
Noname manuscript No.
(will be inserted by the editor)

Precise, Efficient, and Context-Sensitive Cache Analysis

Florian Brandner · Camille Noûs

Received: date / Accepted: date

Abstract Bounding the Worst-Case Execution Time (WCET) of real-time software
requires precise knowledge about the reachable program and hardware states that
might be observed at runtime. The analysis of precise cache states is particularly
important and challenging. Due to the high cost of cache misses the analysis pre-
cision may have an important impact on the obtainable WCET bounds, while the
large state space of the cache’s history leads to high analysis complexity.

This work explores the use of cache summaries in order to optimize the com-
putation of precise cache states. These cache summaries allow us to pre-compute
the impact of executing a portion of a program, typically a function, on the cache
state. This allows us, for instance, to skip the analysis of entire functions (including
nested function calls) when the cache states within these functions are not relevant
for the classification of memory accesses into hits/misses. Furthermore, the sum-
maries can be extended to efficiently compute fully context-sensitive cache states.
The summaries then not only allow to derive typical cache hit/miss classifications,
but also provide fully context-sensitive cache persistence information.

Keywords Cache Analysis, Cache Persistence, Conflict Sets, Cache Summaries,
LRU Cache Replacement, Worst-Case Execution Time

Extended Version

This paper is an extension of a paper published at the International Conference on
Real-Time Networks and Systems 2020 (RTNS ’20) entitled ’Precise and Efficient
Analysis of Context-Sensitive Cache Conflict Sets’ (Brandner and Noûs, 2020). The

Florian Brandner
LTCI, Télécom Paris, Institut Polytechnique de Paris, France
E-mail: florian.brandner@telecom-paris.fr
ORCID: 0000-0002-2493-7864

Camille Noûs
Laboratoire Cogitamus
E-mail: camille.nous@cogitamus.fr
ORCID: 0000-0002-0778-8115

https://orcid.org/0000-0002-2493-7864
https://orcid.org/0000-0002-0778-8115

2 Florian Brandner, Camille Noûs

extensions cover additional background information and formal definitions of the
least-recently used cache replacement policy as well as cache persistence analysis
(Section 2). Based on this formalization a generalized LRU-based replacement
policy, used in the method cache, and formal correctness proofs of the various
analyses presented in the work are developed (Section 7). Minor additions include
clarifications and corrections, new or improved examples, as well as additional
results and figures in the experimental evaluation.

1 Introduction

The computation of tight Worst-Case Execution Time (WCET) bounds is chal-
lenging due to the increasing size of real-time software (Dvorak, 2009) as well
as the increasing complexity of the underlying computer platforms. In hard real-
time systems, the WCET analysis needs to consider all reachable program and
hardware states that might be observable at runtime. Static program analysis has
been applied successfully (Theiling and Ferdinand, 1998) to model both hard-
ware and software states. The information on these states can then be represented
as a weighted graph, which is used by the Implicit Path Enumeration Technique

(IPET) (Li and Malik, 1995; Puschner and Schedl, 1997) to compute the final
WCET bound.

A crucial problem is to model the timing-relevant impact of all hardware
components in the underlying hardware, including, for instance, the processor
pipeline (Stein, 2010). Caches have received considerable attention in the last 20
years, due to the large state space of the cache with regard to the program’s ex-
ecution history. This work focuses on instruction/code caches with a least-recently

used replacement policy (LRU). Such caches associate an age counter with each
cache block loaded into the cache. The age of a given cache block m is reset to 0
whenever m is accessed and incremented whenever another conflicting cache block
(mapped to the same cache set) is accessed, that was older than m or not cached
(miss). On a miss, the LRU policy evicts the oldest block of a set if the set is full.

Traditionally, memory accesses of a program (e.g., load, store, instr. fetch) are
classified (Alt et al., 1996; Mueller, 1994) as either always hit (AH), always miss (AM),
or not classified (NC). One might also consider cache persistence. A cache block is
persistent with regard to a specific scope, i.e., portion of a program, when it stays in
the cache once loaded. Persistence gives rise to a fourth classification, with respect
to a scope, that is often referred to as first miss (FM) (Ferdinand and Wilhelm,
1999; Mueller, 1994).

The classifications for the memory accesses of a program can be derived from
conflict sets (Mueller, 2000; Cullmann, 2013; Huber et al., 2014). A conflict set is
usually defined with regard to a memory block m (Theiling and Ferdinand, 1998),
i.e., an address range in memory that is potentially loaded into the cache as a
cache block, and denotes the set of conflicting memory blocks that map to the same
cache set as m and that are loaded into the cache after m. From the size of m’s
conflict set it is then possible to judge whether m might still be in the cache or
not. If the conflict set is sufficiently small, i.e., its cardinality is smaller than or
equal to the cache’s associativity, then m is known to be in the cache. As analyses
compute an over-approximation of conflict sets, the inverse does not necessarily
mean that m actually has been evicted.

Precise, Efficient, and Context-Sensitive Cache Analysis 3

Conflict sets for LRU caches denote, in fact, the memory blocks that are younger

than the analyzed memory block m (Touzeau et al., 2017, 2019). Precisely com-
puting conflict sets consequently provides a precise abstraction of the concrete
cache states with regard to m (modulo the order of blocks w.r.t. their ages). Using
an efficient representation of sets of conflict sets (aka. families), Touzeau et al.
(2019) proposed to compute precise upper and lower bounds (on the cardinality)
of conflict sets to derive cache hit/miss classifications in two passes.

The starting point of this work is essentially the same representation of con-
flict sets, which was developed independently at the same time. We also rely on
Zero-Suppressed Decision Diagrams (ZDDs) (Minato, 1993) in order to efficiently
represent families of conflict sets. In addition we make the following main contri-
butions with respect to the state of the art:

– We propose a precise analysis that retains all possible conflict sets instead of
computing lower/upper bounds on conflict sets.

– Retaining all states inevitably leads to a larger state space and longer analysis
times. We thus present novel techniques to drastically reduce the analysis over-
head using cache summaries. Cache summaries represent the impact on conflict
sets when a given portion of a program, such as a function, is executed.

– Outer cache summaries allow us to efficiently obtain the conflict sets at the exit
points of the considered portion of the program. This allows us, for instance,
to quickly derive the cache state after a function call independent from the call
context and without reanalyzing the function itself.

– Inner cache summaries on the other hand can be used to efficiently obtain the
conflict sets right before a memory access within the consider portion of the
program. For instance, from the cache state before a function call it is possible
to quickly derive the cache state within the called function – again without the
need to reanalyze the function.

– We then show how to implement a context-sensitive hit/miss classification by
combining both kinds of summaries. Even more, we show that persistence anal-

ysis can be performed virtually for free along with the hit/miss classification.
– Finally, we provide complete proofs demonstrating that the proposed analysis

is correct and delivers precise results, i.e., the analysis computes precisely those
conflict sets that can be observed on structurally feasible execution paths.

– Due to the use of cache summaries large parts of programs, that only produce
intermediate conflict sets that are irrelevant for the final cache hit/miss classi-
fication, are skipped, which leads to considerable improvements in analysis time
and memory consumption by up to a factor of 200 and 42 respectively.

The paper is organized as follows. We first provide background on the LRU

cache replacement policy, the method cache – a cache variant used in the time-
predictable processor architecture Patmos – inter-procedural control-flow graphs, as
well as cache and persistence analysis in Section 2. We then provide a motivating
example to illustrate shortcomings in the current state-of-the-art in Section 3,
before providing a high-level overview of the proposed approach. Section 5 and 6
present a detailed description of the proposed analysis based on outer and inner
cache summaries. The correctness of all the analyses presented in this work is
discussed in Section 7. The approaches were evaluated and compared against the
state-of-the-art in Section 8 using the TACLe benchmark suite (Falk et al., 2016).
Finally, related work is discussed in Section 9 before concluding in Section 10.

4 Florian Brandner, Camille Noûs

2 Background

This section provides a brief discussion of the least-recently used (LRU) replacement
policy, the method cache (Degasperi et al., 2014) of the time-predictable Patmos
processor (Schoeberl et al., 2011), and finally introduces a precise analysis over
families of conflict sets, similar to Touzeau et al. (2019). The analysis relies on
a single analysis pass and is extended to support the method cache. Finally, a
brief formal definition of persistence is provided. We refer interested readers to
the review of Lv et al. (Lv et al., 2016) for an introduction to cache analysis.

2.1 Least-Recently Used Replacement Policy

The LRU replacement policy is a demand-based replacement policy, that deter-
mines which cache blocks needs to be replaced on a cache miss. As the name sug-
gests, the policy selects the least-recently used cache block for eviction. In order
to determine this block the policy needs to keep track of a relative order between
cache blocks. This is frequently explained through a stack-like data structure,
where the cache blocks are stored. Once a cache block is accessed it is placed on
the top of the stack, pushing other blocks down by one position. The least-recently
used block is then always located at the bottom of the stack.

This stack representation is not ideal for an actual hardware implementa-
tion of an LRU cache. Instead various dedicated data structures have been pro-
posed (Smith, 1982; Kadota et al., 1987). The approach of Kadota et al. (1987),
for instance, associates an age-counter with each cache block present in the cache.
The behavior of an LRU cache thus can be described by a function that updates
the values of the age-counters as blocks are accessed.

Note that here we also track the age of blocks that are currently not present
in the cache. We thus introduce the notion of memory blocks, i.e., “cache blocks”
in the cache and/or memory:

Definition 1. A memory block m ∈ MB specifies an address range in main
memory that is potentially loaded into the (method) cache. The set of memory
blocks accessed by the program is given by MB . Each memory block is associated
with a non-zero size in bytes via the function size : MB → N+.

For standard caches the size of the memory blocks is uniform, i.e., all blocks
have the same size. However, as explained in the next subsection, alternative de-
signs are possible. The state of a standard LRU cache can be described by asso-
ciating an age with each memory block. Blocks that are not present in the cache
are assigned the maximum age a, as stated by the following definition:

Definition 2. The set of LRU cache states of a cache with associativity a is
given by LCSa ⊆ P(MB × {0, . . . , a}). The function age : LCSa ×MB → {0, . . . , a}
provides the age of a given cache block.

The hardware then operates on such cache states, which evolve according to
the performed memory accesses. The following update function – similar to the
one by Kadota et al. (1987) – specifies the cache states after an access:

Precise, Efficient, and Context-Sensitive Cache Analysis 5

Definition 3. The LRU update function takes a cache state s ∈ LCSa and a
cache block m ∈ MB as argument and returns a new cache state:

update LRU a(s,m) = {(o, i) | ∀o ∈MB : i = update agea(s,m, o)}

update agea(s,m, o) =


0 if m = o

age(s, o) + 1 if age(s, o) < age(s,m)
age(s, o) otherwise

Example 1. Assume an empty LRU cache with associativity 4 and a sequence
of accesses to memory blocks (m1, m2, m3, m4, m1, m5). Initially the cache is empty,
the hardware cache state is thus given by {(mi, 4) | i ∈ {1, . . . , 5}}. The cache
state after the accesses to m1 are given by {(m1, 0)} ∪ {(mi, 4) | i ∈ {2, . . . , 5}} and
{(mi, 4 − i) | i ∈ {1, . . . , 4}} ∪ {(m5, 4)} respectively. The final state after accessing
m5 is given by {(m5, 0), (m1, 1), (m4, 2), (m3, 3), (m2, 4)}.

It is easy to see that, starting from an empty cache state where all memory
blocks are associated with the maximum age a, the update function ensures that
each memory block is either assigned a unique age smaller then a or the maximum
age a.

2.2 Patmos’ Method Cache

The method cache deals with executable code, similar to traditional instruction
caches. The main difference is that the cache blocks are formed by the com-
piler (Hepp and Brandner, 2014) and may exhibit variable sizes. The size of a
cache block is prepended to the block’s code, along with complementary meta-
information.

Like traditional associative caches the method cache (Degasperi et al., 2014)
consists of a cache controller, a tag memory, and a cache memory. In traditional
caches the number of tag memory entries and the number of cache blocks in the
cache memory match. Consequently, the cardinality of the conflict set is sufficient
for traditional conflict-set-based cache analyses to obtain a hit/miss classification.
However, this is no longer possible for the method cache, due to the variable-sized
cache blocks. Both, the number of occupied tag entries (limited by the size of the
tag memory) and the space occupied in the cache memory (limited by the size
of the cache memory) have to be considered. These limits are specified by cache
configurations:

Definition 4. A (method) cache configuration is specified by a pair 〈a, s〉, where
a indicates the number of entries in the tag memory and s the size of the cache
memory (in bytes).

Note that the method cache typically consists of a single cache set and thus
behaves like a fully-associative cache with least-recently used (LRU) replacement
or a single cache set of a traditional LRU-based (instruction) cache. The subse-
quent analysis is thus more generic than traditional cache analyses, i.e., standard
instruction (and data) caches are a special case of the method cache in terms of
the analysis where cache block sizes are fixed.

In addition, cache misses may only occur at specific control-flow instructions:
function calls and returns as well as dedicated branches with cache fill. This simpli-
fies the processor’s pipeline, as misses are handled in the same stage as data cache

6 Florian Brandner, Camille Noûs

misses (Schoeberl et al., 2011; Degasperi et al., 2014) – which eliminates timing
anomalies known from traditional instruction caches (Hahn and Reineke, 2018).
This also benefits cache analysis, since the cache’s state may only change when a
control-flow instruction is executed. This can explicitly be represented by edges in
the control-flow graph, defined next.

2.3 Inter-Procedural Control-Flow Graphs

We rely on a special kind of Inter-Procedural Control-Flow Graph (ICFG), which not
only captures the calling relations between functions but also explicitly represents
the method cache’s branch instructions (with/without cache fill) (Jordan et al.,
2013; Naji and Brandner, 2015):

Definition 5. An Inter-Procedural Control-Flow Graph is given by a tuple
G = (V ,E ,MB) consisting of control-flow nodes in V and control-flow edges in
E ⊆ V × V . Each node is associated with a memory block in MB via a function
mb : V → MB , while edges may represent different kinds of control flow via the
function kind : E → {FLOW, FILL, CALL, RET, LINK}.
Definition 6. A path in an ICFG G = (V ,E ,MB) is a sequence of ICFG nodes
p = (n1, . . . , nk) such that any consecutive two nodes ni, ni+1, 1 ≤ i < k, in the
sequence are connected by an ICFG edge, i.e., (ni, ni+1) ∈ E .

Definition 7. We call a path an execution path if it starts at an ICFG node that
has no predecessor and terminates at an ICFG node that has no successor.

Definition 8. A path p = (n1, . . . , nk) is well-formed either if it does not contain
any LINK edges, the first CALL edge on the path and the last RET edge on the
path correspond to the same call site, and the sub-path between these CALL and
RET edges is itself well-formed, or otherwise if it is a concatenation of well-formed
paths.

For the purpose of this work the code inside the ICFG nodes is actually not
relevant, only the memory block of an ICFG node is considered. Apart from LINK

edges, the various edge kinds actually correspond to different classes of Patmos’
control-flow instructions (Schoeberl et al., 2011, 2013). More specifically, FLOW

edges represent branches without cache fill, which do not impact the cache’s state,
and FILL edges correspond to branches with cache fill. Function calls and returns
are represented by CALL/RET edges. Edges thus explicitly represent program points
where method cache misses may occur. LINK edges designate the control-flow suc-
cessor within a function when by-passing a call, i.e., LINK edges represent function-
local control flow. Such ICFGs can also be defined for standard instruction caches,
e.g., by splitting nodes at cache block boundaries.

2.4 Analysis via Families of Conflict Sets

Based on these definitions we can formalize a cache analysis using abstract inter-
pretation (Cousot and Cousot, 1977). We will call this analysis the baseline analysis

in later sections. This requires the formal definition of an abstract domain, a trans-
fer function, and a meet/join operator. We refer interested readers to the book of
Khedker et al. (2009), which gives an excellent introduction.

Precise, Efficient, and Context-Sensitive Cache Analysis 7

Abstract Domain: Before defining the abstract domain itself, we first provide a
definition of conflict sets and a test that indicates whether a conflict set fits into
a given cache:

Definition 9. A conflict set C ⊆ MB is a subset of the memory blocks of a
program represented by an ICFG G = (V,E,MB).

Definition 10. The conflict set fits into a cache with a given cache configuration
〈a, s〉, if the set’s cardinality |C| (tag memory) and size (cache memory) are smaller
than or equal to the associativity and size of the cache respectively:

fits〈a,s〉(C) = |C| ≤ a ∧
∑
m∈C

size(m) ≤ s. (1)

We define the abstract domain using families over power sets of the program’s
memory blocks (P(MB)). These families (indicated by double stroke letters, e.g.,
A) represent an over-approximation of the concrete conflict sets on sub-paths
starting at an access to a given memory block m ∈ MB . However, one notices that
conflict sets may only grow larger as sub-paths get longer. We thus only need to
track conflict sets that are small enough to fit into the cache and replace conflict
sets, that do not fit, by the special symbol Aleph (ℵ):

Definition 11. The abstract domain of the static analysis is given by D =
P({ℵ}∪P(MB)). The special symbols ⊥ = ∅ ∈ D indicates the absence of analysis
information, while ℵ indicates the presence of conflict sets that do not fit into the
cache (c.f. Definition 10).

Definition 12. From a family I ∈ D the cache hit/miss classification is derived
as follows: always hit (AH) if ℵ /∈ I, always miss (AM) if I = {ℵ}, or not classified (NC)
otherwise.

Transfer Function: Reusing the notation for the dot product of two families from
previous work (Mishchenko, 2001), given by A · B = {S | ∃A ∈ A, ∃B ∈ B : S =
A∪B}, we define the dot product for values from the abstract domain. It replaces
conflict sets that do not fit into the cache by ℵ (2nd line), which is needed in the
transfer function defined below:

Definition 13. The dot product with cardinality and size constraints for a
given cache configuration 〈a, s〉 is given by:

A
〈a,s〉
· B = {S ∈ A ·B | ℵ /∈ S ∧ fits〈a,s〉(S)} ∪{

{ℵ} if ∃R ∈ A ·B : ℵ ∈ R ∨ ¬fits〈a,s〉(R)
∅ otherwise

The transfer function models the evolution of the conflict sets along sub-paths
with respect to a memory block m, considering a cache configuration 〈a, s〉.

Definition 14. The transfer function takes two arguments, an ICFG node n

and a family of conflict sets I ∈ D, representing all sub-paths, starting at another
access to m or the program entry and ending right before n:

T
〈a,s〉
m (I, n) =

{
{{mb(n)}} if mb(n) = m

I
〈a,s〉
· {{mb(n)}} otherwise.

8 Florian Brandner, Camille Noûs

The transfer function produces a new family in D that either represents exten-
sions of the various sub-paths by appending the memory block accessed by n, or
a new sub-path starting at n, i.e., after accessing m.

Meet Operator: The meet operator merges the analysis information along disjoint
sets of paths at confluence points, i.e., control-flow nodes with multiple predeces-
sors.

Definition 15. The meet operator takes k families of conflict setsAi from disjoint
sets of sub-paths as input and produces their union:

M (A1, . . . ,Ak) = {S | ∃i, 1 ≤ i ≤ k : S ∈ Ai}.

Overall Analysis Flow: The analysis determines the family of conflict sets at every
program point one by one for each memory block m potentially accessed by the
program. In the case of standard caches the analysis also proceeds per cache set,
i.e., the transfer function and meet operator only consider conflicting memory
blocks that map to the same cache set. The final hit/miss classification is derived
according to Definition 12 on the control flow edges right before accesses to the
analyzed memory block m.

The resulting data-flow equations can be solved using the usual fixed-point
algorithm (Khedker et al., 2009), while ignoring LINK edges in the ICFG, initializing
the equations at the program entry to {ℵ} (compulsory misses for an empty cache),
and initializing the equations to ⊥ everywhere else. We refer interested readers to
Touzeau et al. (2017, 2019) for additional discussion.

Example 2. Assume memory block m1 is analyzed for a 4-way set-associative cache
configuration 〈4, 4〉 and an initial family I = {{m1, m2, m3, m4}, {m1, m2, m4, m5}}. I at
this point contains two conflict sets that both fit into the cache, which represents

an always hit classification (AH). Applying the transfer function T
〈4,4〉
m1 on I for

ICFG nodes n3 and n6, accessing memory blocks m3 and m6 respectively, yields:

T
〈4,4〉
m1 (I, n3) = {{m1, m2, m3, m4},ℵ} and T

〈4,4〉
m1 (I, n6) = {ℵ}. The results thus repre-

sent a not classified (NC) and an always miss (AM) classification respectively.

2.5 Persistence

Persistence has been studied heavily over the years (Ferdinand and Wilhelm, 1999;
Huynh et al., 2011; Cullmann, 2013; Stock et al., 2019). The main insight is that
code (as well as data) is often accessed repeatedly. It is thus beneficial to specifically
analyze whether a given memory block stays in the cache once it was loaded. A
typical example concerns memory blocks that are accessed in a loop, e.g., the code
of the loop itself. If the code of the entire loop is small enough to fit into the cache,
the corresponding memory blocks will not be evicted as long as the loop executes.
The memory blocks are thus persistent with regard to that loop. Note that the
classical hit/miss classification is of no use here: all of the loop’s memory blocks
would be classified as not-classified (NC). This is due to the fact that the memory
blocks need to be loaded once, which generally prevents the accesses within the
loop to be classified as always-hit (AH).

We can illustrate persistence using the specification of the LRU replacement
policy using a simple example:

Precise, Efficient, and Context-Sensitive Cache Analysis 9

Example 3. Consider a sequence of accesses to memory blocks (m1, m2, m3, m4, m2, m5,
m1) starting from an empty LRU cache with associativity 4. The cache state be-
fore the second access to m2 then evaluates to {(m4, 0), (m3, 1), (m2, 2), (m1, 3), (m5, 4)},
which results in a cache hit – the memory block is persistent. The second access
to m1, on the other hand, will result in a cache miss, since it was evicted after
the access to m5 resulting in the cache state {(m5, 0), (m2, 1), (m4, 2), (m3, 3), (m1, 4)}.
Thus, m1 is not persistent for this example.

From this example it is clear that persistence is a property relative to pairs
of memory accesses where the same memory block m ∈ MB is reused within a
specific scope:

Definition 16. A memory block m ∈ MB is reused on an execution path p of an
ICFG G = (V,E,MB) with regard to a sub-graph G ′ = (V ′, E′,MB), representing
a scope with V ′ ⊂ V and E′ = E ∩ V ′ × V ′, if p has the following properties:

– p is of the form (n1, . . . , ni, . . . , nj, . . . nk),
– mb(ni) = mb(nj),
– ∀l, i < l < j : mb(nl) 6= mb(ni), and
– ∀l, i ≤ l < j : (nl, nl+1) ∈ E′.

Based on this notion of reuse we can directly define persistence:

Definition 17. Given the empty cache state S of an LRU cache with associativ-
ity a, an ICFG G, a sub-graph G ′, and a memory block m ∈ MB , persistence is
defined by considering all execution paths p as well as positions i, and j, where
p contains a reuse at nodes ni and nj ∈ p. Memory block m is persistent, with
regard to G ′, if m is still present in the cache for any such path p at the reuse nj:

age(update LRU a(update LRU a(S, n1) . . . , nj),m) < a.

Note that in this definition, the entire history of cache states from the beginning
of the execution paths is considered. However, it is clear from the definition of the
LRU update function that the states before reaching ni are in fact irrelevant since
any access to a memory block other than m will have the same effect on the final
age of m.

3 Motivating Example

This section illustrates the baseline analysis from the last section on a small ex-
ample and highlights two shortcomings.

Example 4. Figure 1 shows the ICFG of a program’s main function, calling another
function F several times in a switch statement. The internal control flow of the
called function is not relevant for this example and thus only illustrated by a
simple cloud shape. However, the program’s memory blocks, ICFG nodes (ni)
and edges for the main function are depicted. We assume that the analysis does
not distinguish calling contexts, i.e., the calls to F are represented by the same
sub-graph of the ICFG (i.e., the cloud shape).

Let’s assume that the called function is large and contains highly complex
control flow, (conditionally) accessing many different memory blocks. Furthermore,
assume that F does not access any of the memory blocks of main. The cache states

10 Florian Brandner, Camille Noûs

Edge kinds
FLOW
FILL
CALL
RET

LINK

Memory Blocks

m1
m2
m3
m4

n1

n3n2 n4

F

n6n5 n7

n8

Fig. 1 ICFG of a program (see Example 4).

within the function F are thus irrelevant for the hit/miss classification of main’s
memory blocks, only the cache states at the accesses in main are actually relevant.

Assume, for instance that memory block m1, accessed by ICFG nodes n1, n2,
and n5, is analyzed. This means that the cache state at the out-going edges of n1
is represented by the family {{m1}}. For the execution path on the left-hand side,
passing through n2 and n5, the same cache state is propagated into F – potentially
triggering the computation of a large number of cache states. For the execution
path in the middle (n3, . . . , n6) and on the right (n4, . . . , n7) different cache
states are propagated to the entry of F: {{m1, m2}} and {{m1, m3}} respectively. The
function F is reanalyzed every time a new cache state is propagated to its function
entry – adding F’s memory blocks and merging the conflict sets along the various
paths in F. The intermediate cache states for all program points have to be retained
in order to obtain the cache state at the RET edges of F, i.e., leading back to the
ICFG nodes n5, n6, and n7.

Function F is in some sense analyzed 3 times in this example – once for every call
context. However, none of the intermediate states concerns an access to memory
block m1 and are thus, by themselves, not relevant for the hit/miss classification
of that memory block.

Another issue caused by the call-context insensitivity also becomes apparent.
The analysis has no means to differentiate the cache states originating from the
calls at n2, n3, and n4. Consequently, all the cache states are propagated along the
RET edges. Notably, bogus states containing m2 or m3 may reach the node n5.

The previous example illustrates the high sensitivity of the precise conflict set
analysis of Touzeau et al. (2019) with regard to calling contexts: different cache
states at different contexts may frequently trigger the computation of a large
number of irrelevant cache states. The second issue, related to the propagation of
bogus states, is circumvented in most WCET analysis tools by completely unrolling
all loops (whose iteration bounds have to be known in real-time software anyways)
and by (virtually) inlining all functions (recursion is typically discouraged in real-
time software). However, this aggressive duplication of code only exacerbates the
complexity issue.

The next section introduces cache summaries to avoid both of these problems,
with the final goal of obtaining an efficient and fully context-sensitive analysis.

Precise, Efficient, and Context-Sensitive Cache Analysis 11

4 Analysis Overview

The analysis proposed in this work proceeds in a similar fashion as the baseline
analysis from Section 2. Abstract interpretation is performed in order to compute
an over-approximation of the cache states that might appear during any program
execution. The analysis is performed independently for each memory block. As
illustrated by the motivating example, considerable analysis overhead is caused by
re-analyzing sub-graphs of the ICFG representing the program.

To avoid this issue, this work proposes so-called cache summaries. Cache sum-
maries allow us to reason about the evolution of cache states with regard to a
sub-graph of the ICFG – for instance functions or loops. The summaries can be
reused and thus considerably reduce analysis time. However, as illustrated in the
following section in more detail, these cache summaries have to cover different ex-
ecution scenarios in order to capture all possible cache states. We thus distinguish
two forms of summaries: outer and inner cache summaries.

Subfigure 2a illustrates the use of outer cache summaries during the analysis,
which allow us to capture the evolution of cache states along execution paths
passing through a sub-graph. For this, the analysis tracks two kinds of execution
paths through the sub-graph along with their respective cache states. Paths that
access the analyzed memory block are described by the A summaries (red), while
paths that do not access the analyzed memory block are captured by C summaries
(orange). The A and C summaries allow us to efficiently compute the cache states
when leaving the sub-graph (at the bottom) from the cache states before entering

the sub-graph (top) – as indicated by the black arrow. The analyses to obtain
outer summaries and their application are described in Section 5.

Subfigure 2b illustrates inner cache summaries, which allow us to efficiently
derive the cache states that occur before accessing the analyzed memory block
within the given sub-graph. For this, inner cache summaries have to track the
potential cache states along all execution paths that lead to an access of the
analyzed memory block. Again two classes of paths are considered. Firstly, the
BC summaries capture paths that enter the sub-graph from the outside (orange)
and lead to the first access to the analyzed memory block within the sub-graph,
while BA summaries capture execution paths that lead from one access to the

A
+
C

(a) Outer Summaries

BA

+
BC

(b) Inner Summaries

Fig. 2 Cache summaries for the analyzed memory block (blue) with regard to a sub-graph,
i.e., the cloud shape.

12 Florian Brandner, Camille Noûs

Notation Description Def./Sec.

〈a, s〉 Cache configuration (associativity and size) Definition 4
I, A, B Families of conflict sets Definition 11

A
〈a,s〉
· B Dot product with cardinality and size constraints Definition 13

m ∈ MB Memory block accessed/analyzed Definition 1
size(m) Size (bytes) of a memory block Definition 1
G = (V,E,MB) Complete ICFG of program Definition 5
n ∈ V ICFG node representing code Definition 5
mb(n) ∈MB Memory block of ICFG node Definition 5
(u, v) ∈ E ICFG edge representing possible executions Definition 5
kind(e) Kind of an ICFG edge e = (u, v) Definition 5

G’ Sub-graph of ICFG (e.g., a function) Definition 18
entry(G′) ICFG edges entering a sub-graph Definition 19
exit(G′) ICFG edges exiting a sub-graph Definition 20

G
′

Collapsed sub-graph for summary application Definition 21
nG′′ Node representing collapsed sub-graph G′′ within G′ Definition 21

AG′〈a,s〉
m Summary over paths in sub-graph accessing m Section 5.2

CG
′〈a,s〉

m Summary over paths in sub-graph not accessing m Section 5.1

BA(G′)〈a,s〉
m Summary over paths from access to access of m Section 6

BC(G
′)〈a,s〉

m Summary over paths from sub-graph entry to access of m Section 6

T
X (G′)〈a,s〉
m (I, n) Transfer function of analysis X for node n in a sub-graph Sections 5, 6

M (A1, . . . ,Ak) Meet operator (common to all analyses) Definition 15
⊥ Symbol representing invalid analysis information Definition 11
ℵ Symbol (Aleph) representing conflict sets that are too large Definition 11

Table 1 Summary of notations used for the formal definition of the analysis.

analyzed memory block to another access (red). Combining the information from
these two summaries can be used to compute persistence information with regard
to the scope of that sub-graph (Ferdinand and Wilhelm, 1999; Mueller, 1994).
Section 6 provides a detailed description of the analyses required to obtain inner
cache summaries.

Inner and outer cache summaries are computed via abstract interpretation on
the respective sub-graph only – ignoring other parts of the program. In addition,
summaries of nested sub-graphs, i.e., sub-graphs appearing within each other, can
be efficiently reused to compute the cache summaries of surrounding sub-graphs
(Subsections 5.3 and 6.2). Summaries thus represent partial analysis information
that can be efficiently combined and reused during the analysis of a given memory
block, but also for other memory blocks – resulting in a considerable reduction of
analysis complexity. An overview over the various symbols and notations used in
the subsequent sections to define the respective analyses is given in Table 1.

5 Outer Cache Summaries

The baseline analysis, presented in Section 2, proceeds by computing families
of conflict sets in an incremental way. On each step the analyzed sub-paths are
extended by appending a new ICFG node, while updating the conflict sets accord-
ingly. To improve the analysis, one could extend the sub-paths in a more coarse
grained fashion, e.g., by concatenating whole sub-paths going through a sub-graph.
Let’s consider this in a small example:

Precise, Efficient, and Context-Sensitive Cache Analysis 13

Example 5. Assume that we have two sub-paths p1 = (n1, n2) and p2 = (n3, n4),
where each ni is associated with a matching memory block mi, 1 ≤ i ≤ 4, and
that we wish to analyze the conflict set of m1. The conflict set of these sub-
paths are {m1, m2} and {m3, m4} respectively. Appending p2 to p1 gives a new path
(n1, n2, n3, n4), whose conflict set corresponds to the union of the two conflict
sets. However, if we append p1 to p2, the conflict set of the combined sub-path
(n3, n4, n1, n2) is simply {m1, m2}, since the transfer function (Definition 14) resets
the information to {m1} at node n1 and then adds m2 to the conflict set.

Apparently one cannot simply take the conflict sets of sub-paths and combine
them using a simple set union. This stems from the fact that accesses to the mem-
ory block under analysis actually reset the conflict set (cf. the first case of Defini-
tion 14). However, similar to traditional GEN/KILL data-flow problems (Khedker
et al., 2009), one can try to summarize the behavior of these two scenarios sepa-
rately. We use two kinds of outer cache summaries for this: A summaries capture
the behavior of a sub-graph of the ICFG along paths that access the analyzed
memory block, while C summaries capture paths through the sub-graph where the
memory block is not accessed.

Definition 18. Given an ICFG G = (V,E,MB) a sub-ICFG G ′ = (V ′, E′,MB) is
a sub-graph, where V ′ ⊆ V and E′ = {(n, o) ∈ E | n ∈ V ′ ∨ o ∈ V ′}.
Definition 19. The entry edges of a sub-ICFG G ′ are edges that allow to enter
the sub-graph: entry(G ′) = {(n, o) ∈ E′ | n /∈ V ′ ∧ o ∈ V ′}.
Definition 20. The exit edges of a sub-ICFG G ′ are edges that allow to leave
the sub-graph: exit(G ′) = {(n, o) ∈ E′ | n ∈ V ′ ∧ o /∈ V ′}.

A sub-ICFG can be chosen arbitrarily. However, two classes of sub-graphs ap-
pear to be particularly interesting: functions and loops. This work will primarily
focus on functions, where the entry and exit edges simply correspond to the cor-
responding CALL and RET edges respectively. The summaries are then computed
through function-local abstract interpretation.

5.1 C Summaries for Paths Without Accesses

The objective of C summaries is to obtain a family of conflict sets that represents
the impact of executing any path through a sub-graph, i.e., the impact on the
cache state after leaving the sub-graph. For this, we need to consider all sub-paths
through the sub-graph that start at an entry edge, end at an exit edge, and do
not access the analyzed memory block. We do not consider summaries of nested
sub-graphs, for now.

The analysis reuses the abstract domain and meet operator from Section 2, only
the transfer function needs to be modified. A first insight is that the conflict sets
for a C summary evolve quite similarly to the regular conflict sets, i.e., whenever a
new ICFG node is encountered its memory block is added to the conflict sets, while
respecting the cache characteristics 〈a, s〉. The main difference is that accesses to
the memory block under analysis (m) have to be filtered. Instead of producing a
valid conflict set it suffices to simply produce an invalid (⊥) value in the transfer

function for C summaries:

T
C(G′)〈a,s〉
m (I, n) =

{
⊥ if mb(n) = m

I
〈a,s〉
· {{mb(n)}} otherwise.

(2)

14 Florian Brandner, Camille Noûs

mI mII mIII mIV

nI

nII nIII

nIV

⊥

⊥ ⊥

{{mII}} ⊥

{{mII,mIV}}

{∅}

{{mI}} {{mI}}

⊥ {{mI,mIII}}

{{mI,mIII,mIV}}

(a) A summary: AF〈4,4〉
mII = {{mII, mIV}}

nI

nII nIII

nIV

⊥

⊥ ⊥

{{mII}} ⊥

{{mII,mIV}}

{∅}

{{mI}} {{mI}}

⊥ {{mI,mIII}}

{{mI,mIII,mIV}}

(b) C summary: CF〈4,4〉mII = {{mI, mIII, mIV}}

Fig. 3 Cache summaries for the memory block of nII within a simple function F (see Exam-
ples 6 and 7).

The usual fixed-point computation is performed on the sub-graph G ′, while
also considering the sub-graph’s entry and exit edges. This is important in order
to initialize the data-flow equations, which are set to {∅} for all entry edges (not
to confuse with ⊥ = ∅). This means that conflict sets are initially empty when
entering the sub-graph, then incrementally grow larger or are reset to ⊥, and are
eventually propagated all the way to the exit edges. The final summary of the sub-
graph can then be obtained for each exit edge individually or can be combined
over all exit edges exit(G ′) = {e1, . . . , ek} and their respective analysis information

Ci, 1 ≤ i ≤ k, using the meet operator: CG
′〈a,s〉

m = M (C1, . . . ,Ck).
The C summaries are specific to a sub-graph G ′ and the analyzed memory

block m. However, it is easy to see that the same summary is computed for all
memory blocks that are not accessed within G ′, i.e., if @n ∈ V ′ : mb(n) = m.

Example 6. Consider the sub-ICFG of function F from Figure 3b, where each node

ni is associated with a memory block of unit size. The C summary CF〈4,4〉mII for this
function needs to be computed for memory block mII, accessed by node nII, and
the cache configuration 〈4, 4〉.

The analysis on the entry edge leading to nI is initialized to a family containing
only the empty set ({∅}). Starting from this empty conflict set the analysis adds
memory blocks mI, mIII, and mIV along the path on the right side. On the left, the
analyzed memory block mII is accessed, resulting in the analysis information ⊥ on
the edge (nII, nIV). The conflict set from this path is consequently filtered from the

cache summary, resulting in a C summary CF〈4,4〉mII = {{mI, mIII, mIV}}.

5.2 A Summaries for Paths With Accesses

A summaries are similar to C summaries, except that this time we need to consider
all paths through the sub-graph that enter the sub-graph on an entry edge, leave
the sub-graph on an exit edge, and access the memory block under analysis.

The analysis is performed on a sub-graph G ′, including the entry and exit
edges, considering a cache configuration 〈a, s〉 and a memory block m. This time,
however, the analysis domain, meet operator, and even the transfer function from
the baseline analysis are reused without any modification.

Precise, Efficient, and Context-Sensitive Cache Analysis 15

The only difference to the baseline analysis is the initialization of the data-flow
equations. The initial value at the entry edges is set to ⊥. This filters the conflict
sets from paths that do not access the memory block under analysis and only
retains the conflict sets of paths that actually do access it.

The final summary of the sub-graph, as before, can be obtained by combining
the analysis information over all exit edges exit(G ′) = {e1, . . . , ek} and their re-

spective analysis information Ai, 1 ≤ i ≤ k: AG′〈a,s〉
m = M (A1, . . . ,Ak).

Example 7. Consider again the sub-ICFG of function F from Figure 3a, assuming
the same setup as for Example 6. The analysis information at the entry is initialized
to ⊥. Adding new memory blocks consequently does not modify the conflict sets
(cf. Definition 13). This only changes after reaching an access to the memory block
under analysis at nII, which first produces the conflict set {{mII}}. Subsequent
accesses to other memory blocks on the path on the left-hand side are then added
to the conflict set. Combining the conflict sets from the paths on the left and right

using the meet operator finally results in the A summary AF〈4,4〉
mII = {{mII, mIV}}.

5.3 A/C Summaries for Nested Sub-ICFGs

The analyses defined in the previous subsections allow us to obtain a cache sum-
mary for a function. However, functions typically call other functions, for which
summaries might exist. This can be seen as an instance of a nested sub-ICFG.
The problem is then to exploit the summaries of the nested sub-ICFG instance to
compute new summaries for the enclosing sub-graph.

For now, assume that a single nested sub-graph exists. We can collapse this
sub-graph G ′′ by a summary node nG′′ and redirect the entry/exit edges as follows:

Definition 21. Given a (sub-)ICFG G ′ = (V ′, E′,MB) and a nested sub-ICFG
G ′′ = (V ′′, E′′,MB), with V ′′ ⊂ V ′ and E′′ = E′ ∩ V ′′ × V ′′, the collapsed sub-

ICFG G ′ = (V ′, E′,MB) is defined by: V ′ = (V ′ ∪ {nG′′}) \ V ′′ and E′ = (E′ ∪
{(o, nG′′) | ∃(o, n) ∈ entry(G ′′)} ∪ {(nG′′ , o) | ∃(n, o) ∈ exit(G ′′)}) \ E′′.

Several nested sub-graphs can easily be handled by collapsing each instance of
a nested sub-graph and replacing it by a dedicated summary node. The analyses
can then simply be applied to the final collapsed sub-ICFG. However, transfer
functions have to be defined for the summary nodes. Assume that several nested
sub-ICFGs G ′′i were replaced by summary nodes nG′′

i
to form a collapsed sub-ICFG

G ′, the transfer functions for the A and C summaries of G ′ then become:

T
C(G′)〈a,s〉
m (I, n) =

{
I
〈a,s〉
· CG

′′
i 〈a,s〉

m if ∃i : n = nG′′
i

T
C(G′)〈a,s〉
m (I, n) otherwise,

(3)

T
A(G′)〈a,s〉
m (I, n) ={

M
(
I
〈a,s〉
· CG

′′
i 〈a,s〉

m ,AG′′
i 〈a,s〉

m

)
if ∃i : n = nG′′

i

T
〈a,s〉
m (I, n) otherwise.

(4)

Both cases refer to the transfer functions (T) defined for simple sub-ICFGs and
only perform special actions on the summary nodes representing nested sub-graphs
(∃i : n = nG′′

i
).

16 Florian Brandner, Camille Noûs

5.4 Analysis Using Outer Cache Summaries

The ICFG representation, (cf. Section 2), is particularly well suited to compute
outer summaries at the level of functions and does not require to explicitly collapse
the sub-graphs of functions. Starting from the entry point of a function, it suffices
to simply follow the LINK edges where the A and C summaries of callees are applied,
while ignoring CALL/RET edges.

It remains to exploit the outer summaries in a regular analysis. Classifying
accesses requires information on conflict sets before every access to a memory
block, i.e., analysis information at the source node of every FILL, CALL, and RET

edge. The outer summaries do not provide this information. One solution would
be to use the outer cache summaries only to improve the analysis precision when
calls contexts are merged by adopting the transfer function from Equations 3
and 4 and propagating information related to calls only across LINK and CALL

edges (RET edges are simply ignored). This would allow to compute the complete
analysis information at every access to a given memory block, while eliminating
the propagation of bogus analysis information.

An obvious optimization is to skip functions that are not relevant to the clas-
sification, i.e., functions that do not access the memory block. Note that the A
summary for such functions evaluates to ⊥, which can be checked efficiently before
processing CALL edges. Furthermore, only the analysis information on exit edges of
a sub-ICFG needs to be retained. Intermediate results can be discarded in order to
reduce memory consumption. For functions it generally suffices to only store the
combined analysis information over all of the function’s RET edges. The amount of
memory required to store the outer cache summaries is then proportional to the
number of functions instead of program points.

Analysis information is still propagated through functions, which leads to in-
termediate conflict sets that might not be relevant for the cache hit/miss classifica-
tion. The outer summaries lack information on the conflict sets within sub-ICFGs.
The next section proposes a solution to this shortcoming.

6 Inner Cache Summaries

Inner cache summaries describe how the conflict sets for a memory block evolve up

to some access of that block within a sub-ICFG. Two cases have to be distinguished:
the memory block is accessed for the first time after entering the sub-graph (BC)
and the memory block is accessed again after a previous access within the sub-
graph (BA).

6.1 B Summaries for Simple Sub-ICFGs

The first case corresponds to sub-paths from some entry edge of the sub-ICFG to
an ICFG node that accesses the analyzed memory block, without any intermediate
accesses to that block. These paths are readily covered by the analysis of the C
summaries. The conflict set at the first access to a memory block can then be
computed using the dot product (cf. Definition 13) between the conflict sets before
entering the sub-graph and the conflict sets from the analysis of the C summary

Precise, Efficient, and Context-Sensitive Cache Analysis 17

right before the access. The second case corresponds to sub-paths within the sub-
ICFG starting with an access to the memory block under analysis and leading
up to another access to the same memory block. These paths are readily covered
by the A summaries. The conflict sets of these accesses are independent from the
initial conflict sets when entering the sub-ICFG and thus do not need any further
computation.

Given a simple sub-ICFG G ′ and a cache configuration 〈a, s〉, the B summaries
can be derived by a post-processing step from the A and C summary analyses. It
suffices to retain the analysis information Ai and Ci respectively at FILL and LINK

edges that cause an access to the analyzed memory block m: A = {ei ∈ E′ | ei =
(u, v) : kind(ei) ∈ {FILL, LINK} ∧ mb(v) = m}. One can either store the informa-

tion individually for each edge or combine it: BA(G′)〈a,s〉
m = M (A1, . . . ,A|A|) and

BC(G
′)〈a,s〉

m = M (C1, . . . ,C|A|).

Example 8. Consider the ICFG from Figure 3 with a cache configuration 〈4, 4〉.
The B summaries for F are given by BA(F)〈4,4〉

mII = ⊥ and BC(F)〈4,4〉mII = {{mI}}, cf.
edge (nI, nII) in Subfigure 3a and 3b respectively. The former indicates that mII
is not accessed within F before reaching nII, while the latter indicates that mI is
always accessed before reaching nII.

6.2 B Summaries for Nested Sub-ICFGs

Nested sub-ICFGs G ′′i are replaced by summary nodes nG′′
i

in a collapsed sub-

ICFG G ′, while redirecting the entry and exit edges. The B summaries are com-
puted for the analyzed memory block m and the given cache configuration 〈a, s〉
in a post-processing step. At each edge leading to a summary node of a nested
ICFG G ′′i , i.e., an edge ej in the set {ej ∈ E

′ | ∃i : ej = (u, nG′′
i
)} the inner cache

summaries of the respective nested sub-ICFG is combined with the function-local
analysis information of the A (Aj) and C (Cj) summaries at that edge:

Aj = M
(
BA(G′′

i)〈a,s〉
m , Aj

〈a,s〉
· BC(G

′′
i)〈a,s〉

m

)
(5)

Cj = Cj
〈a,s〉
· BC(G

′′
i)〈a,s〉

m (6)

The information from the entry edges can be retained individually or combined
using the usual meet operator:

BA(G′)〈a,s〉
m = M (A1, . . . ,A|A|) (7)

BC(G
′)〈a,s〉

m = M (C1, . . . ,C|A|). (8)

6.3 B Summaries and Persistence

The BA summary information of a sub-graph allows us to derive two kinds of per-

sistence classifications: either with regard to a scope covering the sub-graph alone
(using the sub-graph’s BA summary) or a scope covering also parts of the sur-
rounding ICFG (via Equation 5). If the respective summary information evaluates

18 Florian Brandner, Camille Noûs

m1 m2 m3 m4
mI mII mIII mIV

n1

n3n2 n4

F

nI

nII nIII

nIV

n6n5 n7

n8

(a) Complete ICFG of a program

n1

n3n2 n4

n6n5 n7

n8

F F F

F

⊥

⊥ ⊥ ⊥

{mII,mIV} {mII,mIV} {mII,mIV}

{{m1,mII,mIV},{m2,mII,
mIV},{m3,mII,mIV}}

{ℵ,{mII,mIV}}

(b) Collapsed ICFG with A summary
information

Fig. 4 Analysis of memory block mII (see Example 9) considering summaries of the highlighted

function F: AF〈4,4〉
mII = {{mII, mIV}}, CF〈4,4〉mII = {{mI, mIII, mIV}}, BA(F)〈4,4〉

mII = ⊥, and BC(F)〈4,4〉mII =
{{mI}}.

to ⊥, the analyzed memory block is not reused in the scope. If the summary is
{ℵ}, the block is reused, but definitely evicted. If the analysis information contains
ℵ, alongside other conflict sets, the block is potentially evicted, while the block is
persistent otherwise.

Example 9. Consider Figure 4, which shows a variation of the motivating example
from Section 3. The ICFG here consists of the original main function, which calls
the function F, highlighted by the ellipse, several times. F’s local control flow is
identical to the function from Example 7 and 8. In addition let’s assume that F is
called again at the confluence point at node n8 at the bottom of Subfigure 4a, as
indicated by the CALL, RET, and LINK edges.

We wish to compute persistence information relative to main concerning mem-
ory block mII, which is only accessed within F. The usual cache configuration 〈4, 4〉
is considered for the analysis.

The analysis first computes the various summaries of the called function F,

namely: AF〈4,4〉
mII = {{mII, mIV}}, CF〈4,4〉mII = {{mI, mIII, mIV}}, BA(F)〈4,4〉

mII = ⊥, and

BC(F)〈4,4〉mII = {{mI}}. The outer summaries (A and C) are computed from the sub-
graph representing only F as illustrated through Example 7 and 8. The inner cache
summaries (BA and BC) are obtained during a post-processing step from the anal-
ysis information of the outer cache summaries – more precisely the inner cache
summaries are obtained from the ICFG edge (nI, nII) as depicted by Subfigure 3a
and Subfigure 3b respectively.

The analysis then proceeds by computing the cache summaries for the main
function. However, the analysis does not process the complete ICFG. Instead func-

Precise, Efficient, and Context-Sensitive Cache Analysis 19

tion calls are – at least conceptually – collapsed as shown in Subfigure 4b. The
respective CALL and RET edges to/from F are removed from the graph and replaced
by summary nodes labeled F, which represent the called function at the various
call sites. Note that it is not necessary to actually perform this transformation
since the LINK edges themselves already represent these call sites.

The analyzed memory block mII is not accessed in the main function itself.
Persistence thus only changes at calls to F, i.e., the LINK edges originating from n2,
n3, n4, and n8. Since persistence is obtained from the A summary at those edges
(cf. Equation 5), we briefly sketch its evolution here (see Subfigure 4b).

The A summary evaluates to ⊥ for the LINK edges originating from n2, n3 and
n4, due to the initialization to ⊥ at main’s entry and the fact that mII is not
accessed before any call to F. The function calls evidently have an impact on the
A summary after the respective calls. The corresponding analysis information,
shown above nodes n5, n6 and n7 in Subfigure 4b, is derived by applying the outer
cache summaries (A and C) to ⊥. This yields {mI, mIV} (cf. Equation 4).

Next, the transfer functions of the nodes after the calls are applied and the
resulting conflict sets combined using the meet operator. The result is shown next
to node n8: {{ m1, mII, mIV}, {m2, mII, mIV}, {m3, mII, mIV}}. Subsequently m4, accessed by
node n8, is added to all the conflict sets, which represents the analysis information
of the A summary right before the last call to F.

At this point all the conflict sets of the analysis have a cardinality of 4, which
indicates that mII is persistent up to this point, i.e., once loaded it is not evicted
on any path up to this point. The A summary analysis now combines the current
analysis information with F’s outer cache summaries. This results in the following
conflict sets: {ℵ, {mII, mIV}}, as shown at the bottom of Subfigure 4b. This indicates
that mII is not persistent with regards to the first function calls at n5, n6, and n7,
but might be reloaded into the cache by the last call at n8.

The question now is whether mII was actually persistent before any of its ac-
cesses within F. This can be computed by applying the inner cache summaries
(BA and BC) to the analysis information right before the various calls to F. For
the calls at n5, n6, and n7 the A summary information before the respective calls
evaluates to ⊥, which indicates that mII was not loaded into the cache between
entering main and the respective accesses to mII.

For the last call at n8 the various conflict sets of the A summary information
have a cardinality of 4, as explained in the preceding paragraphs. Appending the
BC summary ({{mI}}) to these conflict sets would yield sets whose cardinality
would be larger than the cache size (cf. Equation 5). The analysis thus yields {ℵ}
right before the accesses to mII within F for this call. Consequently, the analyzed
memory block is not persistent.

Combining the analysis information over all call sites to F yields BA(main)〈4,4〉
mII =

{ℵ}, which indicates that the analyzed memory block is definitely not persistent

within the main function.

6.4 Analysis Using Inner Cache Summaries

Inner cache summaries capture the accesses to the analyzed memory block with
regard to a given sub-ICFG. We assume that functions are a typical class of such
sub-ICFGs. The information can then be computed in a context-sensitive manner

20 Florian Brandner, Camille Noûs

for each call site – similar to the scope graph from Huber et al. (2014). The analysis
information is simply propagated upwards from the leaves of the call graph (Aho
et al., 2006) to its root.

It remains to show how the hit/miss classification can be derived from the
BC summaries. The problem here is that the conflict sets are incomplete during
the upward propagation, since conflicting accesses up to the respective call sites
are missing. This information is only available once the B summary of the main
function is computed. However, Equations 7 and 8 only indicate how this informa-
tion is merged into a single summary – which corresponds to an analysis without
context sensitivity. Two options are possible. The B summaries can be stored ex-
plicitly for edges leading to an access of the memory block under analysis along
with the various (nested) call sites. This represents a fully context-sensitive anal-
ysis. Alternatively, it is possible to store the C summaries for the various call sites
(cf. Equation 6) and only compute the desired context-sensitive information on-
demand by traversing the call graph. The latter is attractive, as it causes minimal
memory overhead proportional to the number of functions and call sites.

Note, however, that the upward propagation of analysis information for A, B,
and C summaries, based on individual functions, is only possible in acyclic call
graphs. Programs containing recursive functions, which are usually discouraged
in real-time software, thus cannot be handled by the proposed function-based
approach. However, it is possible to define sub-ICFGs for the strongly-connected
components (SCCs) of the program’s call graph, for which outer and inner cache
summaries can be derived as a whole.

7 Correctness

Since the summary-based analyses essentially reuse large parts of the baseline anal-
ysis from Section 2, we will start by investigating the correctness of this baseline
analysis with regards to a specification of an LRU-based method cache and then
prove the correctness of the summary-based analyses. As a first step we have to
extend the specification of the hardware implementation of the standard LRU re-
placement policy (cf. Definition 2 and 3) to take associativity and size into account
as required for the method cache.

Definition 22. The set of method cache states for a cache configuration 〈a, s〉 is
given by MCS〈a,s〉 ⊆ P(MB×{0, . . . , a}×{1, . . . , s}). The function mage : MCS〈a,s〉×
MB → {0, . . . , a} provides the age of a given cache block, while mpos : MCS〈a,s〉 ×
MB → {1, . . . , s} provides the block’s position relative to the cache size.

The update function to determine the cache state after an access is given by:

Definition 23. The method cache update function takes a cache state S ∈
MCS〈a,s〉 and a cache block m ∈ MB as argument and returns a new state in
MCS〈a,s〉 representing the cache state after the access to m:

update MLRU 〈a,s〉(S,m) = {(o, i, j) | ∀o ∈MB : (i, j) = update mage〈a,s〉(S,m, o)}

update mage〈a,s〉(S,m, o) =

Precise, Efficient, and Context-Sensitive Cache Analysis 21

let shift pos = mpos(S, o) + size(m) in
(0, size(m)) if m = o

(mage(S, o) + 1, shift pos) if shift pos ≤ s ∧mage(S, o) < mage(S,m)

(a,) if shift pos > s ∧mage(S, o) < mage(S,m)

(mage(S, o),mpos(S, o)) otherwise

The main difference with the original specification of the LRU policy (cf. Defini-
tion 3) are an additional condition in the 2nd case of the function update mage〈a,s〉.
This condition verifies that a possibly newly loaded memory block fits into the to-
tal cache size along with all the blocks that have been present beforehand. The
newly added case then handles evictions when loading m into the cache exceeds
the total cache size and one or more blocks have to be evicted from the cache.

Example 10. Assume a cache configuration 〈4, 8〉 and an access sequence to memory
blocks given by (m1, m2, m3), where the blocks have a size of 2, 1, and 6 respectively.
Starting from an empty cache, where the age of all memory blocks is initialized to 4,
the cache state after accessing m2 is {(m2, 0, 1), (m1, 1, 3), (m3, 4,)}. The final access
to m3 causes the eviction of m1, since the combined size of m1, m2, and m3 exceeds the
cache size (2 + 1 + 6 > 8). This is reflected by the value of the variable shift pos

for m1 (3 + 6 > 8), resulting in the final cache state {(m3, 0, 6), (m2, 1, 7), (m1, 4,)}.
It is easy to see that this extended specification is equivalent to Definition 3

when memory blocks have unit size (i.e., ∀m ∈ MB : size(m) = 1) and the cache’s
size is at least as large as its associativity (i.e., a ≤ s). The standard LRU policy
consequently is merely a special case of the method cache’s policy. The update
function also retains the same properties as the original policy. Notably, the formal
definition of persistence (Definition 17) also applies to the method cache, when
considering the modified update function. Furthermore, memory blocks that are
present in the cache (i.e., whose age is smaller than a) is unique:

Lemma 1. The age and position of any memory block m ∈ MB , present in the
cache, is unique, for any cache state S ∈ MCS〈a,s〉 reachable using the method
cache update function from an initially empty cache:

∀m,n ∈MB,mage(S,m) < a : mage(S,m) = mage(S, n) =⇒ m = n ∧
mpos(S,m) = mpos(S, n) =⇒ m = n

Proof. The proof proceeds by induction over the length of an access sequence
(m1, . . . , mk), mi ∈ MB :

Induction base:

The lemma trivially holds for the first memory access of any sequence starting
from an empty cache, i.e., only m1 is present in the cache and thus has a unique
age (0) and position (size(m1)).

Induction step:

Assuming that all memory blocks present in cache state Si−1 ∈ MCS〈a,s〉 have a
unique age and position, applying the method cache update function (cf. Defini-
tion 23) results in a cache state Si ∈ MCS〈a,s〉, where all memory blocks have a
unique age and position.

22 Florian Brandner, Camille Noûs

We prove this by contradiction. Assume that two memory blocks m,n ∈ MB ,
m 6= n, had different ages in state Si−1, but now have the same age in Si that is
smaller than a. This can only occur in two scenarios:

1. One of the memory blocks (say m) obtained the age 0 in Si via the first
case of the update function, while n retained its age of 0 from the previous
state Si−1 via the last case of the update function. This implies that m = mi
and mage(Si−1, n) ≥ mage(Si−1, mi) (cf. the 2nd and 3rd cases of the update
function). However, the latter is only possible if both had the age 0 in state
Si−1, contradicting the induction base and/or the initial hypothesis that n

initially had age 0.
2. One of the memory blocks (say m) increases its age via the 2nd case of

the update function, while memory block n retains its age from the previ-
ous cache state via the last case. It follows that mage(Si−1, n) = mage(Si, n) =
mage(Si−1,m)+1. Furthermore, it follows that mage(Si−1,m) < mage(Si−1, mi)
as well as mage(Si−1, n) ≥ mage(Si−1, mi). This gives us:

mage(Si−1,m) < mage(Si−1, mi) ≤ mage(Si−1, n) ≤ mage(Si−1,m) + 1

It follows that n = mi, due to the induction base and the fact that both, n and
mi, had the same age in state Si−1. This contradicts the initial hypothesis that
n retained its age via the last case.

The proof for the positions of memory blocks is analogous.

7.1 Concrete Conflict Sets

From the method cache states, reflecting an underlying hardware implementation,
we may now derive conflict sets quite naturally:

Definition 24. The concrete conflict set for a given memory block m ∈ MB is
derived from a method cache state S ∈MCS〈a,s〉 as follows:

MCCS(S,m) =

{
ℵ if mage(S,m) = a

{o | ∀o ∈ MB : mage(S, o) ≤ mage(S,m)} otherwise.

Conflict sets clearly only capture memory blocks that are actually present in
the cache for the respective cache state. We can thus state the following invariant,
which we will use in a later proof:

Lemma 2. For any cache state S ∈ MCS〈a,s〉, reachable through the method
cache update function from an initially empty cache state, the following holds:

∀m ∈MB : MCCS(S,m) 6= ℵ =⇒

|MCCS(S,m)| = mage(S,m) + 1 ∧
∑

n∈MCCS(S,m)

size(n) = mpos(S,m).

Proof. The proof proceeds by induction over the length of an access sequence
(m1, . . . , mk), mi ∈ MB :

Precise, Efficient, and Context-Sensitive Cache Analysis 23

Induction base:

Only m1 is present in the cache for the first memory access of any sequence start-
ing from an empty cache, thus: |{m1}| = mage(S1, m1) + 1 = 0 + 1 as well as
mpos(S1, m1) = size(m1). All other memory blocks are not in the cache and their
age remains a. The lemma consequently holds.

Induction step:

Assuming that the lemma holds for an access sequence of length i − 1, yielding
a cache state Si−1 ∈ MCS〈a,s〉, we have to show that it also holds in state Si ∈
MCS〈a,s〉 after an access to mi.

For this we to consider the different cases of the method cache update function
(cf. Definition 23):

– mi = m:
Due to Lemma 1 we know that ages and positions of memory blocks are unique.
Similar to the argument for the induction base, the conflict set derived from
Si for m = mi evaluates to {mi} and the lemma trivially holds.

– mi 6= m:
– mage(Si−1, mi) = mage(Si−1,m):

This case is irrelevant, due to Lemma 1, since mage(Si−1, mi) =
mage(Si−1,m) = a, which in turn implies that the conflict sets evaluate
to ℵ. The lemma hence trivially holds.

– mage(Si−1, mi) < mage(Si−1,m):
The age and position of m do not change (cf. Definition 23, last case).
Furthermore, all memory blocks younger than m in Si−1 remain younger
than m in Si. Consequently, the conflict set for m does not change and the
lemma still holds after the access to mi.

– mage(Si−1,m) < mage(Si−1, mi):
This means that mi was not in the conflict set so far (cf. Definition 24).
However, the age of mi, currently accessed, becomes 0 and thus smaller
than the age of m. Consequently, m’s age has to increase (at least by 1)
depending on its blocks position in Si−1:
• mpos(Si−1,m) + size(mi) > s:

In this case m is evicted from the cache and its age becomes a. Con-
sequently, the lemma no longer applies to m (cf. Definition 23, 3rd
case).

• mpos(Si−1,m) + size(mi) ≤ s:
In this case the age of m increases by 1, as does the age of all other
blocks younger than m (cf. Definition 23, 2nd case). The age of mi at the
same time becomes 0, which implies that mi is added to the conflict set.
The lemma thus holds for the cardinality of the conflict set. Likewise,
the position of m (and all blocks younger than m) increases by size(mi),
as does the total size of the blocks in the conflict set.

We may now investigate how the conflict sets evolve, starting from an empty
cache with a cache configuration 〈a, s〉, by comparing the cache states S1 through
Sk corresponding to an access sequence (m1, . . . , mk), mi ∈ MB . More precisely, we
are interested in the relationship between the conflict sets derived from these states
for every memory block m ∈ MB , i.e., MCCS(Si,m) for i ∈ {1, . . . , k}. We show

24 Florian Brandner, Camille Noûs

that the conflict set can be derived from the preceding conflict set through a simple
recursive definition.

Lemma 3. Given an empty cache with a cache configuration 〈a, s〉, a memory
block m ∈ MB, and a sequence of accesses to memory blocks f = (m1, . . . , mk),
mi ∈ MB , the concrete conflict set MCCS(Si,m) of cache state Si can be computed
recursively as follows:

C(f,m, i) =


{mi} if mi = m

C(f,m, i− 1) ∪ {mi} if C(f,m, i− 1) 6= ℵ ∧
fits〈a,s〉(C(f,m, i− 1) ∪ {mi})

ℵ otherwise

Proof. The proof proceeds by induction on the length of the access sequence:
Induction base:

The same arguments as for Lemma 2 apply.

Induction step:

We again consider the different cases of the method cache update function (cf.
Definition 23):

– mi = m:
The cache state will yield mage(Si,m) = 0 and consequently result in the
conflict set MCCS(Si,m) = {m} (cf. Lemma 1), which is equal to C(f,m, i)
due to the first case in the recursive definition.

– mi 6= m:
– mage(Si−1, mi) = mage(Si−1,m):

It follows mage(Si−1, mi) = mage(Si−1,m) = a due to Lemma 1. As a
consequence m does not change its age or position resulting in the following
equality C(f,m, i − 1) = MCCS(Si−1,m) = MCCS(Si,m) = ℵ. Lemma 3
trivially holds, due to case 3 of the recursive definition (in combination with
the condition of case 2).

– mage(Si−1, mi) < mage(Si−1,m):
The age and position of memory block m do not change (cf. Definition 3,
last case). Consequently, the conflict set derived from that cache state does
not change and MCCS(Si−1,m) = C(f,m, i) has to hold.
• mage(Si−1,m) = a:

It follows that mage(Si,m) = a and consequently C(f,m, i − 1) =
MCCS(Si−1,m) = MCCS(Si,m) = ℵ. Lemma 3 holds due to the 3rd
case and the condition of the 2nd case of the recursive definition.

• mage(Si−1,m) < a:
It follows that mi ∈ MCCS(Si−1,m) and thus C(f,m, i − 1) =
MCCS(Si−1,m)∪{mi} = MCCS(Si,m). The condition of the 2nd case
of the recursive definition is satisfied (notably, fits〈a,s〉(C(f,m, i− 1) ∪
{mi)}) and Lemma 3 consequently holds.

– mage(Si−1, mi) > mage(Si−1,m):
This means that the age and position of m have to change (cf. Defini-
tion 23, 2nd and 3rd case). In addition, we know that mage(Si−1,m) < a,
i.e. C(f,m, i − 1) = MCCS(Si−1,m) 6= ℵ and thus |C(f,m, i − 1)| < a as
well as mi /∈ C(f,m, i − 1). The next cache state thus only depends on the
new position of m:

Precise, Efficient, and Context-Sensitive Cache Analysis 25

• mpos(Si−1,m) + size(mi) ≤ s:
This means that m still remains in the cache and that mi has to be
added to the conflict set: MCCS(Si−1,m)∪ {mi} = MCCS(Si,m). For
the recursive definition we similarly know that fits〈a,s〉(C(f,m, i− 1) ∪
{mi}) has to be satisfied (cf. Lemma 2 and the fact that mi /∈ C(f,m, i−
1)). Consequently, the lemma holds due to its 2nd case.

• mpos(Si−1,m) + size(mi) > s:
This means that m is evicted from the cache, resulting in mage(Si,m) =
a (cf. Definition 23, case 3). Lemma 2 ensures that mpos(Si−1,m) cor-
responds to the total size of the memory blocks in C(f,m, i− 1), and,
since mi /∈ C(f,m, i − 1), this implies that the predicate fits〈a,s〉 of the
recursive definition cannot be satisfied. The conflict set derived from
Si−1 and the recursive definition thus match (cf. its 3rd case).

7.2 Correctness of the Baseline Analysis

The recursive definition given in the previous section is already very similar to
the transfer function of the baseline analysis, which was defined in Section 2.
The notable difference is that the transfer function operates on ICFG nodes and
families, i.e., sets of conflict set. We will thus first show that the recursive definition
always matches the result of the transfer function for a given path in the ICFG.

Lemma 4. Given an empty cache with cache configuration 〈a, s〉, an ICFG G =
(V,E,MB), a memory block m ∈ MB , a path (n1, . . . , nk) in G leading to an ICFG
node nk ∈ V , and the corresponding access sequence f = (mb(n1), . . . ,mb(nk)), it
follows:

{C(f,m, k)} = T
〈a,s〉
m (T

〈a,s〉
m (ℵ, n1), . . . , nk)

Proof. The proof proceeds by induction on the length of the path/access sequence:
Induction base:

For a path of length 1 only mb(n1) is present in the cache at the end of that path.

The transfer function thus yields T
〈a,s〉
m (ℵ, n1) = {{mb(n1)}} or T

〈a,s〉
m (ℵ, n1) = {ℵ},

which trivially matches {C(f,mb(n1), 1)}.

Induction step:

Assuming that {C(f ′,m, k − 1)} = T
〈a,s〉
m (T

〈a,s〉
m (ℵ, n1), . . . , nk−1) for a path of

length k − 1, i.e., (n1, . . . , nk−1) and its access sequence f ′, we have to show that
the lemma holds for any path of the form (n1, . . . , nk−1, nk) and its access se-
quence f . For this we have to consider the various cases of the recursive definition
of C(f,m, k).

– mb(ni) = m:
It follows that {C(f,m, k)} = {{mb(ni)}}, which matches the result of the
transfer function (cf. Definition 14, 1st case).

– mb(ni) 6= m:
– C(f,m, k − 1) = ℵ:

This means that the result of the transfer function yields T
〈a,s〉
m (ℵ, nk) =

{ℵ} (cf. Definition 13), which matches the result of the recursive definition
due to it’s 3rd case.

26 Florian Brandner, Camille Noûs

– C(f,m, k − 1) 6= ℵ:
The conflict set after the k-th access then depends on the predicate
fits〈a,s〉(C(f,m, k − 1) ∪ {mb(nk)}):
• ¬fits〈a,s〉(C(f,m, k − 1) ∪ {mb(nk)}):

The transfer function computes the dot product between C(f,m, k−1)
and {mb(nk)}. This yields {ℵ} according to Definition 13. The same
goes for the recursive definition due to its 3rd case.

• fits〈a,s〉(C(f,m, k − 1) ∪ {mb(nk)}):
The transfer function now also computes the dot product between
C(f,m, k−1) and {mb(nk)}, which has to yield {C(f,m, k−1)∪{mb(nk)}}
(cf. Definition 13). This also matches the result of the recursive defini-
tion due to its 2nd case.

The transfer function thus correctly reflects the conflict sets of individual paths
within the ICFG. We can now simply compute the union over these individual con-
flict sets for each path reaching an ICFG node. This reflects the well known Meet-

Over-all-Path, or MOP, solution of the analysis problem (Khedker et al., 2009).

Theorem 1. Given an empty cache with cache configuration 〈a, s〉, an ICFG G =
(V,E,MB), a memory block m ∈ MB , the MOP solution of the analysis framework

instantiated from the transfer function T
〈a,s〉
m (Definition 14) and meet operator

M (Definition 15), precisely computes the conflict sets derived from a specification
of the LRU replacement policy for the method cache (Definition 23).

Proof. This follows immediately from Lemma 4 and the definition of the meet
operator, which simply computes the union over all possible conflict sets.

In practice it is difficult to compute the MOP solution directly. As indicated in
Section 2, it is more common to perform a fixed-point computation. From data-flow
analysis theory we know that for certain analysis problems the fixed-point solution
is identical to the MOP solution (Khedker et al., 2009). This, in particular, applies
to the baseline analysis considered here.

Lemma 5. The meet operator M is distributive over the transfer function T
〈a,s〉
m ,

i.e., for any cache configuration 〈a, s〉, memory block m, ICFG node n, as well as
families of memory blocks A and B:

T
〈a,s〉
m (M (A,B), n) = M (T

〈a,s〉
m (A, n),T

〈a,s〉
m (B, n)).

Proof. This follows immediately from Definition 13 and 15.

Theorem 2. Given an empty cache with cache configuration 〈a, s〉, an ICFG
G = (V,E,MB), a memory block m ∈ MB , the fixed-point solution of the anal-
ysis framework instantiated from the transfer function of Definition 14 and meet
operator from Definition 15, is identical to the MOP solution.

Proof. This follows from Lemma 5 – see Khedker et al. (2009) for additional dis-
cussion.

Precise, Efficient, and Context-Sensitive Cache Analysis 27

7.3 Summary-Based Analyses on Simple Well-Formed Paths

The theorems so far show that the baseline analysis is indeed precise with regard
to a MOP solution as well as the underlying specification of the LRU replacement
policy for the method cache. However, there is an issue: the proofs consider all

paths through the ICFG, irrespective of the semantics of CALL and RET edges.
When we restrict the MOP solution to well-formed paths only (Definition 8), the
fixed-point computation merely provides a safe over-approximation. We will now
show that the various summaries proposed in Sections 6 and 5 allow us to perform
a precise analysis taking well-formed paths into consideration.

We will start with individual well-formed paths and then generalize to all
well-formed paths in an ICFG. Let’s first consider a simple well-formed path p =
(n1, . . . , nc, nc+1, . . . , nr−1, nr, . . . , nk), with a single function call, i.e., with a single
CALL and RET edge at nodes nc and nr respectively. The summary-based analysis
then simply operates on an equivalent path, where a LINK edge replaces the sub-
path between CALL and RET edges. The cache summary is computed precisely on
that sub-path. We then have to prove:

– that outer cache summaries allow to correctly compute the conflict set at nr

for any memory block m ∈ MB ,
– that inner cache summaries allow to correctly compute the conflict set for any

memory block accessed by the ICFG nodes between nc and nr,
– and, finally, that BA summaries correctly represent persistence with regard to

the called function for memory blocks accessed by the ICFG nodes between nc

and nr.

Before proceeding we will state an auxiliary lemma used later on:

Lemma 6. The dot product with cardinality and size constraints (Definition 13)
is associative, i.e., for all values of a and s and families of memory blocks A, B, C:

(A
〈a,s〉
· B)

〈a,s〉
· C = A

〈a,s〉
· (B

〈a,s〉
· C).

Proof. This follows immediately from the definition of the dot product.

7.3.1 Outer Cache Summaries

For the baseline analysis the regular transfer function is repeatedly applied for
each ICFG node along the path p. For the summary-based analyses the regular
transfer function is applied until the call at node nc is reached. Then the summary,
computed from the nodes up the the return at nr, is applied, which yields the
precise conflict sets after the call. The analysis from here on proceeds by applying
the regular transfer function again.

Lemma 7. Assume a cache configuration 〈a, s〉, an ICFG G = (V,E,MB) a well-
formed path in G of the form p = (n1, . . . , nc, nc+1, . . . , nr−1, nr, . . . , nk), ni ∈ V ,
(ni, ni+1) ∈ E, where nc is the origin of a call edge, i.e., kind((nc, nc+1)) = CALL,
and nr the destination of a return edge, i.e., kind((nr−1, nr)) = RET, and all other
edges are either FILL or FLOW edges. The summary-based analysis operates on an
equivalent path p′ = (n1, . . . , nc, nr, . . . , nk), where kind((nc, nr)) = LINK using a

28 Florian Brandner, Camille Noûs

summary computed on the sub-path f = (nc+1, . . . , nr−1) representing the called
function.

The conflict set derived by the baseline analysis (Section 2) before nr is identical
to the conflict set computed by the summary-based analysis (Section 5) for any
memory block m ∈MB.

Proof. We have to consider two scenarios:

– m is accessed by some ICFG node on p:
Assume that ni denotes the last ICFG node before nr that accessed m, i.e.,
mb(ni) = m and @j, i < j < r : mb(nj) = m.
The conflict set computed by the baseline analysis for m then simply corre-

sponds to an expression of the form {mb(ni)}
〈a,s〉
· . . .

〈a,s〉
· {mb(nr−1)}.

The C summary is obtained by repeatedly applying the modified transfer func-
tion from Equation 2 starting from an initial conflict set {∅}, while the A
summary is obtained by applying the regular transfer function (Definition 14)
starting from an initial conflict set ⊥ (i.e., ∅).
We then have to distinguish two sub-scenarios:
– @j, c < j < r : mb(nj) = m:

This means that the memory block under consideration is not accessed
within the called function. Both transfer functions, used during the com-
putation of the outer cache summaries, append the memory block of the
next ICFG node to the current conflict set using the dot product (cf. the
2nd case of Equation 2 and Definition 14. For the A summary this yields

Af
m = ⊥, while for the C summary this simply yields Cfm = {mb(nc)}

〈a,s〉
·

. . .
〈a,s〉
· {mb(nr−1)}. These summaries are then applied according to Equa-

tion 3 (1st case) at nc, which yields:

M ({mb(ni)}
〈a,s〉
· . . .

〈a,s〉
· {mb(nc)}

〈a,s〉
· Cfm,Af

m) =

{mb(ni)}
〈a,s〉
· . . .

〈a,s〉
· {mb(nc)}

〈a,s〉
· Cfm.

Due to the associativity of the dot product (Lemma 6) the final result
matches that of the baseline analysis.

– ∃j, c < j < r : mb(nj) = m:
This means that the memory block is accessed within the called function
and thus nj ∈ f . Furthermore, it follows that ni ∈ f , since, by defini-

tion, it is the last access before nr on p. We then obtain Cfm = ⊥ and

Af
m = {mb(ni)}

〈a,s〉
· . . .

〈a,s〉
· {mb(nr−1)}. These summaries are again ap-

plied according to Equation 3 at nc, yielding:

M ({mb(ni)}
〈a,s〉
· . . .

〈a,s〉
· {mb(nc)}

〈a,s〉
· Cfm,Af

m) = Af
m.

This trivially corresponds to the result obtained from the baseline analysis.
– m is not accessed by any ICFG node on p:

This means that the baseline analysis computes the conflict set {ℵ}. The re-
minder of the proof then proceeds as for the first sub-scenario, with the only
difference that the prefix representing the state at the function call nc is given

by: {ℵ}
〈a,s〉
· {mb(n1)}

〈a,s〉
· . . .

〈a,s〉
· {mb(nr−1)}.

Precise, Efficient, and Context-Sensitive Cache Analysis 29

7.3.2 Inner Cache Summaries

It remains to show that the conflict sets within the called function, i.e., before
ICFG nodes of f are computed correctly. These conflict sets are computed by the
baseline analysis through repeated applications of the regular transfer function.
This is also true for the summary-based analyses, up to the function call at node nc,
there we apply the inner summary in order to obtain the desired conflict sets. We
assume that the inner cache summaries are stored for each ICFG node accessing
the memory block m under analysis.

Lemma 8. Assume a cache configuration 〈a, s〉, an ICFG G = (V,E,MB) a well-
formed path in G of the form p = (n1, . . . , nc, nc+1, . . . , nr−1, nr, . . . , nk), ni ∈ V ,
(ni, ni+1) ∈ E, where nc is the origin of a call edge, i.e., kind((nc, nc+1)) = CALL,
and nr the destination of a return edge, i.e., kind((nr−1, nr)) = RET, and all other
edges are either FILL or FLOW edges. The summary-based analysis operates on an
equivalent path p′ = (n1, . . . , nc, nr, . . . , nk), where kind((nc, nr)) = LINK using a
summary computed on the sub-path f = (nc+1, . . . , nr−1) representing the called
function.

The conflict set derived by the baseline analysis (Section 2) before any node
n ∈ f is identical to the conflict set computed by the summary-based analysis
(Section 5) for the memory block m accessed by n (m = mb(n)).

Proof. The proof is similar to that of Lemma 7 with the only exception that paths
to n are considered instead of nr. The correctness then follows from the constructed
expressions by applying the dot product and associativity (Lemma 6).

7.3.3 Persistence

We first have to revisit Definition 17, which defines persistence using the standard
LRU update function and refers to the age of a given memory block. It is obvious
that the standard LRU update function can simply be replaced by the method
cache update function. Furthermore, it is possible to directly reason about the
conflict sets associated with the cache states along the execution paths concerned
by the definition. Instead of checking the age of the analyzed memory block, it
suffices then to check whether the conflict set of a given path evaluates to ℵ (cf.
Lemma 2). For this section we consider this adapted definition for the method
cache based on conflict sets.

As for the preceding proofs in this section we will reason about simple well-
formed execution paths (p), performing a single function call. The scope of the
persistence analysis is precisely the called function, i.e., f . It is obvious that not
all of these well-formed paths are relevant for persistence. Definition 16 actually
structurally restricts the set of paths to consider only those paths that contain
a reuse of the analyzed memory block within a specific scope. Recalling that
persistence information is derived from BA summaries, we have to show that only
those paths are actually considered by the persistence analysis:

Lemma 9. Assume a cache configuration 〈a, s〉, an ICFG G = (V,E,MB) a well-
formed execution path in G of the form p = (n1, . . . , nc, nc+1, . . . , nr−1, nr, . . . , nk),
ni ∈ V , (ni, ni+1) ∈ E, where nc is the origin of a call edge, i.e., kind((nc, nc+1)) =
CALL, and nr the destination of a return edge, i.e., kind((nr−1, nr)) = RET, and all

30 Florian Brandner, Camille Noûs

other edges are either FILL or FLOW edges. The summary-based analysis operates
on an equivalent path p′ = (n1, . . . , nc, nr, . . . , nk), where kind((nc, nr)) = LINK using
a summary computed on the sub-path f = (nc+1, . . . , nr−1) representing the called
function.

For every reuse of m at positions i and j on p (cf. Definition 16), a corre-

sponding conflict set exists in BA(f)〈a,s〉
m , while, inversely, no conflict set exists in

BA(f)〈a,s〉
m for any other path containing an access to m that is not a reuse.

Proof. Recall that the BA summaries are in fact derived from the A summaries
defined in Section 5. Lemma 8 already proves that using these summaries the
correct conflict set is computed for every access to m within f . However, these
conflict sets are derived either directly from the A summary or the C summary,
which is combined with the conflict set at the call using the dot product. We thus
have to exclude the following two scenarios:

– A conflict set in A does not give rise to a reuse:
Assume that m is accessed by the ICFG node nj ∈ p, where c < j < r, that
is not a reuse, i.e., there is no other node ni ∈ p, with c < i < j, that also
accesses m. Furthermore assume that the summary computation yielded a
non-empty conflict set for the ICFG node nj−1, i.e., that is not ⊥, which is
consequently included in the A summary and thus in BA. This, however, is
impossible: the analysis information at the beginning of f is initialized to ⊥
and remains this way until an ICFG node is reached that accesses m. However,
our hypothesis excluded the existence of such a node.

– A conflict set in C does give rise to a reuse:
Assume that m is accessed by the ICFG node nj ∈ p, where c < j < r, that
is a reuse. This similarly leads to a contradiction. A reuse would imply the
existence of a node ni, c < i < j. However, this is impossible since a conflict
set in the C summary has to exist, which would in turn evaluate to ⊥ due to
the first access of the reuse.

It follows that the conflict sets for all actual reuses are indeed derived from the A
summary and thus are covered by BA(f)〈a,s〉

m .

7.4 Correctness of the Summary-Based Analyses

The correctness proofs for the summary-based analyses are, so far, limited to
simple well-formed paths. This section will briefly discuss how to generalize these
proofs.

Inter-Procedural Control-Flow Graphs: As a first generalization consider passing
from individual paths to an entire ICFG – for now limited to a single call on
each execution path.

Lemma 10. The summary-based analyses provide correct conflict sets for every
ICFG node of any ICFG G = (V,E,MB), where every execution path only contains
a single function call.

Proof. Lemma 7, 8, and 9 apply to all simple well-formed paths. Applying the meet
operator thus gives a MOP solution. The correctness of the fixed-point solution
then follows from the distributivity of the meet operator (Lemma 5).

Precise, Efficient, and Context-Sensitive Cache Analysis 31

Sequential Composition Next consider ICFGs that may contain a sequence of simple
function calls – excluding nested function calls for now.

Lemma 11. The summary-based analyses provide correct conflict sets for every
ICFG node of any ICFG G = (V,E,MB), where every execution path may contain
a sequence of simple function calls.

Proof. Lemma 7 proves that the first function call on any of these paths can
be handled correctly. Lemma 10 can then be generalized by induction over the
sequential composition of function calls. Lemma 7, 8, and 9 apply almost without
any change, only the considered path prefixes have to be adapted.

Nested Function Calls: Finally, consider general ICFGs containing any combination
of sequential and nested function calls:

Theorem 3. The summary-based analyses provide correct conflict sets for every
ICFG node of any ICFG G = (V,E,MB).

Proof. The proof proceeds by induction on the depth of the nested functions calls.
It suffices to peel-off the outer-most function calls, i.e., consider the well-formed
path previously denoted by f for the inner-most call, and adapt the proofs of
Lemma 7, 8, and 9 for the initial cache states {∅} and ⊥. This proves that the
summaries obtained from nested function calls are correct – thus proving the
analysis overall correct.

8 Experiments

Our analyses were evaluated for the method cache and standard instruction caches
using the TACLe suite (Falk et al., 2016), i.e., benchmarks commonly used to

co
ve

r
fa

c
bi

na
ry

se
ar

ch
bs

or
t

co
un

tn
eg

at
iv

e
du

ff
m

at
rix

1
in

se
rt

so
rt

jfd
ct

in
t

di
jk

st
ra

pr
im

e
cj

pe
g-

w
rb

m
p

ad
pc

m
-d

ec
ad

pc
m

-e
nc

co
m

pl
ex

-u
pd

at
es

nd
es iir

m
d5

hu
ff-

de
c

rij
nd

ae
l-d

ec lif
t

rij
nd

ae
l-e

nc fft
fil

te
rb

an
k

sh
a

pe
tr

in
et

fir
2d

im
cj

pe
g-

tra
ns

up
p

gs
m

-d
ec

po
w

er
w

in
do

w
st

at
em

at
e

gs
m

-e
nc

te
st

3

1

2

4

8

16

32

64

128

256

512

1,024

N
um

be
ro

fM
em

or
y

B
lo

ck
s

/F
un

ct
io

ns IC MC

Functions

Fig. 5 Number of memory blocks and functions per program of non-recursive TACLe bench-
marks (log-2-scale).

32 Florian Brandner, Camille Noûs

evaluate WCET analyzers. We used Patmos’ LLVM compiler (version 5.0) with
default optimizations (-O2). The minimal alignment of basic blocks is 8 B for both
kinds of caches, while cache blocks of 16 B are assumed for the instruction cache.
For the method cache the compiler was configured to form memory blocks of up to
1 KB, where profitable, and otherwise limit the size to 256 B (Hepp and Brandner,
2014). The compiler was furthermore instructed to form memory blocks having a
size that is a multiple of 16 B. During the generation of the benchmark executables
the compiler exports the call-context-insensitive ICFGs for the analysis.

Figure 5 shows the number of memory blocks and functions for the TACLe
benchmarks that do not contain recursive functions (33 out of 53). For the in-
struction cache (IC) the programs consist of between 11 and 3466 memory blocks.
These numbers are consistent with those of Touzeau et al. (2019), albeit slightly
lower. The number of memory blocks for the instruction cache is on average 10×
larger than for the method cache (MC). Here, all, but one, benchmarks consist of
less than 128 memory blocks. The variable-sized blocks of the method cache thus
represents a considerably smaller state space.

Other work (Hepp and Brandner, 2014; Huber et al., 2014; Schoeberl et al.,
2018) on the method cache used cache sizes between 1 KB and 16 KB, with 4 to 16
tag entries (associativity). We thus conduct experiments considering cache sizes
of 2, 4, 8, and 16 KB and tag memory sizes of 4, 8, 16, and 32 entries. For the
standard instruction cache the same configurations are used, resulting in caches
having between 4 and 256 cache sets.

The analysis tool relies on Zero-Suppressed Decision Diagrams (ZDDs) (Minato,
1993) in order to represent the analysis information. Only simple performance op-
timizations, based on caching, were applied to the library (improvements should
be easy to attain). The tool was compiled with GCC (8.2.1) with standard opti-
mizations (-O2). All experiments were carried out on an unloaded workstation,
with an Intel Core2 Duo E8500 at 3.16 GHz, a 6 MB L2 cache, and 4 GB of DDR2
main memory, running Linux (Kernel 4.12).

Analysis times were measured using the standard high-resolution clock from
the C++ library (chrono::high resolution clock) and only comprises the
actual analysis time. As the number of potential cache states is quite large, all
analysis runs are terminated after a timeout of 90 minutes.

We compare three analyses: a) Baseline, which performs the naive analysis
from Section 2, b) Outer, which propagates analysis information throughout the
entire program and only relies on outer cache summaries (Section 5.4), and c)
Full, which relies on outer and inner cache summaries to compute fully context-
sensitive persistence information (Section 6.4). For the outer cache summaries the
analysis information over all exit points of the considered functions are retrained
and stored permanently, i.e., a pair of pointers representing the A and C summary
are stored in a look-up table (for the 299 considered functions over all benchmarks).
Inner cache summaries are derived as a post-processing step and the analysis
information over all potential uses of a memory block are merged. However, the
analysis information is retained for each memory block at every call context. For
the method cache 718 198 contexts are considered over all benchmarks, whereas
4 211 191 context are distinguished for the standard instruction cache. The number
of contexts is higher for the standard cache due to the larger number of memory
blocks. The data structures are freed only at the very end of the analysis, the

Precise, Efficient, and Context-Sensitive Cache Analysis 33

presented numbers consequently represents the peak memory consumption when
all analysis information is stored in memory.

Note, we never fall back to heuristics, i.e., the three analyses are applied to all
memory blocks of a program as described in the previous sections.

8.1 Analysis Complexity

Figure 6 summarizes the average analysis times over all benchmarks for all cache
configurations and analyses. As one might expect, analysis complexity heavily
increases with the size of the conflict sets, which primarily depends on the cache
associativity, the number of memory blocks, and the branching behavior of the
considered benchmark. This trend is clearly visible for the method cache (MC).
For standard caches (IC) the evolution of the analysis time is not steady. The total
cache size here has an important impact, as it tends to reduce the size of the
conflict sets by dispersing the memory blocks over a larger number of cache sets.

The analyses based on cache summaries (Outer/Full) clearly outperform the
Baseline analyses – by up to a factor of 200. Note furthermore that the Full analysis
is considerably faster, despite the fact that it also computes fully-context sensitive
persistence. For the method cache the gains increase with the size and associativity.
For the instruction cache the gains stay rather constant. Notably, this is also
true for 16-way set-associative standard caches. The Baseline (IC) analysis here
experiences a much larger number of timeouts than the summary based analysis
– which narrows the gap in the plot.

The speedups stem from the fact that the summaries allow us to skip the
analysis of large portions of the program that are not relevant to the cache hit/miss
classification. This means that the corresponding intermediate cache states are not
computed, which reduces analysis time but also the number of operations on the
underlying data structures. Figure 7 shows the average number of calls to an

〈4
,
2
0
4
8
〉

〈4
,
4
0
9
6
〉

〈4
,
8
1
9
2
〉

〈4
,
1
6
3
8
4
〉

〈8
,
2
0
4
8
〉

〈8
,
4
0
9
6
〉

〈8
,
8
1
9
2
〉

〈8
,
1
6
3
8
4
〉

〈1
6
,
2
0
4
8
〉

〈1
6
,
4
0
9
6
〉

〈1
6
,
8
1
9
2
〉

〈1
6
,
1
6
3
8
4
〉

〈3
2
,
2
0
4
8
〉

〈3
2
,
4
0
9
6
〉

〈3
2
,
8
1
9
2
〉

〈3
2
,
1
6
3
8
4
〉

100

101

102

103

104

105

106

Ti
m

e
(m

s)

/ Baseline (MC/IC)
/ Outer (MC/IC)
/ Full (MC/IC)

Fig. 6 Total analysis time averaged over all benchmarks for all considered cache configurations
(log-scale, lower is better).

34 Florian Brandner, Camille Noûs

〈4
,
2
0
4
8
〉

〈4
,
4
0
9
6
〉

〈4
,
8
1
9
2
〉

〈4
,
1
6
3
8
4
〉

〈8
,
2
0
4
8
〉

〈8
,
4
0
9
6
〉

〈8
,
8
1
9
2
〉

〈8
,
1
6
3
8
4
〉

〈1
6
,
2
0
4
8
〉

〈1
6
,
4
0
9
6
〉

〈1
6
,
8
1
9
2
〉

〈1
6
,
1
6
3
8
4
〉

〈3
2
,
2
0
4
8
〉

〈3
2
,
4
0
9
6
〉

〈3
2
,
8
1
9
2
〉

〈3
2
,
1
6
3
8
4
〉

104

105

106

107

108

N
um

be
ro

fc
al

ls
to

ob
ta

in
ZD

D
ob

je
ct

s

/ Baseline (MC/IC)
/ Outer (MC/IC)
/ Full (MC/IC)

Fig. 7 Average number of calls to the function get node on the ZDD data structure, over
all benchmarks for all considered cache configurations (log-scale, lower is better).

elementary function of the ZDD data structure (get node), which performs a
look-up and allocates a new object within the ZDD data structure, if needed. All
complex ZDD operations (e.g., union, concatenation) used during the analysis call
this function very frequently. A correlation between analysis times and the calls to
that function is clearly visible. Note, however, that other operations on the ZDDs
are also considerably contributing to the total analysis time, but are not captured
by this figure.

A timeout of 90 minutes is enforced in terms of analysis time. As indicated be-
fore this has an impact on the aggregated data. This applies notably to the Baseline

analysis for the method cache, but, most importantly, to the standard instruction
cache, which suffers from timeouts for all but the smallest cache configurations as
can be seen in Figure 8. For the largest cache configurations with an associativity

〈4
,
2
0
4
8
〉

〈4
,
4
0
9
6
〉

〈4
,
8
1
9
2
〉

〈4
,
1
6
3
8
4
〉

〈8
,
2
0
4
8
〉

〈8
,
4
0
9
6
〉

〈8
,
8
1
9
2
〉

〈8
,
1
6
3
8
4
〉

〈1
6
,
2
0
4
8
〉

〈1
6
,
4
0
9
6
〉

〈1
6
,
8
1
9
2
〉

〈1
6
,
1
6
3
8
4
〉

〈3
2
,
2
0
4
8
〉

〈3
2
,
4
0
9
6
〉

〈3
2
,
8
1
9
2
〉

〈3
2
,
1
6
3
8
4
〉

0

2

4

6

N
um

be
ro

fT
im

eo
ut

s

/ Full (MC/IC)
/ Baseline (MC/IC)
/ Outer (MC/IC)

Fig. 8 Number of benchmarks where the analysis runs into a timeout (90 minutes) for all
cache configurations (lower is better).

Precise, Efficient, and Context-Sensitive Cache Analysis 35

of 32, we only show the Full analyses as the other analysis variants experience too
many timeouts. The Full analysis for the method cache experiences between 1 to
5 timeouts with increasing cache size, while the analysis for the standard cache
experiences between 2 to 7 timeouts depending on cache size. Profiling showed
that the analysis spends most of the time in a few essential functions of the ZDD
data structure. It thus should be feasible to improve the respective functions, e.g.,
through caching or improved organization of the data structure. Some, though not
all, of the timeouts might thus be avoidable.

In terms of memory consumption the ZDD representation (Minato, 1993) of
the analysis information is, however, highly efficient. The average memory con-
sumption over all configurations peaks slightly above 256 megabytes (MB) – see
Figure 9. Whereas the Full analyses for the method and standard caches peak at
merely 72 MB (IC) and 15 MB (MC). The gains of the summary-based analyses
follow a similar trend as execution times, albeit less pronounced. Summaries re-
duce memory consumption by up to a factor of 42× (IC) and 7× (MC) respectively.
These reductions are, as indicated before, due to the fact that certain intermediate
cache states are not computed, which not only reduces the number of calls to the
aforementioned get node function, but also reduces the number of objects eventu-
ally allocated by that function, as illustrated by Figure 10. This figure is virtually
the same as the total memory consumption, which indicates that the ZDD data
structure dominates memory consumption and that other data structure, such as
look-up tables for the data flow analysis, only marginally contribute. The figures
also indicate that, on average, the memory reduction is more pronounced for stan-
dard caches. This is due to the fact that the number of memory blocks is much
higher for standard caches. This means that more objects have to be allocated
within the ZDD data structure in order to represent those memory blocks. This
is further exacerbated by the fact that the ZDD data structure relies on a strict
ordering of the memory blocks. Performing the various updates on the cache state
according to this order is much more efficient. The summary-based analyses con-

〈4
,
2
0
4
8
〉

〈4
,
4
0
9
6
〉

〈4
,
8
1
9
2
〉

〈4
,
1
6
3
8
4
〉

〈8
,
2
0
4
8
〉

〈8
,
4
0
9
6
〉

〈8
,
8
1
9
2
〉

〈8
,
1
6
3
8
4
〉

〈1
6
,
2
0
4
8
〉

〈1
6
,
4
0
9
6
〉

〈1
6
,
8
1
9
2
〉

〈1
6
,
1
6
3
8
4
〉

〈3
2
,
2
0
4
8
〉

〈3
2
,
4
0
9
6
〉

〈3
2
,
8
1
9
2
〉

〈3
2
,
1
6
3
8
4
〉

105

106

107

108

256 MB

32 MB

8 MB

To
ta

lM
em

or
y

(b
yt

es
)

/ Baseline (MC/IC)
/ Outer (MC/IC)
/ Full (MC/IC)

Fig. 9 Total memory consumption averaged over all benchmarks for all cache configurations
(log-scale, lower is better).

36 Florian Brandner, Camille Noûs

〈4
,
2
0
4
8
〉

〈4
,
4
0
9
6
〉

〈4
,
8
1
9
2
〉

〈4
,
1
6
3
8
4
〉

〈8
,
2
0
4
8
〉

〈8
,
4
0
9
6
〉

〈8
,
8
1
9
2
〉

〈8
,
1
6
3
8
4
〉

〈1
6
,
2
0
4
8
〉

〈1
6
,
4
0
9
6
〉

〈1
6
,
8
1
9
2
〉

〈1
6
,
1
6
3
8
4
〉

〈3
2
,
2
0
4
8
〉

〈3
2
,
4
0
9
6
〉

〈3
2
,
8
1
9
2
〉

〈3
2
,
1
6
3
8
4
〉

103

104

105

106

N
um

be
ro

fZ
D

D
ob

je
ct

s
al

lo
ca

te
d

/ Baseline (MC/IC)
/ Outer (MC/IC)
/ Full (MC/IC)

Fig. 10 Total number of objects allocated within the ZDD data structure averaged over all
benchmarks for all cache configurations (log-scale, lower is better).

sequently profit from the fact that the summary information intrinsically respects
this order. The Baseline analysis, on the other hand, updates the cache state in an
order imposed by the ICFG structure. It should be noted that we have optimized
the data-flow analysis and numbering of memory blocks in order to minimize this
effect.

A more detailed view is given in Figure 11 and 12, which show the mem-
ory consumption and analysis time required by the individual benchmarks for a
16 KB method cache with a tag memory size of 8 entries (dashed lines indicate

ad
pc

m
-d

ec
ad

pc
m

-e
nc

bi
na

ry
se

ar
ch

bs
or

t
cj

pe
g-

w
rb

m
p

co
un

tn
eg

at
iv

e
co

ve
r

di
jk

st
ra

du
ff

fa
c

in
se

rt
so

rt
jfd

ct
in

t
m

at
rix

1
m

d5
nd

es
pr

im
e

rij
nd

ae
l-d

ec
rij

nd
ae

l-e
nc

cj
pe

g-
tra

ns
up

p
te

st
3

pe
tr

in
et

hu
ff-

de
c lif
t

sh
a fft

gs
m

-e
nc

st
at

em
at

e
co

m
pl

ex
-u

pd
at

es iir
po

w
er

w
in

do
w

fil
te

rb
an

k
gs

m
-d

ec
fir

2d
im

100

101

102

103

104

105

106

Ti
m

e
(m

s)

() Full (Avg.)
() Outer (Avg.)
() Baseline (Avg.)

Fig. 11 Total analysis time for all benchmarks for a 16 KB method cache with associativity
16 (log-scale, lower is better).

Precise, Efficient, and Context-Sensitive Cache Analysis 37

co
ve

r
fa

c
du

ff
bi

na
ry

se
ar

ch
bs

or
t

co
un

tn
eg

at
iv

e
m

at
rix

1
in

se
rt

so
rt

jfd
ct

in
t

di
jk

st
ra

pr
im

e
cj

pe
g-

w
rb

m
p

ad
pc

m
-e

nc
ad

pc
m

-d
ec

rij
nd

ae
l-d

ec
m

d5
rij

nd
ae

l-e
nc

nd
es

cj
pe

g-
tra

ns
up

p lif
t

pe
tr

in
et

te
st

3
co

m
pl

ex
-u

pd
at

es sh
a iir

hu
ff-

de
c fft

gs
m

-e
nc

st
at

em
at

e
po

w
er

w
in

do
w

gs
m

-d
ec

fil
te

rb
an

k
fir

2d
im

103

104

105

106

107

108

16 MB

4 MB

To
ta

lM
em

or
y

(b
yt

es
)

() Full (Avg.)
() Outer (Avg.)
() Baseline (Avg.)

Fig. 12 Total memory consumption for all benchmarks for a 16 KB method cache with asso-
ciativity 16 (log-scale, lower is better).

the average). These figures confirm the general trend observed over all cache con-
figurations: cache summaries yield considerable improvements up to two orders of
magnitudes. In rare cases the summary-based analyses perform worse though, as
illustrated by huff-dec. This slowdown can be explained by the simple struc-
ture of the benchmark, which consists of only 3 functions that are only called
once outside of loop structures. Consequently each function has only a single call
context and the computations and bookkeeping related to the summaries cause a
slight overhead. Our measurements, however, indicate that only moderate slow-
downs are incurred in these cases, compared to the gains observed otherwise. For
instance, for this cache configuration the degradation measured for the huff-dec
benchmark amounts to merely 59% and 33% in terms of analysis time and memory
consumption respectively.

The presented results show that cache summaries proposed in this work suc-
cessfully reduce analysis complexity, both in terms of analysis time and memory
consumption, by orders of magnitudes.

8.2 Comparison with the State of the Art

As pointed out before, the proposed analyses and in particular the Baseline analysis
(Section 2) are similar to the work of Touzeau et al. (2019). The main difference
is that Touzeau et al. compute maximum/minimum conflict sets in two passes,
while the analyses presented here compute all conflict sets in a single pass. This
difference has two important implications. For one, the state space is much larger
when considering all conflict sets. This may increase analysis time and memory
consumption. On the other hand, more information is available in the analyses
presented here – since all conflict sets are retained. This might prove interesting.
For instance, the analysis information can be used to determine eviction points,

38 Florian Brandner, Camille Noûs

i.e., program locations where memory blocks are evicted from the cache. This
might allow us to prove refined bounds on the number of cache misses, which are
intrinsically linked to the number of evictions.

In order to evaluate the impact on analysis time we compare the analysis time
of the Baseline analysis with the original data from the paper of Touzeau et al.
(2019, Figure 10) – kindly provided by the authors. Note that this figure shows
the analysis time of an optimized analysis flow that combines a fast, but imprecise,
age-based analysis (Alt et al., 1996), with a second imprecise refinement to classify
accesses as definitely unused (Touzeau et al., 2017). Their ZDD approach is thus
only applied to a fraction of the memory blocks – which, in theory, should be
highly favorable for this comparison. According to the authors, applying the ZDD
approach without these heuristics is roughly 3 times slower, which is also illustrated
by a figure in their paper (Touzeau et al., 2019, Figure 9a).

Note that the subsequent comparison should be taken with a grain of salt.
The computer platform used here is an Intel Core2 Duo E8500 (released in 2008),
while in their work a more powerful Intel Xeon E5-2650 (2012, 2/2.8 GHz, 20 MB
L2 cache, 64 GB DDR3 main memory) was used. The options to compile the
analysis tools as well as the ZDD libraries used in the measurements are vastly
different. This likewise applies to the analysis input, including the binary programs
(Patmos ISA vs. ARM) and options used to compile the benchmarks. Despite these
differences, the numbers should be comparable, since both approaches were applied
to binary programs derived from the same source code, which in practice yields
comparable ICFGs. This is notably confirmed by the number of memory blocks
of the considered benchmarks (see Figure 5). In both cases the analyses do not
take context-sensitivity into consideration. Still, the numbers are ballpark figures,
where only the orders of magnitudes should be taken into consideration.

pe
tr

in
et

st
at

em
at

e
co

m
pl

ex
-u

pd
at

es fft
fir

2d
im

nd
es

cj
pe

g-
tra

ns
up

p
fil

te
rb

an
k iir

po
w

er
w

in
do

w
sh

a
gs

m
-d

ec lif
t

ad
pc

m
-d

ec
hu

ff-
de

c
rij

nd
ae

l-e
nc

rij
nd

ae
l-d

ec
gs

m
-e

nc

m
d5

ad
pc

m
-e

nc
cj

pe
g-

w
rb

m
p

di
jk

st
ra

pr
im

e
jfd

ct
in

t
in

se
rt

so
rt

m
at

rix
1

bs
or

t
co

un
tn

eg
at

iv
e

bi
na

ry
se

ar
ch fa
c

10−1

100

101

102

103

50

S
pe

ed
up

Fig. 13 Speedup of the Baseline analysis compared to the work of Touzeau et al. (2019)
considering a 4 KB stabdard cache with an associativity of 8. (log-scale, higher is better).

Precise, Efficient, and Context-Sensitive Cache Analysis 39

We compared equivalent cache configurations, assuming a standard instruction
cache with a total size of 4 KB, 16 B cache blocks, and an associativity of 4, 8, and
16 respectively. All non-recursive benchmark programs of the TACLe suite were
considered, except cover, duff, and test3, which have not been considered by
Touzeau et alii. The Baseline analysis seems to outperform the state-of-the-art in
most cases. This is particularly true for small associativity numbers. For instance,
the Baseline analysis for an associativity of 4 terminates instantly (< 1 ms) for 25
out of the 30 benchmarks, while Touzeau et al.’s analysis requires up to about
1 second for these benchmarks. For the remaining benchmarks Baseline appears
to be faster by a factor of 100 on average. For higher levels of associativity the
analysis speedup goes down to a factor of 40 and 20 respectively. This change is
partially explained by the fact that the number of benchmarks where the Baseline

analysis terminates instantly drops from 25 to 17 and finally 10. Figure 13 shows
the speedup for all considered benchmarks for the cache configuration with an as-
sociativity of 8. Only the petrinet benchmark showed a considerable slowdown
(by a factor of 3.3×). It is difficult to draw definitive conclusions, however, it ap-
pears that this can be explained by the particular characteristics of the petrinet
benchmark. This benchmark is dominated by a single large function that contains
a large number of branches in the ICFG. This leads to a large number of possible
combinations of conflict sets, many of which are subsumed by the minimum/maxi-
mum sets considered by Touzeau et alii. This is confirmed by the fact that the three
worst performing benchmarks (petrinet, statemate, and complex-updates)
have more than 1.17 ICFG edges per ICFG node, which indicates a high number
of branches. The benchmarks performing best all have a ration below 1.03, which
indicates a rather simple code structure. Note, however, that other characteristics,
such as loops and nested function calls, may also increase the state space of the
cache analysis without necessarily increasing the ratio between edges and nodes
in the ICFG.

Despite the differences in terms of the experimental setup, this coarse com-
parison indicates that even the naive Baseline analysis is competitive against the
state-of-the-art.

8.3 Predictability Considerations

The method cache was designed for the Patmos processor, which aims for pre-
dictability and analyzability. However, only the average performance was com-
pared with mainstream architectures (Schoeberl et al., 2018), such as LEON3,1

found in industrial real-time systems. The results here allow us to shed some light
on this matter in terms of analyzability, i.e., which cache is simpler to analyze?

Cache configurations are not directly comparable. The method cache operates
on fewer, but larger, memory blocks, which promises to reduce the analysis’ state
space. Its space utilization is usually limited by its associativity, i.e., small associa-
tivity combined with small memory blocks may cause evictions (conflict misses)
despite the fact that only a fraction of the cache memory is used. Standard caches,
on the other hand, operate on disjoint cache sets, which allows to decompose the
cache’s state. Cache utilization here depends on the distribution of memory blocks

1 https://www.gaisler.com/index.php/products/processors/leon3

https://www.gaisler.com/index.php/products/processors/leon3

40 Florian Brandner, Camille Noûs

over cache sets, i.e., evictions may occur in one cache set (conflict misses), while
other sets are not yet full. When comparing the maximum cache utilization across
cache configurations one can observe that the 4-way set-associative standard caches
have a slightly lower cache utilization than method caches with 16 sets. We thus
compare these two configurations with a cache size of 4 KB.

The average (maximum) analysis time for the method cache amounts to 1.3 s
(13.2 s), while for the standard cache the average (max.) analysis time amounts
to 107 ms (3.5 s). Similarly, the average (max.) memory consumption amounts
to 3.3 MB (28.9 MB) and 1 MB (19.2 MB) for the method and standard cache
respectively. This indicates a slight advantage for the standard caches in terms
of analysis complexity. However, due to its simpler design (full associativity) the
method cache’s behavior appears easier to predict, e.g., during the development of
real-time software. This, for instance, allows to analyze the method cache accesses

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

N
um

be
ro

fC
on

te
xt

s
(IC

)

No reuse Non-persistent Pot. non-persistent Persistent

ad
pc

m
-d

ec
ad

pc
m

-e
nc

bi
na

ry
se

ar
ch

bs
or

t
cj

pe
g-

tra
ns

up
p

cj
pe

g-
w

rb
m

p
co

m
pl

ex
-u

pd
at

es
co

un
tn

eg
at

iv
e

co
ve

r
di

jk
st

ra
du

ff
fa

c fft
fil

te
rb

an
k

fir
2d

im
gs

m
-d

ec
gs

m
-e

nc
hu

ff-
de

c iir
in

se
rt

so
rt

jfd
ct

in
t

lif
t

m
at

rix
1

m
d5

nd
es

pe
tr

in
et

po
w

er
w

in
do

w
pr

im
e

rij
nd

ae
l-d

ec
rij

nd
ae

l-e
nc sh
a

st
at

em
at

e
te

st
3

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

N
um

be
ro

fC
on

te
xt

s
(M

C
)

Fig. 14 Normalized total calling contexts with not reused (top), NC-persistent, non-
persistent, and persistent (bottom) memory blocks (cache configuration IC:〈4, 4 KB〉,
MC:〈16, 4 KB〉).

Precise, Efficient, and Context-Sensitive Cache Analysis 41

without knowing the precise address of the code. The mapping of memory blocks
to cache sets of standard caches is more difficult to predict/control, as proven by
the unsteady plots in Figure 6, since conflicts depend on the cache set, which, in
turn, is derived from the memory block’s address.

Another factor of analyzability is analysis precision, which in our case is best
evaluated through persistence. Figure 14 summarizes the fully-context-sensitive
persistence information over all memory blocks and benchmarks for both kinds of
caches (IC top, MC bottom) according to the classification from Section 6.3 with
regard of the scope of the called function. The results are normalized to the number
of calling contexts and the size of the respective memory blocks. Overall the results
follow very similar trends: a considerable portion of the memory blocks are not
reused, while many blocks are persistent and only a small fraction is generally
marked non-persistent. The method cache achieves better results for 9 out of 33
benchmarks, while the standard cache shows better results for 10 benchmarks.
Major gains for the standard cache, e.g., for complex-updates, filterbank,
iir, lift, md5, and sha are, to a large part, due to the compiler forming too large
memory blocks, e.g., when an entire loop as well as code before/after that loop are
placed inside a single memory block. This strategy is successful in terms of average-
case performance, but appears to inflate the size of non-persistent regions of the
ICFG. The gains for the method cache, on the other hand, (gsm-enc, petrinet,
rijndael-dec, rijndael-enc, statemate, test3) can be explained by a
better cache utilization, i.e, the cache sets of the standard cache are not ideally
utilized. Note that the memory block formation by the compiler also explains the
different height of the cumulative bars, i.e., code that normally is not reused is
sometimes placed in a memory block with code that is reused. The inverse might
also appear, as illustrated by fac, the compiler placed the benchmark’s loop into
a single memory block: the block is loaded once and then remains in the cache
(i.e., the loop consists entirely of FLOW edges and will never cause a cache miss).

The comparison between the two cache kinds is rather mixed. The method
cache does not significantly reduce complexity nor does it yield vastly superior
precision. However, as with average performance (Schoeberl et al., 2018), it is able
to compete with standard caches and still remains an interesting alternative to
study, due to its simple design.

9 Related Work

A classical approach to cache analysis using abstract interpretation goes back to
Alt et al. (1996). They proposed to classify memory accesses as AH, AM, or NC, based
on an abstract domain that associates minimum/maximum age bounds with each
memory block. The approach has proven quite successful for conventional caches.
However, it is an ill fit for the method cache, due to the fact that the cache is
fully associative. This is problematic for loops, where the age of all memory blocks
steadily increases until it reaches the largest age of any memory block in the
cache before the loop. This often means that all memory blocks – including those
within, but also those outside of the loop – are essentially flushed from the cache
in terms of the analysis. Later work added support for persistence (Ferdinand and
Wilhelm, 1999; Ballabriga and Casse, 2008) that was proven incorrect. Corrections
were proposed by independent teams (Huynh et al., 2011; Cullmann, 2013).

42 Florian Brandner, Camille Noûs

Recent work proposed exact analyses (Touzeau et al., 2019) to compute the
minimum/maximum age of memory blocks. The age is represented indirectly
through minimum/maximum conflict sets, which are computed similar to the base-
line analysis (see Section 2). The work here relies on a single analysis that computes
all conflict sets. The overhead induced by retaining all conflict sets is compensated
by decomposing the analysis problem into smaller problems using inner and outer
cache summaries. Note, however, that we could also define minimum/maximum
summaries similar to their work. This would be compatible with the method cache
presented here, but not necessarily with variants of the method cache, currently
under development, that exploit meta-information (mentioned in Subsection 2.2)
in order to modify the replacement policy. The work was soon afterwards extended
to handle persistence Stock et al. (2019). Similar to the analysis for the A sum-
maries, the transfer function of the traditional hit/miss classification is essentially
applied to sub-graphs representing scopes. The authors in addition propose an
extension of the data structure in order to represent – in addition to the memory
blocks explicitly stored in the conflict sets of a family – a number of anonymous

memory blocks. The analyses presented here should be equivalent to the approach
proposed by Stock et al. (2019) in terms of analysis precision.

The notion of conflict sets was introduced by Mueller (2000) and later applied in
various contexts (Huynh et al., 2011; Cullmann, 2013; Huber et al., 2014). A com-
mon limitation of these approaches is that a single conflict set over-approximates
all possible cache states, which can quickly become pessimistic for large functions
with disjoint control-flow paths. The approach of Huber et al. (2014) can be ap-
plied to caches with other cache replacement policies than LRU, notably FIFO.
The traversal of the scope graph in their work is similar to the way summaries are
computed here.

Compositional analysis techniques have been developed based on age- (Rakib
et al., 2004; Ballabriga et al., 2008) and conflict-set-based (Patil et al., 2004)
approaches. The aim here is to decompose the analysis of real-time programs at
the level of object files, assuming incomplete information on the final program
and its code layout (addresses). To achieve this, the various approaches define
some form of damage function, which over-approximates the impact of calling a
function (potentially from another object file). Ballabriga et al. (2008) proposed
to split this damage function into two components – corresponding to the A and C
summaries in this work. None of the past approaches defines a concept comparable
to the inner cache summaries (B). Also note that the method cache design favors
compositionality: address and layout information is not needed, due to the fact
that it is fully associative, i.e., the analysis can be symbolic.

Chu et al. (2016) applied symbolic execution in combination with SMT solv-
ing to precisely model cache states. The approach not only covers abstract cache
states, but also takes infeasible paths into account. However, this comes at a price:
high analysis time and memory consumption. The authors thus explore, similar
to this work, the use of summaries that combine the age-based abstraction (Alt
et al., 1996) with conditions (constraints), capturing the execution conditions un-
der which the abstract cache states apply. The approach is evaluated using a stan-
dard 4 KB 4-way set-associative cache. Even for this small cache configuration the
analysis times go up to 709 s, with a memory usage in the order of gigabytes. The
analysis presented here appears to scale much better, even for cache configurations
that are considerably larger.

Precise, Efficient, and Context-Sensitive Cache Analysis 43

Other approaches focused on refining the results of a fast, but imprecise, classi-
cal analysis – focusing on accesses classified as NC. One option is to explicitly keep
track of paths where cache misses occur (Nagar and Srikant, 2017) and bound the
number of misses by the number of executions on those paths. Another approach
is to refine the NC classification by proving the existence of at least one path where
a cache hit and another path where a cache miss occurs. Touzeau et al. (2017)
propose an analysis based on abstract interpretation and a precise analysis based
on model checking to accomplish this (Touzeau et al., 2017). Chattopadhyay and
Roychoudhury (2011) similarly propose to use model checking.

10 Conclusion and Future Work

This work presented a novel technique to compute cache summaries based on the
notion of conflict sets. These summaries can be computed for sub-graphs (e.g.,
functions) of an inter-procedural control-flow graph. The analysis allows to com-
pute precise conflict sets by reusing summaries of nested sub-graphs that can be
used to derive fully-call-context sensitive classical cache hit/miss classification and
persistence information. The experiments indicate that the approach scales rea-
sonably for realistic cache configurations.

Large cache sizes still cause considerable analysis time overhead. However, the
experiments revealed several ways for improvements: the use of a fast pre-analysis
to classifying simple cases, the use of minimum/maximum conflict sets, analysis-
specific optimizations to the ZDD library, and the pruning of call contexts where
memory blocks are not live.

Open research questions concern the composition of cache summaries for loops
from their loop bodies and programs with recursion. For the former it appears
feasible to define summaries of the loop body, treating back edges as special forms
of entry and exit edges. This would allow us to precisely model the cache state
across a loop’s iteration space – similar to Huynh et al. (2011). The latter can
be resolved by defining large sub-graphs covering cyclic regions of the call graph.
However, inspired from the handling of loops, it might also be possible to define
summaries for functions within these cycles.

Other possible applications of cache summaries could be in the context of com-
positional timing analysis, e.g., of third-party or obfuscated code, and (in combi-
nation) with parametric timing analysis. In both cases the ability to quickly derive
precise states from a given cache state promises improved analysis performance and
precision. In a similar vain, this may allow to improve the analysis precision when
the set of initial cache states of a task are known (or can be characterized to some
extent). In this case the cache analysis could abandon the conservative hypothesis
to start from an empty cache state – which is known to trigger the worst-case sce-
nario for caches with an LRU replacement policy Reineke and Grund (2013). This
may even allow to derive cache states across successive job instances of a real-time
task, similar to the concept of persistent cache blocks Rashid et al. (2016).

44 Florian Brandner, Camille Noûs

Acknowledgment

The author would like to thank Thomas Robert for sharing his understanding
on BDDs/ZDDs and the associated libraries as well as Mihail Asavoae for the
insight-full discussions leading up to this work. The author would like to thank
in particular Amine Naji for his contributions to the Odyssey WCET analysis
framework.

References

Aho AV, Lam MS, Sethi R, Ullman JD (2006) Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison-Wesley

Alt M, Ferdinand C, Martin F, Wilhelm R (1996) Cache behavior prediction by ab-
stract interpretation. In: Proc. of the International Symposium on Static Anal-
ysis, Springer, SAS ’96, pp 52–66

Ballabriga C, Casse H (2008) Improving the first-miss computation in set-
associative instruction caches. In: Proc. of the Euromicro Conference on Real-
Time Systems, IEEE, ECRTS ’08, pp 341–350, DOI 10.1109/ECRTS.2008.34

Ballabriga C, Casse H, Sainrat P (2008) An improved approach for set-associative
instruction cache partial analysis. In: Proc. of the Symposium on Applied Com-
puting, ACM, SAC ’08, pp 360–367, DOI 10.1145/1363686.1363778

Brandner F, Noûs C (2020) Precise and efficient analysis of context-sensitive cache
conflict sets. In: Proc. of the International Conference on Real-Time Networks
and Systems, ACM, RTNS ’20, p 44–55, DOI 10.1145/3394810.3394811

Chattopadhyay S, Roychoudhury A (2011) Scalable and precise refinement of cache
timing analysis via model checking. In: Proc. of the Real-Time Systems Sym-
posium, IEEE, RTSS ’11, pp 193–203, DOI 10.1109/RTSS.2011.25

Chu D, Jaffar J, Maghareh R (2016) Precise cache timing analysis via symbolic ex-
ecution. In: Proc. of the Real-Time and Embedded Technology and Applications
Symposium, RTAS ’16, pp 1–12, DOI 10.1109/RTAS.2016.7461358

Cousot P, Cousot R (1977) Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In:
Proc. of the Symposium on Principles of Programming Languages, ACM, POPL
’77, pp 238–252, DOI 10.1145/512950.512973

Cullmann C (2013) Cache persistence analysis: Theory and practice. ACM Trans
Embed Comput Syst 12(1s):40:1–40:25, DOI 10.1145/2435227.2435236

Degasperi P, Hepp S, Puffitsch W, Schoeberl M (2014) A method cache for Patmos.
In: Proc. of the International Symposium on Object/Component-Oriented Real-
Time Distributed Computing, IEEE, ISORC ’14, pp 100–108, DOI 10.1109/
ISORC.2014.47

Dvorak DL (2009) NASA study on flight software complexity. Technical excellence
initiative, NASA Office of Chief Engineer

Falk H, Altmeyer S, Hellinckx P, Lisper B, Puffitsch W, Rochange C, Schoeberl
M, Sørensen RB, Wägemann P, Wegener S (2016) TACLeBench: A Benchmark
Collection to Support Worst-Case Execution Time Research. In: Proc. of the Int.
Workshop on Worst-Case Execution Time Analysis, Schloss Dagstuhl, OASIcs,
vol 55, pp 1–10

Precise, Efficient, and Context-Sensitive Cache Analysis 45

Ferdinand C, Wilhelm R (1999) Efficient and precise cache behavior predic-
tion for real-time systems. Real-Time Syst 17(2-3):131–181, DOI 10.1023/A:
1008186323068

Hahn S, Reineke J (2018) Design and analysis of SIC: A provably timing-
predictable pipelined processor core. In: Proc. of Real-Time Systems Sympo-
sium, RTSS ’18, pp 469–481, DOI 10.1109/RTSS.2018.00060

Hepp S, Brandner F (2014) Splitting functions into single-entry regions. In: Proc.
of the Int. Conference on Compilers, Architecture and Synthesis for Embedded
Systems, ACM, CASES ’14, pp 17:1–17:10, DOI 10.1145/2656106.2656128

Huber B, Hepp S, Schoeberl M (2014) Scope-based method cache analysis. In: Int.
Workshop on Worst-Case Execution Time Analysis, Schloss Dagstuhl, OASIcs,
vol 39, pp 73–82

Huynh BK, Ju L, Roychoudhury A (2011) Scope-aware data cache analysis for
WCET estimation. In: Proc. of the Real-Time and Embedded Technology and
Applications Symposium, IEEE, RTAS ’11, pp 203–212, DOI 10.1109/RTAS.
2011.27

Jordan A, Brandner F, Schoeberl M (2013) Static analysis of worst-case stack
cache behavior. In: Proc. of the Conf. on Real-Time Networks and Systems,
ACM, RTNS ’13, pp 55–64

Kadota H, Miyake J, Okabayashi I, Maeda T, Okamoto T, Nakajima M, Kagawa K
(1987) A 32-bit cmos microprocessor with on-chip cache and tlb. IEEE Journal
of Solid-State Circuits 22(5):800–807

Khedker U, Sanyal A, Karkare B (2009) Data Flow Analysis: Theory and Practice,
1st edn. CRC Press

Li YTS, Malik S (1995) Performance analysis of embedded software using implicit
path enumeration. In: Proc. of the Design Automation Conference, ACM, DAC
’95, pp 456–461, DOI 10.1145/217474.217570

Lv M, Guan N, Reineke J, Wilhelm R, Yi W (2016) A survey on static cache anal-
ysis for real-time systems. Leibniz Transactions on Embedded Systems 3(1):05–
1–05:48, DOI 10.4230/LITES-v003-i001-a005

Minato Si (1993) Zero-suppressed BDDs for set manipulation in combinatorial
problems. In: Proc. of the International Design Automation Conference, ACM,
DAC ’93, pp 272–277, DOI 10.1145/157485.164890

Mishchenko A (2001) An introduction to zero-suppressed binary decision diagrams.
Tech. rep., University of California, Berkeley

Mueller F (1994) Static cache simulation and its applications. PhD thesis, Florida
State University

Mueller F (2000) Timing analysis for instruction caches. Real-Time Syst
18(2/3):217–247, DOI 10.1023/A:1008145215849

Nagar K, Srikant YN (2017) Refining cache behavior prediction using cache miss
paths. ACM Trans Embed Comput Syst 16(4):103:1–103:26, DOI 10.1145/
3035541

Naji A, Brandner F (2015) A comparative study of the precision of stack cache
occupancy analyses. In: Proc. of the Junior Researcher Workshop on Real-Time
Computing, JRWRTC ’15, pp 13–16

Patil K, Seth K, Mueller F (2004) Compositional static instruction cache simula-
tion. In: Proc. of the Conference on Languages, Compilers, and Tools for Em-
bedded Systems, ACM, LCTES ’04, pp 136–145, DOI 10.1145/997163.997183

46 Florian Brandner, Camille Noûs

Puschner PP, Schedl AV (1997) Computing maximum task execution times
- a graph-based approach. Real-Time Systems 13(1):67–91, DOI 10.1023/A:
1007905003094

Rakib A, Parshin O, Thesing S, Wilhelm R (2004) Component-wise instruction-
cache behavior prediction. In: Proc. of Automated Technology for Verification
and Analysis, Springer, ATVA ’04, pp 211–229

Rashid SA, Nelissen G, Hardy D, Akesson B, Puaut I, Tovar E (2016) Cache-
persistence-aware response-time analysis for fixed-priority preemptive systems.
In: Proc. of the Euromicro Conference on Real-Time Systems, ECRTS’16, pp
262–272, DOI 10.1109/ECRTS.2016.25

Reineke J, Grund D (2013) Sensitivity of cache replacement policies. ACM Trans
Embed Comput Syst 12(1s), DOI 10.1145/2435227.2435238

Schoeberl M, Schleuniger P, Puffitsch W, Brandner F, Probst C, Karlsson S, Thorn
T (2011) Towards a time-predictable dual-issue microprocessor: The patmos ap-
proach. In: Proc. of Bringing Theory to Practice: Predictability and Performance
in Embedded Systems, OASICS, vol 18, pp 11–21

Schoeberl M, Brandner F, Hepp S, Puffitsch W, D P (2013) Patmos Refer-
ence Handbook. Technical University of Denmark, URL http://patmos.
compute.dtu.dk/patmos_handbook.pdf

Schoeberl M, Puffitsch W, Hepp S, Huber B, Prokesch D (2018) Patmos: A
time-predictable microprocessor. Real-Time Syst 54(2):389–423, DOI 10.1007/
s11241-018-9300-4

Smith AJ (1982) Cache memories. ACM Comput Surv 14(3):473—-530, DOI
10.1145/356887.356892

Stein IJ (2010) ILP-based path analysis on abstract pipeline state graphs. PhD
thesis, Universität des Saarlandes

Stock G, Hahn S, Reineke J (2019) Cache persistence analysis: Finally exact. In:
Proc. of the Real-Time Systems Symposium, RTSS ’19, pp 481–494

Theiling H, Ferdinand C (1998) Combining abstract interpretation and ILP for
microarchitecture modelling and program path analysis. In: Proc. of the Real-
Time Systems Symposium, IEEE, RTSS ’98, pp 144–153

Touzeau V, Mäıza C, Monniaux D, Reineke J (2017) Ascertaining uncertainty for
efficient exact cache analysis. In: Computer Aided Verification, Springer, CAV
’17, pp 22–40

Touzeau V, Mäıza C, Monniaux D, Reineke J (2019) Fast and exact analysis
for LRU caches. Proc ACM Program Lang 3(POPL):54:1–54:29, DOI 10.1145/
3290367

http://patmos.compute.dtu.dk/patmos_handbook.pdf
http://patmos.compute.dtu.dk/patmos_handbook.pdf

	Introduction
	Background
	Motivating Example
	Analysis Overview
	Outer Cache Summaries
	Inner Cache Summaries
	Correctness
	Experiments
	Related Work
	Conclusion and Future Work

