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ABSTRACT
We present a highly scalable wavelet-based video

coder, featuring a scan-based motion-compensated tempo-
ral wavelet transform (WT) with lifting schemes which have
been specifically designed for video. Output bitstream is
compatible with JPEG2000, as it is used to compress tem-
poral subbands (SBs). Rate allocation among SBs is done
by means of an optimal algorithm which requires SBs rate-
distortion (RD) curves. We propose a model-based ap-
proach allowing us to compute these curves with a consider-
able reduction in complexity. The use of temporal WT and
JPEG2000 guarantees high scalability.

1. INTRODUCTION

Compression is a mandatory step in almost all applications
of digital video, and so, since the late 80s, there has been
a great interest towards video compression problems. Now
several efficient video coding standards exist, all based on
Motion Compensation (MC) and Discrete Cosine Trans-
form (DCT) or its variations, which have been the enabling
technologies for digital video, above all with the MPEG2
standard. These techniques keep to be improved: the new
H.264 standard allows a considerable bit-rate saving for the
same quality with respect to MPEG2.

Nevertheless, alternative techniques for video compres-
sion have been investigated for several years, as some prob-
lems are still far from being completely resolved. In particu-
lar, much attention has been reserved to Wavelet Transform
(WT), which proved to be clearly superior to DCT for still
image coding [1], and is employed in the recent JPEG2000
standard [2]. Moreover, WT offers a natural support to scal-
ability, which is an imperative feature for video encoders
aiming to be used over heterogeneous networks like the In-
ternet. For these reasons, since the middle of 90s, WT-based
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video coders have been intensively studied [3, 4], but only
recently they proved to be as effective as DCT-based video
compression schemes. This is mostly due to Motion Com-
pensated Lifting approach [5, 6, 7], used to reduce temporal
redundancy of the input sequence.

We propose in this paper a WT-based video coder, which
is fully compatible with JPEG2000. The coder performs
firstly a temporal Motion Compensated WT, with a scan-
based approach [8]. This temporal stage is described in
section 2. Afterwards, temporal subbands (SBs) are en-
coded with JPEG2000. Coding resources are allocated to
SBs with a model-based algorithm (described in section 3)
which achieves optimal rate allocation by estimating the
Rate-Distortion (RD) curves of each SB with a fast, spline-
based method. In section 4, experimental results show that
the proposed algorithm reduces remarkably the complexity
of the RD curves estimation. Moreover, the respective per-
formances of our encoder and of the new standard H.264
are equivalent.

2. TEMPORAL ANALYSIS

In this section, we describe the motion-compensated scan-
based [8] temporal transform used in the first step of our
coding algorithm.

2.1. Motion compensated temporal filtering

Motion compensation is the key to an efficient video coding
scheme, as it leads to a substantial energy reduction in the
high-frequency subbands by applying the transform along
adapted motion trajectories. However, since motion com-
pensation is a non-linear process, it cannot be implemented
directly into a regular wavelet transform, unless the trans-
form becomes non invertible. The use of lifting schemes
leads to a fully invertible motion-compensated transform.
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Each transversal implementation of a wavelet filter has an
equivalent lifting-based implementation [9].

The most widely used lifting scheme for motion-
compensated temporal transforms is the (2,2) lifting, corre-
sponding to the classical 5/3 wavelet transform. By design,
the lifting scheme implementations of motion-compensated
(MCed) WT are fully invertible, regardless of the proper-
ties of the Motion Vectors (MV). Unfortunately, as shown in
[10], it turns out that the MCed lifting-based (2,2) wavelet
transform does not implement the equations of the original
5/3 wavelet unless the motion field v satisfies certain con-
ditions, which are both invertibility and additivity. Usual
MVs computation methods, based on either block matching
or deformable meshes, violate these properties in the gen-
eral case. Of course, it is possible to constrain them to be
additive and/or invertible, but these constraints may lead to
imprecise vectors, and thus, to a sub-optimal MC.

(N ,0) lifting scheme [10] represent an efficient alterna-
tive to classical lifting schemes. Indeed, it has been shown
that they implement exactly transversal MCed wavelet
transforms while being perfectly reconstructible, provided
that the MVs are precise enough. For example, the (2,0)
lifting transform described below replaces the original (2,2)
lifting scheme.

Let us consider a sequence (xn)N of N images. We
will further denote by vi+j→i(m) a motion vector of pixel
at spatial location m in frame i + j that displaces this pixel
to the corresponding location in frame i. It follows that
xi[m+vi+j→i(m)] is a motion-compensated image xi with
respect to image xi+j . Using these notations, the (2,0) lift-
ing wavelet filters with motion compensation produce the
following low pass and high pass sub-bands (SBs), respec-
tively (ln)N/2

and (hn)N/2
:

hk[m] = x2k+1[m] −
1

2

(

x2k[m + v2k+1→2k(m)]

+ x2k+2[m + v2k+1→2k+2(m)]
)

lk[m] = x2k[m]

(1)

These (N ,0) filters are also very convenient for temporal
scalability purposes. Furthermore, they require only half
of the MVs compared to regular motion-compensated lift-
ing schemes, saving bit rate for encoding the temporal SBs
themselves.

2.2. Motion estimation

The way motion is estimated plays an important role in the
final performance of the coder. An ideal motion estimator
should produce precise and easy-to-encode MV fields. To
this end, we use a block-matching-based algorithm that
minimizes a correlation criterion built on both luminance
and chrominance mean square errors, rather than luminance
only. We find that the chrominance information reduces the

number of the particularly visible color outliers, improving
the final visual quality, and smoothes the MV field, thus
reducing the motion bitrate.

The use of (2,0) filters on 3 or 4 decomposition levels,
combined with accurate motion estimation, leads to an effi-
cient temporal decorrelation at a reasonable cost.

3. SPATIAL ANALYSIS AND MODEL-BASED
ALLOCATION

The MCed temporal filter performs a dyadic WT on the in-
put sequence, producing M = L + 1 temporal SBs of the
same spatial size as the original sequence (where L is the
number of decomposition levels).

3.1. Problem statement

Let us assume that we have a certain encoding technique, al-
lowing to encode the i-th SB with performances expressed
by the function Di = Di(Ri), where Di is the distor-
tion of the i-th SB when encoded at rate Ri. Then, op-
timal resource allocation problem consists in finding the
rate vector R = {Ri}

M
i=1 which minimizes the reconstruc-

tion distortion D(R) (intended as the mean square error be-
tween original and decoded sequence) under the constraint
∑M

i=1
aiRi ≤ RSB , where RSB is the rate available for

SBs encoding, ai = 2−li and li is the level of the ith SB.
In the case of orthogonal SB coding, it has been shown

that D can be expressed as a sum of Di(Ri) [11]. This
results has been extended to the case of biorthogonal fil-
ter [12], weighting each SB distortion term with a factor
wi which depends on the filter and on the decomposition
scheme. Thus, our rate allocation problem can be written as
follows:

D =

M
∑

i=1

wiDi(Ri) (2)

with the constraint
∑M

i=1
aiRi ≤ RSB .

We solve this problem with a Lagrangian approach. The
resulting optimal rate allocation vector R

∗ = {R∗

i }
M
i=1 ver-

ifies the following set of equations:

∂Di

∂Ri
(R∗

i ) = −
λ

wi
∀i ∈ {1, . . . ,M} (3)

where λ is the Lagrange multiplier. Thus, optimal allo-
cation corresponds to points having the same slope on the
“weighted” curves (Ri, wiDi).

3.2. Proposed algorithm

We propose the following algorithm to find the optimal rate
allocation vector. A guess value is chosen for the slope,
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Fig. 1. Spline approximation of a real RD curve

say λ. Then we look for points on the weighted RD curves
where the slope is λ, by inspecting their derivatives. We
consider the rates Ri(λ) associated to these points, and
sum them obtaining the corresponding total rate, say Rt(λ).
Then, if |RSB − Rt(λ)| is smaller than a given tolerance,
the algorithm stops, otherwise a new value for λ is chosen
with the simple bisection method.

3.3. Model for RD curves

This rate allocation algorithm requires the RD curves of
SBs, or rather, their first derivative. A simple but compu-
tationally expensive way to obtain a reliable representation
of these curves is to encode each SB many times at different
rates and then compute resulting distortion (brute force ap-
proach). Unfortunately, since accurate estimates are needed
in the whole range of possible rate allocation values, many
test points are required.

To overcome this problem, we propose a model-based
approach which is remarkably less complex than the regu-
lar brute force one. The main idea is to use splines (we tried
both interpolation and smoothing splines [13]) as paramet-
ric model for the RD curves. From a few points (usually less
than 10 is enough) of the actual curve, we can obtain the an-
alytical representation of the spline, just by computing some
parameters for each point. Then, we can compute analyti-
cally (i.e. via a few spline parameters) the first derivatives,
once again with a very little computational complexity, even
negligible with respect to the WT coefficients computation.

In Fig. 1, we reported, as an example, the “real” RD
curve for the highest frequency SB (obtained by encoding
the SB at 200 different rates), and the estimated curve com-
puted with cubic splines using only the 7 circled points.
This splines representation gives very good results, as the
different curves are almost undistinguishable. For the same
curve, we reported in Fig. 2 the “real” first derivative and the
first derivative of splines. The proposed method completely

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−10
2

−10
1

Rate − bpp

dD
/d

R

Real dD/dR Curve
Derivative of Interpolation Spline
Derivative of Smoothing Spline

Fig. 2. RD curve: first derivative in each case

removes irregularities from this curve. Thus, when the allo-
cation algorithm looks for points with the same derivative,
we have more robust results, especially at lower bit rates.

4. EXPERIMENTAL RESULTS

4.1. Description of the coder

We implemented the algorithm described in the previous
section. As encoding technique, we chose the currently
best performing one for still images, JPEG2000. Since we
use 3 levels of (N ,0) filters for the temporal transform, the
lowest temporal SB is simply obtained by sub-sampling the
input sequence, so JPEG2000 is conveniently exploited to
encode it. Regarding higher temporal SBs, MC and corre-
lation between coefficients justify the use of a still-images-
oriented encoding technique, even though suitable settings
are needed, like a reduced number of decomposition levels
and an appropriate dynamics.

Motion is estimated using 16 × 16 blocks and 1

2
-pixel

precision. We regroup MVs according to the GOP they
belong to, and compose them in two images (for vertical
and horizontal vector components). Then we perform a
lossless JPEG2000 compression on the two obtained im-
ages. This technique, which preserves the full JPEG2000-
compatibility of the coder, achieves encoding rates compa-
rable or lower than the first order joint entropy of the MVs.

We first compared the performances of the coder with
different allocation methods. To this end, we encoded the
“foreman” CIF sequence, using the different methods suc-
cessively, with the same number (7) of RD points. Exper-
iments confirm that the complexity overhead due to the B-
Spline interpolation of a 7-points curve is negligible with
a fast implementation [14]. Resulting performances are
shown in Fig. 3, where we see that the splines method out-
performs the regular one by up to 0.4 dB, with smoothing
spline proving to be the best. The most significant differ-
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ence is visible at lower rates, where the proposed algorithm
takes advantage of the regularized first derivative.

Lastly, the proposed algorithm was compared with
H.264 on the test sequences “flowers and garden” and “fore-
man”, with similar motion compensation settings. Depend-
ing on the input sequence, we found (Fig. 4) that our coder
achieves performances close to (“foreman” sequence) or
better than (“flowers and garden” sequence) those obtained
by H.264. However, whereas H.264 is not natively scalable,
our coder produces a highly scalable bitstream compatible
with JPEG2000. Note that the sequences obtained by our
coder and analyzed in Fig. 4 have been extracted from a
single bitstream.

4.2. Conclusion

In conclusion, we have presented a new video coding al-
gorithm based on WT, fully compatible with JPEG2000,
highly scalable, and matching the performances of H.264.
Coding resources for different SBs are optimally allocated

by means of a model-based and low-complexity algorithm.
Future work will focus on better movement models and op-
timized rate allocation between motion vectors and SBs.
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