
Refinement of Worst-Case Execution Time Bounds
by Graph Pruning

Florian Brandner Alexander Jordan
Unité d’Informatique et d’Ing. des Systèmes Embedded Systems Engineering Sect.

ENSTA-ParisTech Technical University of Denmark

This work is partially supported by the EC project T-CREST.

1/16

Real-Time Systems

Strict timing guarantees

• Critical tasks have to be completed in time

• Bound Worst-Case Execution Time (WCET)

Execution Time

#
E
xe
cu

ti
o
n
s

Average Execution Time

Best-Case Execution Time

Worst-Case Execution Time

Worst-Case Execution Time Bound

Overestimation

2/16

Real-Time Systems

Strict timing guarantees

• Critical tasks have to be completed in time

• Bound Worst-Case Execution Time (WCET)

Execution Time

#
E
xe
cu

ti
o
n
s

Average Execution Time

Best-Case Execution Time

Worst-Case Execution Time

Worst-Case Execution Time Bound

Overestimation

2/16

WCET Analysis (1)

r

BB0

BB1 BB2

BB3 BB4

BB5

t

W(BB0) = 2

W(BB1) = 3 W(BB2) = 7

W(BB3) = 1

W(BB4) = 5

W(BB5) = 1

x := 7 x := 10

< x < 10

WCET = 2 + 7 + 5 + 1 = 15

Three analysis phases:

(1) Loop bounds &
flow facts

(2) Pipeline & caches

(3) Longest path search
(IPET)

3/16

WCET Analysis (1)

r

BB0

BB1 BB2

BB3 BB4

BB5

t

W(BB0) = 2

W(BB1) = 3 W(BB2) = 7

W(BB3) = 1

W(BB4) = 5

W(BB5) = 1

x := 10 x := 7

< x < 10

WCET = 2 + 7 + 5 + 1 = 15

Three analysis phases:

(1) Loop bounds &
flow facts

(2) Pipeline & caches

(3) Longest path search
(IPET)

3/16

WCET Analysis (1)

r

BB0

BB1 BB2

BB3 BB4

BB5

t

W(BB0) = 2

W(BB1) = 3 W(BB2) = 7

W(BB3) = 1
W(BB4) = 5

W(BB5) = 1

x := 10 x := 7

< x < 10

WCET = 2 + 7 + 10 · 5 + 1 = 60

Three analysis phases:

(1) Loop bounds &
flow facts

(2) Pipeline & caches

(3) Longest path search
(IPET)

3/16

WCET Analysis (1)

r

BB0

BB1 BB2

BB3 BB4

BB5

t

W(BB0) = 2

W(BB1) = 3 W(BB2) = 7

W(BB3) = 1
W(BB4) = 5

W(BB5) = 1

x := 10 x := 7

< x < 10

WCET = 2 + 7 + 10 · 5 + 1 = 60

Three analysis phases:

(1) Loop bounds &
flow facts

(2) Pipeline & caches

(3) Longest path search
(IPET)

3/16

WCET Analysis (2)

Bound longest possible execution time of a program

• Covering all potential execution paths

• Covering all potential program inputs

• Covering all potential hardware states

A priori all executions are equally considered relevant

4/16

WCET Analysis (2)

Bound longest possible execution time of a program

• Covering all potential execution paths

• Covering all potential program inputs

• Covering all potential hardware states

A priori all executions are equally considered relevant

4/16

Criticalities

r

BB0

BB1 BB2

BB3 BB4

BB5

t

W(BB0) = 2

W(BB1) = 3 W(BB2) = 7

W(BB3) = 1
W(BB4) = 5

W(BB5) = 1

x := 10 x := 7

< x < 10

60

56

7

Criticality:

• WCET(BBn): Longest
path over BBn.

• WCET: Longest path in
the graph (from r to t)

• Crit(BBn) = WCET(BBn)
WCET

5/16

Criticalities

r

BB0

BB1 BB2

BB3 BB4

BB5

t

W(BB0) = 2

W(BB1) = 3 W(BB2) = 7

W(BB3) = 1
W(BB4) = 5

W(BB5) = 1

x := 10 x := 7

< x < 10

60

56

7

Criticality:

• WCET(BBn): Longest
path over BBn.

• WCET: Longest path in
the graph (from r to t)

• Crit(BBn) = WCET(BBn)
WCET

Crit(BB3) = 7
60 = 0.12

Crit(BB1) = 56
60 = 0.93

5/16

Criticality Distribution: Debie1
Problem BBs I0 I1 I2 I3 I4 I5
debie1 83 4 2 0 13 19 45
debie3a 74 16 0 0 0 1 57
debie3b 74 15 0 0 0 0 59
debie3c 74 15 0 0 0 0 59
debie4a 285 31 192 0 19 3 40
debie4b 285 236 3 14 0 3 29
debie4c 285 260 0 4 0 5 16
debie4d 285 264 0 4 0 1 16
debie5a 138 13 0 0 1 4 120
debie5b 138 5 0 0 0 1 132
debie6a 376 53 24 2 105 0 192
debie6b 376 52 22 4 106 0 192
debie6c 376 52 22 143 4 0 155
debie6d 376 12 24 2 0 144 194

*Intervals: 0 ≤ I0 < 0.25 < I1 < 0.5 < I2 < 0.75 < I3 < 0.9 < I4 < 0.99 < I5 ≤ 1

6/16

Iterative Graph Pruning

Improving WCET bounds

• Many basic blocks turn out to be uncritical

• Why do we then analyze them?

• Can we remove uncritical blocks?

• Focus on relevant code only

• More precise WCET

• Faster analysis

7/16

Iterative Graph Pruning

Improving WCET bounds

• Many basic blocks turn out to be uncritical

• Why do we then analyze them?

• Can we remove uncritical blocks?

• Focus on relevant code only

• More precise WCET

• Faster analysis

7/16

Iterative Graph Pruning

Improving WCET bounds

• Many basic blocks turn out to be uncritical

• Why do we then analyze them?

• Can we remove uncritical blocks?

• Focus on relevant code only

• More precise WCET

• Faster analysis

7/16

Iterative Graph Pruning: Example

r

BB0

BB1 BB2

BB3 BB4

BB5

t

W(BB0) = 2

W(BB1) = 3 W(BB2) = 7

W(BB3) = 1
W(BB4) = 5

W(BB5) = 1

x := 10 x := 7

< x < 10

BB0,
BB1, BB2,
BB4, BB5

S0 ∪ S1 60 38 56
BB0, BB2,
BB4, BB5

S0 60

BB1S1 56

BB3S2 7

8/16

Iterative Graph Pruning: Example

r

BB0

BB1 BB2

BB3 BB4

BB5

t

W(BB0) = 2

W(BB1) = 3 W(BB2) = 7

W(BB3) = 1
W(BB4) = 5 4

W(BB5) = 1

x := 10 x := 7

< x < 10 7

BB0,
BB1, BB2,
BB4, BB5

S0 ∪ S1 60 38 56
BB0, BB2,
BB4, BB5

S0 60

BB1S1 56

BB3S2 7

8/16

Iterative Graph Pruning: Example

r

BB0

BB1 BB2

BB3 BB4

BB5

t

W(BB0) = 2

W(BB1) = 3 W(BB2) = 7

W(BB3) = 1
W(BB4) = 5 4

W(BB5) = 1

x := 10 x := 7

< x < 10 7

WCET = 2 + 7 + 7 · 4 + 1 = 38

BB0,
BB1, BB2,
BB4, BB5

S0 ∪ S1 60 38 56
BB1S1 56

BB0, BB2,
BB4, BB5

S0 60 38

BB3S2 7

8/16

Iterative Graph Pruning: Example

r

BB0

BB1 BB2

BB3 BB4

BB5

t

W(BB0) = 2

W(BB1) = 3 W(BB2) = 7

W(BB3) = 1
W(BB4) = 5 4

W(BB5) = 1

x := 10 x := 7

< x < 10 7

WCET = 2 + 7 + 7 · 4 + 1 = 38

BB0,
BB1, BB2,
BB4, BB5

S0 ∪ S1 60 38 56
BB1S1 56

BB0, BB2,
BB4, BB5

S0 60 38

BB3S2 7

⋃

8/16

Iterative Graph Pruning: Example

r

BB0

BB1 BB2

BB3 BB4

BB5

t

W(BB0) = 2

W(BB1) = 3 W(BB2) = 7

W(BB3) = 1
W(BB4) = 5 4 5

W(BB5) = 1

x := 10 x := 7

< x < 10 7 10

WCET = 2 + 7 + 10 · 5 + 1 = 60 ??

BB0,
BB1, BB2,
BB4, BB5

S0 ∪ S1 60 38 ??

BB3S2 7

8/16

Iterative Graph Pruning: Example

r

BB0

BB1 BB2

BB3 BB4

BB5

t

W(BB0) = 2

W(BB1) = 3 W(BB2) = 7

W(BB3) = 1
W(BB4) = 5 4 5

W(BB5) = 1

x := 10 x := 7

< x < 10 7 10

WCET = 2 + 3 + 10 · 5 + 1 = 56

BB0,
BB1, BB2,
BB4, BB5

S0 ∪ S1 60 38 56

BB3S2 7

8/16

Iterative Graph Pruning: Example

r

BB0

BB1 BB2

BB3 BB4

BB5

t

W(BB0) = 2

W(BB1) = 3 W(BB2) = 7

W(BB3) = 1
W(BB4) = 5 4 5

W(BB5) = 1

x := 10 x := 7

< x < 10 7 10

BB0,
BB1, BB2,
BB4, BB5

S0 ∪ S1 60 38 56

BB3S2 7

⋃
??

8/16

Iterative Graph Pruning: Algorithm

Input: G = (V ,E) The program’s control-flow graph
S0, . . . ,Sn Block sets sorted by path length

1: ubWCET := 0

2: for i = 1 to n
3: if ubWCET >= pathlength(Si)
4: return ubWCET
5: let V ′ = S0 ∪ . . . ∪ Si, G ′ = (V ′,E ∩ V ′ × V ′) in

6: ubWCET := max(ubWCET, WCEToverAny(G ′, Si))
7: return ubWCET

9/16

Fast vs. Precise WCET Analysis

Two-Stage WCET analysis

• Combine fast with precise analysis
• Fast analysis

• Compute block sets
• Check WCET increase while iterating

• Precise analysis to verify

Non-Iterative Pruning

• Heuristically construct a pruned graph

• Using Criticality?
• Using Criticality estimates?

• Apply precise analysis to pruned graph

10/16

Fast vs. Precise WCET Analysis

Two-Stage WCET analysis

• Combine fast with precise analysis
• Fast analysis

• Compute block sets
• Check WCET increase while iterating

• Precise analysis to verify

Non-Iterative Pruning

• Heuristically construct a pruned graph

• Using Criticality?
• Using Criticality estimates?

• Apply precise analysis to pruned graph

10/16

Experiments

Setup

• Commercial WCET analysis toola (AbsInt aiT, 12.10)

• Freescale mpc5554 and mpc755s (PowerPC)

• Two real-time benchmarks

• Debie1: satellite instrument control

• Papabench: flight control

• 28 analysis problemsb

ahttp://www.absint.com/ait/
bhttp://www.mrtc.mdh.se/projects/WCC/2011/

11/16

http://www.absint.com/ait/
http://www.mrtc.mdh.se/projects/WCC/2011/

Experiments

Setup

• Commercial WCET analysis toola (AbsInt aiT, 12.10)

• Freescale mpc5554 and mpc755s (PowerPC)

• Two real-time benchmarks

• Debie1: satellite instrument control

• Papabench: flight control

• 28 analysis problemsb

ahttp://www.absint.com/ait/
bhttp://www.mrtc.mdh.se/projects/WCC/2011/

11/16

http://www.absint.com/ait/
http://www.mrtc.mdh.se/projects/WCC/2011/

Experiments

Setup

• Commercial WCET analysis toola (AbsInt aiT, 12.10)

• Freescale mpc5554 and mpc755s (PowerPC)

• Two real-time benchmarks

• Debie1: satellite instrument control

• Papabench: flight control

• 28 analysis problemsb

ahttp://www.absint.com/ait/
bhttp://www.mrtc.mdh.se/projects/WCC/2011/

11/16

http://www.absint.com/ait/
http://www.mrtc.mdh.se/projects/WCC/2011/

WCET Reductions (mpc5554)

a
1

a
2
a

a
2
b

a
3
a

a
3
b

a
4

a
5

a
6

f1
a

f1
b f2

d
e
b
ie
1

d
e
b
ie
2
a

d
e
b
ie
2
b

d
e
b
ie
2
c

d
e
b
ie
3
a

d
e
b
ie
3
b

d
e
b
ie
3
c

d
e
b
ie
4
a

d
e
b
ie
4
b

d
e
b
ie
4
c

d
e
b
ie
4
d

d
e
b
ie
5
a

d
e
b
ie
5
b

d
e
b
ie
6
a

d
e
b
ie
6
b

d
e
b
ie
6
c

d
e
b
ie
6
d

0.9

0.92

0.94

0.96

0.98

1

R
e
d
u
c
e
d

W
C
E
T

B
o
u
n
d

WCET Reductions up to 6%.
aiT is usually already close to measured bounds.

12/16

WCET Reductions (mpc755s)

a
1

a
2
a

a
2
b

a
3
a

a
3
b

a
4

a
5

a
6

f1
a

f1
b f2

d
e
b
ie
1

d
e
b
ie
2
a

d
e
b
ie
2
b

d
e
b
ie
2
c

d
e
b
ie
3
a

d
e
b
ie
3
b

d
e
b
ie
3
c

d
e
b
ie
4
a

d
e
b
ie
4
b

d
e
b
ie
4
c

d
e
b
ie
4
d

d
e
b
ie
5
a

d
e
b
ie
5
b

d
e
b
ie
6
a

d
e
b
ie
6
b

d
e
b
ie
6
c

d
e
b
ie
6
d

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

R
e
d
u
c
e
d

W
C
E
T

B
o
u
n
d

WCET Reductions up to 12%.

13/16

Iterations of f1a: WCET (mpc5554)

10 20 30 40 50 60
0

0.5

1

·104

Iterations

W
C
E
T

(c
y
c
le
s)

WCET bound (original) ubwcet (IGP)

WCETi (IGP)

14/16

Iterations of f1a: Problem Size (mpc5554)

10 20 30 40 50 60

150

200

250

300

Iterations

N
u
m
b
e
r
o
f
N
o
d
e
s

10 20 30 40 50 60

0.5

1

1.5

·104

Iterations

N
u
m
b
e
r
o
f
S
p
li
ts

Nodes (original) Nodes (IGP)

Splits (original) Splits (IGP)

15/16

Conclusion

• Criticality
• Novel compiler-centric metric
• Proved interesting for WCET analysis
• Cheap yet accurate estimation

• Iterative Graph Pruning
• Based on Criticality
• Allows elimination of uncritical code
• Successfully reduces overestimation
• Causes quite some overhead (9x on average)

• Proof-of-Concept implementation
• Treats WCET analysis as black box
• Incremental analysis techniques needed

16/16

Conclusion

• Criticality
• Novel compiler-centric metric
• Proved interesting for WCET analysis
• Cheap yet accurate estimation

• Iterative Graph Pruning
• Based on Criticality
• Allows elimination of uncritical code
• Successfully reduces overestimation
• Causes quite some overhead (9x on average)

• Proof-of-Concept implementation
• Treats WCET analysis as black box
• Incremental analysis techniques needed

16/16

