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ABSTRACT

In multiview video representation, one of the most pop-
ular format is the so-called multiple view video plus depth.
This representation is made up ofN image sequences, each
accompanied by a sequence of depth maps, telling the dis-
tance of each represented pixel from the observing camera.
The depth maps are needed at the decoder side in order to
generate intermediate views and therefore to enrich the user
experience. This format is very flexible but also very demand-
ing, in terms of storage space or and transmission bandwidth.
Therefore, compression is needed.

At this end, one of the key steps is an efficient represen-
tation of depth maps. In this work we build over a proposed
method for multiple view video coding, based on dense dis-
parity estimation between views. This allows us to obtain a
compact and high-quality depth map representation. In partic-
ular we explore the complex relationship between estimation
and encoding parameters, showing that an optimal parame-
ter set exist, that allows a fine-tuning of the estimation phase
and an adaption of its results to the subsequent compression
phase. Experiments are encouraging, showing remarkable
gain over simple methods such as H.264/AVC simulcast, and
even some gain with respect to more sophisticated techniques
such as MVC.

Index Terms— Multiview video plus depth, depth map,
multiview video coding, disparity estimation

1. INTRODUCTION

One of the most popular representations of multiview video
and arguably the most adapted to free-viewpoint television[1]
is the so-called multiple-views-plus-depth (MVD) format [2,
3]. When MVD is used, for each view we dispose of a texture
video sequence and of a depth map sequence, representing,
for each temporal instant, the distance of the current pixel
from the point of observation. An example of MVD video is
shown in Fig. 1.
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MVD is extremely demanding in terms of storage space
and transmission bandwidth, therefore compression is manda-
tory in order to manage this representation. Several ap-
proaches exist for MVD compression [4]. A simple, first
one, is to independently compress each texture and depth se-
quence from each view. This approach is commonly referred
to as Simulcast, see Fig. 1(a). Simulcast has the advantage
of being simply implementable, backward compatible, and of
allowing to decode immediately a single view for 2D screens.
It has been chosen as reference in the Call for Proposal issued
by the MPEG committee for the standardization of MVD [5].
Of course, one expects that more sophisticated schemes, tak-
ing into account the redundancy between views and between
texture and depth, would achieve far better compression per-
formance than the multicast scheme (this is actually the ra-
tionale behind the CfP). For example, as shown in Fig. 1(b),
one can apply H.264/MVC [6] over texture sequences and
(separately) over depth maps. Since depth and texture have
very different content, no coding gain is expected by jointly
coding texture and depth with H.264/MVC. Nevertheless,
some redundancy between texture and depth does exist, and
this scheme does not exploit it. For example they partially
share movement and disparity information, and above all,
rate allocation between them should be jointly performed.
However the latter is a quite difficult issue, and one of the key
problems to be solved in order to achieve efficient coding [7].

In this paper we consider a MVD compression scheme
inspired by our previous work on multiview video (without
depth) [8]. We exploit dense disparity estimation to obtain
RD efficient prediction not only between textures (belonging
to different views) but also between depth maps. Moreover
we explore the relationship between the estimation parame-
ters and the compression ones. This study results in a coding
paradigm providing competitive performances with respectto
the state of the art.

The rest of the paper is organized as follows. Section 2 re-
calls the principles of the dense disparity estimation algorithm
we use in the proposed method. This is useful to give insight
about the relationships between estimation and compression
parameters. Then, the proposed scheme is shown in Section 3.
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Fig. 1. Example of multiple-view-plus-depth video.

In particular we describe the reference encoder originallypro-
posed in the case of multiview video, and then we show the
proposed changes needed to efficiently take into account the
depth information. The experimental results are reported in
Section 4 where we show that a simple relationship can be
inferred between the parameters of the dense estimation al-
gorithm and of the compression algorithm. Thereafter, we
provide the depth map coding performances and finally the
global RD results, compared with some reference scheme. Fi-
nally, Section 5 draws conclusions and ends the paper.

2. DENSE DISPARITY ESTIMATION

In this section we describe a method for dense (i.e.one vector
per pixel) disparity field estimation. Even though dense dis-
parity fields cannot be directly used for compression because
of their huge coding cost, we can use them to derive an R-D
efficient representation of the disparity field, taking advantage
of the global formulation of the disparity estimation problem.
In other word we are able to produce a disparity field that
standard approach would not take in consideration given their
local and causal approach to the estimation problem. We have
proved the effectiveness of this approach for multiple view
video coding (without depth) in a previous work [8]. In the
present paper we want to extend this concept to the MVD

case and moreover to explore the critical issue of parameter
tuning for the dense disparity estimation (DDE). At this end,
it is necessary to recall the main ideas of DDE, which is the
objective of this section.

Let Int be the rectified frame taken by then-th camera
at time t. Therefore the disparity vectors can only have a
the horizontal component, which we calld. Dense disparity
estimation has the target of finding the disparity fieldd(p) =
d(x, y) (that is the disparity vector for any pixel positionp =
(x, y)) which best matches pixelp in current frameInt in view
n with pixel p + d(p) in the reference frameImt in view m.
This is a typical example of inverse problem, which needs
suitable regularization to be solved. In the following, forthe
sake of simplicity, we will consider only the casem = n− 1.

At the basis of the estimation methods, there is the hy-
pothesis that the image intensity is roughly constant once one
has compensated for the disparity. As a consequence, a com-
mon method to estimated is to minimize a cost function such
as the sum of squared differences between the current image
and the one compensated by disparity.

d∗(·) = argmin
d∈Ω

∑

(x,y)∈P

[Int (x, y)− In−1
t (x+ d(x, y), y)]2

(1)

whereP is the picture support andΩ is the range of candi-
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Fig. 2. Reference MVD coding methods: (a) Simulcast; (b)
MVC of texture and depths.

date disparity fields. However this criterion is hardly if ever
useful, since any disparity field linking equally luminous pix-
els would make it equal to zero. In order to find a significant
solution, we have to inject into the criterion other constraints,
accounting for known characteristics of the solution (a priori
information). This is the regularization needed to solve the
problem.

However, before introducing regularization, we want to
simplify the criterion. If we assume that an initial coarse
estimated̄ of d is available (e.g. thanks to block-matching
method), and that the difference betweend̄ andd is small, the
warped image can be approximated as:

In−1
t (x+ d, y) '

In−1
t (x+ d̄, y) + (d− d̄)

∂

∂x
In−1
t (x+ d̄, y) (2)

This linearization allows to rewrite the criterionJ [d(·] as a

quadratic convex functional:

J [d(·)] =
∑

p∈P

[r(p)− L(p) d(p)]2 (3)

where

L(p) = ∂
∂x

In−1
t (x + d̄(p), y)

r(p) = Int (p)− In−1
t (x+ d̄(p), y) + d̄(p) L(p)

As pointed out before, the minimization ofJ is an ill-posed
problem, demanding for additional constraints, which reflect
thea priori knowledge about the disparity.

This problem can be solved in the context of the set theory.
We introduceM constraints. Them-th of them is represented
by a closed convex setSm in a Hilbert spaceH. We callS
the intersection of all theM setsSm. Then,S is the set of
candidate solutions [9],i.e. the set where we have to look for
the field minimizingJ :

d∗(·) = argmin
d∈

⋂
M

m=1
Sm

J(d) (4)

This formulation is useful, since the constraints can be de-
scribed as level sets of suitable continuous convex real func-
tions{fm}m∈{1,...,M}:

∀m ∈ {1, . . . ,M}, Sm = {d ∈ H | fm(d) ≤ δm} (5)

where(δm)1≤m≤M are real-valued parameters such thatS =
⋂M

m=1 Sm 6= ∅.
Now we shall define the constraints. We consider two

simple but effective constraints. The first one specifies the
range of values of the disparity field[dmin, dmax], and can be
expressed by the constraint setS1:

S1 = {d ∈ H | dmin ≤ d ≤ dmax} (6)

The second imposes the regularity of the disparity field,
limiting the amount of variability ofd. This can be achieved
by limiting the total variation of the disparity field. The total
variationtv(d) is defined as the sum overP of the norm of the
(discrete) spatial gradient ofd [10]. As a conclusion, the total-
variation based regularization constraint amounts to impose
an upper boundτ on tv:

S2 = {d ∈ H | tv(d) ≤ τ} (7)

The total variation limitτ depends on the characteristics
of the scene and of the camera configuration: therefore find-
ing an optimal value for it can be an hard task [11]. One of
the contribution of this work is to explore the relationshipbe-
tween this parameter and the quantization parameters of the
compressed. MVD sequence.

We introduce a last regularization term, which penalizes
solutions too much different from the initial one. This is ac-
counted for by a weightα. In conclusion, the criterion to
minimize becomes:

J(d) =
∑

p∈P

[r(p) − L(p) d(p)]2 + α||d− d̄||2 (8)
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Fig. 3. Disparity prediction: (left) block-based estimation,
(right) enhanced by a dense estimation.

In our implementation, described in [8], we used the efficient
constrained quadratic minimization technique developed in
[9, 12] which is adapted to problems with quadratic convex
objective functions.

3. PROPOSED METHOD

The proposed coding scheme for MVD is based on our previ-
ous work [8], on which we build in order to take into account
the depth maps.

3.1. Starting scheme: RD segmentation of dense disparity
fields

This encoder, described in [8], allows to use a dense disparity
field for efficiently encoding a multiple view video (without
depth) with a standard encoder. For the sake of simplicity,
the description and the figures will refer only to the stereo
case (i.e., two views). However the encoding schemes are
promptly extended to the case of more than two views.

The reference encoder workflow is the following. First,
a dense disparity field (DDF) is computed for the color se-
quence. This DDF is then segmented into 16×16 blocks,
corresponding to the H.264 macroblocks (MBs). Then, for
each MB we start from the 256 candidate vectors of the dense
field, and we have to chose one, in order to represent the cur-
rent block as it was an ordinaryINTERblock: we will encode
the chosen vector and the corresponding motion-compensated
residual. The representative vector is chosen with an RD cri-
terion, from a set made up by the average vector of the 256
candidates, the median (in the sense of the norm) vector, and
the 4 closest to the median vector. The difference between
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Fig. 4. Proposed MVD coding methods.

classical, block-based disparity compensation, and the pro-
posed one is depicted in Fig. 3.

This process is repeated for all the possible partition of an
H.264 macroblock. This means that for smooth disparity re-
gions the RD choice will tend to favor large partitions, while
for “active” regions (i.e. those where the disparity varies sig-
nificantly, like across object contours) small partitions will be
more likely. Therefore we end up with a RD-driven segmen-
tation of the disparity map, that allows to efficiently encode
the stereo pair.

3.2. Proposed scheme for MVD coding

The proposed scheme takes advantage of the dense dispar-
ity estimation algorithm described in Section 2 and of the
RD-driven segmentation-based multiview (RD-MV) coder
described in Section 3.1. This coder is firstly used to encode
the color sequences. In this case we set the values for the
parameters (α, τ , dmin and dmax using the results of our
previous work [8]. Then we use the same RD-MV coder
to represent the depth maps. However, in order to save bit-
rate taking advantage from the correlation between texture
and depth, the depths disparity is computed using color im-
ages. In this way, we do not need to send the dense disparity
map to the decoder, which instead can compute it from the
compressed color sequence, and on the other hand, we take
benefit from a dense disparity map, that is used to perform a
disparity-compensated coding of the depth. Then, the com-
pressed left depth map and the compressed residual of the
disparity-compensated right depth map are sent to the output.

One of the key steps of the implementation of this algo-
rithm is the choice of the DDE parameters for depths, in par-
ticular the amount of total variationτ . It is intuitive that they
depend on the quality of the compressed color sequence. In
particular, for high-quality color images, we expect that all
small details are represented, and therefore the corresponding
disparity field can have a higher total variation. On the con-
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trary, heavily quantized images are much smoother, and we
should allow a smaller variation of the disparity field. This
intuition is confirmed by the experiments, as shown in the
next section.

4. EXPERIMENTAL RESULTS

4.1. Tuning the total variation parameters

In a first set of experiments, we looked for the optimal value
of the total variation parameterτ . In particular, the intu-
ition suggests that the best value forτ should depend on the
quantization step of the color images used for the estimation.
Therefore we ran the following experiment. We considered
the multiview video sequencebreak dancerandballet, com-
pressed with QPs in the rangeQ = {31, 34, 37, 40}. For each
QP value, we ran the DDE algorithm using the compressed
images from several couples of views, using several values
of τ . Then we used the resulting dense field to compute a
disparity-compensated prediction of the depth map, and fi-
nally we compute the PSNR of this prediction with respect to
the actual depth map. The results are shown in Fig. 5, where
we report, for each QP, the PSNR as a function of the normal-
ized value ofτ (the normalization is computed with respect
to the number of pixels). In this graph, we also point out
the best value of normalizedτ , i.e., the one maximizing the
PSNR. We refer to this values asτ∗. We remark that these val-
ues are strongly correlated to the QP. We compute the sample
correlation coefficient obtaining:

r =
1

n− 1

n
∑

i=1

(

QPi −QP

σQP

)(

τ∗i − τ∗

στ∗

)

= −0.9987
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Fig. 7. RD compression performance of the proposed scheme
for depth maps. The references are the schemes in Fig. 1

where, as usual, the bar represents the (sample) mean andσ

represents the (sample) standard deviation. Finally we com-
puted the least square linear fitting of QP andτ∗. We found
the following regression equation:

τ∗ = −0.0101QP + 0.6587 (9)

In Fig. 6 we show at the same time the experimental points
and the least square linear fit. As expected, we obtained a
very good match, and so Eq. (9) can be used in the proposed
encoder in order to quickly find a good value forτ , at least in
the considered range of QP values.

4.2. Compression performance

In a second set of experiments, we evaluated the performance
of the disparity-compensated depth map coder, using the op-



timized values of total variation for the disparity field estima-
tion. We encoded the first depth map as an ordinary video se-
quence, while for the second one, we considered the disparity-
compensated residual. The disparity field rate was not take
into account since this field is available at the decoder sideas
well. The resulting RD performances are compare to those of
the reference schemes (Simulcast and MVC, see Fig. 1) and
shown in Fig. 7. We remark a non-negligible rate reduction
(computed using the Bjontegaard metric [13]) with respect to
the reference, estimated to 3% less than MVC and 17% less
than Simulcast over the test sequences.

Global compression performance were misurated as well.
Cumulating the gains obtained by the RD-segmentation
driven encoder on the texture and those of the presented
encoder for the depth maps, we register an average rate re-
duction of 11% with respect to an MVC-based scheme as the
one shown in Fig. 1(b).

5. CONCLUSIONS AND FUTURE WORK

Multiview video plus depth is a format for 3D and free view
point television which is gathering more and more attention,
due to its flexibility in representing arbitrary views of a given
scene. However, the MVD format is extremely demanding
in terms of storage space and transmission bandwidth, and so
compression is mandatory. In this paper we propose an algo-
rithm for MVD compression, based on dense disparity esti-
mation, and on the exploitation of the redundancy between
color and depth information. The experimental results re-
veal us how to tune the dense disparity estimation algorithm
in order to extract the disparity from compressed color im-
ages. Therefore we use disparity to perform efficient coding
of depth maps. Compression results are encouraging as well,
showing a 3% average rate reduction for the depth maps and
a global 11% rate reduction with respect to popular reference
methods.

Future works are intended to better exploit the depth-color
correlation, by further exploiting the color information into
the depth map encoder.
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