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ABSTRACT

To fully exploit the capabilities of satellite-borne multi/ hy-
perspectral sensors, some form of image compression is re-
quired. The Gelli-Poggi coder [1], based on segmentation
and class-based transform coding, has a very competitive
performance, but requires some a-priori knowledge which is
not available on-board. In this paper we propose a new ver-
sion of the Gelli-Poggi coder which presents about the same
performance than the original but is fully unsupervised, and
is therefore suited for use on-board a satellite. Numerical
experiments on test multispectral images validate the pro-
posed technique.

Key-words: Multispectral image coding, region-based cod-
ing, on-board implementation.

1. INTRODUCTION

The performance of satellite-borne sensors increases ever
more in terms of spatial resolution, radiometric accuracy,
and number of spectral bands. All these aspects, and es-
pecially the latter, contribute to increase the data volume
that such sensors must transmit to the ground station to the
point that the required data rate largely exceeds the available
channel capacity and large chunks of data must be simply
discarded. To avoid this loss one can resort to data compres-
sion which allows one to reduce the data volume by one/two
orders of magnitude without serious effects on the image
quality and on their diagnostic value for subsequent auto-
matic processing. To this end, however, one cannot resort to
general purpose techniques as they do not exploit the pecu-
liar features of multispectral remote-sensing images, andin
fact several ad hoc coding schemes have been proposed in
recent years, e.g., [1, 2, 3, 4].

One of the most promising such schemes, based on clas-
sified transform coding, is the Gelli-Poggi coder originally
proposed in [1]. The image is first segmented, so that each
pixel is associated with one of a given number of classes
based on its spectral response vector. Then, all vectors of the
same class are grouped together and compressed by means
of transform coding techniques. This way, transform cod-

ing operates on stationary homogeneous sources, thereby
maximizing its efficiency, and leading to an excellent over-
all rate-distortion performance, which is in fact superiorto
that of other state-of-the-art coders.

The Gelli-Poggi coder, however, relies heavily on a-
priori information which is hardly available to both encoder
and decoder, and makes the coder unsuited for compres-
sion on-board a satellite before transmission to the ground
station. In this paper we address this problem, by suitably
modifying the various steps of the original coder in order to
obtain more practical coding schemes suited for on-board
operations. Next Section describes the Gelli-Poggi coder in
detail, highlighting its weak points. Section 3 presents the
various improvements proposed and Section 4 assesses the
performance of the various alternative schemes by means of
numerical experiments on test multispectral images. Finally
Section 5 draws conclusions.

2. THE GELLI-POGGI CODER

The coding scheme is articulated in three main steps as shown
in Fig.1:

1. image segmentation;

2. lossless coding of the segmentation map;

3. lossy coding of the radiometric information.

The original scheme is fully supervised, meaning that all
statistical parameters are computed in advance from a train-
ing set. In the following, these three steps are described in
more detail.

Segmentation amounts to a simple spectral clustering.
Specifically, each pixel is classified by computing the Eu-
clidean distance between its spectral vector and a set of tem-
plate vectors, one for each class, and assigning the pixel to
the minimum distance class. The set of template vectors
can be viewed as a VQ codebook, computed off-line on a
suitable training set, and the segmentation itself as a vector
quantization. In particular, to limit computation complexity,
the VQ codebook is tree-structured so that only a few binary
comparisons are needed.
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Fig. 1. Block diagram of the coding scheme.

The map of class indexes,i.e. the segmentation map
resulting from VQ, must be sent to the decoder as a side
information. Since neighbouring pixels are highly corre-
lated the map is significantly compressed, without loss of
information, by resorting to a predictive scheme followed
by Huffman coding, with the code computed on the training
set as well.

Using the selected template vectors for every pixel in-
stead of the original spectral vectors, we have a first VQ ap-
proximation of the multispectral image. The difference be-
tween the original image and the VQ approximation (called
residual image) is compressed by means of transform cod-
ing. First, a classified Karhunen-Löeve Transform (KLT) is
performed along the spectral dimension. In order to account
for class information, a different transformation matrix for
each class is derived off-line from the training-set. Then,a
Discrete Cosine Transform (DCT) is used to decorrelate the
spatial information within each transformed band. Finally,
each transform coefficient is sorted by spectral class, KLT
band and DCT frequency, and is included in a quantization
set which is quantized by a specific tree-structured Lloyd-
Max quantizer designed off-line on the training set. Rate
allocation is decided on-line with a greedy bit allocation al-
gorithm.

3. THE UNSUPERVISED VERSION

The obvious weakness of the original Gelli-Poggi coder in
view of on-board implementation is that several pieces of
information are supposed to be known in advance, that is

• the VQ classifier;

• the class-adapted KLT matrices;

• the set-adaptive Lloyd-Max quantizers.

We will therefore abandon these hypotheses and consider
an alternative coding scheme in which all needed parame-
ters are designed on-line based on the very same data to be
encoded. Of course, this entails an increase in both the com-
putational complexity and the side information to be trans-
mitted along with the quantized coefficients. We will exam-
ine the new steps in turn under these two points of view.

3.1. The VQ classifier

The design of a VQ codebook can be extremely demanding
in terms of CPU power, but since only a limited number of
land covers are typically present in a given image we are in-
terested in a very small codebook (e.g., 4 to 20 classes [5],
which largely reduces computation time. In addition, our
codebook is tree-structured, which further reduces both de-
sign and segmentation complexity. Finally, the design need
not be carried out on all the data to be encoded, but only on
a sample subset, which can be as small as a few thousands
of spectral vectors, although extreme subsampling can pro-
duce some performance losses. All in all, computational
complexity is probably not an issue for the VQ classifier.

As for the side information, a tree-structured VQ code-
book for C classes is composed of 2C-1 vectors, withB
components each ifB is the number of bands in the image.
For images in the order of 1 Mpixel, and coding rates not
unreasonably small, this cost is always negligible, even if
16 bits were spent to encode each vector.

3.2. The class-adapted KLT matrices

To compute a KL transform matrix, we must first estimate
theB ×B correlation matrix of the data, and then compute
its eigenvectors. Since we use class-adaptive KLT, we need
C such matrices, one for each class.

The estimation part is not extremely demanding, espe-
cially if we resort again (with due care) to some subsam-
pling of the training data. Computing the eigenvectors, in-
stead, can require a significant time, which grows as the
third power of the number of bands. This can become a
problem ifB is very large. On the other hand, ifB is large,
almost all of the image energy is compacted in the first few
transform coefficients, to the point that the less significant
coefficients are assigned no bits at all. This suggests us to
resort to low-complexity iterative techniques, such as the
power method, to compute theB′ most relevant eigenvec-
tors which comprise almost all the energy (say 99.9%). This
condition can be tested on-the-fly, and helps limiting com-
plexity in critical cases.

Concerning the side information, for each KLT matrix
we must sendB × (B + 1)/2 parameters in the conven-
tional case, and approximatelyB′ × B coefficient in the



Fig. 2. Band 24 of the test image.

reduced dimensionality version. In some non-typical con-
ditions (small images, very low coding rates, many classes,
many bands) this could become significant and some care
must be therefore taken to encode all parameters with as few
bits as possible, provided no significant performance loss is
provoked.

3.3. The set-adaptive quantizers

The problem, here, is that a very large number of quan-
tizers are needed,C × B × K in the most general case,
with K the DCT vector length. In fact, an ad hoc quan-
tizer is used for the first DCT coefficient of the first KLT
band of the first class, another one for the second DCT co-
efficient of the first KLT band of the first class, and so on.
Even considering that most of these sets of coefficients will
be assigned no encoding bits, and no information need be
transmitted for them, so many quantizers remain to be de-
signed and transmitted that this approach becomes clearly
unreasonable. We resort therefore to parametric quantizers:
each set of coefficients is modeled as a zero-mean general-
ized Gaussian, characterized by its variance and shape pa-
rameters, which univocally identify the optimal quantizer.
To preserve the scalability of the original scheme however,
we designed embedded quantizers and we made them mid-
tread to increase robustness, so that the tree structure has,
at every depth level, one ternary node besides the binary
ones. Exception is made only for the (1,1) coefficients of
each class (i.e. the DCT low frequency coefficients of the
first KLT band), for which the Lloyd-Max algorithm keeps
being used. The coefficient variances are then used to per-
form rate allocation by means of the Huang-Schultheiss al-
gorithm [5]. The information to be sent is therefore com-
posed of three sets: the active/inactive bits for each set, the
pdf parameters for the active sets, and the Lloyd-Max quan-
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Fig. 3. Gelli-Poggi vs. wavelet-based coders.

tizers for the baseband coefficients.
Of course, parametric quantizers cannot guarantee the

same performance of the optimal Lloyd-Max, but complex-
ity and side information are now fully manageable.

4. EXPERIMENTAL ANALYSIS

All experiments presented here are performed on a hyper-
spectral image acquired by the GER airborne sensor which
portrays an agricultural area in Germany near the river Rhein.
In particular, we use a square region of 512x512 pixels, and
select only 8/16 bands that have a constant spectral resolu-
tion of 25.4 nm, and 9 bit of meaningful information. A
sample band of the test image is shown in Fig. 2.

In the first experiment we analyze the absolute perfor-
mance of the Gelli-Poggi coder by comparing it with two
state-of-the-art coders, one based on 3d-wavelet transform
followed by 3d-SPIHT [3], and the other based on spec-
tral KLT followed by JPEG-2000 on the transform bands,
with optimal rate allocation. For the Gelli-Poggi coder, all
needed parameters are supposed to be known a-priori and
are actually evaluated on another 512x512 section of the
same GER image. The rate-distortion curves are reported in
Fig.3, and show that the Gelli-Poggi coder (black) is fully
competitive with the two wavelet-based coders, outperform-
ing them by more than 1 dB at rates beyond 0.3 b/p/b (bit/-
pixel/band).

In the second experiment we address the effect of de-
signing on-line the tree-structured VQ codebook. We use
the well-known splitting algorithm, and build an unbalanced
binary tree by splitting the vector that contributes most to
distortion. Each split is carried out by binary GLA, which
convergence after a few iteration. The training set is ob-
tained by regular sampling of the test image, and its size



ranges from 1024 to 16384 vectors. In all cases the com-
putation time turns out to be affordable but, what is more
important, the overall performance is very mildly affected
by the codebook size, with a loss within 0.1 dB in the worst
case (for this reason curves are not reported), and therefore
we will proceed with the training set of size 10241.

Let us now consider the KLT transforms. With 8 bands
the computation time is still affordable, but it grows quite
rapidly, and with 16 bands it entails already a 40% increase
in the overall encoding time, indicating that with more bands
one must resort to some more efficient computation strategy,
like the power method mentioned above. As for the encod-
ing cost of the matrices, with 8 bands, even in the worst case
of 20 classes, and using 16 bits for each coefficients, it is
less that 0.005 b/p/b. It then increases linearly with the num-
ber of bands, but it seems safe to say that it remains always
negligible for the coding rates of interest in remote-sensing
applications. In addition, since the matrices are designedon
the same data they are used on, there is a significant gain in
the compactation ability, which more than compensates the
increased rate.

Let us finally turn to the quantizers. In this case a CPU-
time comparison is meaningless, as the on-line design and
especially the transmission of all Lloyd-Max quantizers is
simply not affordable. On the contrary, the estimate of the
variance of each set (we use Laplace quantizers and there-
fore do not estimate the shape parameters) increases the
CPU time of a few percents, and is then fully acceptable.

The increase in side information is also very limited.
With 20 classes, 8 bands, and 64-point DCT, we have a
total of 10240 sets of coefficients, most of which however
will be assigned 0 bit for quantization. Therefore we must
send 10240 bit to signal activity, followed by, in a typical
case, 1000 variances for the active quantizers, and 20 full-
fledged Lloyd-Max quantizers for the baseband coefficients
of each class. All in all, this amounts again to little more
than 0.01 b/p/b, and does not increase with the number of
bands. Under the rate-distortion point of view, the use of
parametric quantizers turns out to be even advantageous.
Fig.4 compares the rate-distortion performance of the su-
pervised Gelli-Poggi coder (solid line) and of the new fully
unsupervised version (dashed line). It can be seen that the
two curves are almost coincident, but for very small rates,
where the supervised version performs slightly better.

5. CONCLUSION

We set to implement an unsupervised version of the Gelli-
Poggi coder for multispectral images with the goal of mak-
ing it suitable for use on-board a satellite and thus reduce the
problems encountered in the transmission to the ground sta-

1Of course, if one is willing to use much larger codebooks, the training
set size must be adjusted accordingly.
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Fig. 4. Supervised vs. unsupervised coders.

tions. Although experiments have not been extensive thus
far, they are very encouraging. Of course, the overall en-
coding time increases, but never more than 60% w.r.t. the
original supervised coder in the cases considered. In ad-
dition, the distortion-rate performance is essentially unaf-
fected since the increase in side information is balanced, at
least at higher rates, by the improved quality of encoding.
Under this point of view, it should be also considered that
typical remote-sensing images are larger than the 512x512
section considered here, which goes in the direction of fur-
ther reducing the cost of side information.
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