Refinement of Worst-Case Execution Time Bounds by Graph Pruning

Florian Brandner

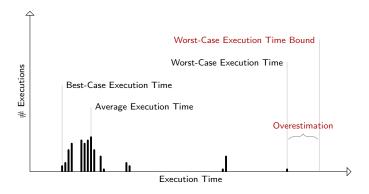
Unité d'Informatique et d'Ing. des Systèmes ENSTA-ParisTech

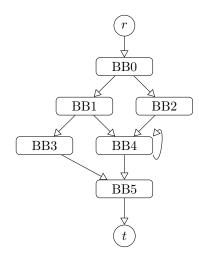
Alexander Jordan

Embedded Systems Engineering Sect. Technical University of Denmark

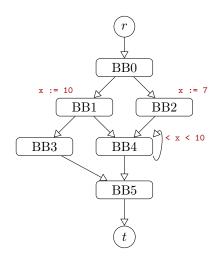
This work is partially supported by the EC project T-CREST.

Real-Time Systems

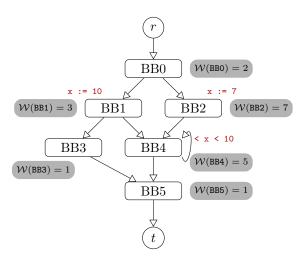

Strict timing guarantees


• Critical tasks have to be completed in time

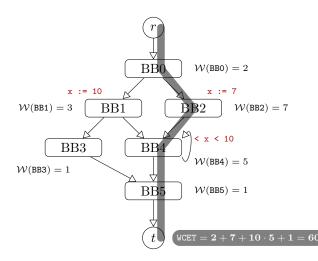
Real-Time Systems


Strict timing guarantees

- Critical tasks have to be completed in time
- Bound Worst-Case Execution Time (WCET)



Three analysis phases:


Three analysis phases:

(1) Loop bounds & flow facts

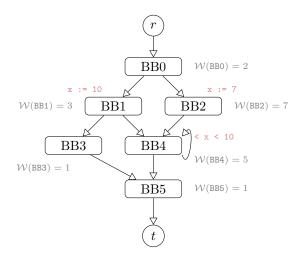
Three analysis phases:

- (1) Loop bounds & flow facts
- (2) Pipeline & caches

Three analysis phases:

- (1) Loop bounds & flow facts
- (2) Pipeline & caches
- (3) Longest path search (IPET)

Bound longest possible execution time of a program

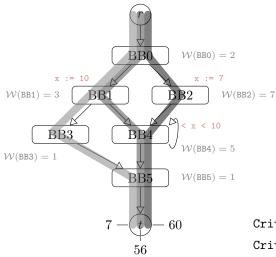

- Covering all potential execution paths
- Covering all potential program inputs
- Covering all potential hardware states

Bound longest possible execution time of a program

- Covering all potential execution paths
- Covering all potential program inputs
- Covering all potential hardware states

A priori all executions are equally considered relevant

Criticalities



Criticality:

- WCET(BBn): Longest path over BBn.
- WCET: Longest path in the graph (from r to t)

•
$$\operatorname{Crit}(BBn) = \frac{\operatorname{WCET}(BBn)}{\operatorname{WCET}}$$

Criticalities

Criticality:

- WCET(BBn): Longest path over BBn.
- WCET: Longest path in the graph (from r to t)

•
$$\operatorname{Crit}(BBn) = \frac{\operatorname{WCET}(BBn)}{\operatorname{WCET}}$$

$$\begin{aligned} \texttt{Crit}(BB3) &= \frac{7}{60} = 0.12 \\ \texttt{Crit}(BB1) &= \frac{56}{60} = 0.93 \end{aligned}$$

Criticality Distribution: Debie1

Problem	BBs	<i>I</i> ₀	I_1	I_2	<i>I</i> ₃	I_4	<i>I</i> ₅
debie1	83	4	2	0	13	19	45
debie3a	74	16	0	0	0	1	57
debie3b	74	15	0	0	0	0	59
debie3c	74	15	0	0	0	0	59
debie4a	285	31	192	0	19	3	40
debie4b	285	236	3	14	0	3	29
debie4c	285	260	0	4	0	5	16
debie4d	285	264	0	4	0	1	16
debie5a	138	13	0	0	1	4	120
debie5b	138	5	0	0	0	1	132
debie6a	376	53	24	2	105	0	192
debie6b	376	52	22	4	106	0	192
debie6c	376	52	22	143	4	0	155
debie6d	376	12	24	2	0	144	194

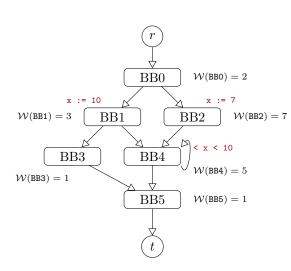
*Intervals: $0 \le l_0 < 0.25 < l_1 < 0.5 < l_2 < 0.75 < l_3 < 0.9 < l_4 < 0.99 < l_5 \le 1$

Iterative Graph Pruning

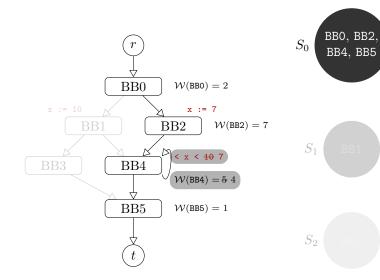
Improving WCET bounds

• Many basic blocks turn out to be uncritical

Iterative Graph Pruning

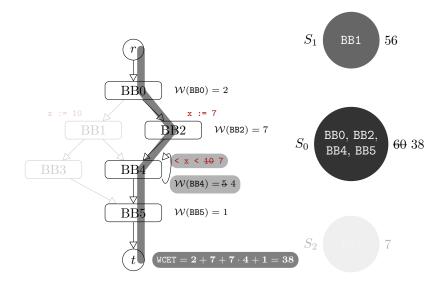

Improving WCET bounds

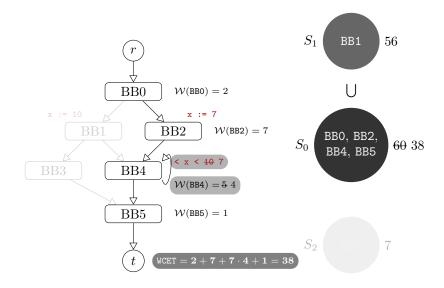

- Many basic blocks turn out to be uncritical
- Why do we then analyze them?

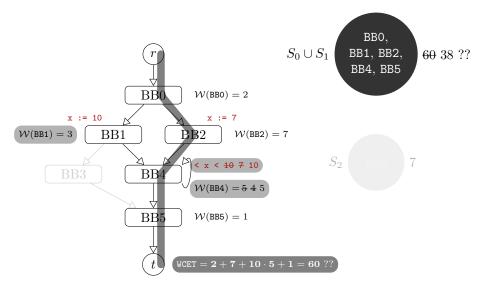

Iterative Graph Pruning

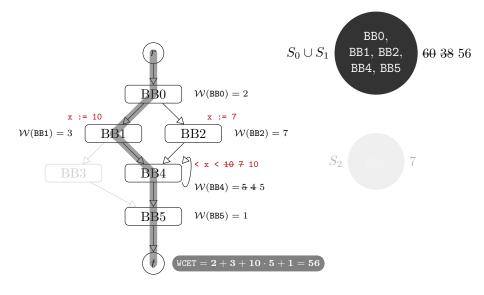
Improving WCET bounds

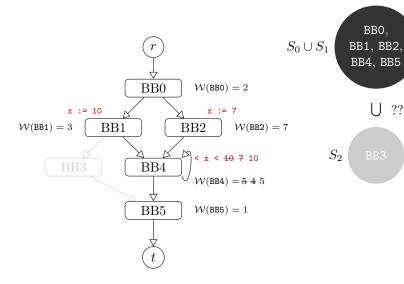
- Many basic blocks turn out to be uncritical
- Why do we then analyze them?
- Can we remove uncritical blocks?
 - Focus on relevant code only
 - More precise WCET
 - Faster analysis






60


56


7

60 38 56

??

7

Iterative Graph Pruning: Algorithm

Input: G = (V, E) The program's control-flow graph S_0, \ldots, S_n Block sets sorted by path length

1:
$$ub_{WCET} := 0$$

2: for $i = 1$ to n
3: if $ub_{WCET} \ge pathlength(S_i)$
4: return ub_{WCET}
5: let $V' = S_0 \cup \ldots \cup S_i$, $G' = (V', E \cap V' \times V')$ in
6: $ub_{WCET} := max(ub_{WCET}, WCEToverAny(G', S_i))$
7: return ub_{WCET}

Fast vs. Precise WCET Analysis

Two-Stage WCET analysis

- Combine fast with precise analysis
- Fast analysis
 - Compute block sets
 - Check WCET increase while iterating
- Precise analysis to verify

Fast vs. Precise WCET Analysis

Two-Stage WCET analysis

- Combine fast with precise analysis
- Fast analysis
 - Compute block sets
 - Check WCET increase while iterating
- Precise analysis to verify

Non-Iterative Pruning

- Heuristically construct a pruned graph
 - Using Criticality?
 - Using Criticality estimates?
- Apply precise analysis to pruned graph

Experiments

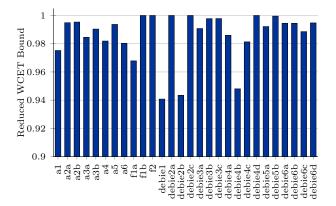
Setup

- Commercial WCET analysis tool^a (AbsInt aiT, 12.10)
- Freescale mpc5554 and mpc755s (PowerPC)

Experiments

Setup

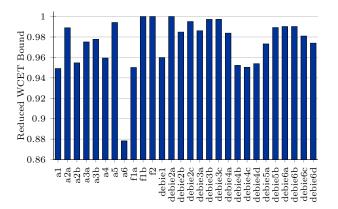
- Commercial WCET analysis tool^a (AbsInt aiT, 12.10)
- Freescale mpc5554 and mpc755s (PowerPC)
- Two real-time benchmarks
 - Debie1: satellite instrument control
 - Papabench: flight control


Experiments

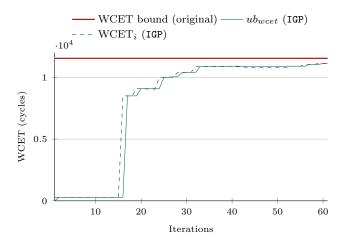
Setup

- Commercial WCET analysis tool^a (AbsInt aiT, 12.10)
- Freescale mpc5554 and mpc755s (PowerPC)
- Two real-time benchmarks
 - Debie1: satellite instrument control
 - Papabench: flight control
- 28 analysis problems^b

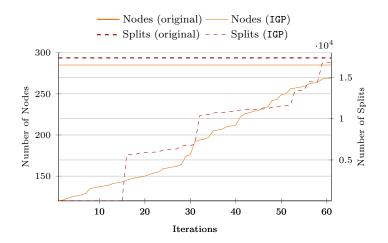
^ahttp://www.absint.com/ait/ ^bhttp://www.mrtc.mdh.se/projects/WCC/2011/


WCET Reductions (mpc5554)

WCET Reductions up to 6%.


aiT is usually already close to measured bounds.

WCET Reductions (mpc755s)



WCET Reductions up to 12%.

Iterations of f1a: WCET (mpc5554)

Iterations of f1a: Problem Size (mpc5554)

Conclusion

- Criticality
 - Novel compiler-centric metric
 - Proved interesting for WCET analysis
 - Cheap yet accurate estimation

Conclusion

- Criticality
 - Novel compiler-centric metric
 - Proved interesting for WCET analysis
 - Cheap yet accurate estimation
- Iterative Graph Pruning
 - Based on Criticality
 - Allows elimination of uncritical code
 - Successfully reduces overestimation
 - Causes quite some overhead (9x on average)
 - Proof-of-Concept implementation
 - Treats WCET analysis as black box
 - Incremental analysis techniques needed