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Scalar quantization (SQ)

Definition

Q : x ∈ R→ y ∈ C = {x̂1, x̂2, . . . x̂L} ⊂ R

◮ Resolution (or rate) : b = log2 L bits per sample
◮ Distortion (ideal case)

σ2
Q = cXσ

2
X 2−2b

◮ cX (shape factor) is a constant i depending on X probability
distribution

◮ cX = 1 for uniform variables
◮ cX =

√
3

2 π for Gaussian variables
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Predictive quantization (PQ)
Performances

◮ In PQ, we quantize the difference Y between X and the
linear prediction based on P past samples

◮ Prediction gain:

GP(P) =
σ2

X

σ2
Y

=
σ2

X

[det RP ]1/P

◮ Asymptotic value of GP

GP = lim
P→+∞

σ2
X

[det RP ]1/P

where RP is the covariance matrix of [X1,X2, . . . ,XP ]
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Vector quantization (VQ)

Introduction

◮ We typically consider sequences of samples, rather than
an isolated sample

◮ Idea: to jointly quantify several samples, i.e. a vector
◮ The input space R

N is therefore partitioned into cells
(decision regions)

◮ For each region we have a representative vector
(codewords)
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Example: correlated signal

AR(2) Signal

0 20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

7/66 19.01.18 Institut Mines-Telecom Vector Quantization



Introduction
Building the dictionary

Performances
VQ Techniques

Vector quantization

Introduction

◮ Generalization of SQ to the space R
N

◮ SQ can be seen as a special case of VQ
◮ Cells are delimited by hyperplanes orthogonal to axes
◮ Codewords are aligned to axes

◮ VQ potential gains
◮ Geometric gain: arbitrary shape of cells and arbitrary

position of codewords
◮ Correlation gain: we exploit directly signal correlation
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Properties of VQ

VQ improves with respect to SQ:
◮ we are able to exploit sample correlation
◮ we suppress the constraint of hypercubic cells
◮ we suppress the constraint of integer rate
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Terminology

Definition of vector quantization (VQ):

Q : x ∈ R
N → y ∈ C = {x̂1

, x̂2
, . . . x̂L} ⊂ R

N

◮ Space dimension: N ∈ N

◮ Codebook size: L ∈ N

◮ Resolution (or rate): b =
log2 L

N = R
N
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Terminology

Q : x ∈ R
N → y ∈ C = {x̂1

, x̂2
, . . . x̂L} ⊂ R

N

◮ Decision regions (or cells)

Θi = {x : Q(x) = x̂
i} Θi ∩Θj =∅ ∪iΘ

i = R
N

◮ C is called codebook

◮ The elements of C are called codewords, output vectors,
reproduction vectors

◮ Only regular quantifiers are considered. Regular VQ is
characterized by:

◮ Convexity : x1, x2 ∈ Θi ⇒ [λx1 + (1− λ)x2 ∈ Θi ] ∀λ ∈ [0, 1]
◮ Codeword within the region: ∀i ∈ {1, . . . , L}, x̂ i ∈ Θi
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Regular quantizer

◮ Convex regions
◮ x̂ i ∈ Θi

12/66 19.01.18 Institut Mines-Telecom Vector Quantization



Introduction
Building the dictionary

Performances
VQ Techniques

Vector quantization

VQ as encoding and decoding

Just as in the case of scalar quantization, we can interpret VQ
as the cascade of two operations:

◮ Encoding: Input vector x is associated to index i (to cell Θi )
◮ Decoding: Index i (cell Θi ) is associated to output vector

(codeword) x̂ i

i
E D

x x̂ i

{Θi} C = {x̂ i}i
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Quantization error

◮ Definition from scalar quantization (SQ) is generalized
◮ We use the joint probability density function (PDF) and the

Euclidean norm:

σ2
Q =

1
N

∫

RN
‖x −Q(x)‖2pX (x)dx

=
1
N

L∑

i=1

∫

Θi
‖x −Q(x)‖2pX (x)dx

=
1
N

L∑

i=1

∫

Θi
‖x − x̂ i‖2pX (x)dx
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Building the codebook

Problrme : Find the codebook C minimizing l’erreur σ2
Q

Solution : Generalized Lloyd Algorithm (GLA)

1. Initialization : k = 0, we start with some codebook
C(k) = {x̂0

(k), x̂
1
(k), . . . , x̂

L
(k)}, we set σ2

Q,(k−1) =∞, we choose ǫ

2. We optimize cells with respect to codebook obtaining {Θi
(k)}i

3. We optimize the codebook with respect to cells, obtaining C(k+1)

4. We compute distortion σ2
Q,(k) associated to C(k+1), {Θi

(k)}i

5. If
σ2

Q,(k−1)−σ2
Q,(k)

σ2
Q,(k−1)

< ǫ, we stop; else k ← k + 1, and go to step 2
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Generalized Lloyd Algorithm (GLA)

◮ Cells optimization with respect to the codebook:

Θi
(k) =

{
x : ‖x − x̂ i

(k)‖ ≤ ‖x − x̂ j
(k)‖ ∀j ∈ {1, . . . ,L}

}

◮ Nearest neighbor rule
◮ Complexity proportional to L
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Generalized Lloyd Algorithm (GLA)

◮ Codebook optimization with respect to the cells: centroid rule
◮ For the sake of simplicity, D = σ2

Q,(k)

D =
1
N

L∑

i=1

∫

Θi
‖x − x̂

i‖2pX (x)dx =
1
N

L∑

i=1

Di

∂Di

∂x̂ i,j
=

∫

Θi
2(x j − x̂ i,j)pX (x)dx

x̂ i,j =

∫
Θi x jpX (x)dx∫
Θi pX (x)dx

x̂
i
= E[x |x ∈ Θi ]
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Generalized Lloyd Algorithm (GLA)

Bilan

◮ Necessity of estimate probability distributions
◮ Very high complexity - suboptimal algorithms
◮ Convergency to local minimum and impact of inizialization
◮ Simulated annealing algorithms (extremely high

complexity, global optimum attained subject to some
hypotheses with a given probability)
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GLA initialization

Linde-Buzo-Gray (LBG) algorithm

◮ Iterative algorithm
◮ For L = 1, we apply GLA

◮ The resultat x̂0
0 is the centroid of population

◮ Split of C0 = {x̂0
0}: x̂0

1 = x̂1
1 x̂0

0 + ǫ

◮ GLA on the new codebook C1 = {x̂0
1, x̂

1
1}

◮ Split of C1: each codeword x̂ i
1 gives x̂2i

2 = x̂ i
1 and

x̂2i+1
2 = x̂ i

1 + ǫi

◮ Iteration until we obtain L vectors
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Data-based codebook

◮ In practice, we do not always have the PDFs
◮ We can build a training set (TS)

◮ Sound samples, blocks of pixels from images, . . .
◮ The training set is used to create the codebook:

◮ Nearest neighbor: TS vectors are associated to the cell
represented by the nearest neighbor

◮ Centroid: for each cell, the centroid is computed as the
average of vectors
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Scalar and vector quantization
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Scalar quantization

Débit 21 bpp     PSNR   47.19 dB     TC   1.143
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Scalar quantization

Débit 18 bpp     PSNR   42.38 dB     TC   1.333
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Scalar quantization

Débit 15 bpp     PSNR   36.97 dB     TC   1.600

25/66 19.01.18 Institut Mines-Telecom Vector Quantization



Introduction
Building the dictionary

Performances
VQ Techniques

Scalar quantization

Débit 12 bpp     PSNR   31.40 dB     TC   2.000
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Scalar quantization

Débit 9 bpp     PSNR   29.26 dB     TC   2.667
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Vector quantization

Débit 9.0 bpp PSNR 37.59 TC 2.667
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Scalar quantization

Débit 6 bpp     PSNR   27.83 dB     TC   4.000
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Vector quantization

Débit 6.0 bpp PSNR 33.00 TC 4.000
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Vector quantization

Débit 4.5 bpp PSNR 30.78 TC 5.333

31/66 19.01.18 Institut Mines-Telecom Vector Quantization



Introduction
Building the dictionary

Performances
VQ Techniques

Scalar quantization

Débit 3 bpp     PSNR   25.75 dB     TC   8.000
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Vector quantization

Débit 3.0 bpp PSNR 27.63 TC 8.000
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Vector quantization

Débit 1.5 bpp PSNR 21.41 TC 16.000
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Codebook examples

N = 4, L ∈ {4,16,64}
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Performances

Bennet’s formula for SQ:

σ2
Q =

1
12

[∫

R

p1/3
X (x)dx

]3

2−2b

It can be generalized to VQ in N dimensions:

σ2
Q(N) = α(N)

[∫

RN
p

N
N+2
X (x)dx

] N+2
N

2−2b

In the Gaussian case:

σ2
Q(N) = α(N)



∫

RN

(
exp(xT Rx)

(2π)N/2
√

det R

) N
N+2

dx




N+2
N

2−2b

37/66 19.01.18 Institut Mines-Telecom Vector Quantization



Introduction
Building the dictionary

Performances
VQ Techniques

Performances
Gaussian case

σ2
Q(N) = α(N)



∫

RN

(
exp(xT Rx)

(2π)N/2
√

det R

) N
N+2

dx




N+2
N

2−2b

= α(N)2π
(

N + 2
N

)N+2
2

(det R)
1
N 2−2b

= c(N)(det R)
1
N 2−2b

It can be shown that:

c(1) =

√
3

2
π > c(N) > c(∞) = 1
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Performances

Gaussian case

VQ Gain = QS MSE / QV MSE

σ2
Q(N) = c(N)(det R)

1
N 2−2b

Gv (N) =
σ2

Q(1)

σ2
Q
(N)

=
c(1)
c(N)

σ2
X

(detR)
1
N

Geometric gain : c(1)
c(N)

Correlation gain : σ2
X

(detR)
1
N
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Performances

Geometric gain

◮ Ratio c(1)/c(N) is always grater than 1
◮ The term C(N) decreases with N
◮ This shows that QV is better than QS even for memoryless

sources
◮ However, the geometric gain is limited by:

lim
N→+∞

c(1)
c(N)

= c(1) =

√
3

2
π

10 log10 lim
N→+∞

c(1)
c(N)

= 4.35dB
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Performances

Geometric gain interpretation

◮ The geometric gain is related to the VQ’s improved
capability to fill RN with respect to QS

◮ Ideal cells are hyperspheres: VQ cells tend to approximate
this configuration

◮ QS cells are hypercubes, which are more and more
different from hyperspheres when N increases
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Performances

Geometric gain interpretation

◮ Let us consider an hypercube of dimension N
◮ Vertices:
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Performances

Geometric gain interpretation

◮ Let us consider an hypercube of dimension N
◮ Vertices: [±1,±1,±1, . . .± 1]
◮ Faces: equation
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Performances

Geometric gain interpretation

◮ Let us consider an hypercube of dimension N
◮ Vertices: [±1,±1,±1, . . .± 1]
◮ Faces: equation xi = ±1
◮ Distance center-vertex:
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Performances

Geometric gain interpretation

◮ Let us consider an hypercube of dimension N
◮ Vertices: [±1,±1,±1, . . .± 1]
◮ Faces: equation xi = ±1
◮ Distance center-vertex:

√
N

◮ Distance center-face:
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Performances

Geometric gain interpretation

◮ Let us consider an hypercube of dimension N
◮ Vertices: [±1,±1,±1, . . .± 1]
◮ Faces: equation xi = ±1
◮ Distance center-vertex:

√
N

◮ Distance center-face: 1
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Performances

Geometric gain interpretation

◮ Let us consider an hypercube of dimension N
◮ Vertices: [±1,±1,±1, . . .± 1]
◮ Faces: equation xi = ±1
◮ Distance center-vertex:

√
N

◮ Distance center-face: 1
◮ When N increases hypercubes have points with a constant

distance to the center and points farther and farther away
from the center
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Performances

Correlation gain

Correlation gain has the same expression as in the case of
predictive SQ:

Gp =
σ2

X

(det R)1/N

PQ and VQ exploit the same property, i.e. sample correlation,
but VQ can additionally benefit from geometric gain
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Performances

Theoretical bound

◮ For a stationary signal, when N is large enough, we have
Gv > Gp

◮ When N increases further, VQ performances reach an
upper bound

◮ Any coding technique can be sees as QV
◮ Therefore it can be improved by GLA
◮ Is VQ the ultimate coding technique?
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Gain-shape VQ

VQ in practice
Building the codebook

◮ Parameter selection: rate b, codebook size L, vector
dimension N

b =
log2 L

N
L = 2bN

◮ The rate b is related to the target quality and to memory
and transmission bounds

◮ Dimension N influences performances: A rule of thumb is:
take the largest N such as x(n) and x(n + N) still have
some correlation

◮ But the complexity increases exponentially with N
◮ The codebook size L grows exponentially with b and N
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Gain-shape VQ

Quantizer operation

◮ We have a codebook of L codewords of dimension N
◮ We group N input signal samples into a vector x of

dimension N
◮ N consecutive samples of a sound
◮ N pixels of an image (typically a block)

◮ Quantization: we look into the codebook for the best
representation of x

◮ Nearest neighbor rule
◮ We compute L distances; each time this requires N

multiplications: complexity O(N)
◮ In total O(LN) = O(N2bN)
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Gain-shape VQ

Quantizer operation

Decoding

◮ The encoder just sends the index of the selected codeword
◮ The decoder picks the codeword in the codebook
◮ Asymmetric process: high-complexity encoding,

low-complexity decoding
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Gain-shape VQ

Quantizer operation

Example: speech coding

◮ Constraints
◮ Bandwidth: 8 kbps
◮ Sampling frequency: 8 kHz
◮ Computational capacity: C = 1 Gflops = 109 floating point

operations per second

◮ Find N et L

49/66 19.01.18 Institut Mines-Telecom Vector Quantization



Introduction
Building the dictionary

Performances
VQ Techniques

Gain-shape VQ

Quantizer operation
Example: speech coding

◮ Resolution = Bits/s divides by samples/s

b =
8kb/s
8kS/s

= 1b/S

◮ Operations per vector: NL = N2N

◮ Operations per sample : 2N

◮ Operations par second : 2N fE
◮ Constraint: 2N fE < C

2N [Op/S]× 8000[S/s] < 109[Op/s]

N < log2
109

8× 103 = 6 log2 10− 3 = 16.93

N = 16 L = 65536
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Gain-shape VQ

Quantizer operation

Example: speech coding

◮ N = 16 is not very large!
◮ This corresponds to the fact that the speech signal is too

complex to be represented with only a few tens thousands
vectors (216)

◮ The “analysis window” is too short:

T = N/fE = 16/8000 = 2ms

◮ The inter-window correlation is not negligible, therefore we
cannot attain the best VQ performance
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Gain-shape VQ

Quantizer operation

Example: speech coding

◮ We would like to increase N (and L) without increasing too
much the encoder complexity

◮ This is possible (by giving up some rate/distortion
performance) by imposing some structure to the codebook
that reduces encoding complexity
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Gain-shape VQ

Tree-structured vector quantization (TS-VQ)

◮ It simplifies the NN rule
◮ The search of the NN is organized in levels: at each level

we discard half of the candidates (binary search)
◮ At each step we compare the input vector with a

representative of the halves of the codebook
◮ Then we consider only the selected half of the codebook
◮ This is iterated until we find a single codeword
◮ Complexity: from O(2bN) to O(bN)

◮ Performance close to the full search case
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Gain-shape VQ

Product vector quantization

◮ We decompose a vector of dimension N into k sub-vectors
◮ The i-th subvector has dimension Ni , such that∑k

i=1 Ni = N
◮ Complexity : O(

∑
2bNi )

◮ Example : N = 10, b = 1, C = 210 = 1024
◮ N1 = 5, N2 = 5, C = 25 + 25 = 64
◮ We are no longer able to exploit statistical dependencies

among the k subvectors
◮ Therefore if we process the vector in such a way to reduce

these dependencies, we can effectively use this technique
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Gain-shape VQ

Multi-stage vector quantization (MS-VQ)

◮ We use successive approximations
◮ We apply a first quantization
◮ Then we compute the vector quantization error
◮ This error is quantified
◮ We continue by iterating this process: residual error

computation and quantization
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Gain-shape VQ

Transform vector quantization (TVQ)

◮ Transform allows to concentrate information and reduce
correlation

◮ In turn, this allows reducing N, since it should be selected
as the maximum distance between correlated samples
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Gain-shape VQ

Algebraic vector quantization AVQ

◮ The codebook is no longer build with GLA
◮ It is independent from source statistics
◮ Space R

N is partitioned in regular manner
◮ Advantage: large complexity reduction, no need of storing

the codebook
◮ Disadvantage: losses in rate/distortion performance
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Gain-shape VQ

Gain-shape vector quantization (GS-VQ)

◮ A QV technique popular for audio coding
◮ It allows to take into account power evolution along the time
◮ It can be seen as a special case of PVQ
◮ The input vector is decomposed into gain and shape,

which are separately quantized
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Gain-shape VQ

Gain-shape vector quantization
Nearest neighbor rule

◮ We use two codebooks
◮ Shape codebook (normalized) :

CS =
{

x̂
1
, x̂

2
, . . . , x̂

L1
}

◮ Gain codebook:

CG =
{

ĝ1, ĝ1, . . . , ĝL2
}

x

g

j

i

CSCS CGCG

x̂

ĝ

Rule of the
nearest

neighbor

Table
look-up
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Gain-shape VQ

Gain-shape vector quantization

Nearest neighbor rule

x̂ j

x̂k

x

gj x̂
j
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◮ First we look for the shape that is nearest to x

◮ This can be done without normalization (i.e. without computing
the gain):

〈x − gj x̂
j
, x̂

j〉 = 0 gj =
〈x , x̂ j〉
‖x̂ j‖2

‖x − gj x̂
j‖2 = ‖x‖2 + g2

j ‖x̂
j‖2 − 2gj 〈x , x̂ j〉 = ‖x‖2 − 〈x , x̂

j〉2

‖x̂ j‖2

j∗ = arg max
j

〈x , x̂ j〉2

‖x̂ j‖2
= arg max

j

〈
x ,

x̂
j

‖x̂ j‖

〉2

= arg max
j
| cosφj |
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◮ Shape codebook: CS =
{

x̂1
, x̂2

, . . . , x̂L1
}

◮ Normalized vectors
◮ Training set: M vectors x(m) with i ∈ {1, . . . ,M}
◮ GLA : Nearest neighbor and best representative

◮ The best representative is no longer necessarily the
centroid, since it must be normalized

◮ The nearest neighbor rule allows to partition vectors into
cells; w.l.o.g., the j-th cell is

Θj = {x(m)}m∈{1,...,M(j)}
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◮ In order to optimize the representative of the j-th cell, we
look for a vector x̂ j that minimizes error in the cell Θj ,
subject to the constraint of unitary norm:

arg min
x̂ j

σ2
Q(j) s.t .‖x̂ j‖2 = 1

σ2
Q(j) =

1
M(j)

M(j)∑

m=1

‖x(m)− gj x̂
j‖2

‖x(m)− gj x̂
j‖2 = ‖x(m)‖2 − 〈x(m), x̂ j〉2

‖x̂ j‖2

= ‖x(m)‖2 − 〈x(m), x̂ j〉2
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◮ Our problem becomes

arg max
x̂ j

Q = arg max
x̂ j

M(j)∑

m=1

〈x(m), x̂ j〉2 s.c.‖x̂ j‖2 = 1

◮ Γ is referred to as empiric covariance matrix

Γ =

M(j)∑

m=1

x(m)x(m)T

◮ We find:

(x̂ j
)TΓx̂ j

=

M(j)∑

m=1

(x̂ j
)T x(m)x(m)T x̂ j

= Q
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◮ The problem becomes:

arg max
x̂ j

(x̂ j
)TΓx̂ j s.c.‖x̂ j‖2 = 1

◮ Using Lagrangian multipliers method, we have to minimize

J = (x̂ j
)TΓx̂ j − λ[(x̂ j

)T x̂ j − 1]

◮ We have

∂J

∂x̂ j = 0 Γx̂ j
= λ(x̂ j

)
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◮ Thus x̂ j is an eigenvector of Γ, and λ is the corresponding
eigenvalue

◮ If we multiply Γx̂ j
= λ(x̂ j

) by (x̂ j
)T , we find:

(x̂ j
)TΓx̂ j

= λ(x̂ j
)T x̂ j

Q = λ

◮ Therefore, the optimization problem is solved by using the
eigenvector corresponding to the largest eigenvalue of the
empiric covariance matrix
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