(1)

(2)

13 Z(2)= SHIE(m̃(1)
(2),s(2))

14 G′

(2) = Z(2)diag
(

sqrt
(
m̃

(1)
τ+1/λτ+1, . . . , m̃

(1)
µ /λµ

))

15 end
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Fig. 3: SNR as a function of the subchannel index for Channel 1
from the ETSI STF 477 PLT channel database

4. SIMULATION RESULTS

In the following simulations, one assumes that video has to be trans-
mitted over an in-home power line channel [19]. The spacing be-
tween subchannels isfSC = 24.414 kHz and the maximum num-
ber of subchannels that may be used for data transmission isηSC =
3217. Not all subchannels are allowed for data transmission. In
OFDM-based PLT systems like AV2, typically SNRs per subchan-
nel are available. A realization of the individual subchannel SNRs is
represented in Figure 3, which relates to a bad SISO link fromETSI
STF 477 database [30].

Since in SoftCast, analog QAM are used with root-raised-cosine
Nyquist filters withβr = 30% roll-off, one obtains a per-subchannel
transmission raterSC = 2fSC

1+βr
= 37.56 × 103 real-valued symbols

per second. The number of chunksvCk a subchannel can transmit for
the duration of a GoP is evaluated from the video parameters (frame
size, frame rate), the chunk size, and the GoP size (8 in our simula-
tions). For the typical values of the parameters consideredin these
simulations,vCk > 1, i.e., several chunks may be transmitted on the
same subchannel for the duration of a GoP. To apply the precoding
techniques, we partition thenCk chunks in groups ofvCk chunks of
similar variance. There are thusngCk = nCk/vCk groups of chunks.
This requires for each GoP to designvCk smaller precoding matrices
of sizeηSC × ngCk for ngCk chunks of same index in each groups
of chunks. In the simulations, the bestngCk subchannels are always
used for the precoding matrix design. IfngCk > ηSC, the lowest
variance chunks are discarded [1].

The video sequences of Classes B, C, D, E, and F used by the
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Fig. 4: Frame-by-frame PSNR for the optimal, PAISP, and SCS precoding matrix design techniques and the associated decoding matrix for
(a) Kimonol, (b) RaceHorses, (c) BasketballPass, (d) KristenAndSara, and (e) SlideShow.

Cl. Name
PSNR (dB)

SCS Opt.Alloc/

PAISP

PALPA Gain

B

Kimonol 42.79 47.57 47.56 4.78

BasketballDrive 38.83 39.54 39.53 0.71

BQ Terrace 34.83 35.86 35.85 1.03

Cactus 36.53 38.47 38.44 1.94

ParkScene 41.83 44.06 44.03 2.23

C

PartyScene 40.89 42.94 42.94 2.05

BQMall 41.24 44.91 44.91 3.67

BasketballDrill 44.96 47.32 47.31 2.36

RaceHorses 42.81 46.21 46.21 3.4

D

BQSquare 39.38 44.55 44.55 5.17

RaceHorses 43.89 49.03 49.03 5.14

BlowingBubbles 42.26 47.90 47.90 5.64

BasketballPass 45.03 49.55 49.55 4.52

E

FourPeople 40.74 47.13 47.13 6.39

Jonny 40.56 48.43 48.43 7.87

KristenAndSara 39.77 46.95 46.95 7.18

F SlideShow 35.28 46.83 46.80 11.55

Table 1: Simulation results with per-subchannel power constraints

MPEG committee for the standardization of HEVC [31] are consid-
ered in simulations (only the luminance component1). The chunk
size (nc × nr) is chosen as40 × 30 for Class B, E ,F;32 × 30 for
Class C and D. In the simulation, the subchannels are corrupted by
independent white Gaussian noise sequences with unit variance.

PAISP and PALPA are compared to the optimal precoding ma-
trix design method presented in Sect. 3 and to a Simple Chunk Scal-
ing (SCS) approach, where each cunk is simply scaled to matcheach
per-subchannel transmission power constraint. SCS can be consid-
ered as an adaptation of the allocation considered in the original
SoftCast. The chunk of largest variance is transmitted overthe sub-
channel with the best SNR, the chunk with the second largest vari-
ance over the second best subchannel,etc. To fit the per-subchannel
power constraints, thei-th chunk is multiplied bygSCS,i =

√
pi/λi,

i = 1 . . . nSC. The four power allocation methods are all able to
adjust the transmission power of chunks on each subchannel to have
subchannel SNR matching those described in Figure 3. The simu-
lation results are shown in terms of average PSNR of the received
sequences in Tab. 1. PAISP has almost the same performance asthe
optimal method. For PALPA, the PSNR gap to optimality is never
larger than 0.03 dB. In Fig. 4, the evolution of the PSNR of some

1The precoding matrix design methods could be extended to color by a
proper weighting of the distortion of the chrominance.

Class Name
Speed-Up

PAISP PALPA

B

Kimonol 8.6 13

BasketballDrive 6 14

BQ Terrace

Cactus 3.7 14

ParkScene 6 12.5

C

PartyScene 3.3 2.6

BasketballDrill 1.0 1.0

BQMall 4.5 4.5

RaceHorses 1.0 1.0

E

FourPeople 3.5 5

Jonny 5 7

KristenAndSara 5 5

F SlideShow 1.0 1.0

Table 2: Speed-up of PAISP and PALPA wrt optimal allocation.

videos as a function of the frame index is shown. Since PAISP and
PALPA have close PSNR performance, only the results of PAISPare
represented. All approaches clearly outperform the SCS.

The simulations are performed using MatlabR2014b on an
Intel(R)Xeon(R)CPU E5-1603 v3 @ 2.8GHz. Table 2 provides
the speed-up factor for the precoding matrix design of PAISPand
PALPA compared to the optimal method. For RaceHorses of class
C, SlideShow of Class F, the speed-up of the suboptimal algorithms
is close to one, since in most of the GoPs it is not necessary toper-
form vector splitting. For videos of Class D, there is no split within
all GoPs, therefore the three methods again perform similarly. But
for the video sequences of class B, class E, and the video BQMall of
class C, the speed-up is significant.

5. CONCLUSIONS

This paper addresses the precoding matrix design problem inthe
context of LVC, when the video has to be transmitted over a MIMO
channel with different per-subchannel power constraints such as PLT
channels or multi-antenna systems. Two reduced-complexity sub-
optimal precoding matrix design techniques have been presented.
These methods have a performance very close to the optimal pre-
coding matrix design algorithm. The complexity of this approach
may vary with the characteristics of the video to encode. Thelow-
complexity approach are particularly efficient when the optimal pre-
coding matrix design approach is complex. Compared to a naive pre-
coding design, inspired by that of SoftCast, gains in terms of PSNR
range from 2.13 dB for class B videos to 11.55 dB for class F videos.
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