Speech and audio coding

Marco Cagnazzo,
cagnazzo@telecom-paristech.fr

MN910 – Advanced compression
Outline

Introduction
 Speech signal
 Music signal

Audio perception
 Masking

Speech compression
 Simple encoders
 CELP encoder
 Encoder 3GPP AMR-WB

Music compression
 MP3
Outline

Introduction
 Speech signal
 Music signal

Audio perception

Speech compression

Music compression
Speech signal

- Non-stationary, but locally stationary (20 ms)
- Voiced sounds (vowels, some consonants) non-voiced (some consonants), other (transitions)
- Simple and effective prediction models:
 - Linear filters AR of impulsions for voiced sounds
 - Same filter on white noise for non-voiced sounds
Speech signal

Digitalization

- PCM (Pulse Code Modulation)
 - Bandwidth 200 Hz ÷ 3400 Hz
 - Enough for understanding
 - Sampling at 8000 Hz: $F_s > 2F_{\text{max}}$
 - 8 bits per sample → 64 kbps

- Extended bandwidth
 - 50-200 Hz: more natural
 - and 3.4-7 kHz: better understanding
Speech signal

Coding standards

G.711 (1972) PCM (no compression), 8 samples per ms coded on 8 bits: 64 kbps

G.728 (1991) CELP (Code Excited Linear Predictive), low latency: 16 kbps

G.729 (1995) CELP, without latency constraint: 8 kbps

G.723.1 (1995) Encoder at 6.3 kbps
Introduction
Audio perception
Speech compression
Music compression

Speech signal

Normes de compression : Mobiles

GSM 06.10 (1988) RPE-LTP : Regular Pulse Excitation Long Term Predictor. 13 (22.8) kbps
GSM 06.20 (1994) “Half-Rate”. 5.6 (11.4) kbps
GSM 06.60 (1996) “ACELP”. 12.2 (22.8) kbit/s
GSM 06.90 (1999) Source/channel coding at variable bit-rate 4.75 ÷ 12.2 (11.4 ÷ 22.8) kbps (ACELP-AMR : Adaptive Multi Rate)

G.722 Wideband speech coder, rates 6.6, 8.85, 12.65 kbps (AMR-WB) ; further rates 15.85 and 23.85 kbps
Music signal

- Large dynamics: 90dB
- Locally stationary signal
- No simple model
Music signal

Compression

CD: sampling at 44.1 kHz, quantization on 16 bits: 705 kbps (mono)

MP3: Audio part of MPEG-1. Three layers of increasing complexity, at 192, 128 and 96 kbps

AAC: Audio part of MPEG-2, reputed as the best audio encoder

MPEG-4: Sound object representation
Quality

- Objective criteria (MSE) not satisfying
- Subjective stest:
 - Speech: understandability
 - Music: “transparency” criterion. Double blind method with triple stimuli and hidden reference (UIT-T BS.1116)
Outline

Introduction

Audio perception
 Masking

Speech compression

Music compression
Introduction
Audio perception
Speech compression
Music compression

Audition threshold

\[S_a(f) \]

[Graph showing the Audition threshold curve with frequency on the x-axis and power in dB on the y-axis.]
Frequency masking
Frequency masking function $S_m(f_0, \sigma^2, f)$

- For a given f_0 and σ^2, $S_m(f)$ has a triangular shape.
- The maximum is in $f = f_0$.
- Masking index: $S_m(f, \sigma^2, f) - \sigma^2$.
Time Masking

- Pre-masking: $2 \div 5$ ms
- Post-masking: $100 \div 200$ ms
Outline

Introduction

Audio perception

Speech compression
 Simple encoders
 CELP encoder
 Encoder 3GPP AMR-WB

Music compression
LPC10 encoder at 2.4 kbps

Linear Prediction Coding with 10 samples

- Only for teaching!
- Window $N = 160$
- Sample prediction using $P = 10$ previous samples
- Scheme

![Diagram](attachment:image.png)
LPC10 encoder at 2.4 kbps

Filter

\[y(n) = x(n) - x_P(n) \]
\[x_P(n) = \sum_{k=1}^{P} h_k x(n - k) \]
\[y(n) = \sum_{k=0}^{P} a_k x(n - k) \]
\[a_0 = 1 \quad a_k = -h_k \]

\[A(z) = 1 + a_1 z^{-1} + a_2 z^{-2} + \ldots + a_P z^{-P} \]
\[Y(z) = A(z)X(z) \]

\(A \) is computed by minimisation of the residual power in the current window.
LPC10 encoder at 2.4 kbps

Filter

\[\mathbf{c} = [r_x(1) \ r_x(2) \ \ldots \ r_x(P)]^T \]
\[\mathbf{R} = \begin{bmatrix}
 r_x(0) & r_x(1) & \ldots & r_x(P-1) \\
 r_x(1) & r_x(0) & \ldots & r_x(P-2) \\
 \vdots & \vdots & \ddots & \vdots \\
 r_x(P-1) & r_x(P-2) & \ldots & r_x(0)
\end{bmatrix} \]
\[\mathbf{a} = -\mathbf{R}^{-1}\mathbf{c} \]

Estimation of \(r_x \): using \(N \) samples of the current window

\[\hat{r}_x(k) = \frac{1}{N-k} \sum_{n=k}^{N-1} x(n)x(n-k) \quad k \in \{0, 1, \ldots, P\} \]
LPC10 encoder at 2.4 kbps

Non-voiced sounds

► If X was deprived of all correlation, Y would be white noise
► We dont send Y: the decoder will filter WN using $1/A(z)$
► Resulting in unaudible phase noise
► WN is a good model only for non-voiced sounds
► For voice sounds we have residual periodicity
LPC10 encoder at 2.4 kbps

Non-voiced sounds: Filtering WN with $1/A(z)$

Voiced sounds: Filtering $1/A(z)$ of a pulse train:

$$\hat{y}(n) = \alpha \sum_{m \in \mathbb{Z}} \delta(n - mT_0 + \phi)$$
LPC10 encoder at 2.4 kbps

- Estimation of auto-correlation $\hat{r}_x(k)$
- $\hat{r}_x(0)$ estimates opower σ_Y^2 or α
- If \hat{r}_x decreases towards zero, it is a non-voiced sound
- If \hat{r}_x is periodical, it is a voiced sound with period T_0
LPC10 encoder at 2.4 kbps

Each 20 ms we send:

- The P filter coefficients $P = 10$ over 3 or 4 bits. $b_P = 36$ bits
- One bit for voiced/non-voiced $b_v = 1$ bit
- For voiced
 - $b_\alpha = 6$
 - The period T_0: $b_{T_0} = 7$
- For non-voiced:
 - $b_{\sigma^2} = 6$ bits
LPC10 encoder at 2.4 kbps

Total

\[R = \frac{b_P + b_v + b_{T0} + b_\alpha}{20\text{ms}} \]
\[= \frac{36 + 1 + 6 + 7}{0.02} \]
\[= 2500\text{bps} \]

or

\[R = \frac{b_P + b_v + b_{\sigma^2}}{20\text{ms}} \]
\[= \frac{36 + 1 + 6}{0.02} = 2150\text{bps} \]

\[R = 2.4 \text{ kbps} \]
CELP encoder

- Find a filter and the prediction error signal
- Filter $A(z)$: LPC idea
- Error $y(n)$: from a “GS-VQ” dictionary

$$x(n) \xrightarrow{i} \hat{y}(n) \xrightarrow{g} \frac{1}{A(z)} \hat{x}(n) \xrightarrow{a} \epsilon(n)$$
CELP encoder

- Filter coefficient coding
 - *Line Spectrum Pairs*: effective mathematical representation of $A(z)$
- Perceptual weighting function (WF)
 - Noise can be tolerated where the signal is strong
 - The WF depends thus on $A(z)$
Perceptual weighting

- We use \(W(z) = \frac{A(z)}{A(z/\gamma)} \) to weight the signal
- Noise can be higher in the formantic areas
- The filter \(1/A(z) \) has peaks in the formantic areas
- The filter \(1/A(z/\gamma) \), with \(\gamma \in (0, 1) \) has peaks at the same frequencies, but smaller
 - Let \(p_i \) be the poles of \(1/A(z) \)
 - Thus \(\gamma p_i \) are the poles of \(1/A(z/\gamma) \), which are thus closer to the center
Perceptual weighting

Blue: $1/A(z)$; Red: $1/A(z/\gamma)$; Black: $W(z) = A(z)/A(z/\gamma)$
CELP encoder

- Excitation model. It is the sum of $K = 2$ or $K = 3$ vectors
- Vector and gain selection
 - High complexity
 - Sub-optimal algorithms such as the standard iterative algorithm
- We also take into account the zero-input response of the current LPC filter through a \hat{p}_0 term. This allows removing possible ringing artifacts
CELP encoder

Global scheme

\[
x(n) \rightarrow A(z) \rightarrow \frac{1}{A(z/\gamma)} \rightarrow p(n)
\]

\[
C
\]

\[
bz^{-Q} \rightarrow \hat{p}(n)
\]

\[
\hat{p}_0(n) \rightarrow \text{Min}
\]
CELP encoder

Coding rate

- Filter coefficients, sent once per 10 ms:
 - $P = 10$, $b_P = 18$ bits

- Long-term predictor, sent once per 5 ms:
 - Pitch coded on 7 bits
 - Puissance, codée sur 3 bits

- Residual, coded by GS-VQ, once per 5 ms:
 - *Shape*: 17 bits dictionary
 - *Gain*: 4 bits dictionary

$$R = \frac{18}{0.010} + \frac{(7 + 3 + 17 + 4)}{0.005} = 8 \text{ kbps}$$
Encoder 3GPP AMR-WB

UIT-T G.722.2

- State of the art in speech coding
- Introduction of 50-200 Hz: more natural, presence effect
- Extension 3.4-7 kHz: better understandability
- ACELP-like encoder with:
 - Modification of perceptual weighting (wide-band)
 - Modification of pitch information
 - Very large dictionary
- Rates: 6.6 to 23.85 kbps
Encoder 3GPP AMR-WB

- Harmonic exploitation
- Amplitude modulation
Outline

Introduction

Audio perception

Speech compression

Music compression

MP3
Perceptual coding

- Overlapping windows
- Buffer of N samples; M new samples are coded at time
- Examples: $M = 32$ et $N = 512$ (MP3); $M = 1024$ et $N = 2048$ (AAC)
- Three tools used for encoding the current window
 - Time-frequency analysis
 - Bit allocation (controlled by audition model)
 - Quantization and lossless coding
Perceptual coding

Coder

$x(n)$

Estimateur spectral $
ightarrow$ Modele d’audition $
ightarrow$ Allocation des bits

H $
ightarrow$ Q

N M

X

Flux Binaire
Perceptual coding

Decoder

\[\hat{x}(n) \]
MPEG-1/MP3

- *Transparent* music encoder: perfect subjective quality
- Three complexity layers
 - MP3: third layer (max complexity)
- We consider $f_e = 44.1\text{kHz}$
MPEG-1/MP3

TF transform

- 32 filters for the filterbank
- Uniform repartition of frequencies between 0 and 22 kHz
 - 700 Hz per sub-band
- Critical sampling and quasi-perfect reconstruction (SNR > 90 dB)
- A vector of 12 samples from the same subband is encoded jointly
 - y_k, it corresponds to ≈ 10 ms
MPEG-1/MP3

- Subband vectors are normalized

\[y_k = g_k a_k \]

- \(g_k \): scale factor, the largest coefficient. It is quantified on 6 bits
- \(a_k \): normalized vector
- The samples \(x \) of the current window are also used to compute the perceptual function \(\hat{S}_X(f) \) and the masking threshold \(\Phi(f) \) based on psychoacoustical models
MPEG-1/MP3

Rate allocation and quantization

- The signal to mask ratio is known for each subband
- The available bits are first given to subbands with the highest ratio, then to others
- For each subband, we can choose the number of bit to be used for the scalar uniform quantizer