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Abstract Multi-core architectures pose many challenges in real-time systems, which arise
from contention between concurrent accesses to shared memory. Among the available mem-
ory arbitration policies, Time-Division Multiplexing (TDM) ensures a predictable behavior
by bounding access latencies and guaranteeing bandwidth to tasks independently from the
other tasks. To do so, TDM guarantees exclusive access to the shared memory in a fixed time
window. TDM, however, provides a low resource utilization as it is non-work-conserving.
Besides, it is very inefficient for resources having highly variable latencies, such as shar-
ing the access to a DRAM memory. The constant length of a TDM slot is, hence, highly
pessimistic and causes an underutilization of the memory. To address these limitations, we
present dynamic arbitration schemes that are based on TDM. However, instead of arbitrating
at the level of TDM slots, our approach operates at the granularity of clock cycles by ex-
ploiting slack time accumulated from preceding requests. This allows the arbiter to reorder
memory requests, exploit the actual access latencies of requests, and thus improve memory
utilization. We demonstrate that our policies are analyzable as they preserve the guarantees
of TDM in the worst case, while our experiments show an improved memory utilization. We
furthermore present and evaluate an efficient hardware implementation for a variant of our
arbitration strategy.
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Extended Version

In recent work (Hebbache et al., 2018), we addressed several challenges in multi-core ar-
chitectures for real-time systems, which mainly arise from contention between concurrent
accesses to shared memory. Among the available memory arbitration policies, our approach
operates at the granularity of clock cycles by exploiting slack time accumulated from pre-
ceding requests. This allows the arbiter to reorder memory requests, exploit the actual access
latencies of requests, and thus improve memory utilization. We demonstrated that our poli-
cies are analyzable as they preserve the guarantees of TDM in the worst case, while our
experiments show an improved memory utilization on average.

We extend this previous work by discussing additional details on the simulation setup
(Subsection 6.2) and by proposing an efficient hardware implementation of our approach
along with its evaluation. In Section 7, we give an overview of the architecture design and
describe how the different features of our arbitration strategy (notably, deadline and slack
counters) can be implemented. We also show how this work led us to propose a variant of
our initial scheme that takes implementation trade-offs and costs into consideration, a formal
proof of the worst case behaviour for the new approach is also discussed in this section. In
Section 8, we demonstrate that these trade-offs do not impact the overall performance of
our approach, while enabling a simple and efficient implementation. Another contribution
addresses the issues raised by highly variable access latencies and excessively pessimistic
latency bounds. In Subsection 6.6, we evaluate the impact of our arbitration schemes w.r.t.
the variability of the memory access latency, i.e., differences between the best and worst
memory access latency. We show that even in this context, our approach allows to achieve
the maximum memory utilization with the guarantee of respecting the timing constraints of
critical tasks for real-time systems.

1 Introduction

Multi-core architectures pose many challenges in real-time systems, which arise from the
manifold interactions between concurrent tasks during their execution – most notably ac-
cesses to shared main memory. These interactions make it difficult to tightly bound the
Worst-Case Execution Time (WCET) of real-time tasks. Systematically considering the
worst-case behavior of an arbitration policy with regard to memory accesses in the presence
of concurrent requests is too pessimistic, as it leads to low resource utilization at run-time.
This problem is further amplified as real-time systems today allow tasks with different levels
of criticality (Vestal, 2007; Burns and Davis, 2017), and even non-critical tasks, to execute
on the same multi-core architecture. Another approach is to divide time into slots and al-
locate them to cores to exclusively access memory. Using a Time-Division Multiplexing
(TDM) policy, the accesses within a slot no longer depend on whether concurrent requests
exist or not. TDM provides predictable behavior and improves composability by bounding
access latencies and guaranteeing bandwidth independently from other cores.

The access latency of a memory request when using TDM, however, now depends on
the scheduling of these time slots, even if they are unused. Such unused slots appear when
an owner of a TDM slot does not (yet) have a memory request ready to be served. Under a
strict TDM scheme, these unused slots cannot be reclaimed by another task (as for instance
under Round-Robin). This non work-conserving behavior of TDM often leads to low resource
utilization. This problem is further amplified as the number of cores increases, leading to
longer TDM schedules. Another source of pessimism of TDM stems from the length of TDM
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slots, expressed in clock cycles, which have to be longer than the worst-case latency of
handling memory requests. Memory requests targeting a DRAM memory, however, have
highly variable latencies (Wu et al., 2013). The temporal behavior of the DRAM depends,
for instance, on memory refresh operations or whether the accessed memory page changed.
Besides, the access latencies of memory read requests is higher than that of memory writes,
since data must be sent back to the requesting core.

To overcome these aforementioned limitations, we explore the definition of dynamic ar-
bitration schemes based on TDM. We claim that the level of criticality should not only be
used by task schedulers, but also by memory arbiters. We thus recently started exploring
TDM-based arbitration schemes that allow the arbiter, under certain conditions, to favor re-
quests of non-critical tasks over request from critical tasks (Hebbache et al., 2017). This
is achieved by associating deadlines to the memory accesses of critical tasks, which corre-
spond to the end of their corresponding slots under a strict TDM scheme. These deadlines
allow the arbiter to compute the slack time of each pending request from critical tasks in
the system, i.e., the amount of time a request completed before its deadline. Later on, and
if slack times permit, the arbiter can change the order in which requests are handled by re-
allocating unused slots by critical tasks to non-critical tasks. This arbitration policy is called
TDMds, for dynamic TDM with slack counters, and addresses one source of pessimism of
strict TDM.

A first contribution of this paper consists in proposing two dynamic TDM arbitration
schemes that extend TDMds in order to address the sources of pessimism related to TDM
slots. This is achieved by decoupling the arbitration from the TDM slots, i.e. arbitration de-
cisions are taken at the granularity of clock cycles. Our experiments show that this allows to
improve delays suffered by traditional TDM by a factor of at least 1.5, and up to a factor of
4.2. A second contribution is a formal correctness proof of the newly proposed approaches,
which also applies to TDMds. Most notably, we prove that TDM’s temporal behavior is pre-
served for critical tasks. Consequently, analysis results valid under TDM, such as offset anal-
yses (Kelter et al., 2014; Rihani et al., 2015), are equally valid under our schemes. Finally,
we present a hardware implementation of a variant of our scheme that takes implementa-
tion trade-offs and costs into consideration. We show that these trade-offs do not impact the
overall performance of our approach, while enabling a simple and efficient implementation.

The remainder of this paper is organized as follows. Section 2 describes the considered
system model. In Section 3, we then motivate our contributions by identifying the sources
of pessimism within TDM slots. Section 4 presents two TDM-based schemes that no longer
perform arbitration at the granularity of slots, but at the level of clock cycles. We demonstrate
that their worst-case behavior is equivalent to a strict TDM arbitration policy in Section 5.
The proposed approaches are next evaluated in terms of memory utilization and efficiency
in Section 6. In Section 7, we present a simple and efficient hardware implementation of
a variant of our proposed arbitration schemes. Finally, Section 8 contains an evaluation of
the hardware implementation and the associated trade-offs. Section 9 presents related work,
before concluding in Section 10.

2 System model

In this paper, we explore memory request arbitration on a multi-core architecture consisting
of m cores with private caches and a single shared memory, i.e., cache misses result in
memory requests to transfer cache blocks. For now we assume a restricted task model, where
each core executes a single independent and periodic task τi, 1≤ i≤ m. Tasks are modeled
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as a sequence of memory requests separated by a given number of processor clock cycles,
representing the amount of computation that is performed between two memory accesses.
For a task τi, the distance between memory requests k−1 and k is given by distk. We assume
a composable computer architecture (Hahn et al., 2015), which ensures that the distance
between requests is independent from the execution of other tasks. The only interference
between the independent tasks thus stems from accesses to the shared memory and, most
importantly, the employed memory arbitration scheme.

Figure 1 illustrates an execution under such a system model using traditional TDM arbi-
tration, considering 3 tasks (A,B,C) that execute on separate cores and perform concurrent
memory requests to the shared memory. Each task is assigned a dedicated TDM slot (vertical
columns, labeled A trough C) that alternate over time. The slot length Sl in this example is
8 processor clock cycles, which results in a global TDM period P of 24 clock cycles (i.e.,
P = 3 ·Sl). The tasks in our system model are represented by sequences of memory requests
as follows: (A : 2,24,12), (B : 14,4,2) and (C : 26,6). Task A, for instance, performs its
first memory access after 2 clock cycles, the second access 24 clock cycles after completing
the first one, and the third access another 12 cycles later. In the remainder of the paper, all
figures only show a single instance, or job, of each task.

Each memory access of a task blocks the task’s execution, depending on the memory’s
speed, i.e., the TDM slot length or DRAM latency (Wu et al., 2013), and the arbitration policy
(TDM). This blocking time is visualized in the figure by considering the following dates for
each request: (a) the issue date ( ) indicates the moment when a task issues a request to
the memory arbiter (e.g., through a bus or on-chip network), (b) the start date ( ) indicates
the moment when the memory starts processing a request, and (c) the completion date. The
time span between these dates correspond to the Request Inter-Task Delay (b− a) and the
Request Execution Time (c−b) of Paolieri et al. (2013). Request B1, for instance, is issued
4 cycles after the completion of request B0 in slot 6. The request is granted access to the
memory in slot 8, which starts processing immediately, and completes at the end of the TDM
slot indicated by the green hatched bar ( ). Its request inter-task delay is thus 12 cycles,
while its request execution time is equal to Sl. In this work, we assume that requests are
granted access to the memory only at the beginning of a TDM slot, as this minimizes TDM
periods. The results presented hereafter can easily be generalized to other TDM schemes. The
memory is not always busy, unused slots are thus indicated by a red hatched bar ( ). The
schedule length of our example is 13 TDM slots, where A2 is the last request to complete at
the end of the 13th slot. The blocking time of requests A0, A1, and A2 are respectively 3.75,
3, and 1.5 slots respectively. The total blocking induced by TDM on the requests from task

1 2 3 4 5 6 7 8 9 10 11 12 13

A A A A AB B B BC C C C

A0 A1 A2

B0 B1 B2

C0 C1

Cycles
0 8 16 24 32 40 48 56 64 72 80 88 96 104

Slots

Fig. 1 Regular TDM arbitration of three tasks A, B, and C, including periods of memory activity ( ) and
idling ( ).
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A is thus 66 cycles. The last memory access of task A therefore completes after 104 cycles,
since the amount of processing of task A is 38 cycles (2+24+12).

Similar to mixed-criticality systems (Burns and Davis, 2017), we define two classes
of tasks in our model: critical and non-critical tasks. However, our model is somewhat
simplified, as we do not introduce different operation modes, e.g., the modes LO/HI from
Vestal (2007). We simply assume that critical tasks are associated with a strict deadline
that has to be met under all circumstances. The underlying computer platform and memory
arbitration scheme thus have to provide a means to bound the worst-case execution times of
these tasks. Non-critical tasks, on the other hand, may miss their deadlines. In contrast to
typical mixed-criticality systems, we do not demand strict worst-case execution time bounds
for them in this work. The underlying hardware can thus execute these tasks in a best-effort
manner. Non-critical tasks continue execution even if they miss their deadline, therefore,
requests of non-critical tasks are never canceled and remain pending until processed by the
main memory.

Our system/task model is kept simple on purpose for this work. We refer interested
readers to a discussion of recent extensions (Hebbache et al., 2019), which we consider out
of the scope of this work.

3 Motivation

The system model from the previous section can be implemented relatively easily using a
TDM arbitration scheme, where each critical task is assigned a dedicated TDM slot. Non-
critical tasks may share TDM slots or, in the worst-case, simply recycle unused TDM slots
leftover by the critical tasks (i.e., the slots shown in red in Figure 1). This appears to be
an attractive solution for critical real-time systems, where TDM is widely popular due to its
predictability. The strict separation of critical tasks would allow to easily establish worst-
case execution time bounds (Kelter et al., 2014; Rihani et al., 2015), while the non-critical
tasks would improve the memory utilization (Hebbache et al., 2017).

We recently started investigating improved arbitration schemes based on TDM, that al-
low for a more dynamic scheduling of memory requests (Hebbache et al., 2017). We defined
an arbitration scheme dubbed TDMds (dynamic TDM with slack counters), where the arbi-
tration decisions are driven by deadlines. For critical tasks, we derive a deadline for each
request, which simply corresponds to the end of the task’s next TDM slot after the request’s
issue date. The TDMds arbiter is then free to schedule memory requests dynamically, as long
as the request deadlines of critical tasks are respected. This dynamic scheduling thus blurs
the separation between the TDM slots of tasks, i.e., any task may perform a memory request
in any given TDM slot – as long as no deadlines are missed. We associate a slack counter
with each critical task (implementation details are discussed in Section 7). This counter in-
dicates how many cycles the last request of a job completed before its deadline. When a new
request is issued by a job that previously accumulated some slack, the request’s issue date
occurs earlier than expected under a strict TDM scheme. Consequently, also the correspond-
ing deadline appears earlier than under strict TDM. This may potentially limit the available
scheduling choices for the arbiter. We address this issue by computing a so-called delayed
issue date, which simply consists of adding the previously accumulated slack back to the
issue date of a new request. The delayed issue date may then potentially push the deadline
farther into the future. This, furthermore, provides a strong guarantee linking executions un-
der strict TDM to executions under our scheme. During the execution of a job, the deadlines
computed under TDMds considering the accumulated slack, exactly correspond to the dead-
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2
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0 c0∆

1
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0 8 16 24 32 40 48 56 64 72 80 88
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Fig. 2 Improved arbitration using TDMds of two critical (A and B) and a non-critical task (c).

lines/completion dates under regular TDM. Note, however, that the slack accumulated by a
job is not preserved for subsequent jobs of a task, i.e., slack counters have to be reset to zero
at job start.

Deadlines only apply to critical tasks, which have to respect strict timing constraints.
The TDMds approach nevertheless assigns a soft deadline to non-critical requests, which
corresponds to the end of the immediate next TDM slot. On a deadline miss for a non-critical
request the deadline is simply pushed back by a TDM slot length. Issued requests can so be
kept in a priority queue considering the requests’ deadlines where critical tasks have higher
priority on a tie with non-critical requests. The arbiter then schedules requests according to
an earliest-deadline-first (EDF) policy. Our deadline-driven arbitration policy renders TDM
slots exchangeable between cores and allows to reorder requests to improve memory utiliza-
tion.

Figure 2 shows an execution of the task set from Section 2 under TDMds, considering
tasks A and B as critical tasks, task c as non-critical (its label now thus is lowercase). The
visualization of a request now also includes the request’s deadline ( ). The deadline may
well lie far after the request’s actual completion date, and thus generate slack for the job
issuing the request (e.g, requests A0, A2, and B0). The value of the slack counter is displayed
as a superscript for each request. For instance, request A1 has accumulated 8 cycles of slack
(superscript 8∆ in Figure 2). At the beginning of each TDM slot, the arbiter chooses one of
the issued requests, independently from the actual owner of the slot. This is, for instance, the
case for non-critical request c0, which is granted access to the memory despite the fact that
critical request B1 has been issued. The slack accumulated by task B is here spent in favor
of the non-critical task. In comparison to regular TDM (Figure 1), TDMds is more efficient in
this example. The last request A2 completes 3 TDM slots earlier. Note, that the slack counters
are all reset to zero for subsequent jobs of the critical tasks A and B.

As illustrated by the example above, the use of deadlines and slack counters allows the
TDMds arbiter to improve the utilization of the memory. However, issues stemming from
the very nature of TDM remain, both are related to the use of fixed TDM slots as the request
arbitration only occurs at the beginning of slots.

Like standard TDM, TDMds remains non-work conserving, i.e., issued requests may not
be able to access memory, even when it is idle. Figure 2 shows three such requests, namely
A0, B1, and c0. The arbitration of TDMds is limited to TDM slots and thus cannot immediately
grant request c0 access to the memory in slot 4. Instead, it has to wait until the beginning of
the next TDM slot 5, where it is indeed scheduled.
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Definition 1 During the execution of a task set under TDMds, the issue delay denotes the
number of clock cycles during which at least one request was pending at the memory arbiter
within an unused TDM slot.

For instance, TDMds generates an issue delay of 6 cycles for request c0. This delay could
have been avoided if requests were handled independently from TDM slots. For instance,
task A, the owner of TDM slot 5, has accumulated some slack (8∆ ), which ensures that the
deadline of any request issued by task A after request c0 will be at the end of slot 7 or later. It
thus would be safe for request c0 to immediately access the memory during the unused TDM
slot 4. This also holds if the request stretches partially into the next slot, since any potential
request from task A could still meet its deadline at A’s next TDM slot.

Another issue is related to the length of TDM slots, which has to be chosen such that
the longest possible memory access can safely complete. Most memory accesses will, in
practice, complete way earlier than this worst-case memory latency. Requests B0 and c1 in
Figure 2 are issued close to the end of a used TDM slot. It is thus likely that the requests
serviced by the memory at the respective issue dates have already completed. The TDMds
arbiter, however, is limited to TDM slots and cannot immediately grant access to a subsequent
memory request even when the current memory request completes early.

Definition 2 During the execution of a task set under TDMds the release delay denotes the
number of clock cycles during which at least one request is issued to the memory arbiter
after the completion of the memory request of a used TDM slot.

Similar to the issue delay before, it is possible to avoid this delay by decoupling the
arbiter from the TDM slots. A complete approach is presented in the next section.

4 TDM Arbitration without Slots

We now develop a solution to the issues highlighted above. First, we show how the arbitra-
tion can be decoupled from TDM slots in order to reduce issue delays by considering slack
counters. We then propose a slight variation of the approach to address release delays. Both
approaches improve the memory utilization, while converging to regular TDM in the worst
case (see Section 5). This allows to preserve properties that make TDM popular – including
results obtained from advanced TDM-based program analyses (Kelter et al., 2014; Rihani
et al., 2015).

4.1 Early Request Processing

Under TDMds, arbitration decisions are taken at the beginning of TDM slots and are based
solely on the set of actually issued requests. It is then possible to delay an issued request
of a critical task, depending on the request’s actual deadline. The task’s slack counter itself
is not considered during this arbitration decision, it merely has an indirect effect during the
calculation of the request’s deadline. This can be seen as a forecast, based on the actual
requests visible to the arbiter.

However, the slack counter values are also valid when a critical job did not (yet) issue a
request to the arbiter. This, in fact, allows an arbiter to take a peek into the near future and
take arbitration decisions based on this information. In particular, it is possible to determine
a lower bound of the deadline associated with any request coming from the owner of the
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Algorithm 1 Condition to apply the early-start optimization.
1: function EARLY-START(Now, NextSlot, Request)
2: NextOwner= OWNER(NextSlot)
3: NextDist= START(NextSlot)−Now
4: if NextOwner= OWNER(Request) then
5: return true
6: else if NextDist< SLACK(NextOwner) then
7: return true
8: return false

immediate next TDM slot (even when the job did not yet issue a request). The memory can
then start the processing of any of the issued requests at any moment, if that deadline bound
lies past the end of the next TDM slot. This ensures that the memory can process the request
partially in the current TDM slot, while completing it in the next slot, without violating the
worst-case behavior of TDM. We call the resulting approach TDMes for early start.

Two cases have to be considered by the arbiter before applying the early-start optimiza-
tion to a request, as shown by Algorithm 1. Helper functions are used to retrieve the owner
of the next TDM slot or request (OWNER), the start cycle of the TDM slot (START), and the
slack counter of a task (SLACK).

The first condition (Line 4) checks whether the task issuing the request owns the upcom-
ing slot (only for critical tasks). In this case it is always safe to immediately start processing
the request, as the memory will always respect the request’s deadline – an overflow into the
next TDM slot is not an issue.

The second condition (Line 6), verifies that any potential overflow into the next TDM
slot is safe, using the slack counter of the task owning the upcoming slot. Recall that the
deadline under TDMds is computed from a delayed issue date, i.e., the issue date plus the
value of the slack counter. We can do the same to obtain a lower bound of the deadline, by
simply assuming that the owner of the TDM slot may issue a request in the next clock cycle.
If the deadline bound corresponds to the end of the immediate next TDM slot, it is not safe
to overflow and the memory cannot start processing any request (yet). If the deadline bound
lies farther in the future, an overflow is safe and the memory can proceed.

Instead of actually computing the deadline bound, it suffices to compare the distance to
the beginning of the next TDM slot (NextDist) with the slack counter of the slot’s owner

1 2 3 4 5 6 7 8 9 10 11

A A A A A AB B B B B

A0∆
0 A8∆

1 A6∆
2

B0∆
0 B8∆

1 B6∆
2

c0∆
0 c0∆

1

Cycles
0 8 16 24 32 40 48 56 64 72 80 88

Slots

Fig. 3 Reduced issue delays due to the TDMes arbiter, which operates independently from the actual TDM
slot length.
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(SLACK). If the distance is smaller than the slack counter value, the delayed issue date lies
after the beginning of the TDM slot and the deadline correspond to the TDM slot thereafter
– the early-start optimization can be applied. If the distance is larger or equal to the slack
counter an overflow might be problematic – the optimization cannot be applied.

Figure 3 illustrates the resulting arbitration under TDMes for the task set from before
(A,B,c). Requests can now start early, if the conditions described before are met. This is
the case for request c0, a non-critical request that is issued during TDM slot 4 at cycle 26.
The owner of the next TDM slot starting at cycle 32, is task A, whose slack counter is 8
(stemming from access A0). At the moment when c0 is issued, the arbiter thus needs to
verify the second condition of Algorithm 1. Task A could potentially issue a request in the
next cycle (27), which would yield a delayed issue date of 35 (27+ 8) and consequently
a deadline at the end of TDM slot 7. It is evidently safe to immediately grant c0 access to
the memory, as shown in the figure. The same result can be obtained by comparing the
distance (32−26 = 6) to the next TDM slot with A’s slack counter (8), since 6 < 8. The same
situation arises for request c1. The arbiter handles request c1 in the next clock cycle after
4 requests where served, i.e. at cycle 59 (26+ 4 ∗ 8+ 1), leading to a distance to the next
slot smaller than A’s slack counter. The remaining requests in the example, except for A0,
fall into the first condition of Algorithm 1, i.e., the owner of the request is also the owner of
the subsequent TDM slot. For instance, request B0 is processed within slot 3, as B owns slot
4. The early-start optimization cannot be applied to A0, since task B, the owner of the next
TDM slot (2), has a slack counter value of 0. The request thus suffers from an issue delay of
6 cycles, which indicates that our approach may still exhibit non-work-conserving behavior.

Compared to TDMds (Figure 2), the TDMes policy is again more efficient. The memory
is almost always busy and the last request completes at cycle 74 (as opposed to 80 before).

4.2 Early Release after Request Completion

Up to now, the actual behavior of the memory to handle requests (load or store) was irrel-
evant to the memory arbiter, which simply relied on the fact that all memory requests are
guaranteed to complete within the duration of a TDM slot. This, in essence, means that all
memory accesses take the worst-case latency, which may introduce considerable pessimism
in the form of release delays, as the actual memory latency typically varies from access to

1 2 3 4 5 6 7 8 9 10 11

A A A A A AB B B B B

A0∆
0 A10∆

1 A11∆
2

B0∆
0 B10∆

1 B8∆
2

c0∆
0 c7∆

1

Cycles
0 8 16 24 32 40 48 56 64 72 80 88

Slots

Fig. 4 Elimination of release delays under TDMer arbitration, which considers the actual latency of memory
access. Some of the eliminated release delays may simply be transformed into issue delays.



10 Farouk Hebbache et al.

access, depending on the internal state of the underlying memory technology, e.g., DRAM
(Wu et al., 2013).

The memory processing under the previously presented approach is no longer required
to be aligned with the TDM schedule and can perform memory accesses at any moment. It
is thus only natural to drop the (artificial) constraint of waiting the entire duration of a TDM
slot before releasing the memory and allowing the next request to be processed. We refer to
this arbitration scheme as TDMer (for early release), which entirely eliminates any release
delays present under TDMds or TDMes. However, it is not guaranteed that any of the issued
requests is granted access to the memory, e.g., due to the lack of slack (see Section 4.1). In
this case, the early-release optimization does not actually improve the memory utilization
and release delays are simply transformed into issue delays.

Figure 4 again shows an execution trace for the task set (A,B,c) from Section 2 under
the TDMer scheme. The main difference concerns the duration of the memory processing
time, which is now illustrated by green hatched bars of variable length ( ). Request A0, for
instance, now completes 2 cycles earlier than before. This entails several changes. Firstly,
the slack counter of task A increases by an additional 2 cycles, which now amounts to 10
cycles (cf. A10∆

1 ). Secondly, request B0 can be processed right after being issued, which
eliminates the release delay that would otherwise be observed. In this example, the reduced
release delay itself is not beneficial, due to the absence of issued requests before cycle 24.
Finally, due to the earlier processing of requests from the two other tasks and a reduced
memory latency, request A1 completes in TDM slot 6 instead of TDM slot 7. This allows the
arbiter to change the order of request c1 and B2, since B2’s deadline is far enough in the
future and task A has sufficient slack (11).

In comparison to TDMes (Figure 3), again an improvement is achieved, despite a slight
increase in the memory’s total idle time (cf. the red hatched bars ( ). The last request (A2)
completes at cycle 64, as opposed to cycle 74 before. In particular the non-critical task c

gained from the altered schedule and completes its last memory request 13 cycles earlier.
Only task B does not profit and terminates at the same instant. Note, however, that critical
tasks never terminate later than under a regular execution under TDM. This can be seen by
the fact that the deadlines for critical requests in Figures 2 through 4 match.

The improvements are even greater when comparing with the original TDM-based execu-
tion (Figure 1), which completed after 104 cycles. TDMer yields an improvement of 62.5%
– while, in the worst case, preserving a strict separation between critical and non-critical
tasks. Note, that the deadlines shown in Figure 1 are not comparable to the deadlines shown
in the other figures, due to the presence of a third TDM slot for C.

5 Worst-Case Behavior

In the previous sections we claimed that for critical tasks our approach converges towards
TDM in the worst case. We will now provide a more precise definition of this worst-case
behavior and provide formal proofs of correctness. Since non-critical tasks are served on a
best-effort basis, we do not consider them here.

By converging towards TDM we simply mean that TDMer (as well as TDMes) provides
the following guarantee:

Theorem 1 (Worst-Case Behavior) Considering a given execution (i.e., execution path,
runtime conditions, input values, . . . ) a memory access of a critical task under any pos-
sible execution considering TDMer completes no later than the same execution under strict
TDM.
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This is a very strong guarantee, which preserves many of the properties that make TDM
popular in critical systems. This includes results of worst-case execution time analyses,
even sophisticated analyses that exploit information on the relative alignment of program
execution with regard to the TDM schedule (Kelter et al., 2014; Rihani et al., 2015).

In order to show the correctness of Theorem 1 we will first refine some essential defini-
tions and show that deadlines of critical tasks under TDM are always aligned with TDM slots
and unique between critical tasks. Based on this, we will finally show that TDMer preserves
the same deadlines using slack counters.

TDM arbitration guarantees a fixed time window to a task to exclusively access memory,
this time window is defined by the TDM slot length Sl. Each of the n critical tasks has its
own slot, resulting in a repetitive TDM schedule with a period P = n · Sl. For each memory
request issued by a critical task τi the arbiter is assumed to store or compute the following
information: the request’s arrival date (aka. issue date) ak, completion date ck, and deadline
dk as well as the start date of the current TDM period Sp, and the offset of the task’s TDM slot
O(τi) (with regard to Sp).

The deadline of a memory request under TDM is then defined as follows:

Definition 3 (TDM Request Deadline) Considering TDM arbitration, the deadline dk of the
kth request issued by a critical task τi is given by:

dk =

{
Sp+O(τi)+Sl if ak ≤ Sp+O(τi)
Sp+O(τi)+P+Sl else.

Lemma 1 Given Definition 3, the deadline of a critical request corresponds to the end date
of its dedicated TDM slot. The deadline dk is consequently always equal to the completion
date ck under regular TDM arbitration.

Proof The deadline dk always corresponds to the end of τi’s TDM slot, as each of the argu-
ments used in the computation is, by definition, a multiple of the TDM slot length Sl (Sp,
O(τi), and P). The formula simply distinguishes two cases (1) when the request is issued
at or before the start of τi’s TDM slot, the deadline then corresponds to the end of the TDM
slot in the current period, or (2) when the request is issued after the start of its TDM slot, the
deadline then corresponds to the end of the TDM slot in the next period. ut
Lemma 2 The deadlines of critical requests issued by different critical tasks can never be
identical.

Proof This follows trivially, since, by definition, the offsets of two critical tasks O(τi) and
O(τ j) have to be different when i 6= j. ut

The two properties from above show that TDM arbitration can simply be interpreted as
being driven by deadlines. Any dynamic arbiter respecting these deadlines (i.e., ck ≤ dk)
can be used to implement a TDM-based arbitration scheme that preserves Theorem 1, e.g.,
an implementation based on the earliest-deadline-first strategy like TDMer (see Theorem 2).
However, since our approach here is decoupled from the notion of TDM slots once sufficient
slack has been accumulated, we also have to show that the deadlines under our approach
match those of TDM.

Earlier completion of tasks gives rise to the accumulation of slack w.r.t an execution
under regular TDM, which is stored in a dedicated slack counter for each critical task. These
slack counters are updated after every completion of a critical memory request.

Definition 4 (Slack Accumulation) Under TDMer, the slack counter of a critical task τi
after the completion of its kth memory request is given by: ∆k = dk− ck.
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The slack is then used to compute a delayed issue date for the next request of τi. Depend-
ing on the amount of slack accumulated at this moment, this delayed issue date may push
the deadline farther into the future and thus provide more flexibility to a dynamic arbiter.

Lemma 3 The deadlines for critical requests under TDMer correspond to the same dead-
lines as under regular TDM.

Proof Considering Definition 4, we can show by induction that a request’s issue date aTDMk
under regular TDM always corresponds to the delayed issue date under TDMer. This last
date can be computed from the original issue date aTDMerk and the slack counter value ∆k,
i.e., aTDMk = aTDMerk +∆k−1.
Induction base k = 0: ∆0 = 0 the issue date under TDM and TDMer are naturally the same,
i.e. aTDM0 = aTDMer0 .

Induction step: Assuming a composable architecture that ensures that the delay distk be-
tween the k-th and (k−1)th memory request is constant we obtain:

distk = aTDMk − cTDMk−1 = aTDMerk − cTDMerk−1

Based on the hypothesis that the deadline of the previous request is equal under TDM
and TDMer, i.e., dTDMk−1 = dTDMerk−1 , and the fact that deadline and completion date are identical
under TDM, we obtain by substitution that:

∆k−1 = dTDMerk−1 − cTDMerk−1 = dTDMk−1 − cTDMerk−1 = cTDMk−1 − cTDMerk−1

= cTDMk−1 +distk− cTDMerk−1 −distk
= cTDMk−1 +(aTDMk − cTDMk−1)− cTDMerk−1 − (aTDMerk − cTDMerk−1 )

= aTDMk −aTDMerk

=⇒ aTDMk = aTDMerk +∆k−1

Since the issue date aTDMk and the delayed issue date aTDMerk +∆k−1 are identical, and we use
the same method to compute the deadlines, it follows that the deadlines are identical, i.e.,
dTDMk = dTDMerk . ut

The result from above shows that the deadlines of memory requests under TDMer corre-
spond to those under TDM. It remains to show that the arbiter is actually able to respect those
deadlines. For this we also need to consider non-critical tasks and their respective memory
requests.

Definition 5 (Non-Critical Requests) The deadline of non-critical requests under TDMer
corresponds to the end of the immediate next TDM slot after the issue date of the request,
independent from the actual owner of that slot, i.e.:

dk =
⌈ak

Sl
+1
⌉
·Sl

The deadlines of non-critical requests may obviously collide with deadlines of critical
tasks. The arbitration policy thus has to take these collisions into account.

Definition 6 (Request Arbitration) Under TDMer request arbitration is based on a priority
queue depending on the requests’ deadlines. In case of a tie between a critical task and
(possibly many) non-critical tasks, the critical request is assigned higher priority. Deadlines
of non-critical tasks are reevaluated after each TDM slot.
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Definition 7 (Request Admission) The request with the highest priority is granted access to
the memory at the granularity of individual clock cycles according the EARLY-START test
from Algorithm 1.

Theorem 2 TDMer ensures that any critical request completes before its deadline, i.e.,
ck ≤ dk , in addition to Theorem 1.

Proof Assume that request k of a critical task τi is the first critical request in the system
that missed its deadline, i.e., its ck > dk. This means that the memory was busy processing
another request at the beginning of τi’s TDM slot.

First assume the case that the request l of another task τ j being processed by the memory
was granted access to the memory at instant t after the issue date of request k, i.e., ak ≤ t.
This implies that the deadline dl is either smaller or equal to dk, otherwise k would have
higher priority and l would not have been admitted first. The deadlines cannot be equal,
as this would imply that l is a non-critical task (Lemma 2), which again would exclude
its admission due to its weaker priority. It follows that dl < dk and, due to Lemma 1, dl ≤
dk−Sl. This, however, would imply that the request l missed its deadline as it was still being
processed at the beginning of τi’s slot. This contradicts the assumption that k was the first to
miss its deadline.

Now assume the case that request l was granted access to the memory before the is-
sue date of k, i.e., t < ak. This implies that the early-start optimization was applied. More
precisely the second condition (Line 6), as l cannot originate from τi. However, this is im-
possible since t < ak +∆k < dk− Sl has to hold, while the early-start admission test at the
same time requires ak +∆k > dk−Sl. ut

It is thus impossible that any critical request misses its deadline, which, in addition, is
equal to that of an execution under TDM (Lemma 3). Non-critical requests are, as expected,
potentially subject to deadline misses.

6 Simulation Experiments

In this section, we evaluate the previously presented dynamic TDM arbitration mechanisms
by simulating the concurrent execution of synthetic tasks. We first present the experimental
setup and then compare the various approaches using the issue and release delays as well as
the memory utilization.

6.1 Experimental Setup

Our simulation framework is based on the system model presented in Section 2. This frame-
work allows us to collect execution traces and statistics from the concurrent execution of
n periodic tasks, each executing on a separate core, and competing for a central shared
memory. The framework does not model the actual computation performed by the tasks.
However, it simulates the memory accesses and their arbitration considering four different
arbitration schemes: (1) TDMfs, a variant of regular TDM where non-critical tasks may re-
claim unused slots, (2) TDMds, a dynamic TDM-based arbitration policy respecting TDM
slots, (3) TDMes, a dynamic approach decoupled from TDM slots (see Section 4.1), and (4)
TDMer, a refinement of TDMes addressing release delays (see Section 4.2).
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All experiments are based on randomly generated synthetic task sets obtained via UU-
niFast (Emberson et al., 2010) and a memory traffic generator. The goal is to obtain a large
number of simulations that reflect a realistic behavior of real task sets considering different
parameters, such as task periods, worst-case execution times, memory load, and total system
utilization.

Task Set Generation: The UUniFast algorithm allows to randomly generate tasks for a
task set Γ based on two input parameters n and U , where n specifies the total number
of tasks and U the total system utilization desired. The algorithm then generates n differ-
ent utilization values {u1,u2, . . . ,un}, one for each task τi, while the sum of these tasks
utilizations equals the system utilization U . From the task utilization parameters, the task
periods Ti are generated. Note that we constrain our system to harmonic periods, which
ensure that hyper-periods and therefore simulation times remain reasonable. The period of
the first task T1 is assumed to be 20ms,1 while all other periods are random multiples of
T1, i.e., Ti = k ∗ T1,1 < i ≤ n, where k is obtained from a uniform random distribution in
the range [1,5]. The individual task periods are hence in the range from 20ms to 100ms.
From the task periods and the utilization numbers as well as the task set’s hyper-period,
hp = LCM1≤i≤n(Ti), we then derive the worst-case execution time of each task Ci = Ti · ui
and the number of jobs for each task, i.e., Ji = hp/Ti. The tasks τi ∈Γ of the final task set are
thus represented by a triple τi = (Ci,Ti,Ji). We assume implicit deadlines, i.e., task deadlines
are equal to the task periods Ti.

Traffic Generator: The simulation framework then requires a specification of each task in
terms of memory accesses (cf. distk in Section 2). The memory access sequences are thus
obtained from a traffic generator for each job in the task set generated by UUniFast.

The aim is to obtain synthetic tasks whose memory patterns are similar to real applica-
tions. We thus exploit the applications from the MiBench benchmark suite (Guthaus et al.,
2001) in order to calibrate the traffic generator. The MiBench benchmarks were first exe-
cuted individually on the Patmos architecture (Schoeberl et al., 2011) using a cycle-accurate
simulator. The simulator was extended to collect traces from actual program executions
matching our system model. The traces were collected for a Patmos hardware configuration
based on a 5-stage in-order single-issue pipeline, a 32 KB method cache using the LRU re-
placement policy on 32 entries with a cache block size of 32 bytes, a 256 byte stack cache
with block size 4, a 32 KB write-through data cache with LRU replacement on 4 sets and 32
byte blocks. Memory latencies are ignored during this trace collection.

The memory access patterns captured by the collected traces are then analyzed with re-
gard to their statistical properties. Most notably, we were interested in the distribution of
the distance (in clock cycles) between consecutive memory accesses. Our experiments show
that the Generalized Extreme value Distribution (GEV) (Hansen et al., 2009) fits well to the
data from the collected trace. Based on the empirical trace data and the parameters of dis-
tribution functions fitted to this data, we defined a parameters space in order to generate the
memory access sequences for the jobs obtained through UUniFast. Note that the distribution
incidentally describes whether a benchmark is memory intensive or rather compute bound.

In order to obtain a memory access sequence for a job, the traffic generator first ran-
domly chooses the GEV distribution parameters and then generates memory accesses and
the respective distance (cf. distk in Section 2) between them. Note, however, that the gen-
erated memory accesses have to be consistent with the task’s worst-case execution time Ci.

1 Note that it does not matter whether the first task period T1 is chosen randomly or is fixed, as in our case.
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The generator thus tracks the evolution of a worst-case execution time bound as it proceeds.
For each memory access, we add to this bound the worst-case latency for a newly generated
request, which is bounded by P+Sl−1 cycles. The generator simply stops once the bound
reaches the task’s Ci. The execution times of the synthetic tasks thus rather closely approach
the tasks’ worst-case execution times. This is a rather pessimistic view, inducing a higher
memory load than can be expected from average-case executions, as the actual execution
times of critical tasks are known to be significantly lower than their worst-case execution
times. Note that we capture this effect in our experiments by varying the system load.

6.2 Generated Memory Profiles

The GEV distribution unifies three standard extreme value distributions, namely the Fréchet,
Weibull, and Gumbel distributions. GEV is characterized by three parameters the location
(µ), scale (σ ), and shape (ξ ). We used the function GumbelFit, from the fExtreme (Wuertz
et al., 2017) package of the R statistical computing environment, in order to fit the parame-
ters µ , σ , and ξ to the trace data in Subsection 6.1. The shape parameter determines which of
the three standard distributions is chosen. The traces of most MiBench benchmarks are best
described by a Fréchet distribution (ξ > 0). Figure 5 shows the inverted empirical distribu-
tion functions of the request distances (in cycles) from two application traces (rawdaudio
and cjpeg-small) and compares them to the cumulative distribution function of the fit-
ted GEV distribution. As can be seen the fitted distributions nicely describe the behavior of
benchmarks, while providing a convenient abstraction for the use in our traffic generator.

The traffic generator adds memory requests to the jobs of a task τi until the worst-case
execution time Ci, provided by UUniFast is reached. Assume that the number of memory
request for a job j is given by NbrAcc j

i . This allows us to characterize the job’s behavior by
comparing the processor demand PD j

i and memory demand MD j
i , which together must not

exceed the task’s WCET, i.e., PD j
i +MD j

i ≤Ci. These parameters emerge from the generated

1 10 100 1000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

1−
F

(x
)

Empirical Distribution
Fitted Distribution

(a) rawdaudio.

1 100 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

1−
F

(x
)

Empirical Distribution
Fitted Distribution

(b) cjpeg-small.

Fig. 5 Empirical distributions of two MiBench applications compared with the GEV distributions after fitting.
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Fig. 6 Comparison of the memory (MD) and processor (PD) demand for the approx. 1500 jobs of the simu-
lation runs with 24 tasks.

memory sequence of a job as follows:

PD j
i =

NbrAcc j
i

∑
k=0

distk

MD j
i = (P+Sl−1) ·NbrAcc j

i .

Here, distk refers to the distance between the k-th and (k−1)-th memory access of a job
of task τi. Figure 6 illustrates stacked plots of memory and processor demand normalized
to the WCET (Ci) for a particular configuration of our simulation runs considering 24 tasks.
As can be seen the combined memory and processor demand almost always reaches the
specified WCET (Ci), which represents a system with relatively high load compared to its
worst-case behavior.

6.3 Simulation Parameters

Based on the generated task sets and the corresponding memory access sequences, we per-
formed a considerable number of simulations, by varying the number of tasks/cores (4, 8,
12, 16, 20, 24) and the global system utilization (between 10% and 100% in steps of 10).
Note that the system utilization is normalized to the number of cores in the system. Fol-
lowing previous work in the context of mixed-criticality systems (Baruah et al., 2011; Jan
et al., 2013), we chose two scenarios concerning the repartitioning between critical and non-
critical tasks: (1) 25% critical and 75% non-critical tasks and (2) an equal repartitioning of
50%/50% between critical and non-critical tasks. For each configuration 10 simulation runs
were performed, resulting in 1080 runs overall and several thousand simulated job instances.
In order to have comparable results between different task sets and arbitration approaches,
the duration of each simulation is limited to the task set hyper-period – potentially termi-
nating the simulation before all non-critical tasks have completed (e.g., in cases when these
tasks missed their deadlines).

The duration of a TDM slot length Sl, corresponds to an upper bound of the memory
access latency previously determined on a Terasic DE-10 Nano evaluation board that is
equipped with an Intel Cyclone V SoC-FPGA and 1 GB of DDR3 memory. A single Patmos
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processor running at 100 Mhz was implemented in the FPGA and performed memory ac-
cesses in isolation via the multi-port memory controller provided by the SoC (the remaining
components of the SoC were deactivated). At any moment a single memory access was in-
flight during these measurements. Depending on the internal state of the memory controller
and DDR memory (refresh, open page, etc.), we measured a memory latency between 21
and 40 cycles. In all simulation runs we thus consider a TDM slot length of 40 cycles. For
TDMer, which supports an early release of the memory when completing a memory request
faster than the TDM slot length, we simulate a varying memory latency obtained from a uni-
form random distribution in the range [21,40] clock cycles. The slack counters for TDMds,
TDMes, and TDMer are reset at the beginning of each job.

6.4 Results for Dynamic TDM-based Arbitration

The first set of figures represents an overall comparison of the various TDM-based ap-
proaches over all simulation runs.2 Figure 7 shows a breakdown of the average memory
idle time from all runs due to (1) the total release delays, (2) the total issue delays, and (3)
the total number of cycles without any memory requests issued to the arbiter (“No request”).

2 We choose to trim Figure 7 in order to achieve a better visualization of the impact of our arbitration
policies on the issue and release delays.

(a) TDMfs. (b) TDMds.

(c) TDMes. (d) TDMer.

Fig. 7 Evolution of memory idle time, issue, and release delays over all simulations under varying utilization
(lower is better).
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Fig. 8 Normalized sum of issue and release delays for dynamic arbitration schemes compared to TDMfs
(higher is better).

The plotted lines are stacked, i.e., the red line represents the sum of all three forms of mem-
ory idling, while the green line represents the sum of the issue and release delays. The idle
times are normalized to the total trace length of the simulation.

Looking at the green lines (issue + release delays) reveals that the dynamic arbitration
schemes are quite successful in eliminating issue delays. In comparison to TDMfs (i.e., reg-
ular non-dynamic TDM), the distance between the green and blue lines are relatively small.
The distance, and thus the issue delays, diminish as system and memory load increases. Re-
lease delays thus represent a considerable source of inefficiency for the TDMds and TDMes
approaches. This does not apply to TDMer, which completely eliminates release delays.
However, as can be seen a non-negligible portion of these release delays are merely trans-
formed into issue delays. Overall, however, TDMer achieves considerable improvements in
terms of delays due to the non-work-conserving nature of TDM.

Comparing the combined impact of release and issue delays (green line), one can see
that these typically represent more than 25% of the simulated total execution time for regular
TDMfs, while it hardly exceeds 15% for TDMer. Note that the remaining issue delays stem
from situation where requests cannot be scheduled immediately, due to insufficient slack of
the critical task owning the immediate next TDM slot. It appears that this can be explained
due to the absence of slack at the beginning of jobs (see Section 6.5).

Figure 8 shows the relative improvement with regard to the combined issue and release
delays of the dynamic arbitration schemes compared to TDMfs. We can observe consider-
able improvements of up to a factor of 3.3 for TDMds and TDMes, which both follow a very
similar trend. However, under very high system utilization (≥ 90%) these approaches do not
perform better than regular TDMfs. This can be explained by the high memory utilization
from critical tasks, which can lead to starvation for non-critical tasks. Recall, though, that
the traffic generator results in traces that represent comparatively high load for all tasks. We
do not expect that realistic real-time systems actually exhibit such a high load. TDMer even
outperforms the other approaches and exhibits improvements of up to a factor of 4.2 and
remains above 1.5 even at very high utilization.

A general trend common to all approaches is that the total idle time decreases as the
system utilization increases. This can be explained by the increasing number of memory
requests that are issued by the tasks in the system. The average memory idle time over
all simulation configurations hardly drops below 30%. The various approaches have little
impact on the total amount of idling, except for TDMer which for higher load (> 60%)
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(a) TDMer. (b) TDMfs.

Fig. 9 Memory idle time considering 24 tasks with 6 critical and 18 non-critical tasks (lower is better).

shows improvements of a few percent. This is not surprising, as more efficient memory
arbitration tends to reduce the execution time of jobs and thus tends to increase the gaps of
inactivity between task activations.

A closer look at Subfigure 7d shows that memory is idle due to the absence of requests
(cf. the distance between the red and green lines). For TDMer this amounts to more than
10% for a system utilization of 100%. The configuration with 24 tasks in total (6 critical, 18
non-critical) showed the highest level of memory contention in our experiments. The high
load is caused by the high number of tasks, which is exacerbated by the low number of TDM
slots. Recall that the number of TDM slots has an impact on the period P, which incidentally
increases the number of memory accesses that fit into the worst-case execution time of a
task – here most notably of the non-critical tasks.

Figure 9 shows detailed results for this configuration in isolation for both TDMer and
TDMfs. As can be seen memory idling drops rapidly as system load increases and levels off
at about 20% and 25% of the simulated trace lengths respectively. For a system load above
40% the memory idling of TDMfs is exclusively due to release delays. This suggests that all
TDM slots are used and memory utilization is limited by the arbiter. For TDMer these release
delays are mostly transformed into issue delays – which implies that at least one memory
request is constantly pending at the arbiter. This indicates that the slack counter values are
too low, which prohibits the early-start optimization.

6.5 Results for Dynamic TDM with Initial Slack

We have seen in the experimental results that the TDMer approach completely eliminates re-
lease delays. However, as can be seen in Figure 7, a non-negligible portion of these release
delays are merely transformed into issue delays. These remaining issue delays stem from
situations where requests cannot be scheduled immediately, due to insufficient slack of the
critical task owning the immediate next TDM slot. This is particularly visible for the config-
uration with 24 tasks (Figure 9). For runs of this configuration using TDMer, memory idling
is exclusively caused by issue delays for utilization levels above 40%. This implies that at
least one memory request is constantly pending at the arbiter and that the slack counter val-
ues of critical tasks are often too low to apply the early-start optimization. Note that this
behavior has to appear systematically throughout the entire simulation run or otherwise a
noticeable difference between memory idling and issue delays would appear. It appears that
memory load is too high for critical tasks to accumulate slack under these circumstances.
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Fig. 10 Evolution of memory idle time, issue, and release delays over all simulations with varying utilization
under TDMer with slack counters initialized to Sl at job start (lower is better).

Our hypothesis is that the remaining issue delays can be eliminated by supplying an initial
slack when critical jobs start.

We thus slightly modified the experimental setup from Subsection 6.1. Instead of reset-
ting the slack counter to zero at the start of critical jobs, we reset it to the TDM slot length Sl,
i.e., 40 cycles. This initial slack promises to resolve the aforementioned issues, since it rep-
resents the minimum amount of slack required to enable the early-start optimization right
from the beginning of the simulation. This is, however, associated with a potential increase
of the task’s execution time by at most one TDM period, which needs to be accounted for
in the task’s WCET (Ci), i.e., this is equivalent to the overhead of a single additional mem-
ory accesses under strict TDM. This additional virtual memory accesses can then be taken
into consideration for the correctness proof from Section 5, e.g., by adapting the base case
accordingly.

Figure 10 shows a breakdown of the average memory idle time from all runs using
the TDMer arbiter. The results appear to confirm our hypothesis, the remaining issue de-
lays are almost eliminated and typically represent less than 0.5% of the simulation trace
length. Providing a small amount of initial slack thus effectively rendered our approach
work-conserving – while still retaining all the advantages mentioned previously.

This also applies to the configurations with 24 tasks, which are shown separately in
Figure 11. In particular, we observe that the arbitration policy no longer limits memory

Fig. 11 Memory idle time considering 24 tasks with
6 critical and 18 non-critical tasks, under TDMer
with initial slack set to Sl (lower is better).

Fig. 12 Normalized sum of issue and release de-
lays for dynamic arbitration schemes compared to
TDMfs, with initial slack set to Sl (higher is better).
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utilization. For high system utilization (≥ 60%) memory now truly becomes saturated. This
is an interesting observation, as it indicates that the critical tasks do not loose slack over
time. The slack of individual critical tasks may drop, even become zero, for short periods of
time, but is at least preserved on the long run. This has to be true or otherwise a noticeable
level of issue delays would eventually manifest.

Figure 12 shows the relative improvement with regard to the combined issue and release
delays of TDMer when an initial slack counter value of a single TDM slot length is provided
at the start of jobs of critical tasks. The measurements are normalized against TDMfs. We
observe considerable improvements for TDMer of up to a factor of 350 and even at high
levels of memory utilization the improvements remain above a factor of 50.

From this evaluation, we conclude that TDMer is successful in eliminating release de-
lays and significantly reducing issue delays, even when the memory bandwidth is close to
saturation, as shown in Figures 9 and 11. The dynamic arbitration policy combined with
slack counters hence allows to decouple the arbiter from constraints imposed by the slots
of regular TDM, while offering a very fine granularity of memory arbitration and preserving
TDM’s guarantees for critical tasks.

6.6 Results for Varying Memory Access Latencies

In the previous experiments we assumed a fixed TDM slot length of 40 cycles, correspond-
ing to the memory access latency of a DDR3 memory. Hassan (2018) showed that DDR
DRAMs, when trying to provide predictable memory behavior, suffer from highly vari-
able access latencies and overly pessimistic latency bounds. Therefore, when targeting real-
time systems with strict timing constraints, Hassan (2018) proposes an alternative off-chip
memory solution, based on Reduced Latency DRAMs (RLDRAMs). Access latencies for
RLDRAMs are generally lower and, in addition, exhibit less variability. In the following
experiments we are thus interested in evaluating the impact that varying the memory access
latency might have on our arbitration schemes.

We slightly modified our experimental setup by varying the TDM slot length Sl using two
additional configurations with slot lengths of 25 and 100 cycles respectively. This impacts
the generated memory profiles, as described in Subsection 6.2, as the number of memory
accesses that fit into the task’s WCETs (Ci) derived by UUniFast depends on the slot length.
Recall that our traffic generator takes the worst-case memory access latency for each newly

(a) TDMds memory idling. (b) TDMer memory idling with an
initial slack of Sl.

(c) Normalized average non-critical
tasks execution times.

Fig. 13 Results considering a TDM slot length of Sl = 25 cycles (lower is better).
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(a) TDMds memory idling. (b) TDMer memory idling with an
initial slack of Sl.

(c) Normalized average non-critical
tasks execution times.

Fig. 14 Results considering a TDM slot length of Sl = 100 cycles (lower is better).

generated request into account, which is bounded by P− 1+ Sl cycles. Note that both, the
TDM period P and the TDM slot length Sl, are impacted in our modified setup. Varying the
TDM slot length thus impacts the memory traffic generator and consequently the generated
task sets. The results presented in this section are therefore not directly comparable. This
applies, in particular, for the total memory idling.

We performed the same number of simulations as in the previous experiments for the
two new configurations – considering independently generated task sets according to a vary-
ing number of tasks/cores and a varying global system utilization (see Section 6.1). The
simulated memory latencies are again randomly chosen in the range [21,25] and [21,100]
respectively. Critical tasks are provisioned with an initial slack value of a single slot length
at each job start.

Figures 13 and 14 summarize the obtained results from these simulation runs. Subfig-
ures 13a and 14a show a breakdown of the average memory idle time from all runs for
TDMds. Looking at the green lines (issue and release delays) reveals that for a TDM slot
length of Sl = 25, representing a memory with small access latency variability, TDMds still
suffers from considerable inefficiency, which is mostly caused by release delays. Even for
moderate levels of system utilization (from 40% on) these delays steadily represent almost
10% of the memory idling. This is much better than before, considering a slot length of
40 cycles, but still represents a non-negligible overhead. The TDMer approach, with initial
slack, also in this configuration successfully eliminates these delays, as depicted in Sub-
figure 13b – albeit with a lower gain compared to the previous results. The results are, as
expected, different with a TDM slot length of Sl = 100, which represents a memory with
high access latency variability. The delays induced here are very high for TDMds, going
from 10% up to 40% at high load (Subfigure 14a). Subfigure 14b, shows that TDMer is
still very effective in eliminating the issue and release delays. This improves the total mem-
ory utilization considerably, in particular at high load where the total memory idling drops
from 40% for TDMds to less than 20% for TDMer. Due to space considerations, we do not
show the results for regular TDMfs here. The results are considerably worse than those for
TDMds– the combined issue and release delays here reach a peak at about 47% and 20% of
the memory idle time for medium levels of system utilization for the two memory latency
configurations respectively.

Subfigure 13c shows a breakdown of the normalized execution times of non-critical
tasks w.r.t. the total trace length for TDMds and TDMer, considering Sl = 25 cycles. We
can see that TDMer reduces execution times, especially at high loads. However, due to the
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smaller memory overhead, the gain for non-critical tasks is moderate. The configuration with
Sl = 100 cycles (Subfigure 14c), on the other hand, shows considerable improvements in
the execution times of non-critical tasks – despite the large TDM slots. Starting at utilization
levels of 30% the normalized execution time is improved by a factor of at least 2 reaching
a maximum of a factor of roughly 3.8. This is due to the fact that non-critical tasks can
potentially exploit the considerable memory idle time (up to 40%) caused by the release
delays of the other approaches that have to respect TDM slots.

As a conclusion, our dynamic TDM-based arbitration policy TDMer is performing well
with low latency memories. But the gain is even more significant when using memories with
highly variable latencies. So, regardless of the memory type, using our approach allows
to achieve the maximum memory utilization with the guarantee of respecting the timing
constraints of critical tasks for real-time systems.

7 Hardware Architecture

In this section, we discuss means to implement a variant of the dynamic TDM-based arbitra-
tion scheme in hardware. Such an implementation faces four main challenges. Firstly, the
use of a priority queue to implement the EDF policy for critical requests will, in all likeli-
hood, be costly and slow in hardware. Secondly, the use of modulo operations in the deadline
and slack computations should be avoided – likewise due to performance and complexity
reasons. Thirdly, the values of deadlines and slack counters need to be bounded in order to
limit the number of data bits required in registers and the associated logic circuits. Finally,
the implementation needs to make arbitration decisions at the full speed of the memory bus,
as opposed to the TDMds or TDMfs schemes that only take decisions at the beginning of
each TDM slot.

A nice feature of our proposed schemes is that the deadline and slack computation of one
task is independent from other tasks in the system. This allows us to decompose the hardware
design as follows: (1) components to forward requests, compute Deadlines, and manage
Slack Counters (thus called DSC) for each core executing a critical task, (2) components to
forward requests from Non-Critical cores (NC), (3) global ARbitration routing logic (AR),
and (3) a component to perform the Data Multiplexing (DM) between cores and the main
memory.
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Fig. 15 Overview of the hardware design of our dynamic TDM-based arbiter.
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We first provide an overview of the interactions among these components and subse-
quently discuss relevant components in more detail – along with simple and efficient solu-
tions addressing the aforementioned challenges.

7.1 Architecture Overview

Figure 15 provides an overview of the proposed hardware architecture of our dynamic TDM-
based arbitration policy. Each of the m processing cores is connected to a DSC or NC compo-
nent. We assume for simplicity that the first mc cores are critical (highlighted in red), while
the remaining cores are non-critical (highlighted in green). These DSC and NC components
receive memory requests from the cores, forward them to the arbiter, and notify the cores
of the completion of their requests ( ). The NC components do not have any internal
state or logic themselves. The DSC components, on the other hand, have internal state that
contains, among others, the deadline and slack counter of the respective core as well as logic
to perform the necessary bookkeeping operations on its internal state.

The NC and DSC components, in turn, forward the requests to the main arbiter AR
( ). In addition, the arbiter receives two control signals ( ) from each DSC com-
ponent, which communicate deadline (PMi) and slack (ESi) information of the respective
critical cores. This information allows AR to take the arbitration decisions, while ensuring
that the TDM guarantees are respected at all times. The arbiter selects one of the pending
requests (at a cycle-level granularity) and then indicates the selected core identifier (core id,

) to the data multiplexing component. The DM then routes the data signals ( )
to/from the various cores from/to the main memory. The arbiter at the same time forwards
the request to the main memory and subsequently waits for the request to complete ( ).
The completion signal is then propagated back to the respective NC or DSC component,
which itself notifies the respective core and performs the necessary bookkeeping operations
as needed. These handshake signals, for pending requests and request completion, are thus
connected to almost all components, i.e., Core i, DSCi, NCi, AR, and Memory, as indicated
by the dashed black lines.

7.2 Arbitration Logic

TDMer relies on EDF strategy among critical requests and thus requires a hardware imple-
mentation of a priority queue or a similar structure. Preliminary tests on our FPGA board
revealed that, with a rising number of cores, the clock frequency would quickly become an
issue with such an approach. However, applying EDF is not strictly necessary as hinted to by
the correctness proof in Section 5, which only refers to EDF in Definition 7 and Theorem 2.

The main motivation of applying EDF was, on the one hand, to prioritized non-critical
requests over critical requests whenever possible. A closer look at the proof reveals that, in
terms of correctness, EDF can be replaced by any other scheme as long as it ensures that
any critical request can access memory at the beginning of the TDM slot that is associated
with its deadline.

Consequently, it suffices to prevent other requests from accessing memory during that
slot. For this we need to consider two cases: (1) prevent the early-start optimization in the
TDM slot before the critical request’s deadline and (2) prevent any request from accessing
memory during the TDM slot of the critical request. The former case is independent from
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the EDF policy used by the arbiter (see Line 4 of Algorithm 1), while the later case can be
detected by checking the critical-request’s deadline as described below.

The arbitration logic AR receives two 1-bit control signals from each DSC component
representing a critical task. The early-start signal (ESi) indicates whether the respective task
has accumulated sufficient slack to allow the early-start optimization (see Subsection 4.1),
whereas the prioritize me signal (PMi) indicates whether a critical core needs to be priori-
tized now in order to meet its deadline, i.e., it claims the immediate next TDM slot.

The arbiter AR thus performs the following check at each clock cycle whenever none
of the currently pending requests is processed by the memory. Instead of determining the
request with the smallest deadline (as under TDMer), the hardware implementation first
checks the ESi signal of the owner of the next upcoming TDM slot. If the signal is asserted,
no deadline miss is imminent and any arbitration policy can be applied in order to select
the next request to be processed. In our implementation we simply apply Round-Robin
arbitration among all pending requests, we thus call the resulting arbitration policy TDMrr.

If the ESi signal is not asserted, the owner of the upcoming TDM slot does not have
enough slack and the early-start optimization cannot be applied safely. The arbiter thus
cannot select any of the pending requests and has to wait until the beginning of the next
TDM slot – or until the ESi signal is asserted.

Finally, the arbiter also checks if any of the PMi signals is asserted (this may only be the
case at the beginning of a TDM slot). If one of these signals is asserted, the corresponding
request of the slot owner needs to be processed right now in order to prevent a deadline miss.

If the above checks allow to select a new request to be processed, the arbiter signals the
respective core identifier of that request to the data multiplexing component (DM), which
subsequently takes care of transferring the data between the core and the memory.

Before concluding the discussion of the AR component, we would like to highlight the
consequences of replacing EDF by round-robin. The EDF policy, as described in Section 4,
systematically prioritized non-critical requests over critical requests – as long as sufficient
slack is available. Consequently, critical requests tend to be delayed until no non-critical re-
quest is pending or a deadline miss become imminent. One would expect this to be favorable
in terms of execution times for non-critical tasks, and less favorable for critical tasks. This is
indeed noticeable, as confirmed by our experimental evaluation in Section 8. However, the
impact is marginal.

Replacing EDF by round-robin, on the other hand, does not have an impact on cor-
rectness. A proof w.r.t. the worst-case behavior under the TDMrr scheme is provided in
Section 7.5. In the next section, we first explain how these control signals are derived by the
DSC components.

7.3 Deadline and Slack Computation

Due to the periodic repetition of the TDM schedule during each TDM period (P), a naive
implementation of the deadline and slack values within the DSC components would require
several modulo operations, which are expensive in terms of hardware resources. In addi-
tion, the bit-width required to perform the related computations may become an issue. For
instance, it appears preferable to avoid representing deadlines as absolute dates, which may
lead to large values in long running systems and consequently require a large number of bits.
Fortunately both issues can be solved elegantly, leading to an efficient and simple solution.

As explained in Section 5, the deadline computation is related to the start date of the
current TDM period Sp and the offset of the task’s TDM slot O(τi) (w.r.t Sp). Based on this
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Fig. 16 Summary of the update rules of the Deadline and Slack Computation (DSC) components.

observation, we use a dedicated counter register Dli to model the current deadline of a re-
quest from a critical task τi. The value of this counter represents the number of clock cycles
left before reaching the deadline of the request. This counter is thus decremented on each
cycle, for instance while waiting for the completion of a pending request or the issuing of
a new request from its critical task. A deadline miss would theoretically occur when this
counter reaches 0 – although this will not occur in practice. We also track the deadlines
when no request is pending, i.e., our approach keeps the value of the Dli counter current at
all times. In this case, Dli indicates the deadline that would be computed if a request were
issued in the current cycle.

We then define 3 update rules that reset the Dli counter when specific events occur, as
depicted by Figure 16. The first rule is applied on a system reset (left). The second rule
updates Dli when a task’s slot is unused under strict TDM (bottom right). Finally, the third
rule deals with the case of memory request completion (top right). These 3 cases are detailed
in the remainder of this section. Note that, as before, the slack counter (∆i) indicates the
number of clock cycles that the last request completed earlier than its deadline.

7.3.1 Update Rules

System Reset: During a system reset, each DSCi module initializes its deadline counter
for its respective critical task τi depending on its offset O(τi) within the TDM schedule, as
illustrated in Figure 16 (left). At this moment, obviously no request from τi can be pending
at the arbiter. The deadline thus rather indicates the number of cycles until the end of the
first TDM slot owned by τi is reached. The value of Dli can also be seen as the deadline that
would be computed if a request were issued right at system reset. The slack counter (∆i) is
reset to 0, as usual.

Unused TDM Slot: Note that the current Dli value always corresponds to a TDM slot under
strict TDM. When the beginning of this TDM slot under strict TDM has passed and no request
from τi is pending, the slot would have been unused. In such a situation, the Dli counter
must be incremented to the next possible deadline for any potential request issued by τi in
the future. Such a deadline is one TDM period ahead, i.e., equals Dli +P− 1, as illustrated
by Figure 16 (bottom right). The slack counter does not change during this update.

Under strict TDM an unused slot can be detected by comparing the beginning of τi’s
next slot with the delayed issue date, i.e., the current instant plus the slack counter ∆i (see
Section 3). In our hardware implementation these absolute dates are represented as relative
dates w.r.t. the current instant. The beginning of τi’s next slot is thus given by Dli−Sl +1,
whereas the delayed issue date simply corresponds to the current value of the slack counter
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∆i. Task τi thus did not use its TDM slot, when it has no request pending and these relative
dates match, i.e., Dli−Sl+1=∆i. This triggers the necessary update of the deadline counter.

Request Completion: When the core executing task τi issues a request to its DSCi compo-
nent, the pending request is immediately forwarded to the arbiter using a dedicated control
signal. The Dli counter continues to be decremented, while the DSCi component waits for
the request to complete. Note that the rule for unused slots cannot trigger meanwhile.

Once the request completes, which is signaled by the memory and forwarded by AR to
the respective DSCi component, the slack counter needs to be updated. Recall that the value
of Dli represents the number of clock cycles to the next deadline. It thus suffices to copy
the value of Dli into the slack counter ∆i. The Dli counter also needs to be updated, since,
under strict TDM, the slot associated with the current deadline would have been used. The
next possible deadline for any future request issued by τi falls into the next TDM period and
is simply given by Dli +P−1. Both updates are illustrated by Figure 16 (top right).

7.3.2 Control Signal Generation

The DSC components are connected to the arbiter AR using several control signals. The
signals that indicate pending requests and their completion are merely forwarded from/to
the core and arbiter respectively, but are not generated by the DSC components themselves.
This is different for the ESi and PMi signals, which are derived from the current values of
the deadline and slack counters.

The early-start signal (ESi) indicates to the arbiter that the corresponding task τi has
sufficient slack, i.e., other requests may overflow into its TDM slot without the risk for a
deadline miss. The early-start optimization is not safe when the value of the Dli counter is
smaller than 2 · Sl. This indicates that the deadline of τi’s pending request, or the potential
deadline of a request to be issued in the future, is at the end of the next upcoming TDM slot.
A deadline miss cannot be excluded. Hence, ESi = 1 iff Dli ≥ 2 ·Sl, ESi = 0 otherwise. Note
that, if τi left its TDM slot unused, its deadline may advance due to the second update rule
from above. This might then enable the early-start optimization in one of the subsequent
cycles – this is equivalent to the early-start test shown by Algorithm 1.

A similar argument can be made for the PMi signal at the beginning of a TDM slot
owned by a task τi. The beginning of the slot corresponds to the relative date Dli− Sl + 1
as explained above. The PMi consequently needs to be asserted when τi, the owner of the
current TDM slot, reached this date and has to claim its slot in order to prevent a deadline
miss. Hence, PMi = 1 iff Dli = Sl−1, PMi = 0 otherwise.

7.4 Bit-Width Considerations

As can be seen the solution proposed above only requires two internal counter registers, a
simple state machine, and two adders. It does not require any expensive modulo operations
and can thus be implemented efficiently. In addition, deadlines are not encoded as absolute
values – which allows to minimize the number of bits required for the deadline and slack
computations.

However, a naive implementation that simply cuts the Dli values off using saturation
arithmetic might break correctness. The problem is that the Dli values need to be aligned
with the TDM schedule, i.e., the deadline represented by Dli always has to correspond to
the end of one of τi’s future TDM slots. Let us illustrate this by an example considering a
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system that uses saturation arithmetic over 10 bits and a TDM period of P = 64 cycles. Dli
counters here may take any value in the range [0,1023]. Now assume that the request of a
critical task in that system completed 1000 cycles before its deadline, i.e., Dli = 1000 at that
instant. Following the update rules from above, this value is copied into the slack counter
(∆i = 1000). In addition, Dli needs to be incremented by P− 1 (63). Due to the saturation
arithmetic the deadline becomes Dli = 1023, whereas the actual deadline should have been
1063. The DSCi component now generates its control signals based on a deadline that is
40 cycles early! Consequently, the PMi and ESi signals are no longer correct, which, in the
worst-case, may cause a clash with another slot of another critical task.

The problem of clashes can be resolved by subtracting P from the new Dli value, i.e.,
using Dli = 1063−64 = 999 in the above example. This suffices to guarantee that the dead-
lines remain aligned with the original TDM schedule. It turns out that this solution is, in
addition, virtually free in terms of hardware resources. Note that the update rules for Dli
only indicate two possible options: either Dli is decremented by 1 or incremented by P−1.
The latter case may cause an overflow, which can be detected with little overhead from the
carry out bit of the corresponding adder. Furthermore, one can see that subtracting P again
from the new Dli value is equivalent to a decrement by 1 cycle (Dli +P−1−P = Dli−1).
This value is already available and does not cause any additional hardware overhead.

Note that this allows a safe operation of the arbiter with a reduced bit-width for deadline
and slack counters and their associated logic circuits. Due to the artificial limit in the range of
the slack counters, the deadlines might be earlier compared to the deadlines under strict TDM.
This is not problematic, assuming a timing-composable architecture. However, one might
expect that this could impact the arbiters overall efficiency in terms of memory utilization.
This is evaluated, among others, in detail in the following experiments.

7.5 Worst-Case behavior w.r.t. the Hardware Design

TDMrr brings some modifications to our dynamic schemes presented in Section 3 and 4,
namely the use of Round-Robin arbitration and modifications to the way deadlines and slack
counters are computed. The formal proof for TDMer from Section 5 thus does not apply to
TDMrr and needs to be adapted accordingly. The goal is to show that the relative deadlines
of TDMrr match the absolute deadlines of strict TDM.

Since slack counters and deadlines under TDMrr are relative, we first introduce a way,
and a notation, to obtain the absolute deadline corresponding to a given value of the Dli
register at a given instant t by introducing a cycle counter cc. Note that there is no actual
need to implement this counter in hardware. Also note that, for now, we assume unbounded
bit-width for the computation of the various registers involved:

Definition 8 Under TDMrr the absolute deadline d@t
i of a critical task τi at time instant

t, is given by the sum of the relative deadline (Dl@t
i ) and a (virtual) cycle counter cc@t ,

which is reset to 0 on system reset and incremented on every clock cycle. We thus have
d@t

i = Dl@t
i + cc@t , or, for brevity, d@t

i = Dl@t
i + t.

We then start with some auxiliary lemmas that we will use later in the final correctness
proof. The first lemma indicates that the relative deadlines under TDMrr are unique – similar
to the absolute deadlines under TDMer.

Lemma 4 Under TDMrr the relative deadlines Dli of a critical tasks τi always correspond
to the end of τi’s TDM slot and are thus unique.
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Proof The proof is based on induction over successive time instants t:
Induction base t = 0: This time instant corresponds to the system initialization, where the
Dli register is set by the reset update rule from Subsection 7.3.1. The relative deadline of τi
is then determined according to the task’s slot offset O(τi): Dl@0

i = O(τi)+Sl−1.
The lemma thus trivially holds, since critical tasks have dedicated TDM slots, with a

common length Sl, and unique slot offsets, which results in a unique absolute deadline d0
i at

the end of the task’s TDM slot.
Induction step t = n: Assuming that d@t−1

i represented a unique absolute deadline at the
end of a TDM slot, we need to ensure that the absolute deadline at t remains unique.

The Dli register is modified according to the remaining update rules decrement, unused
TDM slot, and request completion, which gives us two cases to consider:
Case (1): The Dli register decrements (decrement):

Dl@t
i = Dl@t−1

i −1

Dl@t
i + t = Dl@t−1

i + t−1

d@t
i = d@t−1

i

The absolute deadline d@t
i in this case does not change and the lemma trivially holds.

Case (2): The Dli register increments (unused TDM slot and request completion):

Dl@t
i = Dl@t−1

i +(P−1)

Dl@t
i + t = Dl@t−1

i + t−1+P

d@t
i = d@t−1

i +P

The absolute deadline d@t
i is simply incremented by a TDM period P. Since all tasks

share the same period the absolute deadlines thus remain unique and still represent the end
of a TDM slot. ut

Corollary 1 At any time instant t only one of the PM@t
i signals of all critical task τi ∈ Γ

can be asserted, i.e., PM@t
i = 1∧PM@t

j = 1 =⇒ i = j.

Proof This follows immediately from Lemma 4 and the fact that the PMi is only asserted
when Dl@t

i = Sl−1. ut

The next step is to show that TDMrr always respects the absolute deadline of a pending
request. For now, this does not take into consideration whether the deadline is correct with
regard to regular TDM. However, as shown before the deadline is known to represent the end
of a TDM slot and is unique.

Corollary 2 The absolute deadline under TDMrr dTDMrrk does not change while a memory
request rk is pending, i.e., ∀t ∈ [ak,ck[, d@t

i = d@ak
i .

Proof The value d@t
i does not change while a request is pending, since the cycle counter

(i.e., t) is steadily incremented by 1, while Dli is decremented by 1 (cf. the decrement update
rule in Section 7.3.1). Other update rules are not possible up to the completion of the request.

ut

Lemma 5 Given an absolute deadline dTDMrrk of a critical request rk with an arrival date
aTDMrrk , TDMrr guarantees that the request completes at or before this deadline: aTDMrrk <
cTDMrrk ≤ dTDMrrk .
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Proof Proof by contradiction, assuming that cTDMrrk > dTDMrrk holds.

The absolute deadline dTDMrrk of the request has to be equal to the absolute deadline of
task τi at the moment of the request’s arrival: dTDMrrk = d@ak

i = O(τi)+Sl−1+xk ·P, where
xk ∈ N0, which follows from Corollary 2.

Therefore, cTDMrrk > O(τi)+ Sl− 1+ xk ·P, which means that, at the beginning of τi’s
TDM slot at instant t = O(τi)+ xk ·P, request rk was pending. However, at that instant, the
relative deadline Dl@t

i under TDMrr had to be (cf. Definition 8):

Dl@t
i = d@t

i − t = O(τi)+Sl−1+ xk ·P−O(τi)− xk ·P = Sl−1

Consequently PMi had to be asserted at this instant (cf. Subsection 7.3.2). As the request
missed its deadline the arbiter did not granted rk access to the memory. This can only happen
if another request rl from another task τ j blocks the memory:

∃rl of τ j such that: aTDMrrl ≤ O(τi)+ xk ·P < cTDMrrl < O(τi)+ xk ·P+Sl−1

The arbiter had to grant rl access to the memory no earlier than cTDMrrl − (Sl−1), due to the
worst-case memory access latency/slot length Sl, this gives us:

(O(τi)+ xk ·P)− (Sl−1)< cTDMrrl − (Sl−1)< (O(τi)+ xk ·P)+Sl−1− (Sl−1)

t− (Sl−1)< cTDMrrl − (Sl−1)< t +Sl−1− (Sl−1)

t− (Sl−1)< cTDMrrl − (Sl−1)< t

This means that memory started processing request rl before instant t. The request rl
can only be processed iff ESi is asserted by the owner of the immediate next TDM slot with
regard to t. In this case τi has to be the owner (cf. the in-equations above). However, since rk
was pending at instant t, it is impossible that ESi was asserted. The relative deadline of task
Dl@t

i = Sl− 1 (cf. above), which is contradictory to the necessary condition Dl@t
i ≥ 2 · Sl

needed to assert ESi. This is also true for all instants up to t in the range [t − (Sl− 1), t],
which can only yield relative deadlines in [Sl−1,2 ·Sl−2].

Note that the range [t− (Sl−1), t] is safe even when ak ≥ t− (Sl−1). As the absolute
deadline d@t ′

i for t− (Sl− 1) ≤ t ′ ≤ ak cannot be larger then d@t
i . Either ck−1 is processed

or d@t ′
i = d@t

i . The former would contradict the assumption that rl of task τ j was processed,
the latter would prevent the ESi signal from being asserted.

The pending request rk would prevent other requests from starting right before τi’s TDM
slot. In addition, Lemma 4 and Corollary 1 ensure that rk is the only request that can claim
τi’s slot. We can thus conclude that the completion date of request rk will always be smaller
than its absolute deadline under TDMrr, i.e., cTDMrrk ≤ dTDMrrk . ut

Based on the previous intermediate results, we are finally able to proof that the deadlines
under TDMrr in fact match those under regular TDM.

Lemma 6 Assuming an unbounded bit-width, the absolute deadline dTDMk of the k-th request
of a critical task under regular TDM always matches the absolute deadline dTDMrrk of the k-th
request under TDMrr: dTDMk = dTDMrrk .

Proof The proof is based on induction over the set of requests rk of a critical task τi:

Induction base k = 0: Depending on the arrival date a0 of the first request r0, we can
distinguishes two cases:
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Case (1): The request arrives before the first TDM slot (a0 ≤ O(τi)):
We then know that the deadline under regular TDM is dTDM0 = O(τi)+Sl−1. Under TDMrr
the situation is more complex, due to the constant updates of the Dli register. However, the
absolute deadline (cf. Definition 8) has to be valid, for all time instants t while the request is
pending at the arbiter: ∀t ∈N0,aTDM0 ≤ t < cTDMrr0 ≤ dTDMrr0 : dTDMrr0 = d@t

i (see Lemma 5).
We then need to show that d@t

i = O(τi)+ Sl− 1. This is trivially true at t = a0, due to
the initialization of Dli at system reset (cf. the reset update rule in Section 7.3.1). The value
d@t

i does not change while a request is pending (see Corollary 2), we thus have to show that
the request completes in time, i.e., cTDMrr0 ≤ dTDMrr0 , which follows from Lemma 5.

Case (2): The request misses the first TDM slot (a0 > O(τi)):
The deadline under regular TDM is dTDM0 = O(τi)+ x0 ·P+(Sl− 1), where x0 ∈ N+. The
variable x0 refers to the number of TDM slots missed before the request arrival. Therefore,
knowing that aTDM0 > dTDM0 −P+ Sl− 1, we can derive the number of missed TDM slots as
follows:

x0 =

⌊
dTDM0

P

⌋
=

⌊
dTDM0 −P

P

⌋
+1 =

⌊
a0 +Sl−2

P

⌋
+1

Under regular TDM and TDMrr, the first request arrival date is the same for both, i.e.,
aTDM0 = aTDMrr0 . Hence, the number of missed TDM slots x0 is the same for both arbitration
schemes. Under TDMrr, the relative deadline Dli steadily decrements until the update rule
unused TDM Slot (cf. Section 7.3.1) triggers – potentially repeatedly (x0 times). This update
rule relies on the Dli register, every time it becomes Sl − 1, it is incremented by a TDM
period P, actually P− 1 for the subsequent cycle. The unused TDM Slot rule triggers for
the first time at time instant O(τi) and repeatedly triggers up to the TDM slot starting at
dTDM0 −P− (Sl−1).

Therefore, at t = dTDM0 −P− (Sl−2) the value of the relative deadline has to be Dl@t
i =

O(τi)+x0 ·P+Sl−1− t. We thus can derive the following absolute deadline under TDMrr:

dTDMrr0 = d@t
i = Dl@t

i + t = O(τi)+ x0 ·P+(Sl−1)

Note that the absolute deadline under TDMrr does not change up until the request’s
arrival, i.e, in the time range [t,aTDMrr0 ], since aTDMrr0 − t < P. The deadline also remains
unchanged thereafter until the request’s completion (see Corollary 2).

We have shown, through Cases (1) and (2), that the deadlines matches for the first request
r0 under regular TDM and TDMrr. In addition, the update rule request completion updates
the slack counter value using the remaining cycles until the absolute deadline, which is

obtained from Dl
@cTDMrr0
i , i.e., ∆i = Dl

@cTDMrr0
i .

Induction step k = n: Assuming that the deadlines dTDMn−1 and dTDMrrn−1 for (n− 1)-th request
matches, we need to ensure that this deadlines also matches for the n-th request, i.e., dTDMn =
dTDMrrn . For this we again distinguish two cases:

Case (1): Under TDM, request rk arrives before the next TDM slot (aTDMk < P− (Sl−1)):
This means that rk’s deadline simply falls into the next period and that the distance between
the k-th and (k− 1)-th request is shorter than P, i.e., dTDMk = dTDMk−1 +P and distk = aTDMk −
dTDMk−1 < P.

Under TDMrr we know that the absolute deadline was correct right before the com-

pletion of rk−1 at instant cTDMrrk−1 − 1, i.e., dTDMrrk = d
@cTDMrrk−1 −1
i . Due to the request com-

pletion rule the absolute deadline of τi in the next cycle becomes d
@cTDMrrk−1 −1
i + P− 1 =
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d
@cTDMrrk−1
i +P = dTDMrrk +P, matching the expected deadline of the k-th request. This also

indicates that Dl
@cTDMrrk−1
i ≥ P.

It remains to show that this deadline does not change up to the request’s arrival at aTDMrrk .
Since no request is pending, we have to show that the unused TDM Slot rule does not trigger.

This follows trivially from the fact that distk < P and the fact that Dl
@cTDMrrk−1
i ≥ P.

Case (2): Under TDM, request rk arrives after the next TDM slot (aTDMk ≥ P− (Sl−1)):
We then know that the rk’s deadline has to be a number xk periods later than the deadline of
the previous request, i.e., dTDMk = dTDMk−1 + xk ·P, where xk =

⌊
distk+Sl−2

P

⌋
+ 1. Based on the

arguments put forward for Case (1) of the induction step (distk) above as well as Case (2) of
the induction base (using Dli−∆i), we can show that the unused TDM slot rule triggers xk
times up to the arrival data of rk. ut

Theorem 3 (Worst-Case Behavior) Considering a given execution (i.e., execution path,
runtime conditions, input values, . . . ) a memory access of a critical task under any pos-
sible execution under TDMrr completes no later than the same execution under strict TDM.

Proof The correctness of Theorem 3 is ensured by by Lemma 5 by guaranteeing that request
completes at or before its deadline, i.e., cTDMrrk ≤ dTDMrrk . Lemma 6 shows that the deadlines
under TDMrr will always corresponds to the deadline under regular TDM. ut

The proofs above assumed an unbounded bit-width, which is not the case in our hard-
ware implementation. Limiting the bit-width only has an impact on Lemma 6, all preceding
lemmas remain valid. The lemma could be adapted in order to show that the absolute dead-
lines under TDMrr are always smaller than those under strict TDM, due to the fact that the
value of the Dli register is smaller.

8 Hardware Experiments

In this section we evaluate the hardware design of the arbitration logic described in Sec-
tion 7. We first present the evaluation platform and the hardware cost results. Afterwards,
we compare the TDMer and the TDMrr approaches using various metrics, such as, mem-
ory utilization, average number of deadline misses for non-critical tasks, and the maximum
slack accumulated by critical tasks. Finally, we evaluate the impact of limiting the bit-width
of the slack counters on the arbiter’s performance.

8.1 Evaluation Platform

The hardware design described in Section 7 has been realized on a Terasic DE-10 Nano eval-
uation board. The board is, among others, equipped with an Intel Cyclone V SE SoC-FPGA,
which we use to evaluate the hardware implementation cost. Logic circuits on various fami-
lies of FPGA device families from Intel are built from Adaptive Logic Modules (ALMs) that
contain registers, programmable logic, but also predefined logic blocks (e.g., adders). The
Cyclone V SE (5CSEBA6U23I7) on our evaluation board contains 41910 ALMs, 83820
primary logic registers, and 5530 kbit of distributed memory, which, for instance, is enough
to instantiate several Patmos cores (Schoeberl et al., 2011). Hardware is synthesized from
the arbiter’s Verilog implementation using Intel’s Quartus Prime Lite tool (version 18.1)
using default parameters for the considered FPGA.
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To evaluate the hardware cost of implementing the TDMrr approach, we determined the
number of ALMs and primary logic registers occupied by the design. The synthesis tool
did not make use of any memory resources (neither block- nor distributed RAM). We also
determined the attainable clock speed of the design, provided by the synthesis tool in the
form of a maximum operating frequency (considering regular operating conditions).

The correctness of the Verilog implementation was thoroughly validated using the Icarus
Verilog hardware simulation tool (version 10.1). The hardware simulation accepts the same
memory patterns, described in Section 6, as input, which allows an automatic verification
against the cycle-accurate software simulator that was already used in the other experiments.

8.2 Results for Hardware Synthesis

After careful validation, we instantiated and synthesized several different versions of our
hardware design. The design can be parameterized by the number of cores (m), the number
of critical cores (mc), and the bit-width of the deadlines/slack counters. Table 1 summarizes
the results in terms of ALMs and primary logic registers occupied by the various design
instances considering 24-bit deadline and slack counters (see Subsection 8.4 for a justifi-
cation), The table also indicates the maximum operating frequency. Note that the reported
numbers only comprise the DSC, NC, and AR components. The numbers do not cover the
data multiplexing (DM) and processing cores, as these components are independent from
the actual arbiter design. The design is relatively small as can be seen by the low relative us-
age numbers (%). This becomes even more apparent when comparing against the hardware
cost of instantiating a Patmos core on the same FPGA device. Considering the processing
core and its caches in isolation, i.e., ignoring I/O and memory interfaces, Patmos occupies
approximately 10500 ALMs. The processor design, including I/O interfaces and an Avalon-
based bus interface to a silicon DDR memory controller, achieves a maximum operating
frequency of 65 MHz, which can likely be improved by fine-tuning the implementation to
the board.

Overall we can observe that in terms of hardware costs, the resource utilization is highly
dependent on the number of critical cores (mc) rather then the total number of cores (m).
When the number of critical cores increases, the number of occupied ALMs and primary
logic registers proportionally increase. The main difference between critical and non-critical
cores stems from the deadline and slack computation (DSC) components. This module,
along with the number of critical cores, therefore plays a major role in the overall hard-
ware cost. When the total number of cores increases, while keeping the number of critical
cores constant, the difference is rather small. For instance, increasing the number of cores

Table 1 Implementation details of our hardware design on an Intel Cyclone V SE SoC-FPGA considering
24-bit deadline and slack counters.

Cores ALMs Registers
m mc Number (%) per mc Number (%) per mc Frequency (MHz)
2 2 179 (0.43%) 90 116 (0.14%) 58 147.86
4 2 221 (0.53%) 111 122 (0.15%) 61 157.88
4 4 407 (0.97%) 102 218 (0.26%) 55 142.37
8 4 389 (0.93%) 97 225 (0.27%) 56 129.62
8 8 723 (1.73%) 90 418 (0.50%) 52 117.19

16 8 773 (1.84%) 97 429 (0.51%) 54 97.61
16 16 1424 (3.40%) 89 814 (0.97%) 51 98.18
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Table 2 Implementation details of our hardware design on an Intel Cyclone V SE SoC-FPGA considering
various bit-widths for deadline and slack counters.

Cores 10 bits 20 bits
m mc ALMs Registers Frequency (MHz) ALMs Registers Frequency (MHz)
2 2 95 60 205.72 157 100 164.02
4 2 111 66 200.72 175 106 157.95
4 4 187 106 165.04 315 186 151.15
8 4 214 113 149.57 344 193 130.55
8 8 378 194 127.67 627 354 124.36

16 8 431 205 112.27 679 365 102.19
16 16 755 366 100.45 1228 686 96.08

form 4 to 8, while keeping 4 critical cores, even results in a decrease in terms of the oc-
cupied ALMs (407 vs. 389 ALMs). This is due to heuristic optimizations applied by the
synthesis tool. This can also be seen when normalizing the number of ALMs to the number
of critical cores (column ALMS per mc). The resource usage per critical core peaks at 110
ALMs and then appears to converge towards 89 ALMs with an increasing number of critical
cores. A similar trend can also be observed for the usage of primary logic registers in the
DSC components, which peaks at 61 registers per critical core and then levels off. Note that
non-critical cores still consume resources in the AR component, albeit very little.

The maximum operating frequency follows the same trend as resource consumption,
with a peak performance of 157.88 MHz that levels off to 97.61 Mhz. However, this time,
the total number of cores is the main factor, which leads to a reduction of the clock fre-
quency. This decrease can be attributed to the AR component, more precisely, the critical
path is related to the logic circuit that selects the next request to be processed by the mem-
ory (round-robin) in combination with the masking induced by the PM signals. The depth of
this logic circuit, and thus the critical path, in our currently unoptimized implementation de-
pends on the total number of cores. It is very likely that an improved implementation (using
partitioning and balanced tree structures) and traditional optimization techniques (such as
pipelining or retiming) would allow to improve the clock frequency. However, on the con-
sidered FPGA this does not appear to be beneficial, since the memory controller operates at
only 100 Mhz. Only the configurations with 16 cores are not able to match the controller’s
speed. However, due to resource constraints (ALMs, registers, and memory) configurations
with 16 Patmos cores are not feasible anyways.

Table 2 shows the consequences of reducing the bit-width for deadline and slack coun-
ters in terms of ALMs and primary logic registers along with the operating frequency, con-
sidering bit-widths of 10 bits and 20 bits. Overall we can see that the bit-width of deadline
and slack counters highly impacts the overall results, while following the same trends ob-
served in Table 1 in terms of core numbers. The resource consumption in relation to the 10
bit version increases by a factor of roughly 1.6 and 2 for widths of 20 bits and 24 bits respec-
tively. The operating frequency when using a low number of cores appears to be impacted
more by the bit-width, but appears to converge to roughly 100 MHz for configurations with
16 cores. This decrease can be attributed to the AR component, in combination with the
masking induced by the PMi signals. For a low number of cores the critical path is more im-
pacted by the computation of the PMi and ESi signals within the DSCi components, which
highly depends on the deadline and slack counter width.

From these results, we can conclude that the proposed design appears feasible for a
realistic hardware implementation, both in terms of hardware complexity (ALMs/area) and
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clock frequency. It remains to verify that the attainable memory utilization of this design
matches the original TDMer arbiter.

8.3 Results for Dynamic TDM with Round-Robin Arbitration

The designed variant of the dynamic TDM-based arbitration policy TDMrr, applies a dif-
ferent deadline and slack computation strategy. More importantly, instead of using an EDF
arbitration policy with priority queues, TDMrr uses a Round-Robin arbitration policy over
all pending memory requests, while prioritizing requests of critical tasks only when they
are about to miss their deadline. The following experiments aim at evaluating whether this
choice has an impact on the performance of the dynamic TDM-based arbitration scheme at
the system level. We, therefore, undertake another series of simulation runs based on the
same experimental setup previously used to evaluate TDMer in Section 6.

Figure 17a shows a breakdown of the average memory idle time for TDMrr over all sim-
ulation runs. Recall that, as for Figure 10 from Section 6.5, the plot shows stacked lines rep-
resenting the release delays, issue delays, and the total memory idling. Overall, the evolution
of the memory idling for TDMrr shows the same trends as under TDMer: memory idling
dominates under low system utilization and drops considerably under high load. As before
release and issue delays are virtually eliminated. The choice to replace EDF by round-robin
apparently did not impact the overall performance of the arbiter negatively.

On the contrary, and somewhat surprising, the performance of TDMrr appears to be
slightly better than that of TDMer starting with a system utilization of about 50%. TDMer
systematically prioritizes non-critical requests, as long as the critical requests have suffi-
cient slack left. Non-critical tasks systematically drain the slack of critical tasks. TDMrr,
on the other hand, applies Round-Robin among critical and non-critical pending requests
alike. Memory bandwidth is, as a result, shared more evenly among critical and non-critical
requests, which, most importantly, allows critical tasks to preserve more slack on average.
This is, apparently, beneficial in some situations where the entire slack of critical tasks was
drained under TDMer. Our experiments indeed indicate that the average slack for TDMrr is
higher than that of TDMer (not shown by a figure).

This, however, comes at a price. Figure 17b depicts the average number of deadline
misses of non-critical tasks. Due to the aforementioned difference between TDMer and

(a) Memory idling. (b) Deadline misses for non-critical tasks.

Fig. 17 Evolution of the average memory idling and average number of deadline misses for non-critical tasks
over all simulation runs under TDMrr with initial slack (lower is better).



36 Farouk Hebbache et al.

TDMrr, we can notice a difference in terms of deadline misses between TDMer and TDMrr.
This trend appears to coincide with the trend regarding the memory idling from before. Start-
ing from 60% system utilization, a difference is visible that increases along with the load.
Note, however, that two other factors have a dominating impact on the number of deadline
misses: the core number and the ratio between critical and non-critical tasks (50%/50% vs.
25%/75%, see Subsection 6.3). Configurations with at most 4 cores do not cause sufficient
memory load, while configurations with more than 16 cores quickly cause overload. The
arbitration policy in these situations makes little difference. The situation changes for con-
figurations with 8, 12 or 16 cores. Here, TDMer shows improvements over TDMrr in terms
of deadline misses when the repartitioning between critical and non-critical tasks is even
(50%/50%). This can be explained by the right level of memory load of these configura-
tions that allows a moderate number of non-critical tasks to exploit a reasonable margin of
the memory bandwidth.

From these experimental results we conclude that the implementation of our dynamic
TDM-based arbitration policy (TDMrr) is efficient, both in terms of hardware complexity
and arbitration performance. Notably the good results concerning the memory ideling are
preserved over all simulation results, while other metrics are only marginally impacted.

8.4 Results for Bit-Width Constrained Slack Counters

Section 7.4 discusses the consequences of reducing the bit-width of the deadline and slack
counters, focusing on implementation and correctness issues. In this section, we turn our
attention to the impact on the system-level memory utilization that might result from artifi-
cially limiting the bit-width, and thus range, of these counters.

For simplicity, we will considering a hardware implementation of a dynamic TDM-based
arbiter running at 100 MHz in the following example. We can then compute the amount of
time that can be represented by the slack counters with a given bit-width. Hence, 32 bits
corresponds to more than 43 seconds of slack time that could theoretically be accumulated
by a critical task during execution. This, by far, exceeds the periods (Ti) considered in our
simulations, where tasks may exhibit periods in the range [20,100] ms. For our setup a
slack counter width above 24 bits thus cannot impact the arbiter’s performance negatively.

(a) 10 bit. (b) 20 bit.

Fig. 18 Evolution of memory idle time considering reduced bit-widths for the slack and deadline counters
under TDMrr with initial slack (lower is better).
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Reducing the width to 20 bits limits the slack time to roughly 10.5 ms, about 10% of the
longest task periods considered in our simulations. One would expect an impact on the
arbitration performance. The same applies to a width of 10 bits, which further constrains the
slack accumulation to roughly 10 µs, but also reduces hardware costs. For the subsequent
experiments, we have chosen to limit the deadline and slack counters to 20 and 10 bits
respectively. The experimental setup remains unchanged otherwise (see Section 6.1).

Figure 18 shows the breakdown of the average memory idle times over all simulation
runs for TDMrr. In terms of memory idling, the results are virtually identical regardless of
the used bit-width. However, the average slack counter values are impacted considerably
– in particular for configurations with low to medium system utilization. This loss appears
to have little impact on the other metrics (deadline misses, execution times, etc.). This is
contrary to our observations for the comparison with TDMer in the previous subsection,
where non-critical tasks drained the slack of critical tasks. The situation is different now
considering TDMrr, despite the fact that slack is lost, slack counters generally stay above
the critical threshold that enables the early-start optimization. As long as critical task have
enough slack (more than Sl, for instance) the arbiter’s performance is not degraded. This
also applies for all other dynamic TDM-based arbitration schemes that are decoupled from
slots, i.e., varying the deadline and slack counter width has little to no effect.

9 Related work

Recently two software-based approaches have been proposed to improve TDM-based arbi-
tration depending on contention (Tabish et al., 2016; Kritikakou et al., 2014). The first work
(Tabish et al., 2016) defines a task model in which tasks are split into sub-tasks consisting
of either memory accesses or computation only. The goal is then to find a feasible schedule
that ensures that the sub-tasks accessing memory never execute concurrently. The approach
thus completely avoids contention by construction by applying TDM at a rather high-level
of abstraction. However, this approach requires to regroup memory accesses within a single
sub-task, e.g., by using a scratch-pad memory, which entails a considerable change in the
underlying programming/execution model. Kritikakou et al. (2014) track the slack time of
critical tasks in software. Non-critical tasks can access memory as long as all critical tasks
still have slack left, otherwise all non-critical tasks are stopped. In our case, non-critical
tasks may always continue execution and arbitration is performed at the granularity of clock
cycles.

MemGuard (Yun et al., 2013) ensures isolation between cores by implementing a credit-
based approach for tracking memory requests in software. Tasks executed by a core are sus-
pended when the budget of memory requests, periodically assigned to the core, is depleted.
A reclaim manager can donate predicated non-used budget of memory requests to other
cores, making the approach suitable for soft real-time systems only. Agrawal et al. (2017)
extend the MemGuard memory bandwidth throttling approach (Yun et al., 2013) to upper
bound the WCET using slot-based time-triggered systems. It constructs schedule tables, as-
signing partitions and dynamic memory bandwidth to each slot on each core. At runtime,
two servers jointly control the contention between the cores, and the amount of memory
accesses per slot.

A common approach is to improve the resource utilization of TDM by increasing the
number of TDM slots according to task weights (Yoon et al., 2011). Others apply strict TDM
arbitration to critical tasks (Gomony et al., 2017), while allowing other schemes for non-



38 Farouk Hebbache et al.

critical tasks. In both cases the TDM strategy itself is not modified, which remains heavily
non-work-conserving.

Another approach (Fohler, 1995) uses a similar idea as our dynamic arbitration schemes:
shifting slots. However, it deals with a different problem: minimizing the response time of
aperiodic tasks in statically-scheduled periodic hard real-time systems. Shifting slots is thus
applied for scheduling tasks and not memory requests. The granularity of slots allocated to
tasks is consequently much larger than individual memory requests considered in our work.

Kostrzewa et al. (2015) propose a technique to dynamically adapt the arbiter to a vary-
ing number of active tasks, which execute under regular TDM. The approach thus does not
address the non-work-conserving nature of TDM. Li et al. (2016) truly skip unused entries
in a TDM schedule in order to allow for variable-sized TDM slots. Similarly, Hassan et al.
(2017) combine a slot skipping technique with a harmonic TDM schedule. Like our ap-
proach, slot skipping improves upon the non-work-conserving behavior of TDM. However,
both approaches are tied to the notion of TDM slots that are processed by a fixed schedule.
Our deadline-driven approach, on the other hand, allows to dynamically reorder memory
requests, while keeping the same guarantees as TDM for critical tasks. Most notably our ap-
proach is analyzable since it preserves TDM slot offsets (Kelter et al., 2014; Rihani et al.,
2015). In our case, the behavior of a task only depends on its own history, as opposed to the
aforementioned approaches where memory latency/interference is highly dependent on the
behavior of other tasks.

Jun et al. (2007) propose a slack-aware arbiter at the granularity of individual requests.
However, slack is statically defined by a fixed parameter for each core (master) that is inde-
pendent from the actual load on the main memory. Timing errors may thus occur, since it
cannot be guaranteed that requests complete before their slack is entirely consumed. Also,
slack cannot be accumulated across successive requests.

Finally, Kostrzewa et al. (2016) propose a mechanism which provides latency guar-
antees for hard real-time transmissions in a network-on-chip with a minimum impact on
performance sensitive best-effort transmissions. They use a slack-based global and dynamic
prioritization of data streams. However, slack for each critical task is computed off-line and
preset to a fixed value at the beginning of jobs. In our work slack is accumulated on-line
across successive memory requests, starting with an initial slack of 0. Note, however, that
the slack counters could also be initialized to a non-zero value, e.g., derived by a schedu-
lability analysis. In addition, other forms of slack could be considered in our approach at
runtime, e.g., slack with regard to a task’s worst-case execution time when diverging from
the worst-case execution path.

10 Conclusion and future work

This work presents TDMer, a dynamic TDM-based arbitration policy. Instead of arbitrating at
the level of TDM slots, our approach operates at the granularity of clock cycles by exploiting
slack time accumulated from preceding requests. In addition to the successful elimination
of the release delays by TDMer, a relatively small initial slack counter value at the start of
each critical job enables to also eliminate the residual issue delays, one of the two sources
of inefficiency in TDM arbitration schemes. Our evaluation reveals considerable gains, in
particular, when approaching high system utilization. We furthermore proposed a hardware
implementation of a slightly simplified variant of the approach (TDMrr). Using additional
simulations we showed that the proposed solution combines the advantages of dynamic
TDM-based scheduling with an efficient and simple hardware realization.
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Our dynamic TDM-based arbitration policies come with a set of restrictions, that we
plan to remove as future work. First, we limited the discussions to uniform TDM schedules,
where all TDM slots have the same length and each critical task is assigned a single slot per
period. However, the proposed approach can be adapted to other kinds of TDM schedules
proposed in the literature, such as weighted and harmonic TDM (Hassan et al., 2017; Yoon
et al., 2011). The only requirement is that the deadline of a request is (easily) computable.
In some cases, it might also be useful to vary the slot size depending on the bandwidth or
throughput requirements of a (critical) task, e.g., to accommodate burst transfers. Scheduling
a burst transfer independently from TDM slots may then cause overruns touching several
immediately following TDM slots. The simple admission test (Algorithm 6) then needs to
be extended in order to consider a bound of the burst’s transfer time, as well as the slack
counter values of all potentially concerned slot owners.

Another restriction is that our dynamic TDM-based arbitration policies currently assume
independent periodic tasks where each task executes on a separate core. Interactions between
dependent tasks may however impact the timing behavior. For instance, a task may wait for
another task (e.g., release of a lock) or to wait for a precise instant (e.g., 11:30 AM). In
particular in the latter case, it is easy to see that the accumulated slack before the wait
operation is meaningless afterwards. It then suffices to reset the slack counter of the waiting
task. Other forms of interactions might allow to preserve the slack counter as long as the
blocking can be bounded by a duration (as opposed to blocking up to an instant). Otherwise,
it suffices to reset the task’s slack counter.

However, the most fundamental restriction is the one-to-one mapping between tasks and
cores. The main issue here stems from the fact that requests issued to the arbiter may take a
considerable amount of time to complete, which would delay interrupts and, consequently,
preemptions. We recently extended our system model to address this issue (Hebbache et al.,
2019). The new work allows several tasks to execute on a single core and even allows to mix
critical and non-critical tasks on a given core. This in turn necessitates means to preempt on-
going transfers or to limit the blocking delay that preempting tasks may suffer via hardware
support. Both options are explored and techniques are proposed that allow to take the result-
ing delays into consideration during schedulability analysis. Slack counters, in either case,
are part of the execution context of a task and need to be saved/restored accordingly. The
number of DSCi components, required to track the slack of a all tasks in a task set, is con-
sequently limited by the number of cores in the system. Also, cores may dynamically emit
critical and non-critical requests depending on whether they execute a critical or non-critical
task.

Finally, we plan to develop a technique to exploit the ability to reorder requests (e.g., for
DDR memory command scheduling) and to exploit alternative forms of slack.
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