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Scalar quantization (SQ)

Definition

Q : x ∈ R→ y ∈ C = {x̂1, x̂2, . . . x̂L} ⊂ R

◮ Resolution (or rate) : b = log2 L bits per sample
◮ Distortion (ideal case)

σ2
Q = cXσ

2
X 2−2b

◮ cX (shape factor) is a constant i depending on X probability
distribution

◮ cX = 1 for uniform variables
◮ cX =

√
3

2 π for Gaussian variables
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Predictive quantization (PQ)
Performances

◮ In PQ, we quantize the difference Y between X and the
linear prediction based on P past samples

◮ Prediction gain:

GP(P) =
σ2

X

σ2
Y

=
σ2

X

[det RP ]1/P

◮ Asymptotic value of GP

GP = lim
P→+∞

σ2
X

[det RP ]1/P

where RP is the covariance matrix of [X1,X2, . . . ,XP ]
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Vector quantization (VQ)

Introduction

◮ We typically consider sequences of samples, rather than
an isolated sample

◮ Idea: to jointly quantify several samples, i.e. a vector
◮ The input space R

N is therefore partitioned into cells
(decision regions)

◮ For each region we have a representative vector
(codewords)
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Example: correlated signal

AR(2) Signal
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Vector quantization

Introduction

◮ Generalization of SQ to the space R
N

◮ SQ can be seen as a special case of VQ
◮ Cells are delimited by hyperplanes orthogonal to axes
◮ Codewords are aligned to axes

◮ VQ potential gains
◮ Geometric gain: arbitrary shape of cells and arbitrary

position of codewords
◮ Correlation gain: we exploit directly signal correlation
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Properties of VQ

VQ improves with respect to SQ:
◮ we are able to exploit sample correlation
◮ we suppress the constraint of hypercubic cells
◮ we suppress the constraint of integer rate
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Terminology

Definition of vector quantization (VQ):

Q : x ∈ R
N → y ∈ C = {x̂1

, x̂2
, . . . x̂L} ⊂ R

N

◮ Space dimension: N ∈ N

◮ Codebook size: L ∈ N

◮ Resolution (or rate): b =
log2 L

N = R
N
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Terminology

Q : x ∈ R
N → y ∈ C = {x̂1

, x̂2
, . . . x̂L} ⊂ R

N

◮ Decision regions (or cells)

Θi = {x : Q(x) = x̂
i} Θi ∩Θj =∅ ∪iΘ

i = R
N

◮ C is called codebook

◮ The elements of C are called codewords, output vectors,
reproduction vectors

◮ Only regular quantifiers are considered. Regular VQ is
characterized by:

◮ Convexity : x1, x2 ∈ Θi ⇒ [λx1 + (1− λ)x2 ∈ Θi ] ∀λ ∈ [0, 1]
◮ Codeword within the region: ∀i ∈ {1, . . . , L}, x̂ i ∈ Θi
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Regular quantizer

◮ Convex regions
◮ x̂ i ∈ Θi
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Vector quantization

VQ as encoding and decoding

Just as in the case of scalar quantization, we can interpret VQ
as the cascade of two operations:

◮ Encoding: Input vector x is associated to index i (to cell Θi )
◮ Decoding: Index i (cell Θi ) is associated to output vector

(codeword) x̂ i

i
E D

x x̂ i

{Θi} C = {x̂ i}i
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Quantization error

◮ Definition from scalar quantization (SQ) is generalized
◮ We use the joint probability density function (PDF) and the

Euclidean norm:

σ2
Q =

1
N

∫

RN
‖x −Q(x)‖2pX (x)dx

=
1
N

L∑

i=1

∫

Θi
‖x −Q(x)‖2pX (x)dx

=
1
N

L∑

i=1

∫

Θi
‖x − x̂ i‖2pX (x)dx
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Building the codebook

Problrme : Find the codebook C minimizing l’erreur σ2
Q

Solution : Generalized Lloyd Algorithm (GLA)

1. Initialization : k = 0, we start with some codebook
C(k) = {x̂0

(k), x̂
1
(k), . . . , x̂

L
(k)}, we set σ2

Q,(k−1) =∞, we choose ǫ

2. We optimize cells with respect to codebook obtaining {Θi
(k)}i

3. We optimize the codebook with respect to cells, obtaining C(k+1)

4. We compute distortion σ2
Q,(k) associated to C(k+1), {Θi

(k)}i

5. If
σ2

Q,(k−1)−σ2
Q,(k)

σ2
Q,(k−1)

< ǫ, we stop; else k ← k + 1, and go to step 2
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Generalized Lloyd Algorithm (GLA)

◮ Cells optimization with respect to the codebook:

Θi
(k) =

{
x : ‖x − x̂ i

(k)‖ ≤ ‖x − x̂ j
(k)‖ ∀j ∈ {1, . . . ,L}

}

◮ Nearest neighbor rule
◮ Complexity proportional to L
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Generalized Lloyd Algorithm (GLA)

◮ Codebook optimization with respect to the cells: centroid rule
◮ For the sake of simplicity, D = σ2

Q,(k)

D =
1
N

L∑

i=1

∫

Θi
‖x − x̂

i‖2pX (x)dx =
1
N

L∑

i=1

Di

∂Di

∂x̂ i,j
=

∫

Θi
2(x j − x̂ i,j)pX (x)dx

x̂ i,j =

∫
Θi x jpX (x)dx∫
Θi pX (x)dx

x̂
i
= E[x |x ∈ Θi ]
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Generalized Lloyd Algorithm (GLA)

Bilan

◮ Necessity of estimate probability distributions
◮ Very high complexity - suboptimal algorithms
◮ Convergency to local minimum and impact of inizialization
◮ Simulated annealing algorithms (extremely high

complexity, global optimum attained subject to some
hypotheses with a given probability)
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GLA initialization

Linde-Buzo-Gray (LBG) algorithm

◮ Iterative algorithm
◮ For L = 1, we apply GLA

◮ The resultat x̂0
0 is the centroid of population

◮ Split of C0 = {x̂0
0}: x̂0

1 = x̂1
1 x̂0

0 + ǫ

◮ GLA on the new codebook C1 = {x̂0
1, x̂

1
1}

◮ Split of C1: each codeword x̂ i
1 gives x̂2i

2 = x̂ i
1 and

x̂2i+1
2 = x̂ i

1 + ǫi

◮ Iteration until we obtain L vectors
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Data-based codebook

◮ In practice, we do not always have the PDFs
◮ We can build a training set (TS)

◮ Sound samples, blocks of pixels from images, . . .
◮ The training set is used to create the codebook:

◮ Nearest neighbor: TS vectors are associated to the cell
represented by the nearest neighbor

◮ Centroid: for each cell, the centroid is computed as the
average of vectors
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Scalar and vector quantization
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Scalar quantization

Débit 21 bpp     PSNR   47.19 dB     TC   1.143
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Scalar quantization

Débit 18 bpp     PSNR   42.38 dB     TC   1.333
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Scalar quantization

Débit 15 bpp     PSNR   36.97 dB     TC   1.600
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Scalar quantization

Débit 12 bpp     PSNR   31.40 dB     TC   2.000
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Scalar quantization

Débit 9 bpp     PSNR   29.26 dB     TC   2.667
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Vector quantization

Débit 9.0 bpp PSNR 37.59 TC 2.667
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Scalar quantization

Débit 6 bpp     PSNR   27.83 dB     TC   4.000
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Vector quantization

Débit 6.0 bpp PSNR 33.00 TC 4.000
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Vector quantization

Débit 4.5 bpp PSNR 30.78 TC 5.333
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Scalar quantization

Débit 3 bpp     PSNR   25.75 dB     TC   8.000
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Vector quantization

Débit 3.0 bpp PSNR 27.63 TC 8.000
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Vector quantization

Débit 1.5 bpp PSNR 21.41 TC 16.000
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Codebook examples

N = 4, L ∈ {4,16,64}
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Performances

Bennet’s formula for SQ:

σ2
Q =

1
12

[∫

R

p1/3
X (x)dx

]3

2−2b

It can be generalized to VQ in N dimensions:

σ2
Q(N) = α(N)

[∫

RN
p

N
N+2
X (x)dx

] N+2
N

2−2b

In the Gaussian case:

σ2
Q(N) = α(N)



∫

RN

(
exp(xT Rx)

(2π)N/2
√

det R

) N
N+2

dx




N+2
N

2−2b
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Performances
Gaussian case

σ2
Q(N) = α(N)



∫

RN

(
exp(xT Rx)

(2π)N/2
√

det R

) N
N+2

dx




N+2
N

2−2b

= α(N)2π
(

N + 2
N

)N+2
2

(det R)
1
N 2−2b

= c(N)(det R)
1
N 2−2b

It can be shown that:

c(1) =

√
3

2
π > c(N) > c(∞) = 1
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Performances

Gaussian case

VQ Gain = QS MSE / QV MSE

σ2
Q(N) = c(N)(det R)

1
N 2−2b

Gv (N) =
σ2

Q(1)

σ2
Q
(N)

=
c(1)
c(N)

σ2
X

(detR)
1
N

Geometric gain : c(1)
c(N)

Correlation gain : σ2
X

(detR)
1
N
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Performances

Geometric gain

◮ Ratio c(1)/c(N) is always grater than 1
◮ The term C(N) decreases with N
◮ This shows that QV is better than QS even for memoryless

sources
◮ However, the geometric gain is limited by:

lim
N→+∞

c(1)
c(N)

= c(1) =

√
3

2
π

10 log10 lim
N→+∞

c(1)
c(N)

= 4.35dB
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Performances

Geometric gain interpretation

◮ The geometric gain is related to the VQ’s improved
capability to fill RN with respect to QS

◮ Ideal cells are hyperspheres: VQ cells tend to approximate
this configuration

◮ QS cells are hypercubes, which are more and more
different from hyperspheres when N increases
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Performances

Geometric gain interpretation

◮ Let us consider an hypercube of dimension N
◮ Vertices:
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Performances

Geometric gain interpretation

◮ Let us consider an hypercube of dimension N
◮ Vertices: [±1,±1,±1, . . .± 1]
◮ Faces: equation
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Performances

Geometric gain interpretation

◮ Let us consider an hypercube of dimension N
◮ Vertices: [±1,±1,±1, . . .± 1]
◮ Faces: equation xi = ±1
◮ Distance center-vertex:
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Performances

Geometric gain interpretation

◮ Let us consider an hypercube of dimension N
◮ Vertices: [±1,±1,±1, . . .± 1]
◮ Faces: equation xi = ±1
◮ Distance center-vertex:

√
N

◮ Distance center-face:
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Performances

Geometric gain interpretation

◮ Let us consider an hypercube of dimension N
◮ Vertices: [±1,±1,±1, . . .± 1]
◮ Faces: equation xi = ±1
◮ Distance center-vertex:

√
N

◮ Distance center-face: 1
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Performances

Geometric gain interpretation

◮ Let us consider an hypercube of dimension N
◮ Vertices: [±1,±1,±1, . . .± 1]
◮ Faces: equation xi = ±1
◮ Distance center-vertex:

√
N

◮ Distance center-face: 1
◮ When N increases hypercubes have points with a constant

distance to the center and points farther and farther away
from the center
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Performances

Correlation gain

Correlation gain has the same expression as in the case of
predictive SQ:

Gp =
σ2

X

(det R)1/N

PQ and VQ exploit the same property, i.e. sample correlation,
but VQ can additionally benefit from geometric gain
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Performances

Theoretical bound

◮ For a stationary signal, when N is large enough, we have
Gv > Gp

◮ When N increases further, VQ performances reach an
upper bound

◮ Any coding technique can be sees as QV
◮ Therefore it can be improved by GLA
◮ Is VQ the ultimate coding technique?
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Gain-shape VQ

VQ in practice
Building the codebook

◮ Parameter selection: rate b, codebook size L, vector
dimension N

b =
log2 L

N
L = 2bN

◮ The rate b is related to the target quality and to memory
and transmission bounds

◮ Dimension N influences performances: A rule of thumb is:
take the largest N such as x(n) and x(n + N) still have
some correlation

◮ But the complexity increases exponentially with N
◮ The codebook size L grows exponentially with b and N
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Gain-shape VQ

Quantizer operation

◮ We have a codebook of L codewords of dimension N
◮ We group N input signal samples into a vector x of

dimension N
◮ N consecutive samples of a sound
◮ N pixels of an image (typically a block)

◮ Quantization: we look into the codebook for the best
representation of x

◮ Nearest neighbor rule
◮ We compute L distances; each time this requires N

multiplications: complexity O(N)
◮ In total O(LN) = O(N2bN)
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Gain-shape VQ

Quantizer operation

Decoding

◮ The encoder just sends the index of the selected codeword
◮ The decoder picks the codeword in the codebook
◮ Asymmetric process: high-complexity encoding,

low-complexity decoding
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Gain-shape VQ

Quantizer operation

Example: speech coding

◮ Constraints
◮ Bandwidth: 8 kbps
◮ Sampling frequency: 8 kHz
◮ Computational capacity: C = 1 Gflops = 109 floating point

operations per second

◮ Find N et L
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Gain-shape VQ

Quantizer operation
Example: speech coding

◮ Resolution = Bits/s divides by samples/s

b =
8kb/s
8kS/s

= 1b/S

◮ Operations per vector: NL = N2N

◮ Operations per sample : 2N

◮ Operations par second : 2N fE
◮ Constraint: 2N fE < C

2N [Op/S]× 8000[S/s] < 109[Op/s]

N < log2
109

8× 103 = 6 log2 10− 3 = 16.93

N = 16 L = 65536
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Gain-shape VQ

Quantizer operation

Example: speech coding

◮ N = 16 is not very large!
◮ This corresponds to the fact that the speech signal is too

complex to be represented with only a few tens thousands
vectors (216)

◮ The “analysis window” is too short:

T = N/fE = 16/8000 = 2ms

◮ The inter-window correlation is not negligible, therefore we
cannot attain the best VQ performance
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Gain-shape VQ

Quantizer operation

Example: speech coding

◮ We would like to increase N (and L) without increasing too
much the encoder complexity

◮ This is possible (by giving up some rate/distortion
performance) by imposing some structure to the codebook
that reduces encoding complexity
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Gain-shape VQ

Tree-structured vector quantization (TS-VQ)

◮ It simplifies the NN rule
◮ The search of the NN is organized in levels: at each level

we discard half of the candidates (binary search)
◮ At each step we compare the input vector with a

representative of the halves of the codebook
◮ Then we consider only the selected half of the codebook
◮ This is iterated until we find a single codeword
◮ Complexity: from O(2bN) to O(bN)

◮ Performance close to the full search case
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Gain-shape VQ

Product vector quantization

◮ We decompose a vector of dimension N into k sub-vectors
◮ The i-th subvector has dimension Ni , such that∑k

i=1 Ni = N
◮ Complexity : O(

∑
2bNi )

◮ Example : N = 10, b = 1, C = 210 = 1024
◮ N1 = 5, N2 = 5, C = 25 + 25 = 64
◮ We are no longer able to exploit statistical dependencies

among the k subvectors
◮ Therefore if we process the vector in such a way to reduce

these dependencies, we can effectively use this technique
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Gain-shape VQ

Multi-stage vector quantization (MS-VQ)

◮ We use successive approximations
◮ We apply a first quantization
◮ Then we compute the vector quantization error
◮ This error is quantified
◮ We continue by iterating this process: residual error

computation and quantization

55/66 19.01.18 Institut Mines-Telecom Vector Quantization



Introduction
Building the dictionary

Performances
VQ Techniques

Gain-shape VQ

Transform vector quantization (TVQ)

◮ Transform allows to concentrate information and reduce
correlation

◮ In turn, this allows reducing N, since it should be selected
as the maximum distance between correlated samples
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Gain-shape VQ

Algebraic vector quantization AVQ

◮ The codebook is no longer build with GLA
◮ It is independent from source statistics
◮ Space R

N is partitioned in regular manner
◮ Advantage: large complexity reduction, no need of storing

the codebook
◮ Disadvantage: losses in rate/distortion performance
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Gain-shape VQ

Gain-shape vector quantization (GS-VQ)

◮ A QV technique popular for audio coding
◮ It allows to take into account power evolution along the time
◮ It can be seen as a special case of PVQ
◮ The input vector is decomposed into gain and shape,

which are separately quantized
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Gain-shape VQ

Gain-shape vector quantization
Nearest neighbor rule

◮ We use two codebooks
◮ Shape codebook (normalized) :

CS =
{

x̂
1
, x̂

2
, . . . , x̂

L1
}

◮ Gain codebook:

CG =
{

ĝ1, ĝ1, . . . , ĝL2
}

x

g

j

i

CSCS CGCG

x̂

ĝ

Rule of the
nearest

neighbor

Table
look-up
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Gain-shape VQ

Gain-shape vector quantization

Nearest neighbor rule

x̂ j

x̂k

x

gj x̂
j

60/66 19.01.18 Institut Mines-Telecom Vector Quantization



Introduction
Building the dictionary

Performances
VQ Techniques

Gain-shape VQ

Gain-shape vector quantization
Nearest neighbor rule

◮ First we look for the shape that is nearest to x

◮ This can be done without normalization (i.e. without computing
the gain):

〈x − gj x̂
j
, x̂

j〉 = 0 gj =
〈x , x̂ j〉
‖x̂ j‖2

‖x − gj x̂
j‖2 = ‖x‖2 + g2

j ‖x̂
j‖2 − 2gj 〈x , x̂ j〉 = ‖x‖2 − 〈x , x̂

j〉2

‖x̂ j‖2

j∗ = arg max
j

〈x , x̂ j〉2

‖x̂ j‖2
= arg max

j

〈
x ,

x̂
j

‖x̂ j‖

〉2

= arg max
j
| cosφj |
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GLA for GS-VQ

◮ Shape codebook: CS =
{

x̂1
, x̂2

, . . . , x̂L1
}

◮ Normalized vectors
◮ Training set: M vectors x(m) with i ∈ {1, . . . ,M}
◮ GLA : Nearest neighbor and best representative

◮ The best representative is no longer necessarily the
centroid, since it must be normalized

◮ The nearest neighbor rule allows to partition vectors into
cells; w.l.o.g., the j-th cell is

Θj = {x(m)}m∈{1,...,M(j)}
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◮ In order to optimize the representative of the j-th cell, we
look for a vector x̂ j that minimizes error in the cell Θj ,
subject to the constraint of unitary norm:

arg min
x̂ j

σ2
Q(j) s.t .‖x̂ j‖2 = 1

σ2
Q(j) =

1
M(j)

M(j)∑

m=1

‖x(m)− gj x̂
j‖2

‖x(m)− gj x̂
j‖2 = ‖x(m)‖2 − 〈x(m), x̂ j〉2

‖x̂ j‖2

= ‖x(m)‖2 − 〈x(m), x̂ j〉2
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◮ Our problem becomes

arg max
x̂ j

Q = arg max
x̂ j

M(j)∑

m=1

〈x(m), x̂ j〉2 s.c.‖x̂ j‖2 = 1

◮ Γ is referred to as empiric covariance matrix

Γ =

M(j)∑

m=1

x(m)x(m)T

◮ We find:

(x̂ j
)TΓx̂ j

=

M(j)∑

m=1

(x̂ j
)T x(m)x(m)T x̂ j

= Q
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◮ The problem becomes:

arg max
x̂ j

(x̂ j
)TΓx̂ j s.c.‖x̂ j‖2 = 1

◮ Using Lagrangian multipliers method, we have to minimize

J = (x̂ j
)TΓx̂ j − λ[(x̂ j

)T x̂ j − 1]

◮ We have

∂J

∂x̂ j = 0 Γx̂ j
= λ(x̂ j

)

65/66 19.01.18 Institut Mines-Telecom Vector Quantization



Introduction
Building the dictionary

Performances
VQ Techniques

Gain-shape VQ

Gain-shape vector quantization

GLA for GS-VQ

◮ Thus x̂ j is an eigenvector of Γ, and λ is the corresponding
eigenvalue

◮ If we multiply Γx̂ j
= λ(x̂ j

) by (x̂ j
)T , we find:

(x̂ j
)TΓx̂ j

= λ(x̂ j
)T x̂ j

Q = λ

◮ Therefore, the optimization problem is solved by using the
eigenvector corresponding to the largest eigenvalue of the
empiric covariance matrix
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