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ABSTRACT ——
Yoo
Adaptive wavelet transforms are a very useful tool for image T Y
and video compression. However, their intrinsic non-linea z

— split _P U

nature makes it difficult to estimate the effect that quamntiz
tion has on the reconstructed image, when this operation is
performed (as usual) in the transform domain. =® You
In a previous work, we showed how a simple, non-
perceptual metric such as mean squared error can be almost
perfectly estimated in the transform domain even for these
non-linear operators, provided that suitable weights aeslu
In this paper, we propose a perceptual distortion metric in-

ired by th tof sali Th tric shoul reserving the average of the input or reducing aliasings It
spiredby the concept of saliency map. 'ne new Metrc shou teresting to notice that, with a proper combination of lif

allowfto est|n|1_ate thte |m?ge qualll|ty n the tra;rnsf:_)rm domal ng steps (prediction and update) it is possible to enhance a
even fornon-lineartransiorms, allowing an efiective tese given transform by imposing new properties on the resulting

allocation for 'mage compression. decomposition (for example, more vanishing moments).
Our experiments confirm that the proposed approach can . . .
) . . . LS are very flexible while preserving the perfect recon-
be profitably used to drive a resource allocation algorithm

such that the perceptual quality of the decoded image is ims_trugtion property, and this allows t(.) replace_ linear fiitby
proved. nonImear ones. .For example, LS with adaptlv_e updgte [2] or
adaptive prediction [3, 4] have been proposed in the liteeat
with the target of avoiding oversmoothing of object congur
1. INTRODUCTION and at the same time of exploiting the correlation of homoge-
neous regions by using long filters on them. The adaptivity
Wavelet transform (WT) is a very useful tool for image pro-makes it possible to use different filters over differenttpar
cessing and compression. In particular, the lifting schemef image. As a consequence, the resulting transform can be
(LS) implementation of WT was originally introduced by strongly non-isometric. This is a major problem for compres
Sweldens [1] to design wavelets on complex geometrical susion, since all most successful techniques rely on the disto
faces, but at the same time it offers a simple way to build ugion estimation in the transform domain, either expliclike
both classic wavelet transforms and new ones. in EBCOT [5], or implicitly, like in the zero-tree based algo
The elements composing the lifting scheme are shown ifithms (EZW, SPIHT [6, 7]. Therefore, in order to efficiently
Fig. 1. We callz the input signal, ang,; the wavelet sub- use the adaptive lifting scheme for image compression, we
bands. In particular, the first index determines the decempdieed to estimate correctly the distortion from the tramsfor
sition level ¢ = 0 being the first one), and the second indexcoefficients. Usevitch showed that the energy of an uncor-
discriminates the channel & 0 for the low-pass or approx- related signal (such as the quantization noise is suppased t
imation signal,j = 1 for the high pass or detail signal). The be) can be estimated for generic linear wavelet filter banks
input signalz is split into its even and odd samples, respec{8]. We extended this approach to adaptive update LS (AULS)
tively called the approximation and the detail signal. Then[9], and to adaptive prediction LS (APLS) [10] (in particula
a prediction operatoP is used in order to predict the odd those inspired by the paper by Claypoeleal. [3]), obtain-
samples of: from a linear combination of even samples. Theing satisfying results in term of distortion estimation asfd
prediction is removed from the odd samples in order to refate-distortion (RD) performance improvement.
duce their correlation with the even ones. Finally for thedth When non-isometric linear analysis is used, Usevitch [8]
block, the update operator U is chosen in such a way that threhowed that the MSE in the original domdiris related to the
approximation signajo, satisfies certain constraints, such asMSE’s D;; of the wavelet subbandg; by the linear relation

Fig. 1. Lifting scheme with a single lifting stage



D = Zij w;; D;ij. The weightw;; is computed as norm of of undecimated wavelet transform:af The contrast saliency
the reconstruction polyphase matrix columns for subhgnd  map is defined as:

However APLSs (as well as AULSs) are nonlinear sys-
tems, therefore no polyphase representation of them exist. a(n,m) = T[Co(n,m)] - W' (n, m) (4)
Our contribution in previous papers [9, 10] was to extended
this approach to adaptive LS, and to show how to comput¥nere
the weightsw;;. The errorD is still obtained as a weighted Cr if Cy < O
sum of the subband errors, but now the weights depend on the T[Co] = {
input image, since the transform itself depends on it. In-con
clusion the proposed approach shows how to compute, in the
transform domain, a metric which estimates the quantimatio Co(n,m) = V2
noise MSE. This objective, non-perceptual distortion imetr
is then expressed as: \/|WHH(7% m)|” + [WHE(n, m)|* 4+ [WHH (n, m) |

. WZLL(n,m)

D1 = Zwi-jdij (1) The parameter€'r, Cy, € can be assigned according to
* the observations made in the paper [12]. This map does not
whered; is the MSE in the subbarig: take ipto acqount_ temporal effects in a.video, and could be
used if only fixed images are to be considered. However, one
can make up for it by adding a further contribution accoumtin
for global activity and based on motion vector norms.
In conclusion, we end up with a single masking function
a which is higher where the observer is less sensible to grrors
2. PERCEPTUAL QUALITY EVALUATION such that we can uge= 1/« in Eq. (3).
The problem is that this distortion metric should be com-
Even though in our previous work the MSE estimation wasputed in the spatial domain, which is a quite large impairimen
quite reliable, we did not take into account the perceptuajor compression algorithms, as already noted in the first sec
quality of the compressed image. Actually, we provided justion.
a tool for estimating the MSE between two images in the
wavelet domain, which was not possible before for non-linea
(i.e. adaptive) wavelet transforms. Now, it is well known that

MSE is not satisfactory for perceptual quality evaluatim.  po<ad on the previous work [9, 10] and inspired on the per-
this work we propose a method for estimating the perceptugleny o metrics used in [11, 12], we propose a new metric
quality of an image compressed with an adaptive LS (withyhich would allow to evaluate the perceptual effect of quan-
particular focus on APLS since they have by far the best petg, a1ion (and actually of any other degradation) perforrimed
formance). We make use of saliency maps in order to evalyyg transformed domain. In other words, we want to make
ate the different contributions of wavelet coefficienteafing possible to evaluate the perceptual quality of a compess
different areas of the image; moreover we use the weights Prmage directly from its transformed coefficients, wheap-
posed_in our previous works [10] in order to correctly COM-4,a and highly non-linear transforms are used.
pare dlfferer?t S“F’be}”ds- . . The proposed metric is based on subband energy weight-
We take inspiration from the quality metrics based on thgng (10 make it possible to use adaptive filters) and on the
saliency of specific areas in an image or a video.ibe the  perceptual saliency described in the previous section. The
originalimage z the distorted (or compressed) one, andv \yejghting allows to compare wavelet subbands having differ
the spatial coordinates for pixels. The perceptual disIois ot orientations and resolutions; the spatial maskingvalio

€
Cr (CC—A"I) otherwise

dij = i (n,m) = s (n,m)] . 2)

n,m

3. PROPOSED METRIC

a weigthed sum of errors: evaluate the impact of each WT coefficient according to the
spatial region it will affect in the reconstructed image.w4o
Dy = Z p(n,m) [z(n,m) — &(n,m)]? (3)  ever, since the different subbands have different resuisti

n,m the maska must be adapted to it. To this end, we define

the mask valuey;(n, m) at resolution levef as the average

yvhereu IS a swtablg saliency map. For example, in [1:]?]’ Lo mask values in the positions associated to the coefficient
is proposed to take into account three phenomena: the |magé% m):

contrast (on a frame-by-frame basis), the global activitgt a

the local activity (on a temporal basis). The image contrast 221 2mti_1

mask, inspired on the work by Kutter and Winkler [12] uses o;(n,m) = i Z Z a(k, 0) (5)
a non-decimated WT of the image. Li&t"" be the LL band S e



Now we can define the distortion evaluation in the trans- Image APPIM T ASSIM
form domain. The new metric is similar to the one in Eq. (1): barbara 4.750 | 0.692
baboon 6.748 | 1.835

Dy = widy; (6) bottle 2.277 | 0.043

ij cameramar 5.459 | 0.095

] ] ] . couple 4.309 | 0.141
since the weights (computed as defined in [9, 10]) are nec- crowd 3.264 | 0.048
essary to compare the distortion in different subbands. The einst 5443 | 0.111
innovation stands in the terdjj, defined as follows: house 2697 | 0.009
lena 3.109 | 0.194

dij =Y pi(n,m) [yij(n,m) — G (n,m)]* (7) man 4613 | 0.235

n,m plane 2.835 | 0.174

. C o ) spring 3.259 | 0.298
This equation is similar to the perceptual metric in Eq. (3); truck 5398 | 0.233

however here we usg; = 1/«;. Inits turn,«; is defined
in Eq. (5), and any saliency mask can be used in principle,

even though in a first moment we propose the one suggested Table 1. Average SSIM gains, percent values.
in [11]. ’

womanl 3.858 | 0.184

4. EXPERIMENTAL RESULTS FinaIIy, we computed the difference in PSNR and SSIM (in-
dicated withAPSNRand ASSIM) petween techniques 1) and

The proposed metric can be used to compare the perceptifland between 2) and 3). The first set of differences mea-
quality of images, so one can easily conceive a battery tf tessures the impact of correct subband weighting from an objec-
devoted to inspect the correlation between the proposed mdive (A7) and subjective4 ™) with respect to classical
ric and a subjective measure. coding. The second set of measures indicates the objective
However we introduced the metric in Eq. (6) in order (A5°"®) and subjective455™) impact of saliency maps.
to improve resource allocation for image and video coding. Analytical results are shown in Tables 1 and 2. In the
Therefore, a more significant set of experiments would confirst one, we show the quantities}>™and A35™. Looking
sistin using Eq. (6) to drive any resource allocation akipon, ~ at the AFS™ column, we see that the correct weighting of
be it a simple uniform quantization of WT coefficients (the the transform subband has a beneficial impact over subgectiv
resource allocation would decide the quantization step foduality, allowing to improve the SSIM up @7%. A further
each subband) or more efficient techniques such as EBCOTImprovement, which is smaller but not negligible, is poksib
A first set of experiments is conducted as follows: for awhen the saliency information is used, since the valueseof th
given image, the saliency mapis computed as specified in A35™ column are always positive. The performance gain of
the previous Section. Then the image is transformed using thPur contribution can globally be assessed as the sum of the
adaptive wavelet transform proposed by Claypoole. The wiévo deltas.
considered three methods to allocate coding resourcesto co The second tables shows us that correct weights do always
efficients coding blocks: a traditional method based on-coefimprove the image PSNR. This is exactly what we expected,
ficient variances; a weighted method using MSE-minimizingsince this weighting was conceived to improve the objective
weights proposed in [10], and a perceptual method using thguality of the image. We also notice that taking into account
weigths and the average value of the saliency map in the Ialiency does not always improve the PSNRhis result is
cations corresponding to the code block. not surprising, since it is known that PSNR is not perfectly
Then, the image was coded by simple uniform quantizacorrelated to subjective quality.
tion and entropic coding, using the rates which in turn take We conclude that the proposed metric, used in the trans-

into account: formed domain, allows to improve the SSIM of decoded im-
. ages, simply by altering the coding resource allocation be-
1. only the variances; tween coding blocks. This is obtained in spite of the occa-

sional reduction of PSNR.
We also report some more detailed results for a couple of
3. the variances, the normalizing weights and the saliencinages. In Fig. 2 we show the SSIM as a function of the cod-
map.

2. variances and the normalizing weights;

1f the quantization noise was a perfectly uncorrelated eamghrocess,

: : e expected value of PSNR obtained with the weights woulldger than
For each technlque, all the Images were coded at several Cogliny other. However the facts that the quantization noisetisvhite and that

ing r?‘tes’ ranging from 0.1 tq 2 bpp. Then we evaluated thge can only compute the average PSNR and not its expectee, vahkes it
quality of the reconstructed image using PSNR and SSIMpossible for some positiva §SNR's to appear.



Image APSNE T-APSNR
barbara 4.265 | 0.222 25
baboon 3.474 | 0.126
bottle 4567 | -0.182
cameramar| 3.810 | -0.186 2r
couple 3.237 | -0.105
crowd 2.356 | 0.033 15l
einst 4.180 | 0.001 z
house 4.179 | 0.068 =
lena 3.583 | -0.103 T
man 3.115 | 0.028
plane 2.995 | -0.037
spring 3.187 | 0.080 0.5¢
truck 2.649 | 0.058
womanl 3.168 | 0.071 0 ‘ ‘ ‘ ‘
0 0.5 1 15 2 25
Table 2. Average PSNR gains, in dB. rate ~ bpp
) Fig. 3. SSIM difference\55™for the image “baboon”
0.9F the saliency map have been taken into account. This explains
the poor visual and objective (PSNR) quality of the decoded
osh image. In the second image, relative subband importance has
been take into account, in order to maximise the PSNR. This
s results in an improved visual quality with respect to the-non
@ 0.7 weighted case. However, the best perceptual quality (mea-
sured by SSIM) appears to be in the third image, where, at the
0.6F cost of a very small loss in PSNR, we have an improved SSIM
(ASS™= 2.3 %) and we are able to keep some fine details the
sl , S rotweighiedl we would loose with the MSE-oriented technique. For ex-
K ——weighted ample, we can remark that the nose contours are sharper, and
A P - ¢ - perceptual that some detail (like the baboon’s hairs in the highlighted
04,15 1 15 > o5  box) are kept only when using the perceptual approach.
rate — bpp

5. CONCLUSIONSAND FUTURE WORK
Fig. 2. SSIM for the image “baboon” at several coding rates

In this work we proposed a visual quality metric to be used

when coding images with non iso-metric, adaptive wavelet
ing rate for the three considered techniques and for the tegiansforms. This metric is based on a weighted average of
image “baboon”. We see that the improvement with respeghe transform-domain quantized error and then can be used
to the basic technique (red curve) is consistent for all e ¢ to drive a resource allocation algorithm without a decoding
ing rates. Moreover, in Fig. 3 we show the*"for this  |oop.
image (using interpolated values for computing the SSIM dif  The metric takes into account two aspects: the different
ference). We observe that SSIM improvements are relevagjeights of the transform subbands (due to the non-isometric
above all at the medium COding rates. It is worth nothing tha{ransform) and the visual Sa"ency of different image loca-
for coding rates below 0.5 bpp the quality of the decoded imtjons. Any saliency map can be used to perform this task,
age is not Satisfactory, whatever the COding teChniqUeriS. Iand in this pre”minary work we re|y on the map proposed in
Fig. 4 we report the SSIM behavior for another test imagegtate-of-the-art papers [11, 12].
“barbara”. Similar conclusions (with respect to the pressio Using this metric results in an improved quality of the de-
case) can be drawn. coded images. This is proved by measuring the SSIM and

Finally, in Fig. 5, 6, and 7 we show the decoded “baboon’by direct visual inspection of images. We provide some de-

images for the three techniques. The coding rates are approzoded images to support our conclusion. In conclusion, in
imately the same (0.7 bits per pixel), but the visual qualitythis paper we have shown that a judicious rate allocation is
are far different. In the first image, neither the weights nomecessary when one wants to compress images with adaptive,
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Fig. 4. SSIM for the image “barbara” at several coding rates

Fig. 6. Decoded image, weights, Rate 0.72bpp PSNR 25.88
dB SSIM 0.750

Fig. 5. Decoded image, no weighting, Rate 0.71bpp PSNR
22.53 dB SSIM 0.656

. . . .Fig. 7. Decoded image, perceptual coding, Rate 0.71 PSNR
non-linear and non-isometric transforms such as the agapti 25 85 SSIM 0.773

lifting schemes. We also propose a technique for perform-
ing a distortion analysis (be it objective or subjective)ieth
improves the quality of the decoded image. 6. REFERENCES
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