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ABSTRACT

Adaptive wavelet transforms are a very useful tool for image
and video compression. However, their intrinsic non-linear
nature makes it difficult to estimate the effect that quantiza-
tion has on the reconstructed image, when this operation is
performed (as usual) in the transform domain.

In a previous work, we showed how a simple, non-
perceptual metric such as mean squared error can be almost
perfectly estimated in the transform domain even for these
non-linear operators, provided that suitable weights are used.
In this paper, we propose a perceptual distortion metric in-
spired by the concept of saliency map. The new metric should
allow to estimate the image quality in the transform domain
even for non-linear transforms, allowing an effective resource
allocation for image compression.

Our experiments confirm that the proposed approach can
be profitably used to drive a resource allocation algorithm
such that the perceptual quality of the decoded image is im-
proved.

1. INTRODUCTION

Wavelet transform (WT) is a very useful tool for image pro-
cessing and compression. In particular, the lifting scheme
(LS) implementation of WT was originally introduced by
Sweldens [1] to design wavelets on complex geometrical sur-
faces, but at the same time it offers a simple way to build up
both classic wavelet transforms and new ones.

The elements composing the lifting scheme are shown in
Fig. 1. We callx the input signal, andyij the wavelet sub-
bands. In particular, the first index determines the decompo-
sition level (i = 0 being the first one), and the second index
discriminates the channel (j = 0 for the low-pass or approx-
imation signal,j = 1 for the high pass or detail signal). The
input signalx is split into its even and odd samples, respec-
tively called the approximation and the detail signal. Then,
a prediction operatorP is used in order to predict the odd
samples ofx from a linear combination of even samples. The
prediction is removed from the odd samples in order to re-
duce their correlation with the even ones. Finally for the third
block, the update operator U is chosen in such a way that the
approximation signaly00 satisfies certain constraints, such as
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Fig. 1. Lifting scheme with a single lifting stage

preserving the average of the input or reducing aliasing. Itis
interesting to notice that, with a proper combination of lift-
ing steps (prediction and update) it is possible to enhance a
given transform by imposing new properties on the resulting
decomposition (for example, more vanishing moments).

LS are very flexible while preserving the perfect recon-
struction property, and this allows to replace linear filters by
nonlinear ones. For example, LS with adaptive update [2] or
adaptive prediction [3, 4] have been proposed in the literature,
with the target of avoiding oversmoothing of object contours,
and at the same time of exploiting the correlation of homoge-
neous regions by using long filters on them. The adaptivity
makes it possible to use different filters over different parts
of image. As a consequence, the resulting transform can be
strongly non-isometric. This is a major problem for compres-
sion, since all most successful techniques rely on the distor-
tion estimation in the transform domain, either explicitlylike
in EBCOT [5], or implicitly, like in the zero-tree based algo-
rithms (EZW, SPIHT [6, 7]. Therefore, in order to efficiently
use the adaptive lifting scheme for image compression, we
need to estimate correctly the distortion from the transform
coefficients. Usevitch showed that the energy of an uncor-
related signal (such as the quantization noise is supposed to
be) can be estimated for generic linear wavelet filter banks
[8]. We extended this approach to adaptive update LS (AULS)
[9], and to adaptive prediction LS (APLS) [10] (in particular
those inspired by the paper by Claypooleet al. [3]), obtain-
ing satisfying results in term of distortion estimation andof
rate-distortion (RD) performance improvement.

When non-isometric linear analysis is used, Usevitch [8]
showed that the MSE in the original domainD is related to the
MSE’sDij of the wavelet subbandsyij by the linear relation



D =
∑

ij wijDij . The weightwij is computed as norm of
the reconstruction polyphase matrix columns for subbandyij .

However APLSs (as well as AULSs) are nonlinear sys-
tems, therefore no polyphase representation of them exist.
Our contribution in previous papers [9, 10] was to extended
this approach to adaptive LS, and to show how to compute
the weightswij . The errorD is still obtained as a weighted
sum of the subband errors, but now the weights depend on the
input image, since the transform itself depends on it. In con-
clusion the proposed approach shows how to compute, in the
transform domain, a metric which estimates the quantization
noise MSE. This objective, non-perceptual distortion metric
is then expressed as:

D1 =
∑

ij

wijdij (1)

wheredij is the MSE in the subbandij:

dij =
∑

n,m

[yij(n, m) − ŷij(n, m)]2 . (2)

2. PERCEPTUAL QUALITY EVALUATION

Even though in our previous work the MSE estimation was
quite reliable, we did not take into account the perceptual
quality of the compressed image. Actually, we provided just
a tool for estimating the MSE between two images in the
wavelet domain, which was not possible before for non-linear
(i.e.adaptive) wavelet transforms. Now, it is well known that
MSE is not satisfactory for perceptual quality evaluation.In
this work we propose a method for estimating the perceptual
quality of an image compressed with an adaptive LS (with
particular focus on APLS since they have by far the best per-
formance). We make use of saliency maps in order to evalu-
ate the different contributions of wavelet coefficients affecting
different areas of the image; moreover we use the weights pro-
posed in our previous works [10] in order to correctly com-
pare different subbands.

We take inspiration from the quality metrics based on the
saliency of specific areas in an image or a video. Letx be the
original image,̂x the distorted (or compressed) one, andn, m
the spatial coordinates for pixels. The perceptual distortion is
a weigthed sum of errors:

D2 =
∑

n,m

µ(n, m) [x(n, m) − x̂(n, m)]
p (3)

whereµ is a suitable saliency map. For example, in [11], it
is proposed to take into account three phenomena: the image
contrast (on a frame-by-frame basis), the global activity and
the local activity (on a temporal basis). The image contrast
mask, inspired on the work by Kutter and Winkler [12] uses
a non-decimated WT of the image. LetWLL be the LL band

of undecimated wavelet transform ofx. The contrast saliency
map is defined as:

α(n, m) = T [C0(n, m)] · WLL(n, m) (4)

where

T [C0] =

{

CT if C0 < CM

CT

(

C0

CM

)ǫ

otherwise

C0(n, m) =
√

2·

·

√

|WHH(n, m)|2 + |WHL(n, m)|2 + |WLH(n, m)|2

WLL(n, m)

The parametersCT , CM , ǫ can be assigned according to
the observations made in the paper [12]. This map does not
take into account temporal effects in a video, and could be
used if only fixed images are to be considered. However, one
can make up for it by adding a further contribution accounting
for global activity and based on motion vector norms.

In conclusion, we end up with a single masking function
α which is higher where the observer is less sensible to errors,
such that we can useµ = 1/α in Eq. (3).

The problem is that this distortion metric should be com-
puted in the spatial domain, which is a quite large impairment
for compression algorithms, as already noted in the first sec-
tion.

3. PROPOSED METRIC

Based on the previous work [9, 10] and inspired on the per-
ceptual metrics used in [11, 12], we propose a new metric
which would allow to evaluate the perceptual effect of quan-
tization (and actually of any other degradation) performedin
the transformed domain. In other words, we want to make
it possible to evaluate the perceptual quality of a compressed
image directly from its transformed coefficients, whenadap-
tiveand highly non-linear transforms are used.

The proposed metric is based on subband energy weight-
ing (to make it possible to use adaptive filters) and on the
perceptual saliency described in the previous section. The
weighting allows to compare wavelet subbands having differ-
ent orientations and resolutions; the spatial masking allows to
evaluate the impact of each WT coefficient according to the
spatial region it will affect in the reconstructed image. How-
ever, since the different subbands have different resolutions,
the maskα must be adapted to it. To this end, we define
the mask valueαi(n, m) at resolution leveli as the average
of mask values in the positions associated to the coefficient
(n, m):

αi(n, m) =
1

4i

2
in+2

i
−1

∑

k=2in

2
im+2

i
−1

∑

ℓ=2im

α(k, ℓ) (5)



Now we can define the distortion evaluation in the trans-
form domain. The new metric is similar to the one in Eq. (1):

D3 =
∑

ij

wijd
′

ij (6)

since the weights (computed as defined in [9, 10]) are nec-
essary to compare the distortion in different subbands. The
innovation stands in the termd′ij , defined as follows:

dij =
∑

n,m

µi(n, m) [yij(n, m) − ŷij(n, m)]2 (7)

This equation is similar to the perceptual metric in Eq. (3);
however here we useµi = 1/αi. In its turn,αi is defined
in Eq. (5), and any saliency mask can be used in principle,
even though in a first moment we propose the one suggested
in [11].

4. EXPERIMENTAL RESULTS

The proposed metric can be used to compare the perceptual
quality of images, so one can easily conceive a battery of tests
devoted to inspect the correlation between the proposed met-
ric and a subjective measure.

However we introduced the metric in Eq. (6) in order
to improve resource allocation for image and video coding.
Therefore, a more significant set of experiments would con-
sist in using Eq. (6) to drive any resource allocation algorithm,
be it a simple uniform quantization of WT coefficients (the
resource allocation would decide the quantization step for
each subband) or more efficient techniques such as EBCOT.

A first set of experiments is conducted as follows: for a
given image, the saliency mapµ is computed as specified in
the previous Section. Then the image is transformed using the
adaptive wavelet transform proposed by Claypoole. The we
considered three methods to allocate coding resources to co-
efficients coding blocks: a traditional method based on coef-
ficient variances; a weighted method using MSE-minimizing
weights proposed in [10], and a perceptual method using the
weigths and the average value of the saliency map in the lo-
cations corresponding to the code block.

Then, the image was coded by simple uniform quantiza-
tion and entropic coding, using the rates which in turn take
into account:

1. only the variances;

2. variances and the normalizing weights;

3. the variances, the normalizing weights and the saliency
map.

For each technique, all the images were coded at several cod-
ing rates, ranging from 0.1 to 2 bpp. Then we evaluated the
quality of the reconstructed image using PSNR and SSIM.

Image ∆SSIM
1 ∆SSIM

2

barbara 4.750 0.692
baboon 6.748 1.835
bottle 2.277 0.043
cameraman 5.459 0.095
couple 4.309 0.141
crowd 3.264 0.048
einst 5.443 0.111
house 2.697 0.009
lena 3.109 0.194
man 4.613 0.235
plane 2.835 0.174
spring 3.259 0.298
truck 2.398 0.233
woman1 3.858 0.184

Table 1. Average SSIM gains, percent values.

Finally, we computed the difference in PSNR and SSIM (in-
dicated with∆PSNRand∆SSIM) between techniques 1) and
2) and between 2) and 3). The first set of differences mea-
sures the impact of correct subband weighting from an objec-
tive (∆PSNR

1 ) and subjective (∆SSIM
1 ) with respect to classical

coding. The second set of measures indicates the objective
(∆PSNR

2 ) and subjective (∆SSIM
2 ) impact of saliency maps.

Analytical results are shown in Tables 1 and 2. In the
first one, we show the quantities∆SSIM

1 and∆SSIM
2 . Looking

at the∆SSIM
1 column, we see that the correct weighting of

the transform subband has a beneficial impact over subjective
quality, allowing to improve the SSIM up to6.7%. A further
improvement, which is smaller but not negligible, is possible
when the saliency information is used, since the values of the
∆SSIM

2 column are always positive. The performance gain of
our contribution can globally be assessed as the sum of the
two deltas.

The second tables shows us that correct weights do always
improve the image PSNR. This is exactly what we expected,
since this weighting was conceived to improve the objective
quality of the image. We also notice that taking into account
saliency does not always improve the PSNR1. This result is
not surprising, since it is known that PSNR is not perfectly
correlated to subjective quality.

We conclude that the proposed metric, used in the trans-
formed domain, allows to improve the SSIM of decoded im-
ages, simply by altering the coding resource allocation be-
tween coding blocks. This is obtained in spite of the occa-
sional reduction of PSNR.

We also report some more detailed results for a couple of
images. In Fig. 2 we show the SSIM as a function of the cod-

1If the quantization noise was a perfectly uncorrelated random process,
the expected value of PSNR obtained with the weights would belarger than
any other. However the facts that the quantization noise is not white and that
we can only compute the average PSNR and not its expected value, makes it
possible for some positive∆PSNR

2
’s to appear.



Image ∆PSNR
1 ∆PSNR

2

barbara 4.265 0.222
baboon 3.474 0.126
bottle 4.567 -0.182
cameraman 3.810 -0.186
couple 3.237 -0.105
crowd 2.356 0.033
einst 4.180 0.001
house 4.179 0.068
lena 3.583 -0.103
man 3.115 0.028
plane 2.995 -0.037
spring 3.187 0.080
truck 2.649 0.058
woman1 3.168 0.071

Table 2. Average PSNR gains, in dB.
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Fig. 2. SSIM for the image “baboon” at several coding rates

ing rate for the three considered techniques and for the test
image “baboon”. We see that the improvement with respect
to the basic technique (red curve) is consistent for all the cod-
ing rates. Moreover, in Fig. 3 we show the∆SSIM

2 for this
image (using interpolated values for computing the SSIM dif-
ference). We observe that SSIM improvements are relevant
above all at the medium coding rates. It is worth nothing that
for coding rates below 0.5 bpp the quality of the decoded im-
age is not satisfactory, whatever the coding technique is. In
Fig. 4 we report the SSIM behavior for another test image,
“barbara”. Similar conclusions (with respect to the previous
case) can be drawn.

Finally, in Fig. 5, 6, and 7 we show the decoded “baboon”
images for the three techniques. The coding rates are approx-
imately the same (0.7 bits per pixel), but the visual quality
are far different. In the first image, neither the weights nor
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Fig. 3. SSIM differences∆SSIM
2 for the image “baboon”

the saliency map have been taken into account. This explains
the poor visual and objective (PSNR) quality of the decoded
image. In the second image, relative subband importance has
been take into account, in order to maximise the PSNR. This
results in an improved visual quality with respect to the non-
weighted case. However, the best perceptual quality (mea-
sured by SSIM) appears to be in the third image, where, at the
cost of a very small loss in PSNR, we have an improved SSIM
(∆SSIM

2 = 2.3 %) and we are able to keep some fine details the
we would loose with the MSE-oriented technique. For ex-
ample, we can remark that the nose contours are sharper, and
that some detail (like the baboon’s hairs in the highlighted
box) are kept only when using the perceptual approach.

5. CONCLUSIONS AND FUTURE WORK

In this work we proposed a visual quality metric to be used
when coding images with non iso-metric, adaptive wavelet
transforms. This metric is based on a weighted average of
the transform-domain quantized error and then can be used
to drive a resource allocation algorithm without a decoding
loop.

The metric takes into account two aspects: the different
weights of the transform subbands (due to the non-isometric
transform) and the visual saliency of different image loca-
tions. Any saliency map can be used to perform this task,
and in this preliminary work we rely on the map proposed in
state-of-the-art papers [11, 12].

Using this metric results in an improved quality of the de-
coded images. This is proved by measuring the SSIM and
by direct visual inspection of images. We provide some de-
coded images to support our conclusion. In conclusion, in
this paper we have shown that a judicious rate allocation is
necessary when one wants to compress images with adaptive,
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Fig. 4. SSIM for the image “barbara” at several coding rates

Fig. 5. Decoded image, no weighting, Rate 0.71bpp PSNR
22.53 dB SSIM 0.656

non-linear and non-isometric transforms such as the adaptive
lifting schemes. We also propose a technique for perform-
ing a distortion analysis (be it objective or subjective) which
improves the quality of the decoded image.

Being the result of an exploratory work, many improve-
ments can be expected for the proposed method. We intend
to explore the effect of more sophisticated saliency maps. In
particular, we would like to explore the application to video,
where the saliency map can take into account the effect of
motion on the importance of the regions of interest.

Fig. 6. Decoded image, weights, Rate 0.72bpp PSNR 25.88
dB SSIM 0.750

Fig. 7. Decoded image, perceptual coding, Rate 0.71 PSNR
25.85 SSIM 0.773
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