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Real-Time Systems

Strict timing guarantees

• Critical tasks have to be completed in time

• Bound Worst-Case Execution Time (WCET)
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WCET Analysis (1)
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W(BB5) = 1

x := 7 x := 10

< x < 10

WCET = 2 + 7 + 5 + 1 = 15

Three analysis phases:

(1) Loop bounds &
flow facts

(2) Pipeline & caches

(3) Longest path search
(IPET)
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WCET Analysis (2)

Bound longest possible execution time of a program

• Covering all potential execution paths

• Covering all potential program inputs

• Covering all potential hardware states

A priori all executions are equally considered relevant
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Criticalities
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Criticality:

• WCET(BBn): Longest
path over BBn.

• WCET: Longest path in
the graph (from r to t)

• Crit(BBn) = WCET(BBn)
WCET
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Crit(BB1) = 56
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Criticality Distribution: Debie1
Problem BBs I0 I1 I2 I3 I4 I5
debie1 83 4 2 0 13 19 45
debie3a 74 16 0 0 0 1 57
debie3b 74 15 0 0 0 0 59
debie3c 74 15 0 0 0 0 59
debie4a 285 31 192 0 19 3 40
debie4b 285 236 3 14 0 3 29
debie4c 285 260 0 4 0 5 16
debie4d 285 264 0 4 0 1 16
debie5a 138 13 0 0 1 4 120
debie5b 138 5 0 0 0 1 132
debie6a 376 53 24 2 105 0 192
debie6b 376 52 22 4 106 0 192
debie6c 376 52 22 143 4 0 155
debie6d 376 12 24 2 0 144 194

*Intervals: 0 ≤ I0 < 0.25 < I1 < 0.5 < I2 < 0.75 < I3 < 0.9 < I4 < 0.99 < I5 ≤ 1
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Iterative Graph Pruning

Improving WCET bounds

• Many basic blocks turn out to be uncritical

• Why do we then analyze them?

• Can we remove uncritical blocks?

• Focus on relevant code only

• More precise WCET

• Faster analysis
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Iterative Graph Pruning: Example
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Iterative Graph Pruning: Algorithm

Input: G = (V ,E ) The program’s control-flow graph
S0, . . . ,Sn Block sets sorted by path length

1: ubWCET := 0

2: for i = 1 to n
3: if ubWCET >= pathlength(Si)
4: return ubWCET
5: let V ′ = S0 ∪ . . . ∪ Si, G ′ = (V ′,E ∩ V ′ × V ′) in

6: ubWCET := max(ubWCET, WCEToverAny(G ′, Si))
7: return ubWCET
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Fast vs. Precise WCET Analysis

Two-Stage WCET analysis

• Combine fast with precise analysis
• Fast analysis

• Compute block sets
• Check WCET increase while iterating

• Precise analysis to verify

Non-Iterative Pruning

• Heuristically construct a pruned graph

• Using Criticality?
• Using Criticality estimates?

• Apply precise analysis to pruned graph
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Experiments

Setup

• Commercial WCET analysis toola (AbsInt aiT, 12.10)

• Freescale mpc5554 and mpc755s (PowerPC)

• Two real-time benchmarks

• Debie1: satellite instrument control

• Papabench: flight control

• 28 analysis problemsb

ahttp://www.absint.com/ait/
bhttp://www.mrtc.mdh.se/projects/WCC/2011/
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WCET Reductions (mpc5554)
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WCET Reductions up to 6%.
aiT is usually already close to measured bounds.
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WCET Reductions (mpc755s)
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Iterations of f1a: WCET (mpc5554)
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Iterations of f1a: Problem Size (mpc5554)
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Conclusion

• Criticality
• Novel compiler-centric metric
• Proved interesting for WCET analysis
• Cheap yet accurate estimation

• Iterative Graph Pruning
• Based on Criticality
• Allows elimination of uncritical code
• Successfully reduces overestimation
• Causes quite some overhead (9x on average)

• Proof-of-Concept implementation
• Treats WCET analysis as black box
• Incremental analysis techniques needed
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