
Technische Universität Wien

D I S S E R T A T I O N

Compiler Backend Generation from

Structural Processor Models

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

Ao.Univ.Prof. Dipl-Ing. Dr. Andreas Krall
Inst.-Nr. E185

Institut für Computersprachen

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Dipl.-Ing. Florian Brandner
Matr.-Nr. 9925151

Wilhelmstrasse 45/8
1120 Wien

Wien, 16. Oktober 2009

rau
Diss

Acknowledgments

I would like to thank my advisor Andreas Krall, who not only supervised me
during the work on this thesis, but also mentored me during my studies and my
diploma thesis. I also thank the staff at the Institute of Computer Languages. In
particular, Jens Knoop, for his support, enthusiasm, and for sharing his excellent
international connections. My office mates, Dietmar Ebner, Adrian Prantl, and
Christian Thalinger for all the insights and discussions, but foremost for the great
fun; the research partners from OnDemand Microelectronics, in particular, Karl
Neumann; the students Andreas Fellnhofer and David Riegler for their contribu-
tions during their masters theses. Martin Schöberl for diverting my attention and
widening my personal as well as research scope.

Mum, Alex, Peter, Liese, Bine, and Cathi that showed me how much one can
achieve, if the family is on one’s side. My great love Nina for pushing and supporting
me, and for just about everything else too.

i

Kurzfassung

In den letzten Jahren konnte im Bereich der eingebetteten Computersysteme eine
rasante Entwicklung beobachtet werden. Prozessoren, die in diesen Systemen einge-
setzt werden, unterliegen seit jeher besonders hohen Anforderungen in Bezug auf
den Stromverbrauch, die Chipfläche, die Rechenleistung und die Produktionskosten.
Bei der Entwicklung eines neuen Prozessors in diesem Gebiet muß besonderes Au-
genmerk auf kurze Entwicklungszyklen, sowie hohe Flexibilität bei der Realisierung
neuer Technologien gelegt werden. Aus diesem Grund wurden in den letzten Jahren
applikationsspezifische Prozessoren immer beliebter, da diese ausreichend Rechen-
leistung bieten, es aber trotzdem erlauben die gegebenen Einschränkungen, ob nun
technischer Natur oder nicht, einzuhalten. Wesentliche Grundvoraussetzungen sind
hierbei eine gute Kenntnis des geplanten Einsatzbereichs, sowie geeignete Werkzeuge
um alternative Prozessorimplementierungen schnell und einfach erproben zu können.

Ein vielversprechender Ansatz, um Eigenschaften dieser Prozessoren formal zu
beschreiben, sind Prozessorbeschreibungssprachen. Basierend auf entsprechenden
Prozessorbeschreibungen ist es möglich eine Vielzahl von Werkzeugen abzuleiten.
So ist es möglich Softwareentwicklungswerkzeuge und Prozessorsimulatoren bereit-
zustellen, sowie Abschätzungen des zu erwartenden Stromverbrauchs und der be-
nötigten Chipfläche zu berechnen. Durch die automatische Bereitstellung der ent-
sprechenden Werkzeuge können alternative Prozessorentwürfe und unterschiedliche
Befehlserweiterungen eines Prozessors schnell und elegant evaluiert werden. Dies
verspricht eine entscheidende Verkürzung der Produktentwicklungszyklen.

In dieser Arbeit wird die neu entwickelte Prozessorbeschreibungssprache xADL
vorgestellt. Im Gegensatz zu verwandten Systemen wird durch diese Sprache aus-
schließlich die Struktur der Prozessorimplementierung beschrieben. Der Befehlssatz,
obwohl durch die Beschreibung nicht explizit dargestellt, ist ein integrales Grundkon-
zept der Sprache. Ein Extraktionsverfahren analysiert die Struktur des Prozessors
und berechnet daraus eine abstrakte Darstellung der einzelnen Befehle, die durch den
Prozessor unterstützt werden. Das abstrakte Modell des Befehlssatzes steht in enger
Beziehung zu den zugrundeliegenden Hardwarekomponenten. Die Sprache ist daher
in verschiedensten Anwendungsszenarien nutzbar. Im Vergleich zu anderen Prozes-
sorbeschreibungssprachen bietet die xADL-Sprache eine Vielzahl nützlicher Erwei-
terungen, die zu besonders kurzen und intuitiv lesbaren Prozessormodellen führen.
Dies umfasst beispielsweise erweiterbare Typen zur Beschreibung von Hardware-
komponenten, die Klassen und Templates der Programmiersprache C++ ähnlich
sind.

Die Praxistauglichkeit dieses Ansatzes wird am Beispiel eines Übersetzergenera-
tors untersucht. Hier werden die wesentlichen Komponenten eines Übersetzers aus
einer gegebenen xADL-Beschreibung generiert. Dies umfasst im Speziellen die Re-
gisterbelegung, die Befehlsanordnung, sowie die Befehlsauswahl. Messungen zeigen,

ii

iii

dass die generierten Übersetzer mit handgeschriebenen Produktivsystemen konkur-
rieren können. Für eine Beschreibung der MIPS-Architektur erzielt der generierte
Übersetzer Laufzeitverbesserungen von bis zu 9% für einzelne Benchmarkprogram-
me. Im Durchschnitt ist eine moderate Verschlechterung der Laufzeit von lediglich
15% festzustellen. In Anbetracht der um bis zu 34% verminderten Codegröße sind
diese Ergebnisse ausgezeichnet. Noch bessere Resultate wurden für zwei Konfigura-
tionen des VLIW-Prozessors CHILI erreicht. Hier beträgt die Laufzeitverbesserung
bis zu 20%, bei gleichzeitiger Reduktion der Codegröße zwischen 3% und 47%. Im
Durchschnitt über alle Benchmarkprogramme ist eine minimale Verschlechterung
der Laufzeit messbar, die 5% beziehungsweise 3% beträgt.

Zusätzlich wird die Vollständigkeit der generierten Übersetzer untersucht, d.h.,
ob der resultierende Übersetzer tatsächlich in der Lage ist für alle durch die Sprache
zulässigen Eingabeprogramme entsprechenden Maschinencode zu erzeugen. Tradi-
tionelle Ansätze, basierend auf Baumautomaten, sind im Rahmen heutiger Überset-
zersysteme nur bedingt einsetzbar, da häufig verwendete dynamische Überprüfungen
während der Befehlsauswahl nicht dargestellt werden können. Ein neues Verfahren
namens Terminal Splitting wird vorgestellt, das erlaubt diese Überprüfungen explizit
durch neue Terminalsymbole darzustellen. Eine durch Terminal Splitting vorverar-
beitete Spezifikation der Befehlsauswahl wird sodann mit Hilfe des traditionellen
Ansatzes auf Vollständigkeit geprüft. Das vorgeschlagene Verfahren ist vollständig
in den Übersetzergenerator integriert und erlaubt dem Prozessordesigner wertvolle
Information in der Form von Gegenbeispielen zur Verfügung zu stellen.

Abstract

The embedded systems computing domain showed a tremendous development in
recent years. Processors used in these systems face rigid constraints in terms of power
consumption, chip area, performance, and production costs. Short development
cycles and great flexibility in the adoption of new technologies are key factors for
successful embedded processors. Application-specific instruction set processors have
proven successful in providing the necessary computing power, while meeting the
various technical and non-technical design constraints. However, the development
of such processors requires intimate knowledge of the processor’s application domain
and appropriate tools to evaluate design alternatives quickly.

A promising approach to formally specify processor design alternatives and au-
tomatically derive the necessary tools for design space exploration are processor
description languages. These languages capture the instruction set, and often also
the hardware organization of the given processor using an abstract specification.
The information provided through the processor models can be used to automati-
cally derive software development and simulation tools, as well as area and power
estimates. This approach has the potential to significantly reduce the turn-around
time during the evaluation phase of a new application-specific processor, because
alternative instruction set extensions and hardware designs can be specified and
evaluated systematically.

In this work the novel xADL language is presented, which, in contrast to most
contemporary processor description languages, focuses on a structural modeling of
the processor’s hardware organization. The instruction set, even though not speci-
fied explicitly, is a central concept of the language and its support tools. Through
instruction set extraction an abstract model of the instruction set is automatically
derived from the structural specification. The instruction set view combined with the
detailed hardware model provides the necessary information to derive high-quality
tools for design space exploration. The language allows the reuse of hardware com-
ponents through extensible types, similar to classes and templates known from the
C++ programming language. In comparison to other processor description lan-
guages, xADL specifications are thus very compact and readable.

The feasibility of the approach is demonstrated by a compiler backend generator.
It is shown how the essential processor-specific components of a compiler backend
can be derived from xADL models, including the register allocator, the instruction
scheduler, and the instruction selector. The automatically generated compilers are
competitive to handcrafted production compilers. For a MIPS processor model
speedups of up to 9% have been measured for certain benchmarks. On average a
moderate slowdown of 15% has been observed, which is remarkable considering the
code size reduction of up to 34%. Even better results have been measured for two
configurations of the CHILI VLIW processor, where speedups of up to 20% and an

iv

v

average slowdown of only 5% to 3% can be reported. The code size reductions for
the CHILI range from 3% up to 47%.

Further, the completeness of the generated compiler components is investigated,
i.e., whether the generated compiler is able to produce machine code for all input
programs possibly accepted by the compiler frontend. Traditional approaches based
on tree automata are not applicable in the context of modern compilers, instruction
selection process is often controlled by dynamic checks. These checks can not be
represented by tree automata. Terminal splitting is proposed to explicitly represent
the dynamic checks present in the instruction selector specification. The transformed
specification is then processed by a traditional completeness test. The proposed
approach is integrated with the compiler generator system and thus provides valuable
feedback to the processor designer in the form of counter examples.

CONTENTS vi

Contents

1 Introduction 1

1.1 Processor Description Languages . 3

1.1.1 Behavioral Languages . 5

1.1.2 Structural Languages . 6

1.1.3 Mixed Languages . 6

1.1.4 Architecture Styles . 7

1.2 Application of Processor Description Languages 7

1.2.1 Documentation and Design 8

1.2.2 Verification and Validation . 8

1.2.3 Assembler and Linker . 9

1.2.4 Compiler . 9

1.2.5 Instruction Set Simulator . 10

1.2.6 Hardware Synthesis . 10

1.2.7 Encoding Optimization . 10

1.3 Retargetable Compilation . 11

1.4 Scope and Contributions . 13

2 Related Work 17

2.1 MIMOLA - A Structural Language 20

2.1.1 Program Specification . 21

2.1.2 Structure Declaration . 22

2.1.3 Compiler Generation . 23

2.2 EXPRESSION - A Mixed Language 25

2.2.1 Instruction Set View . 26

2.2.2 Structural View . 26

2.2.3 Compiler Generation . 28

CONTENTS vii

3 The xADL Language 30

3.1 Configuration . 33

3.2 Component Types . 33

3.2.1 Immediate Operands . 34

3.2.2 Register Files . 34

3.2.3 Storage Elements . 36

3.2.4 Functional Units . 38

3.3 Component Instances . 42

3.4 Inheritance and Generics . 44

3.5 Composing Data Paths . 46

3.5.1 Data and Pipeline Links . 47

3.5.2 Hazard Links . 49

3.5.3 Signals . 50

3.5.4 Parallel Pipelines . 51

3.5.5 Restricting Data Paths . 51

3.6 Meta-Information . 53

3.6.1 Assembly Syntax . 53

3.6.2 Binary Encoding . 57

3.6.3 Programming Conventions . 61

3.7 Instruction Set . 63

3.7.1 Instruction Paths . 66

3.7.2 Instructions . 68

4 The adlgen Tool 70

4.1 Frontend . 71

4.2 Base . 72

4.3 Provider . 75

4.4 Modules . 79

CONTENTS viii

5 Compiler Backend Generation 82

5.1 Background . 82

5.1.1 Instruction Selection . 83

5.1.2 Completeness of Instruction Selectors 86

5.1.3 Instruction Scheduling . 88

5.1.4 Register Allocation . 89

5.1.5 The LLVM Compiler Infrastructure 89

5.1.6 The acc Backend . 91

5.2 Register Specifications . 91

5.3 Instruction Definitions . 92

5.4 Resource Models . 94

5.4.1 Resource Tables for the LLVM Compiler 94

5.4.2 Operation Tables for the acc Backend 95

5.5 Instruction Selector Specifications . 96

5.5.1 Representing Tree Rules . 96

5.5.2 Deriving Non-terminals . 98

5.5.3 Deriving Conversion Rules . 99

5.5.4 Initial Rule Set . 100

5.5.5 Specializations and Templates 103

5.5.6 Emitting the Instruction Selector Specification 105

5.6 Completeness of Instruction Selector Specifications 106

5.6.1 Equality Constraints . 107

5.6.2 Preliminaries . 108

5.6.3 Terminal Splitting . 109

5.6.4 Chain Rules . 111

5.6.5 Final Completeness Test . 111

6 Experimental Results 113

6.1 Processor Models . 113

6.2 Backend Generation for acc . 117

6.3 Backend Generation for LLVM . 119

6.4 Completeness of Instruction Selector Specifications 125

7 Conclusion 128

List of Figures

1 The processor model, specified using a processor description language,
is iteratively modified during design space exploration in order to
achieve the best possible performance, power, and area trade-off for
a given application. 2

2 Most processor description languages were initially specialized to one
particular task, e.g., compiler generation, and were later extended to
other tasks. 4

3 Software development tools, test cases and even hardware models in
a general purpose hardware description language can be derived from
a processor model. 8

4 Structure of a compiler consisting of (a) a frontend, (b) an optimizing
middleend, and (c) an architecture-dependent backend. 11

5 The three major phases of a compiler backend, instruction selection,
instruction scheduling, and register allocation. 12

6 Two application scenarios for the MIMOLA system: (a) high-level
architecture synthesis, (b) retargetable compilation. 21

7 An example program definition in MIMOLA. 22

8 An example module specification in MIMOLA. 23

9 An example operation specification in EXPRESSION. 26

10 A functional unit specified in EXPRESSION. 27

11 An example pipeline description in EXPRESSION. 27

12 Compiler specifications in EXPRESSION. 28

13 The four major sections of a xADL processor model. 32

14 Configuration section of the CHILI VLIW core. 33

15 Two immediate types of the MIPS model. 34

16 Type of the general purpose register file of the MIPS core. 34

17 Modeling (1) sub-registers and (2) register pairs using register ports. . 35

18 The Rx register port is read and then overwritten by the two-address
instructions of the SPEAR processor. 35

19 Concurrent write operations to the same base register are resolved by
the order of the register ports for the CHILI model. 36

20 Definition of a memory type of the MIPS processor. 37

ix

LIST OF FIGURES x

21 Excerpt of the data cache definition of the CHILI processor. 38

22 Simplified type of the arithmetic unit of the MIPS processor model. . 39

23 Definition of a constant and a temporary within a functional unit. . . 39

24 Definition of the add micro-operation. 40

25 Example operations of the MIPS model. 41

26 Example of a user-defined micro-operation. 42

27 Simple instantiation of an immediate type. 43

28 Register instance of the MIPS model. 43

29 Memory and data cache instances of the MIPS model. 44

30 Instantiation of multiple identical units of the CHILI VLIW processor. 44

31 Extending the arithmetic unit of the MIPS model by a DSP multiply-
accumulate instruction. 45

32 Extending a register file of the MIPS processor by an additional ac-
cumulator port. 45

33 A generic container unit type modeling the MIPS pipeline. 46

34 Instantiating a generic container unit. 46

35 Unit instantiation including connections to other components. 47

36 Example connection patterns that can be realized using the Connect

keyword. 48

37 Connect to read from a register file restricted by a modifier. 49

38 A signal aborts the instructions in the decode unit of the MIPS model
in case a branch has been taken. 51

39 The addressing modes of the MIPS processor are restricted using
predicates and conditions. 52

40 The addiu operation of the MIPS arithmetic unit defines a predicate
to restrict the addressing modes. 52

41 The data cache of the MIPS processor model restricts the valid ad-
dressing modes using a condition and a predicate. 53

42 Definition of syntax directives and masks of the MIPS processor model. 54

43 A syntax mapping assigns symbolic names to register indices accord-
ing to the MIPS naming conventions. 55

44 Syntax templates of the SPEAR processor model. 55

LIST OF FIGURES xi

45 The mnemonic of SPEAR’s load immediate low instruction is specified
using a syntax binding. 56

46 The syntax of operands is specified with the link that connects the
operand to the data path. 56

47 Binary template for the MIPS rtype instruction format. 57

48 Binary mappings specify a space efficient encoding of register operands. 58

49 The binary representation of the add unsigned instruction of the
MIPS processor is specified using binary templates. 58

50 Final layout of the binary encoding of the MIPS processor. 59

51 Binary encoding using multiple fields. 60

52 The instruction format defined by a dual-issue processor. 60

53 Programming conventions of the CHILI processor model. 62

54 Examples of (a) a hypergraph and and (b) a directed hypergraph. . . 64

55 Example of a simple data path represented by a directed hypergraph. 66

56 Organization of the adlgen tool, (a) the frontend parses the xADL
file, (b) base creates an internal representation, (c) provider share
common analysis data, and (d) modules generate the final artifacts. . 71

57 Assignment of pipeline stages to the components and ports of a data
path, (a) a legal pipeline structure, (b) an illegal data path organization. 73

58 Meta-information associated internally with the or immediate instruc-
tion of the MIPS processor. 74

59 Behavioral model of the or immediate instruction. 75

60 Memory access summary for the MIPS load word instruction. 77

61 Branch behavior of two jump and a branch instruction of the MIPS
model. 78

62 Tree pattern matching using dynamic programming. 85

63 Register and the register class definitions of the MIPS model for
LLVM’s register allocator. 92

64 Example definition of the MIPS jump and link instruction for the
LLVM compiler infrastructure. 93

65 Default rules generated for register and immediate non-terminals. . . 99

66 Conversion rules derived from overlapping register ports and constant
registers. 100

LIST OF TABLES xii

67 Rule patterns derived from the load word and store word instructions
of the MIPS model. 100

68 Rule patterns derived from the jump and branch on zero instructions
of the MIPS processor. 101

69 Micro-operations of the or immediate instruction. 102

70 Tree patterns constructed from the micro-operations of MIPS’ or im-
mediate instruction. 103

71 Specialization applied to the original rule of the or immediate instruc-
tion. 104

72 Template to match the sign-extend operator. 104

73 Final instruction selection rule for the acc backend. 105

74 Final instruction selection rule for the LLVM backend. 106

75 Example specifications using dynamic checks. 107

76 Terminal splitting for a simple example supporting only 16-bit signed
and unsigned constants. 111

77 Block diagram of the MIPS processor model. 115

78 Performance improvements of the generated MIPS backend in com-
parison to the GCC compiler without optimizations. 118

79 Performance improvements of the generated MIPS backend in com-
parison to the GCC compiler with optimizations enabled. 118

80 Performance difference of the generated backend in comparison to GCC.121

81 Performance improvement of the generated CHILI backends in com-
parison to GCC. 122

82 Performance improvement of the generated CHILI backends in com-
parison to LLVM. 124

List of Tables

1 Built-in integer micro-operations available in xADL. 40

2 Categories to classify register instances. 43

3 Predefined register classes to specify register usage conventions. . . . 61

4 Addressing modes recognized by the memory provider. 76

5 Example tree grammar for instruction selection. 84

LIST OF TABLES xiii

6 Final machine code generated from a tree cover. 85

7 Operation table of the add unsigned instruction of the MIPS processor. 96

8 Statistics on the MIPS, SPEAR, and CHILI processor models. 114

9 Statistics on the MIPS, SPEAR, and CHILI instruction set models. . 116

10 Statistics on the ArchC MIPS R3000 and acesMIPS EXPRESSION
descriptions. 117

11 Size of the benchmark programs in source lines. 119

12 Statistics on the generated LLVM backends for the MIPS, SPEAR,
and CHILI processor models. 120

13 Code size and execution time results for the MIPS processor. 120

14 Code size and execution time results for the two-way parallel CHILI
configuration. 122

15 Code size and execution time results for the four-way parallel CHILI
configuration. 123

16 Code size and execution time results for the handcrafted LLVM com-
piler targeting the two-way parallel CHILI configuration. 124

17 Code size and execution time results for the handcrafted LLVM com-
piler targeting the four-way parallel CHILI configuration. 125

18 Properties of the normalized tree grammars before terminal splitting. 126

19 Number of rules in the tree grammars of the instruction selector and
the compiler’s IR after the application of chain rules and terminal
splitting. 127

1 Introduction

The domain of embedded systems showed a dramatic development during the last
years, and today belongs to the largest and fastest growing business in the software
and in particular in the semiconductor industry. Embedded systems are almost
omnipresent in everybody’s life, ranging from mobile phones and personal digital
assistants (PDAs), over digital media player for DVDs, blue-ray discs, and MP3s
to commodity appliances like refrigerators, coffee machines, and washing machines.
Even safety-relevant systems in medical devices, in the automotive industry, and
avionics rely on these embedded devices. It is thus not surprising that the field
of embedded systems contributes a fair amount to the total sales volume of the
semiconductor business, has grown to a driving force in research and innovation,
and has become a major field of today’s computer science. For example, the sales
of processors specialized in Digital Signal Processing (DSP) applications, already
exceeds 20% of the global semiconductor market since 2002 [120]. Even more, in the
year 2006 embedded DSP processors contributed more than 95% of the total volume
of processor units sold [120]. The number of general purpose server, workstation,
and laptop processors sold in comparison is negligible. Additionally, the market
for processors specialized for embedded systems is expected to grow faster than the
general purpose computing domain in the foreseeable future, making this field a
prominent candidate for future research and innovation.

Embedded processors face a wide range of requirements that differ greatly de-
pending on the particular application domain. The range of applications, however,
is very diverse, ranging from general computing tasks and computationally intense
multimedia processing in modern mobile phones to computationally less demanding
control tasks in the automotive sector that favor predictable and fail-safe behav-
ior over performance. Consequently, specialized processors for different application
domains evolved, which are particularly well suited for the functional requirements
as well as non-functional requirements, such as performance, power consumption,
predictability, robustness, and production costs. This specialization is supported by
the very nature of embedded systems: they are usually invisible to the end-user, i.e.,
the end-user is not aware of the computer system involved. The computer is thus
only part of a larger system and not in the center of attention. The purpose of the
embedded system is usually well-defined and limited in scope. It is thus possible to
derive streamlined and optimized solutions for a given task that reduce production
costs and increase efficiency.

The ultimate goal of an embedded system engineer is thus not to provide a general
computing system, but to derive a specialized system tailored to the functional
and non-functional requirements of the problem at hand. In order to achieve this
goal, engineers are very flexible in their use of new technologies that are quickly
adopted. For example, it is not unusual to change the processor implementations
and even vendors frequently during the development of product lines in order to
achieve the best efficiency and cost trade-offs. The problem of legacy software and

1

1 Introduction 2

Application

• Signal Processing
• Speech Processing
• Multimedia

Processor Model

• Accelerator
• Custom Processor
• ASIP

Modify Processor

Evaluate Application

Figure 1: The processor model, specified using a processor description language,
is iteratively modified during design space exploration in order to achieve the best
possible performance, power, and area trade-off for a given application.

binary compatibility appears in a relaxed form in embedded systems. The software
running on the system is in most cases controlled entirely by the manufacturer and
can easily be updated and replaced. Usually, guaranteeing tool compatibility, i.e.,
compatible tool chains of compiler, linker and assembler, is sufficient in order to
rebuild the software for a new platform from source code.

Because of this fast changing and highly competitive environment short devel-
opment cycles are a key to success. It is thus not surprising that the idea of hard-
ware/software co-design has been adopted early in this domain by researchers and
engineers alike. Hardware/software co-design is an approach to the development
of new systems that tries to achieve optimal results using a balanced mix of hard-
ware and software techniques. The development of the final hardware and software
components is tightly coupled and individual tasks are implemented either using
flexible software techniques or using efficient hardware solutions as needed. The
hardware platform is usually built using a combination of off-the-shelf hardware
blocks, customized processors, Application-Specific Instruction Processors (ASIPs),
and dedicated hardware accelerators. Very often all these components are integrated
on a single chip forming a System-on-Chip (SoC).

Especially, ASIPs are becoming more and more popular in embedded systems.
These processing elements are streamlined instruction processors that are particu-
larly well suited for a given target application. A set of special purpose primitives is
realized using dedicated instructions that improve the efficiency in terms of power
consumption and performance while minimizing silicon area requirements, and thus
production costs. At the same time these processing elements still provide enough
programmability to adopt the system to new requirements, work around software
and hardware bugs or simply update the software stack. However, the develop-
ment of ASIPs is a highly complex task, that requires intimate knowledge of the
application domain as well as hardware and architecture design. In many cases an
iterative design process called Design Space Exploration (DSE) is used to find an
optimal ASIP configuration for a set of typical algorithms of the target application.

1.1 Processor Description Languages 3

Different configurations are evaluated using a preliminary implementation of the al-
gorithms. During this process performance, power and other metrics of interest are
collected for each design alternative and stored in a database for later assessment.

Design space exploration opens a large variety of interesting research questions.
A major research question is how to minimize the number of design alternatives con-
sidered for evaluation in a virtually unbounded design space. Similarly, how can be
assured that the most relevant design points are captured during exploration. This
work, however, focuses on more fundamental problems, namely: (1) how can design
alternatives be modeled formally in a domain specific language, (2) how can the
required software tools for the exploration be derived from such a model. Processor
Description Languages (PDLs) are a promising approach to solve both problems.
These languages provide the required primitives to specify the instruction set of a
processor design and (semi-)automatically derive software development tools such
as compiler, assembler, linker, and instruction set simulator from a given processor
model. Figure 1 depicts an example workflow for the design of a new ASIP using
a processor description language. The designer iteratively extends and adopts the
processor model in order to reach the best possible solution. During each itera-
tion step, a series of simulation runs is performed to evaluate the modifications and
expose bottlenecks that have to be dealt with during the next iteration.

1.1 Processor Description Languages

In recent years, processor description languages have managed to evolve from being
sole research projects into products that are actively used and adopted successfully
by leading companies in order to develop and design highly specialized and tuned
architectures [76]. A processor model typically consists of several layers that include
information on the hardware organization, the instruction set, instruction semantics
and timing. Meta-information such as assembly syntax, Application Binary Interface
(ABI) conventions, etc., can be specified in most languages. Structuring the models,
for example by instruction classes, enables code reuse across different instructions
and leads to concise and compact models. Thus, adding new instructions or adopting
existing instructions is often only a matter of a few lines of code.

Processor description languages, sometimes also referred to as Architecture De-
scription Languages (ADLs), can roughly be categorized into three distinct
groups [131]:

1. Structural languages offer primitives that directly match abstractions typi-
cally found in Hardware Description Languages (HDLs). The processor model
thus closely resembles the structure of the actual hardware implementation.

2. Behavioral languages on the other hand primarily focus on the Instruction Set
Architecture (ISA), and typically provide some means to structure and order
instruction variants and meta-information such as assembly syntax, binary
encoding, and abstract instruction semantics.

1.1 Processor Description Languages 4

Compiler
• Abstract Instruction Semantics
• Limited Resource Model
• No Hardware Details

Simulator
• Detailed Instruction Behavior
• Detailed Resource Model
• No Hardware Details

Hardware

• Detailed Instruction Behavior
• Detailed Resource Model
• Detailed Hardware Organization

Figure 2: Most processor description languages were initially specialized to one
particular task, e.g., compiler generation, and were later extended to other tasks.

3. Mixed approaches finally combine the structural and behavioral view of the
processor and provide mechanisms to model both, the hardware structure and
the instruction set architecture. A mapping mechanism between the structural
and the behavioral description allows to relate information of the two models
to each other.

The information that is available in these processor specifications can be used to
(semi-)automatically generate software tools that are customized for the particular
processor. This includes standard development tools such as a compiler, an assem-
bler, a linker, and an instruction set simulator. However the models can also be used
to generate test cases for compiler and hardware verification, can serve as references
during hardware development, and can even be used to derive hardware models in
a general purpose hardware description language, such as VHDL or Verilog.

The various flavors of languages are usually geared towards a particular applica-
tion. Figure 2 presents three major application fields and the required information
that needs to be available within processor descriptions: (1) compiler generation, (2)
generation of instruction set simulators, and (3) hardware synthesis using a general
purpose HDL. Compiler generation requires an abstract model of the behavior of the
individual instructions in order to map the architecture-independent intermediate
representation of the compiler to machine code of the target processor. In addi-
tion, a resource model is needed to avoid hazards and ensure correct code. Detailed
information on the hardware structure is of less importance for the compiler, i.e.,
it is not important how the individual instructions are realized in hardware. The
situation changes when an instruction set simulation engine is to be generated from
a processor model. A detailed model of the instruction behavior is required, along
with a detailed resource model that is able to accurately capture all sorts of hazards,
stalls, delays, and instruction latencies. The hardware structure is only relevant if
the behavior of instructions is influenced, all other details are ignored for the sake

1.1 Processor Description Languages 5

of simulation efficiency. However, this changes when synthesizable hardware models
are to be extracted from processor descriptions. For this scenario not only detailed
knowledge of the instruction behavior is required, but also details on the timing, the
realization in hardware, and the interaction with other hardware components.

Behavioral languages typically support the generation of compiler backends and
related development tools, such as assemblers and linkers, very well, but lack in-
formation needed for accurate simulation and automatic generation of hardware
models. Structural languages are usually well suited for these low-level tasks, but
in turn lack abstract semantic models of instructions. Generating a compiler is thus
more complicated in these systems. To overcome such limitations, many systems
have gradually adopted features and ideas from the respective other style. Most con-
temporary languages thus follow the mixed approach that supports both low-level
and high-level applications equally well.

1.1.1 Behavioral Languages

Many languages that follow the behavioral approach originated from generalized
compiler backend specification languages. The specifications provide an abstract
model of the target processor and focus on the instruction set architecture rather
than on implementation details. Consequently, behavioral languages are well suited
for high-level tasks such as compiler generation or verification.

The behavior of each instruction is specified separately and annotated with addi-
tional properties. These properties usually include the assembly syntax, the binary
encoding, and the timing. The instruction specifications often contain redundant in-
formation, e.g., instructions that share the same or very similarly structured binary
encoding. Many behavioral languages thus allow the reuse of instruction specifica-
tions. For example, in nML [57] instructions are specified using a grammar. Deriva-
tions of this grammar represent the individual instructions of the target processor.
New instructions can be composed using AND-rules that combine several possible par-
tial instruction specifications, and OR-rules that can be used to enumerate variations
of an instruction.

Behavioral models do not specify the underlaying hardware organization or struc-
ture, except for an abstract model of the registers, memories, and caches. However,
constraints of the hardware implementation need to be considered for a faithful
model. Many languages thus provide a very basic resource model that is powerful
enough to express certain hardware constraints using symbolic resources, very much
like resource tables used during instruction scheduling in modern compilers [140].

In addition to the instruction specifications, meta-information on the program-
ming model, register usage and calling conventions, and the application binary in-
terface is provided. This information is particularly important when software devel-
opment tools are generated from a processor model in order to realize function calls
and enable interoperability with possibly existing third-party tools.

1.1 Processor Description Languages 6

1.1.2 Structural Languages

Structural processor description languages have their origins in hardware synthesis,
similar to the hardware description languages VHDL and Verilog. These languages
focus on a detailed model of the processor’s hardware structure and organization.
Structural processor models have several advantages that are attractive to processor
designers. The languages usually provide abstractions like modules or components
that have well-defined interfaces, and therefore, can be extended and exchanged eas-
ily. It is possible to develop libraries of components and combine them quickly to de-
scribe new processors or processor variants. This approach also resembles closely the
traditional design using hardware description languages and thus lowers the initial
effort to learn the concepts of a new specification language. In addition, structural
models have a close coupling between the behavior of an instruction and the un-
derlaying hardware components that implement that behavior. This is particularly
useful for idiosyncratic architectures, where details of the hardware implementation
are visible at the instruction set level.

On the downside, however, the instruction set of the processor is not specified
explicitly. Instead, the instruction set needs to be extracted from the data path
using static analysis techniques. The capabilities of this static analysis thus has a
large impact on the usability of the specifications and may restrain the scope of
the language. The hardware designers need to be well aware of the limitations and
restrictions of the analysis to achieve the desired results.

Even if the analysis is able to extract the instruction set of the processor, it
is often hard to determine the abstract behavior of the individual instructions. A
particular implementation of a processor may realize the behavior specified by the in-
struction set architecture in different ways. Because of the detailed structural model
these implementation peculiarities are visible to the tools processing the specifica-
tion. For example, an implementation may choose to use dynamic branch prediction.
The behavior of the branch predictor, its effect on the processor’s state, and the in-
teraction with all instructions that are possibly affected by the branch predication
has to be analyzed in order to determine the exact semantics of branch instructions.
Applications that require more abstract models of the instruction behavior are thus
generally hard to realize using structural languages.

Most of these problems can be avoided by careful design of the language and by
providing the right abstractions at the language level. Choosing the right level of
abstraction is, however, still an open research problem. Part of this work is thus
devoted to this issue.

1.1.3 Mixed Languages

Over time languages that followed either the behavioral or the structural approach
have started to gradually adopt ideas of languages following the other style. This

1.2 Application of Processor Description Languages 7

lead to a new category of mixed processor description languages. Instead of focusing
on one particular task most of these languages target a very broad spectrum of appli-
cations, ranging from high-level compiler generation to low-level hardware synthesis.
Languages of this category combine the abstract view of the processor’s instruction
set with a detailed structural view of the hardware implementation. Consequently,
the combined information allows the tools operating on the processor model to pick
the view that is best suited for its particular task. Most contemporary languages
follow this paradigm.

A major issue of mixed languages is the problem of redundancy. In order to
be useful, both views need to capture a huge amount of information on the target
processor, very often this information must be provided by the processor designer at
different abstraction levels for the instruction set view and the structural view. If one
view of the model is modified, the other view needs to be updated as well. Keeping
the specifications consistent is thus a major challenge during the development and
validation of a processor model. So far, tools that support automatic consistency
checks are missing.

1.1.4 Architecture Styles

Besides the specification paradigm, processor description languages can also be dif-
ferentiated by the range of processor architectures that are supported. It is almost
impossible to support all architectural styles and provide a generic platform that
can be used to model every possible programmable system. In the domain of em-
bedded systems relatively simple and efficient in-order pipelined processors are very
common due to area and power constraints. Almost all processor description lan-
guages thus limit their primary focus on this class of processor architectures, either
in the form of RISC or VLIW machines. The predominant architectural style in
the general purpose computing domain, superscalar out-of-order architectures, is in
turn not well supported.

1.2 Application of Processor Description Languages

As noted before, design space exploration is the main application scenario for proces-
sor description languages, i.e., the design of a new streamlined instruction processor
for a particular application or application domain. The required tools to perform
the exploration are (semi-)automatically derived from the processor model, includ-
ing the compiler, assembler, linker and simulation tools. However, the information
that is available in the processor models can be used in various ways independent
from design space exploration. Figure 3 depicts the most common application fields
targeted by many processor modeling frameworks.

1.2 Application of Processor Description Languages 8

Processor Model

Generator

Assembler/
Linker

SimulatorCompiler HDL Model Test Cases

Documentation Encoding

Figure 3: Software development tools, test cases and even hardware models in a
general purpose hardware description language can be derived from a processor
model.

1.2.1 Documentation and Design

The processor specifications capture a large amount of information on the internal
organization of the processor and its instruction set in a formal and concise way.
This model can easily be modified and extended and is well suited to communi-
cate designs and design alternatives between development teams and engineers, the
management, customers, and third-party vendors. In contrast to documentation in
natural language these specifications are compact, more precise, and enable prelim-
inary experiments in combination with the proper tools.

Some processor description languages even support the automatic generation of
the processor manual and the instruction set reference manual. The formal architec-
ture and instruction specifications are enriched with comments and documentation
in natural language that are later compiled into a user manual.

1.2.2 Verification and Validation

Related to the documentation and design of the processor is the verification and
validation of the processor model, the processor implementation in hardware, and
the accompanying software tools. During the product development cycle this phase is
usually the most tedious and costly one. It is well known that problems encountered
during an early phase of the product cycle are less costly to fix than in later phases.
Processor description languages are a valuable tool to derive test suites and micro-
benchmarks early during the design. Even the structural equivalence between the
processor model and hand-tuned HDL implementations of that processor can be
verified using formal methods. In addition, software development can begin early

1.2 Application of Processor Description Languages 9

on, because of the availability of suitable development tools that are generated from
the processor models. Consequently, problems can be spotted early and costs for
validation and verification can be reduced later on.

1.2.3 Assembler and Linker

The automatic generation of assembler, disassembler, and linker is supported by al-
most all processor description languages. Large portions of these tools are straight-
forward to generate once the assembly syntax and binary encoding of the individual
instructions is known. However, supporting more advanced features such as reloca-
tion of symbols during linking, position independent code and dynamic linking, and
debug information is considerable harder. The problem with these features usually
arise from interoperability issues with existing system libraries, firmware, and oper-
ating systems. Capturing the conventions expected by these systems in the formal
model of a processor description language is very hard and thus usually not well
supported.

1.2.4 Compiler

In comparison to other tasks, compiler generation is the most demanding applica-
tion of processor description languages. A large number of compiler components are
architecture-dependent and need to be customized for the target processor, most im-
portant are backend phases such as the register allocation, instruction scheduling,
and instruction selection. But also optimizations that are applied in the middle-
and frontend of a compiler are, to some degree, architecture-dependent. For exam-
ple, the data representation and data layout in C/C++ frontends are architecture-
dependent. Loop optimizations can be applied more efficiently when the optimiza-
tion is aware of the supported addressing modes and the cache/memory organization,
et cetera.

By far the most challenging task is the automatic generation of an optimizing
instruction selector. During instruction selection the architecture independent inter-
mediate representation of the compiler is translated to processor specific assembly
or machine code. This translation has to preserve the semantics of the original
program and should be efficient, i.e., the best possible instruction sequence should
be selected that minimizes code size, execution time, and power consumption. The
biggest obstacles are caused by limitations of the instruction set. The intermediate
representation of the compiler is very general and is required to support all language
features, in particular all arithmetic operations and addressing operations. Not all
of these constructs can be implemented using a single instruction of the target pro-
cessor. The behavior of constructs that can not be represented need to be emulated,
or otherwise cause the compiler to fail during code generation. This emulation can
be as simple as a sequence of instructions, but may also involve function calls to
complex library routines, e.g., in the case of floating point operations. A second

1.2 Application of Processor Description Languages 10

problem that arises frequently are restrictions in the use of registers. If, during the
computation of an expression a value is stored into a register, the instruction selector
is required to ensure that all subsequent operations are able to retrieve this value.
In particular in the case of application-specific instruction processors this kind of
restrictions are very common.

1.2.5 Instruction Set Simulator

A key component of all processor description and exploration systems is an accurate
instruction set simulator that is capable to collect detailed statistics on the proces-
sor’s behavior at runtime. In addition, simulation tools are valuable during software
development for early prototyping as well as testing and debugging purposes. In
both cases simulation speed is of utmost importance for the simulator to be actively
used and accepted by the end users. Improving the simulation speed has thus been
researched heavily in the past. Facing the rapid development of multi-core systems
and complex systems-on-chip, efficient simulation tools can be expected to be a hot
research topic for some time to come.

Simulators derived from processor models usually focus on the efficient simu-
lation of a single processor core using interpretation as well as static and dynamic
compilation techniques. These techniques are particularly useful for relatively deter-
ministic in-order pipelined architectures, but fail to deliver the required performance
in the presence of dynamic scheduling and speculative execution.

1.2.6 Hardware Synthesis

Deriving hardware models is another challenging problem. The majority of systems
is able to derive some form of VHDL or Verilog specification from a processor model
that can then further be processed by synthesis tools or serve as a reference design
for the handcrafted processor implementation.

Although VHDL and Verilog are in principle independent from the target tech-
nology many low-level constructs need to be expressed using vendor specific patterns
and libraries to achieve optimal results. This applies to designs targeting Field Pro-
grammable Gate Arrays (FPGAs) and silicon processes alike. In particular in the
case of behavioral languages the designer has very little control over the final hard-
ware implementation. It is thus very hard to fine-tune the generated hardware model
to improve chip area, clock frequency, and power consumption.

1.2.7 Encoding Optimization

Defining and maintaining the specification of binary encoding of individual instruc-
tions is error prone and tedious, in particular during the early design phase when the

1.3 Retargetable Compilation 11

(a) frontend (b) middleend

(c) backend

C Source

C++ Source

Parser
Intermediate

Representation
Optimizer

Code
Generator

Machine
IR

OptimizerEmitterMachine Code

Figure 4: Structure of a compiler consisting of (a) a frontend, (b) an optimizing
middleend, and (c) an architecture-dependent backend.

processor specification changes frequently. In many cases a very basic instruction
encoding is sufficient for an initial performance evaluation using simulation. Some
languages thus allow the encoding to be omitted and automatically derive a suit-
able instruction encoding. The designer may then choose to optimize this encoding
manually or proceed with the tool-generated encoding. Some systems can even help
to find an optimal encoding using execution profiles and static program statistics.
These statistics are combined with the requirements of the individual instructions,
i.e., the bits required to encode the instruction operands, and predefined constraints
from the designer in order to minimize code size or reduce the complexity and power
consumption of the instruction decoder in hardware.

1.3 Retargetable Compilation

A major application of processor description languages is the automatic or semi-
automatic customization of a compiler. A compiler is a software program that trans-
lates a source program that is usually specified using a high-level language such as
C or C++ to another target language [3, 140]. Typically the target language is ma-
chine code that can be processed efficiently by the processor of a computer system.
Alternatively, the target language could be a byte-code representation of a virtual
machine, such as the Java Virtual Machine, or, in the case of source-to-source trans-
lators, another high-level language. The translation usually involves some form of
transformation or optimization intended to speed up the execution of the source

1.3 Retargetable Compilation 12

IR Machine IR Machine IR Machine IR Machine IR

Instruction
Selector

Instruction
Scheduling

Register
Allocation

Instruction
Scheduling

Figure 5: The three major phases of a compiler backend, instruction selection, in-
struction scheduling, and register allocation.

program on the target platform, reduce the static and/or dynamic memory require-
ments, or improve other metrics of interest. A compiler consists of three major
components: (1) a frontend that reads and parses the source program and generates
a generic representation of the program, (2) a largely target and source language
independent middleend that transforms and optimizes the intermediate representa-
tion, and (3) a highly target-dependent backend that generates the final machine
code. Most compilers follow this organization, possibly with slight variations, that
is further detailed in Figure 4.

A special class of compilers are the so-called retargetable compilers. These sys-
tems are special in that the target-dependent components of the backend are very
flexible and can quickly be adopted to a new instruction set or processor implemen-
tation. In the simplest form these target-dependent components are encapsulated
in modules that are adopted manually to the new architecture. Some compilers
come with specialized backend specification languages to simplify the retargeting.
However, these specifications are typically tailored to the particular algorithms im-
plemented within the compiler and, in particular, do not capture all implementation
details of the processor. Instead, the backend specification is restricted to a very ab-
stract model of the instruction set and the processor implementation that provides
just enough information to guarantee an efficient and correct translation. If certain
constraints of the processor can not be captured by the specification language, it is
often necessary to manually extend or replace central components of the backend.
Processor description languages show some similarities to these languages, but are
typically more powerful and cover the processor design in more detail.

The backend is the central component of a retargetable compiler.1 Most of the
transformations and optimizations require knowledge about the target processor and
thus need to be customized properly. Most modern compiler backends have a very
similar organization, depicted in Figure 5. The instruction selector is one of the first

1For some high-level languages the front- and middleend may also be architecture-dependent.

1.4 Scope and Contributions 13

architecture-dependent translation steps. During this phase the intermediate repre-
sentation of the compiler is transformed into a new representation that is very close
to the actual machine instructions of the target processor. The main difference be-
tween this program representation and the final machine code are two-fold. For one,
initially an infinite set of virtual registers represents local variables instead of actual
registers that are available in the hardware. The register allocation phase later on
calculates an assignment of the local variables to hardware registers and temporary
memory locations and eliminates the virtual registers. Secondly, instructions with
constant operands that are not yet fixed or memory operations that do not yet have
a final addressing mode are represented by generic pseudo instructions. The pseudo
instructions are replaced by concrete instructions once these values are known. The
basic idea in both cases is to avoid premature assignment decisions. Another im-
portant backend phase is instruction scheduling. This phase is often applied twice
once before register allocation, often referred to as prepass scheduling, and again
after the assignment of local variables to hardware registers, usually referred to as
postpass scheduling. The scheduling algorithm searches for an optimal ordering of
the machine instructions in order to minimize the execution time of the program and
optimally utilize the available hardware resources. In between the pre- and post-
pass scheduling phases the third backend phase is performed, the register allocation.
Here, virtual registers are eliminated and replaced by hardware registers. If the
number of hardware registers is not sufficient to hold all currently live values, spill
code is generated. Occupied registers are disposed by storing the value currently held
in the particular register to a temporary memory location. Corresponding memory
load operations ensure that the proper value is available for later uses of the register.
These additional store and restore operations may cause considerable overhead and
thus need to be minimized.

The quality of the final machine code highly depends on the interaction between
all three translation steps. This leads to phase-ordering issues, i.e., suboptimal re-
sults caused by an unfavorable interaction due to a bad ordering in which the phases
are applied. For example, during instruction scheduling the resource utilization is
maximized by exploiting the available parallelism in the program. Unfortunately,
this adversely interacts with register allocation, because more data needs to be avail-
able in registers.

1.4 Scope and Contributions

This work presents a novel processor description language called xADL that is based
on the generic markup language XML. xADL targets a wide range of application-
specific instruction processors including RISC, CISC, and VLIW class architectures.
General superscalar processor implementations with dynamic scheduling are not
supported, however, in-order issue architectures with out-of-order execution and
out-of-order completion can be modeled.

1.4 Scope and Contributions 14

xADL processor models primarily focus on the hardware organization, the lan-
guage thus can be classified as a structural processor description language. In con-
trast to most traditional structural approaches, our language is intended to be appli-
cable for all major application fields of classical processor description languages. In
particular, good support for the automatic generation of software development tools
such as the compiler, linker, and assembler was a primary design objective. But
also the rather low-level tasks including simulator generation and hardware synthe-
sis were considered as possible applications for our language. The main principles
during the design of the language features were:

• Flexibility The xADL language was designed for a wide range of applications
and architectures. This includes high-level and low-level tool generation, hard-
ware modeling, as well as validation and verification tasks for a wide range of
RISC, CISC, and VLIW processors.

• Compactness Short and readable specifications are easier to understand,
maintain, and extend. It is thus important to provide powerful mechanisms
to describe a possibly large number of instruction variants, the corresponding
semantics and the hardware structure in a compact but still intuitive form.
Redundant information should be avoided as much as possible.

• Reusability Processor designs are very often available in several variations
that are largely compatible to each other but provide differing levels of perfor-
mance, power, area, and cost trade-offs. xADL thus provides features to reuse
and extend existing models, develop processor templates that can easily be
adopted and modified, and build libraries of individual processor components.

• Abstractions Providing the right abstractions to the processor designer po-
tentially simplifies the development and maintenance of processor models. In
addition, these abstractions can radically simplify the tools that process the
architecture models and thus improve the quality of all derived artifacts.

xADL specifications are comprised of four different sections: (1) the configuration
section declares architecture parameters like the number of registers and functional
units or the bit-width of the data path, (2) templates for assembly syntax, binary
encoding, and ABI conventions are described in the meta-information section, (3)
reusable blueprints of hardware components can be specified using types, (4) in-
stances of the previously defined component types are finally interconnected to form
the data path of the processor. The specification thus describes an abstract model
of the processor’s hardware organization. Individual instructions are not declared
explicitly in our language, but instead are extracted from this structural model.
The instruction set extraction follows very few simple rules and can efficiently be
controlled by the processor designer. The resulting view of the instruction set is
tightly coupled with the original structural model and provides both, an abstract
notion of the instruction behavior and detailed information on how this behavior is

1.4 Scope and Contributions 15

implemented in hardware. The combined information from both views allows a very
flexible use of our language for low-level and high-level application scenarios.

In contrast to most contemporary processor description languages, we decided
to follow the structural approach. Architecture designers often communicate their
ideas using block diagrams and drawings of the hardware components and their
interaction. Structural languages are conceptually very close to this approach and
thus simplify the quick evaluation of ideas. However, structural languages also have
drawbacks. Most notably these languages are not well suited for most high-level
tasks such as compiler generation. The key principles during the design of the xADL
language thus were the provision of proper abstractions and simplifications that ease
the development of the processor models themselves and at the same time benefit
the implementation of the software tools that process xADL models. The main
contribution of this work can be summarized as follows:

• Component-based Modeling The processor description is composed from
reusable components based on types. The user can build libraries from these
types and can adopt and extend them for new designs using inheritance and
generics, similar to classes and templates in C++.

• Flexible Templates Other parts of the specifications can also be reused
across processor models. For example, templates that specify skeletons for the
instruction encoding and syntax can be shared and reused. The instruction
encoding specifications are very flexible and allow the modeling of various
encoding styles, including variable-length and distributed variants.

• Abstractions Structural specifications usually describe the behavior of the
individual hardware components in great detail. It is almost impossible to rec-
ognize common patterns for bypassing and forwarding as well as pipeline con-
trol. Our language provides abstractions to simplify the modeling of bypasses,
pipelines, pipeline registers, and explicit communication between instructions
for pipeline control.

• Instruction Set Extraction The instruction set of the processor is not spec-
ified explicitly, but is extracted from the structural specification using very
simple rules. The instruction extraction can be controlled by the designer.

• Single Specification The instruction set extraction provides a behavioral
view of the processor. Redundant specifications of the instruction behavior
for simulation, synthesis, and compilation can thus be avoided. Only a single
semantic specification of the instruction behavior is required.

• Backend Generation Highly optimizing backends for the open source com-
piler infrastructure LLVM and a proprietary compiler can be derived from
xADL processor models. The derived compilers generate high-quality code
that matches the performance of code generated by handcrafted compilers.

1.4 Scope and Contributions 16

Speedups of up to 20% have been observed for individual benchmarks, on
average a performance degradation of only 3%-15% has been measured.

• Compiler Completeness An important feedback for architecture designers
is the completeness of the derived compiler, i.e., if the compiler is able to
translate all valid programs accepted by the compiler frontend. A formal
completeness test is presented that proves this property automatically. If our
system is not able to guarantee completeness, counter examples are generated
that guide architecture designer to improve the coverage or provide emulation
routines for certain operations.

• Generator backends The feasibility of our approach has been demonstrated
successfully by various other generator backends that allow high-quality sim-
ulation and development tools as well as hardware models to be derived from
processor models.

The remainder of this work is organized as follows. First an overview of related
work is given in Chapter 2, followed by a detailed description of the abstractions and
language features of the novel xADL processor description language in Chapter 3.
The design and implementation of the adlgen tool that reads and processes the
architecture models is given in Chapter 4. Chapter 5 covers the compiler backend
generator, and presents the background for a formal completeness test for instruction
selector specifications derived from processor models. Experimental results that
compare the code quality achieved by the derived compilers to handcrafted compilers
are discussed in Chapter 6. The conclusion in Chapter 7 summarizes the insights
that we gained during the course of this work and highlights some issues that we
plan to tackle in future work.

2 Related Work

Processor descriptions languages enable the development of concise processor mod-
els, allow software development tools to be derived, and can help to solve the verifi-
cation and validation problem during the design of new processors or ASIPs. Con-
sequently, these languages are very attractive for researchers and the semiconductor
industry alike. This chapter provides a short overview of processor description lan-
guages that have been in use or are currently used by both communities. Two
languages are studied in detail: (1) the structural language MIMOLA [123, 124] and
(2) the mixed approach followed by EXPRESSION [78, 88].

One of the most influential languages in the context of processor description is
nML [67, 57]. Originally, nML was designed for processor simulation [121], but was
later considerably extended. The nML language is today developed and maintained
by Target Compiler Technologies,2 a company specialized in the design of ASIPs
and the automatic generation of software tools for these processors. The processor
is modeled using a behavioral description of the instruction set. The specification
can be structured using an attributed grammar [106, 107] in order to reuse common
information among individual instructions or instruction groups. New instructions
are specified using either AND-rules or OR-rules. AND-rules combine information
provided by independent rules, while OR-rules allow to compactly enumerate in-
struction variants. The attributes of the grammar specify the instruction behavior,
the assembly syntax, and the binary encoding. Other languages, such as ISDL [91]
and MADL [158] have adopted the idea of grammars for the compact specification
of instruction sets. In its latest form, nML [131] also includes a basic skeleton that
defines the internal organization of the processor hardware. This skeleton provides
information on hardware resources like register files, memories, caches, and func-
tional units. Computations in the behavioral instruction specifications can refer to
these resources, i.e., the computation is logically performed by the particular hard-
ware resource. The language was also extended to model pipelining and provides
nice abstractions for hazard resolution, stalling, and bypassing. nML is bundled with
a retargetable C compiler Chess and a retargetable instruction set simulator Check-
ers. Further, hardware models in VHDL or Verilog can be derived using the HDL
generator Go, along with assembly-level test cases generated by the test-program
generator Risk. In particular the early work on retargetable compilation using Chess
is well described [114, 56, 181, 182]. Programs that are compiled using Chess are
represented using a Control/Data-Flow Graph (CDFG) [113]. Operations of the
CDFG are matched with nodes of the instruction set graph (ISG), a representation
of the target processor’s instructions and storage elements [183, 182]. Instruction se-
lection, register allocation, and instruction scheduling are performed on the CDFG
representation. nML and its accompanying tools have successfully been used for
designing ASIPs in the audio, video, and signal processing domain [167, 168, 184].

2http://www.retarget.com/

17

http://www.retarget.com/

2 Related Work 18

An equally mature framework has been developed for the LISA language [185,
94, 149] that has initially been developed for efficient processor simulation at RWTH
Aachen, and has successfully been commercialized by the spin-off LISATek GmbH,
which was later acquired by Coware. LISA has been adopted and extended by sev-
eral other research institutions and companies [175, 154]. Instructions are composed
of so-called operations that provide information on the behavior, the assembly syn-
tax, and the binary encoding. Individual operations can be shared among different
instructions and instruction variants in order to reduce the size of the processor
model. The instruction behavior is described using C, C++ or SystemC. Choosing
the right subset of these languages has great impact on the LISA platform tools,
e.g., only a subset of SystemC can actually be synthesized to hardware. In any case,
the use of these languages prohibits some high-level applications such as compiler
generation. Ceng thus proposed an additional section to model the abstract behav-
ior of instructions that can be used for the automatic generation of a compiler [31].
The LISA language supports a wide range of applications, including compiler gener-
ation [31, 186], customization of compiler optimizations [96, 97], efficient simulation
using interpretation, compilation [148, 141], and partial native execution [68], in-
struction encoding optimization [142], hardware synthesis [170] as well as validation
and verification [33].

An interesting approach has been proposed by Qin [155] for the MESCAL Archi-
tecture Description Language (MADL). The language adopts the idea of grammars
found in nML for instruction specification and is based on Operation State Machines
(OSM) to formally specify the execution of instructions. An OSM – basically an
extended state machine – is assigned to every instruction, modeling its execution
phases and resource allocation. On state transitions resources needed for the next
execution phase are allocated and resources that are not required anymore are dis-
posed. The resources are managed using tokens that are controlled by user-defined
token managers. The token managers are specified outside the formal model of the
language, e.g., using C/C++ for cycle-accurate simulation, and are not analyzable
for the tools processing these specifications. Besides the core layer that specifies the
OSMs as well as the instruction behavior, syntax, and encoding, the language pro-
vides an additional annotation layer. Annotations are used to express the missing
information in an application-specific form, e.g., the resource model for instruction
scheduling in the compiler requires additional annotations. The MADL system sup-
ports functional and cycle-accurate instruction set simulation [157, 156, 158] and
partial generation of a compiler backend, including reservation tables for instruction
scheduling and register specifications for register allocation [158].

The BUILDABONG framework [177, 59] is also based on a formal specification
of the execution of instructions using Abstract State Machines (ASMs) [79]. Based
on XASM specifications [177] of the target processor compilation and simulation
tools can be extracted. Later, an XML-based Machine Markup Language (MAML)
was added to model the hardware structure as well as the instruction behavior and
timing. The behavior is specified in C, the user thus has to supply additional in-
formation for the code generator during compiler generation. MAML [112] provides

2 Related Work 19

a rich set of interconnect primitives that can be used to model complex on-chip
communication networks and processor arrays.

Akaboshi et al. present the COACH processor modeling system [6]. A register
transfer model of the processor can be specified using the UDL/I hardware descrip-
tion language [102, 98]. A behavioral view of the instruction set is then extracted
from this specification [7], and further used to retarget a compiler [5, 178, 4] and a
fast instruction set simulator [4]. UDL/I can be classified as a hardware description
language rather than a processor description language, the COACH system is thus
restricted to a subset of the language.

Various other processor description languages have been proposed in the liter-
ature that are very often targeting a single specific purpose. The FAST/ADL++
framework [131] is based on the UPFAST system [144] and targets the efficient
simulation and modeling of complex instruction set processors such as IA-32 [18].
ArchC [166, 12] is a processor description language based on SystemC. It supports
compiled simulation [17] and the automatic retargeting of the GNU Binutils3 [16, 15].
ArchC models seamlessly integrate with external SystemC models via transaction-
level modeling [70]. ISDL [85] also relies on grammars to specify the instruction set
of a processor. The language can be used to retarget the AVIV compiler [86, 91], for
processor simulation and hardware generation [87, 84]. The HMDES [81] language
is an extended machine description language for the IMPACT, Elcore, and Trimaran
compiler infrastructures. The assembly-level analysis and optimization framework
PROPAN [104] relies on processor models specified using the Target Description
Language (TDL) [105, 103]. The language is intended to capture properties of non-
orthogonal architectures and derive constraints for aggressive code optimizations.
The Computer System Description Language (CSDL) language [159] used by the
Zephyr compiler [8] consists of three largely independent specifications: (1) CCL
descriptions of procedure calling conventions [13], (2) SLED, a specification of in-
struction encodings [160], and (3) λ-RTL, a behavioral model of the instruction set.
The combined information of these descriptions can be used to retarget the portable
optimizer VPO [42]. Engel et al. present a processor description language [50] that
allows the automatic customization of an assembler and simulator. It uses the C
programming language to specify the instruction behavior and is thus limited to
simulation. Moss and Walters propose several languages [139, 138, 188, 187] tar-
geting the partial generation of a compiler as well as instruction set simulators.
The languages adopt ideas from the Java programming language to structure the
instruction set definition using classes.

Other systems are limited to model only variants of processors or add instruction
set extensions to an existing configurable processor core. The TIE language [189] by
Tensilica Inc., is a good example of such a system. The Xtensa [74] core is a config-
urable core that can be extended by additional registers, memories, I/O interfaces,
and instructions. The structure of the base architecture limits the freedom of these
extensions. Multi-cycle instructions, for example, can be modeled but are restricted

3 http://www.gnu.org/software/binutils/

http://www.gnu.org/software/binutils/

2.1 MIMOLA - A Structural Language 20

by the existing pipeline structure. The instruction extensions can only be used via
intrinsic functions, i.e., the compiler does not consider these extensions for instruc-
tion selection automatically. The TCE [101] framework, developed at the Tampere
University of Technology, is similarly specialized. It allows the customization of
processor templates following the Transport Triggered Architecture (TTA) [39] ap-
proach. A TTA processor is described using a set of configuration and definition
files that can be used to customize a simulator, a compiler, and synthesize hard-
ware [101]. Another configurable architecture is the xDSPCore [109, 145]. Initially
the processor’s register file, memory interface, instruction buffer, pipeline organiza-
tion and instruction set was configured using a simple configuration file. Later, a
more powerful processor description language was designed that captures the com-
plete processor and can be used to generate a compiling or interpreting simulator [54]
and a compiler [55]. In addition, fragments of the processor reference manual can be
embedded into the description. The accompanying tools rely on separate sections for
every application scenario, the specified information is thus highly redundant and
leads to large processor models. The language was successfully adopted by Catena,4

a company specialized in the development of integrated circuits.

Other languages that are intended to model processors in some form can be found
in simulation environments [179, 180, 10, 11, 137, 171] and compilers [63, 49, 38, 115].
A recent book by Prabath Mishra and Nikil Dutt provides an excellent introduction
to processor description languages and their applications [131]. The book also covers
most of the languages and systems presented here in more detail.

2.1 MIMOLA - A Structural Language

The MIMOLA language [123, 124] and its software systems (MSS) is one of the few
well known structural processor description languages. It originated from architec-
ture synthesis and microprogramming of the synthesized hardware blocks. Several
generations of hardware synthesis tools [124, 126], compilers [125, 143, 127, 119, 128],
and test program generators [110, 111, 20, 19] have been developed within the MSS.
MIMOLA has been primarily designed for synthesis, however, the language seman-
tics are also precisely defined for simulation. Later work even investigated the use of
interpretation and compiled simulation [117] based on an instruction set abstraction
that has been extracted from the processor model [129, 118]. The language and
MSS tools are examined in detail in the following for two reasons: (1) the structural
specification style is close to the approach considered in this work, (2) the idea of in-
struction set extraction [129, 118] developed for MIMOLA is adopted and simplified
in this work.

The MIMOLA system offers two usage scenarios: (1) high-level architecture
synthesis, and (2) retargetable compilation. For the first scenario, depicted in Fig-
ure 6(a), a hardware structure is synthesized from a user-supplied program. The

4http://www.catena.nl/

http://www.catena.nl/

2.1 MIMOLA - A Structural Language 21

Program Components Linkage

Architecture
Synthesis

Hardware Structure

(a)

Program Structure Linkage

Retargetable
Compiler

Micro-/Machine Code

(b)

Figure 6: Two application scenarios for the MIMOLA system: (a) high-level archi-
tecture synthesis, (b) retargetable compilation.

program is specified in a PASCAL-like notation that is enriched with a definition of
the available hardware components and hints that link the program to these hard-
ware structures. It is important to note that both the linkage and the component
specifications are possibly incomplete, i.e., not all expressions of the program are
linked to a hardware component, and the interconnect between the hardware com-
ponents is not yet fully specified. During synthesis a complete hardware structure is
derived. In the general case the automatically derived hardware configuration is not
optimal, the architecture designer thus can improve the derived hardware structure
manually.

When an optimal architecture configuration has been found, the second usage
scenario retargetable compilation depicted in Figure 6(b) is performed. The user-
supplied program is mapped to the hardware structure such that at runtime the
hardware implements the behavior specified by that program, i.e., the program is
translated to micro- or machine code that can be executed by the given proces-
sor. The linkage information is again optional and is not required to be complete.
However, the hardware structure is required to be complete. In contrast to most
contemporary processor description languages, MIMOLA does not include any meta-
information such as assembly syntax, instruction encoding, or calling conventions,
it purely covers the hardware organization.

2.1.1 Program Specification

The specification of the program is an integral part of the MIMOLA language. The
syntax of this specification is oriented towards the PASCAL programming language.
The type system is simplified and basically consists of bit-vectors only. Specialized
operators for data conversion and signed/unsigned arithmetic are provided. In ad-
dition, the parbegin and parend constructs for the explicit parallel evaluation of

2.1 MIMOLA - A Structural Language 22

program sum ;
type word = (1 5 : 0) ; (∗ d e c l a r a t i on o f a 16− b i t type ∗)
var a : word at REG [4] ; (∗ map ’a ’ to a hardware element ∗)
var b : word ;

begin
a := 5 ; b := 0 ;
repeat

(∗ e x p l i c i t p a r a l l e l e v a l ua t i on ∗)
parbegin a := a − 1 ; b := b + a ; parend ;

until a = 0 ;
end ;

Figure 7: An example program definition in MIMOLA.

statements are available. Figure 7 depicts a simple example program definition.

2.1.2 Structure Declaration

The hardware resources that eventually will implement the program behavior are
(partially) specified in the structure section using modules. Modules are templates
for basic hardware blocks that explicitly specify a set of data and control ports.
Each port is associated with one of the following modes: (1) in for input data, (2)
out for output data, as well as (3) inout for bi-directional data signals. In addition,
special purpose modes for control signals fct, address signals adr, and the clock
clk are provided. The behavior of the module is specified through exported opera-
tions that are globally visible, but restricted in their structure, and locally visible
procedures that are specified similar to the program behavior. Only the exported
operations are considered during hardware synthesis and compilation to extract the
control signals that trigger the desired behavior of the module. A module specifying
combinatorial logic that does not require a clock is shown in Figure 8. The defini-
tion of clocked structures is similarly easy via the at keyword. MIMOLA does not
provide abstraction to specify common constructs, such as registers and memories,
and thus adopts a naming convention to recognize these specialized elements. Sim-
ilarly, register bypasses, pipelining, and the instruction decoder need to be specified
manually. MIMOLA does not provide abstractions for these constructs, which leads
to complex models and further complicates the development of software tools that
operate on the processor descriptions.

Instances of modules are finally declared in the parts section and connected to
form a data path using the connections section. These specifications are optional
and can be automatically completed using architecture synthesis. However, it is
also possible to specify a complete data path and thus entirely control the hardware
implementation.

2.1 MIMOLA - A Structural Language 23

module ALU(in a , b : word ; fct s : (2 : 0) ; out c : (1 5 : 0) , out d : word) ;
behavior is
conbegin

c <− case s of (∗ s e l e c t an opera t ion ∗)
0 : 0 ;
2 : a − b ; (∗ a r i t hme t i c opera t i ons ∗)
3 : a + b ;
7 : a "XOR" b ; (∗ l o g i c a l opera t i ons ∗)

end ;
d <− a "AND" b ;

conend ;

Figure 8: An example module specification in MIMOLA.

2.1.3 Compiler Generation

A rich software framework was developed around the MIMOLA language, including
several generations of synthesis tools, code generation algorithms, and test program
generators. For the sake of brevity only the latest generation of the code generation
tools, based on the RECORD compiler [119], will be described here. All previ-
ous code generation tools in MSS were based on pattern matching between graph
and/or tree representations of the program behavior and the computational and
storage resources available in the hardware [125, 143, 127]. These approaches are
complex and computationally intensive and thus cannot be applied to large program
specifications.

Leupers proposed to analyze the hardware structure off-line in order to obtain a
model of the processor’s instruction set [129, 118]. This abstract model allows the
use of more efficient traditional code generation strategies, for example, tree pattern
matching [49, 65, 64] during the instruction selection phase. The instruction set
extraction is based on a graph representation of the hardware structure, i.e., the
module instances and the connections between them. First the local behavior of
modules is analyzed separately. Each assignment within a module is annotated with
a triple that represents (1) the destination of the assignment, (2) an expression,
and (3) a condition. The assignment to variable d in Figure 8 is annotated with
the expression a “AND” b and a condition true that is always fulfilled, i.e., the
assignment is unconditional. The assignments to variable c are in turn associated
with the individual expressions on the right side of the case statement and associated
with corresponding conditions that are derived from the corresponding case labels,
e.g., the triple (c, a + b, s = 3) would be derived. Other conditionals such as if

statements are processed similarly. The conditions are represented using Binary
Decision Trees (BDDs) to accurately and efficiently express bit-level constraints.
Leupers distinguishes between four sources of conditions:

2.1 MIMOLA - A Structural Language 24

1. I-conditions refer to individual bits of the current instruction word.

2. M-conditions originate from certain machine states, e.g., the contents of
registers or memory cells.

3. D-conditions are the result of dynamically computed expressions, e.g., com-
parison instructions or conditional branches.

4. P-conditions are temporary conditions that appear during the local analysis
of the behavior of a single module, if the condition depends on one of the
module’s input ports. These conditions are later eliminated and replaced by
either I-, M-, or D-conditions.

Second, µ-operations, i.e., instructions, are composed from these local assignments
such that each µ-operation consists of an assignment that has the following prop-
erties: (1) the destination is a register, memory cell, or external output, (2) the
arguments to the expression of the assignment only consist of registers, storage
cells, external inputs, or constants, and (3) the conditions attached to the assign-
ment only consist of I-, M-, and D-conditions. The local assignments computed for
each module are expanded according to the connections specified in the structural
section of the processor model. This expansion is applied to both conditions and
expressions by recursively traversing the data path.

The instructions and their associated expressions that have been computed dur-
ing instruction set extraction are further processed to customize the retargetable
compiler RECORD. A major component of the compiler is the instruction selection
phase that maps the target independent program representation of the compiler
to processor specific instructions. The RECORD compiler relies on tree pattern
matching based on tree grammars to perform this task [119]. A cost-optimal cover
of the program’s intermediate representation is calculated using a derivation of the
tree grammar. A tree rule in the grammar consists of a pattern, a cost function,
and an emit function. If a rule appears in the derivation of a given program the
emit function is invoked and a corresponding machine representation is generated.
The expressions associated with the µ-operation calculated during instruction set
extraction can directly be converted to corresponding tree rules. The pattern is con-
structed from the operators, constants, registers, and memory cells of the expression
using a simple mapping. Instruction set extraction only considers single-cycle µ-
operations, the cost function thus always returns the constant value one. Deriving
the emit function is more complex because various constraints are encoded within
the conditions of a µ-operation. The emit function has to ensure that all condi-
tions are satisfied in order to achieve the desired behavior of the instruction. The
complexity of the problem arises primarily from M-conditions, because the compiler
has to ensure that all referenced registers and memory cells are properly initialized.
In addition to the tree rules derived directly from the instruction set of the target
processor, specialized start and stop rules are added to ensure the correct matching

2.2 EXPRESSION - A Mixed Language 25

of register uses and assignments, these rules are associated with a constant cost
function returning zero.

The idea of instruction set extraction and the subsequent simplifications of the
compiler generator based on this technique are important contributions. However,
the MIMOLA language was not designed for these techniques and thus lacks ab-
stractions to simplify the processor modeling and extraction processes. Designers
often implement a processor model incrementally, instruction by instruction. The
algorithm for instruction set extraction in MIMOLA is too complex and hard to
follow and thus impedes this intuitive approach. This is particularly true, if the
algorithm fails to find the instructions that were specified by the designer. This
unexpected behavior can easily lead to an unsatisfactory experience. The granular-
ity of the extraction process is another problem. The algorithm extracts execution
variants of instructions rather than instructions as such. Different µ-operations are
extracted for equivalent operations that are logically a single instruction. For par-
allel architectures such as VLIW processors this can lead to considerable overhead.
The algorithm is further restricted to instructions with a single output operand and
a constant execution time of one cycle.

2.2 EXPRESSION - A Mixed Language

The EXPRESSION language [78, 88] is a typical mixed processor description lan-
guage, i.e., a processor model consists of several views that capture the instruc-
tion set and hardware structure separately. Similar to MIMOLA, a rich set of
generator and verification tools have been built based on EXPRESSION. Among
them the retargetable compiler EXPRESS [89] and related code generation tech-
niques [77, 174, 146], a retargetable simulation engine [163, 161, 162, 164], and a
framework for compiler and processor verification and validation [133, 130, 132].
In addition, specialized tools for design space exploration are provided to explore
restricted bypassing in pipelined processors [173], memory organizations [135], and
system-on-chip configurations [136]. Synthesizable hardware models can also be
generated from processor specifications [134].

The EXPRESSION system is based on the observation that a well-tuned hard-
ware implementation alone is not enough to obtain optimal results. The compiler
is equally important and plays a central role during design space exploration. The
language thus was designed with strong support for the automatic customization
of the compiler for the given processor model. The importance of the compiler is
further emphasized by the term Compiler-In-the-Loop (CIL) that was coined by the
researchers involved in the project [172].

Processor models in EXPRESSION consist of three major parts: (1) the behav-
ioral instruction set specification, (2) a structural view of the processor, and (3) a
specification of translation rules for the compiler. The integration of a dedicated
compiler specification gives great flexibility to the architecture designer, however, it
also burdens the engineer with the complexities of the compiler implementation.

2.2 EXPRESSION - A Mixed Language 26

(op_group ALUUnitOps
(opcode xor

(operands (SOURCE 1 in t any) (SOURCE 2 in t any) (DEST in t any))
(behavior "DEST = SOURCE_1 XOR SOURCE_2")
(asmformat ((cond "dst1=reg,src1=reg,src2=reg")

(print "\t<opcode >\t$<dst1>,$<src1>,$<src2>\n")))
))

Figure 9: An example operation specification in EXPRESSION.

2.2.1 Instruction Set View

The instruction set is specified in EXPRESSION using two major abstractions,
operations that roughly correspond to individual instructions of a typical RISC pro-
cessor, and instructions that are composed of several parallel operations, very much
like instruction bundles in today’s VLIW processors. Operation descriptions capture
the abstract behavior, the source and destination operands, the binary encoding and
the assembly syntax. The assembly syntax can be augmented with an additional
condition cond to describe different variations depending on the operand types. Re-
strictions on the operand types can elegantly be described using var_groups. An
operand group maps a datatype and registers to a symbolic name that can be used
as a short cut within the operation definitions. For example, the operand group
int any from Figure 9 that is used to hold integer values in a non-reserved general
purpose register is defined as follows:

(in t any (datatype int) (regs GPRFile [1 −28])) .

Using the op_group keyword individual operations can be categorized into possi-
bly overlapping groups. These groups are important for the assignment of operations
to functional units within the hardware structure, and for the definition of instruc-
tions. Instructions are defined very similar to VLIW-bundles using a number of
slots by enumerating the valid operations that can be encoded at the particular
position of the instruction word.

2.2.2 Structural View

The hardware structure is specified in a separate section mostly independent from
the actual instruction set architecture. The hardware resources in EXPRESSION
are modeled using units, ports, connections, and storage elements. Functional
units represent computational logic or control logic that conceptually implement the
behavior of the previously defined operations. The valid operations are enumerated
using the opcodes keyword. The main characteristics of a functional unit are the
capacity and timing. The capacity specifies the number of operations that can
be executed by the unit in parallel. The timing similarly specifies the number of

2.2 EXPRESSION - A Mixed Language 27

(ReadUnit READ
(capacity 1)
(timing (all 1))
(opcodes ALUUnitOps)
(latches (out ReadLatch))
(latches (in DecodeLatch))
(ports ReadPort1 ReadPort2)

)

Figure 10: A functional unit specified in EXPRESSION.

clock cycles that a particular operation occupies the unit. Storage elements, such
as caches, memories and register files, are declared similarly using the storage key-
word. The hardware resources are connected to each other via ports and latches.
Latches roughly correspond to pipeline registers and are thus mainly used to con-
nect functional units to each other. Ports, on the other hand, connect functional
units to storage elements. In the case of register files, ports can be mapped to
operands that were declared by the instruction set view of the processor. For exam-
ple, the functional unit, defined in Figure 10, reads the two operands SOURCE 1
and SOURCE 2 for ALU-operations from the register file. The mapping is declared
using an additional annotation to the unit’s port:

(UnitPort ReadPort1 ("READ") (argument SOURCE 1) (capacity 1)) .

However, it is not yet defined which port of the register file is to be used to
perform the actual register read. The missing information is provided in the pipeline
section. This section specifies the organization of the pipeline and assigns each
unit to a pipeline stage. The pipeline model in EXPRESSION is very powerful
and allows to specify nested pipeline structures and even superscalar pipelines. In
addition, all valid data transfer paths are enumerated. The data paths specify the
connections between the ports of functional units and storage elements. The data
path concept is also used to specify bypasses and the organization of the memory
hierarchy. Figure 11 depicts a simple pipeline and the connections of the read and
write ports of the register file to functional units.

(pipeline FETCH DECODE READ EXECUTE WRITEBACK))

(dtpaths
(type uni
(GPRFile READ GPRReadPort1 ReadPort1)
(WRITEBACK GPRFile WritePort GPRWritePort1)

)
)

Figure 11: An example pipeline description in EXPRESSION.

2.2 EXPRESSION - A Mixed Language 28

2.2.3 Compiler Generation

A central component of the compiler-in-the-loop approach during design space explo-
ration is a powerful retargetable compiler. In EXPRESSION a dedicated section is
provided that specifies how program expressions in the compiler intermediate repre-
sentation are mapped to the processor’s operations. Example mappings are depicted
in Figure 12. The keyword generic specifies a pattern in the compiler’s intermediate
language, whereas the keyword target denotes processor specific constructs. EX-
PRESSION distinguishes between two kinds of mappings: (1) the operand_mapping
and (2) the tree_mapping.

In the case of operand mappings the datatype and classtype of the operand can
be specified. It is thus easy to assign certain operand classes to specific register files.
The operand mapping can also be used to partially specify the calling conventions
using special classtypes for call parameters, return values, as well as the stack and
frame pointer. The mapping of computations to machine instructions is described
using dedicated tree patterns. Each mapping describes a possibly nested pattern of
compiler specific expressions and a sequence of operations of the target processor. In
addition, transformations of a sequence of processor operations into another sequence
of processor operations can be specified. The user-supplied mappings are used to
retarget the instruction selector of the EXPRESS compiler. Besides the instruction
selector also the register allocator is customized and a resource model for instruction
scheduling is extracted. EXPRESS supports, in addition to a traditional scheduling
algorithm that uses resource tables [77], a highly specialized scheduling approach
based on operation tables [174, 146] that is capable of exploiting irregular and partial
bypassing of register values.

Although the explicit compiler specifications in EXPRESSION allow for more
flexibility, this approach poses several problems. First, the user has to supply these

(operand_mapping
(op_mapping (generic (datatype int) (c l a s s t y p e imm))

(target in t immediate))
(op_mapping (generic (datatype int) (c l a s s t y p e any))

(target in t any))
)

(tree_mapping
(

(generic (ixor DST [1] = reg (1) SRC [1] = reg (2) SRC [2] = imm (3)))
(target (xo r i DST [1] = REG(1) SRC [1] = REG(2) SRC [2] = IMM(3)))

)
)

Figure 12: Compiler specifications in EXPRESSION.

2.2 EXPRESSION - A Mixed Language 29

patterns and is thus required to understand the internal organization of the com-
piler. The system offers little help besides the automatic extraction of the resource
models for instruction scheduling, with respect to compiler generation. Second,
these patterns duplicate information on the behavior of the processor. This imposes
additional maintenance overhead and may lead to inconsistent specifications. For
example, the pattern specifications account for more than 50% of the code lines of a
MIPS-based architecture model that is available from the project website.5 Another
problem is that the compiler specifications assume a tree pattern based instruction
selection scheme. It is impossible to automatically extract information that is suited
for more sophisticated approaches from EXPRESSION models.

5http://www.ics.uci.edu/~express/

http://www.ics.uci.edu/~express/

3 The xADL Language

The development of the xADL processor description language started as a simple
configuration language for a highly clustered and parallel digital signal processor
by OnDemand Microelectronics. Initially, the language was intended to specify only
the computational resources of this processor, ignoring the control logic and pipeline
organization. The objective was to customize the VHDL model of the processor and
the software development tools based on coarse grained templates.

The language was soon extended to capture a complete processor implementa-
tion and today includes the assembly syntax, the binary encoding, the hardware
structure, conventions imposed by the application binary interface, and, via instruc-
tion set extraction, the instruction set architecture. The main building blocks of
xADL models are component types and interconnected instances thereof that model
the internal organization of the processor. The language can thus be classified as
a structural processor description language. However, conceptually, the hardware
structure is only a means to express the processor’s instruction set, which is auto-
matically extracted. The instruction set extraction algorithm follows very simple
rules and can be actively controlled by the processor designer. The instruction ab-
straction is thus a central part of the language and its tools. This approach combines
the best from the traditional structural specifications and the traditional behavioral
languages, while avoiding the problem of redundancy known from mixed languages.
A single specification provides both, a very detailed view of the processor’s internal
organization and an abstract view of the instruction behavior.

The structural view lends itself to rapid prototyping by instantiating components
from existing libraries and combining them with new, possibly application-specific,
extensions. The component-oriented specification style of the xADL language closely
resembles the typical design approach of hardware engineers. Ideas are often com-
municated using block diagrams and hierarchical drawings. These ideas can be
expressed quickly and intuitively in our language. Moreover, modern hardware de-
scription languages, such as VHDL and Verilog, also follow this approach. This
immediately simplifies the use of our language, because concepts known from these
languages can be applied directly in a greatly simplified form. Only very few new
concepts need to be learned in addition.

The instruction set view is similarly important in order to verify that all instruc-
tions and instruction variants are actually captured by the processor model and
that these instructions are correctly modeled and implement the desired function-
ality. Strictly speaking this is of less importance in the case of application-specific
processors. However, once families of processors need to be described that are, at
least to some extent, compatible to each other, this becomes a valuable abstraction.
An isolated view of individual instructions also facilitates their specification and dis-
cussions of their properties as well as discussions of the processor’s instruction set
architecture in general. The behavior of each instruction is completely independent

30

3 The xADL Language 31

of other active instructions that are executed by the processor, except for very few
exceptions, namely hazards and signals, that are explained below in more detail.

Providing the right set of abstractions is a key to simplify the specification of new
processor designs, to keep processor models readable, and to enable the development
of powerful tools. In contrast to other structural languages, xADL thus offers several
key abstractions that are often useful, e.g., when a pipelined processor is to be
modeled. xADL does not provide language features to specify the organization of
pipelines explicitly. Pipelines are, similarly to the instruction set, implicitly declared
via the hardware organization. A flexible abstraction is provided to model pipeline
registers using pipeline links. Register bypassing is modeled compactly using hazard
links that forward a register value between pipeline stages on a data hazard. Hazard
links are not limited to bypassing, but may also be used to explicitly stall the
pipeline or ignore a data hazard. Structural hazards are resolved implicitly based
on the resources occupied by the currently active instructions. Typical operations
to control the pipeline of a processor, such as flushing the pipeline or aborting
individual instructions in the pipeline, can be realized using signals. Another helpful
construct are parallel instructions, i.e., instructions that are not fetched from the
instruction memory and are executed in parallel to the regular instructions on every
cycle. Interrupts can be modeled nicely using this feature without complicating the
description of other instructions [25].

Large portions of an xADL specification are reusable across different processor
models and variations. All hardware components are instances of extensible types
that can be shared and organized in component libraries. Types can be extended
by inheritance and generics very similar to classes and templates in C++. The
syntax and binary specifications are organized using so-called templates that can
also be shared and reused. Typical parameters such as the width of the data path,
the number of registers, or the number of functional units can be grouped in config-
urations. Deriving new processor designs and variations based on existing models is
thus usually only a matter of a few lines of code.

The strong focus on reusability, combined with the abstractions provided by the
xADL language, leads to compact and concise, but still readable, models. Redundant
information is avoided, because only a single structural model is described. In
particular, minor variations or additional parallel pipelines can be realized very
efficiently.

The language and its tools, nevertheless, offer great flexibility. A wide range of
processors can be described, including traditional pipelined CISC, RISC and VLIW
processors. Even out-of-order features are supported to some extent, i.e., instruc-
tions are issued in-order, but can be executed and completed out-of-order. Reser-
vation tables and reorder buffers of sophisticated superscalar processor implemen-
tations are very hard to model in an abstract language and are thus not supported.
In practice this restriction is of less importance, because simple, deterministic, and
area efficient processors dominate the embedded computing domain – superscalar
implementations are rather rare. The combination of the structural view and the

3 The xADL Language 32

Configuration

Meta-Information Types

Components

Data Width
Registers
Units

ABI Conventions
Syntax-/Binary-

templates

Register Types
Storage Types
Unit Types

Figure 13: The four major sections of a xADL processor model.

extracted behavioral view enables the development of powerful tools. So far high-
level tasks, such as compiler backend generation [26, 23] that is described in more
detail in this work, are well supported. But also low-level tasks, such as instruction
set simulation [24, 25], have successfully been realized. Even an early prototype for
the generation of VHDL hardware models has been shown to be feasible.6

Processor models are conceptually divided into four major parts as depicted in
Figure 13: (1) the configuration of the processor is specified using parameters such
as the width of the data paths, or the number of functional units and registers.
The programming conventions, the assembly syntax, and the binary encoding of
instructions is covered by (2) the meta-information. (3) Types specify blueprints of
functional units, register files, caches, and memories that can be shared and reused.
The data path is finally composed of (4) component instances that are derived from
previously defined types. The individual parts are described in more detail in the
following sections using excerpts from existing processor models and additional ex-
amples. Note, however, that the xADL language is under active development and
that individual constructs might change in the future. This description should intro-
duce the basic ideas and concepts and should not be considered a complete reference.
The examples are based on a MIPS model [147], a time-predictable RISC processor
SPEAR [41, 62], and a four-way VLIW multimedia processor CHILI by OnDemand
Microelectronics. Further details on these processors and the corresponding models
are given in Chapter 6.

The xADL language is based on XML [27]. All following examples are enclosed
in a gray box, XML tags are printed in green, XML attributes in red. All tags
and attributes are part of the language and are formally specified using an XML
schema [53]. Keywords, i.e., XML tags and attributes, as well as code fragments are
highlighted in the text using a typewriter font.

6http://en.wikiversity.org/wiki/Computer_Architecture_Lab/WS2007

http://en.wikiversity.org/wiki/Computer_Architecture_Lab/WS2007

3.1 Configuration 33

3.1 Configuration

Variations of an existing data path can be modeled using the Parameter keyword
within a Configuration. A parameter is a symbolic name that is associated with
a concrete value depending on the currently selected processor configuration. The
parameter name is used instead of concrete values throughout the processor model,
and later automatically replaced when the final value is known, i.e., during parsing.
The body of the configuration tag is also available for arbitrary other declarations,
such as type definitions and component instantiations. This allows, for example, to
add functional units to an existing data path for a particular configuration.

<Configuration name="default" >
<Parameter name="halfWidth_p" value="16" />
<Parameter name="wordWidth_p" value="32" />
<Parameter name="addresswidth_p" value="32" />

<Parameter name="immIOWidth_p" value="12" />
<Parameter name="immShWidth_p" value="5" />

<Parameter name="registerCount_p" value="64" />
<Parameter name="unitCount_p" value="4" />

<!−− o ther con f i gura t i on−dependent d e c l a r a t i o n s . . . −−>
</Configuration>

Figure 14: Configuration section of the CHILI VLIW core.

Figure 14 depicts an example configuration taken from the CHILI VLIW proces-
sor model. Several parameters are defined, among them the bit-width of the data
path used for computations and the width of address computations. The CHILI
architecture restricts the width of some immediate operands, e.g., the number of
bits available for shifting or I/O operations. The bit-width of these operands is also
configurable, as is the number of registers and functional units.

3.2 Component Types

Component types are the central construct to define blueprints of hardware compo-
nents in the xADL language. A type defines either a register file, a cache, a memory,
or a functional unit. Concrete instances of the individual types are connected to
form the data path of the target processor. Most types thus define ports that are
used to connect the components among each other and to exchange data. Additional
properties can be described depending on the kind of the hardware structure that
is modeled by the type.

3.2 Component Types 34

Types are reusable across different processor models and processor variants. It
is also possible to organize common component types in libraries and construct
processor models from these predefined blocks. Another distinguishing feature of
the xADL language is the use of inheritance and generics to derive new types from
existing ones.

3.2.1 Immediate Operands

Operands that are extracted from the current instruction word are modeled using
immediate types. These types are very simple and basically consist of a name and a
width in bits. In contrast to all other types, immediates do not define ports and are
directly connected to the data path. Figure 15 shows two immediate types taken
from the MIPS model.

<ImmediateType name="ImmJ_t" width="jumpWidth_p" />
<ImmediateType name="ImmW_t" width="wordWidth_p" />

Figure 15: Two immediate types of the MIPS model.

3.2.2 Register Files

Register files are defined using the RegisterType keyword. Each register file consists
of a set of uniform base registers that all share the same bit-width. The size of the
register file is specified using the repeatcount attribute, while the width attribute
denotes the number of bits of each base register. The individual base registers, as
well as sub-registers and register pairs, are accessible through ports. Each Port

specifies a width, an offset, and the boolean flags readable and writeable indi-
cating whether read or write operations are permitted. Certain base registers can
be hardwired to a predefined value using the Constant keyword. Read operations
to this register always deliver the given constant specified by the value attribute,
while write operations are discarded.

<RegisterType name="R_t" width="dataWidth_p" repeatcount="32" >
<Constant index="0" value="0" />
<Port name="Rs" wr i t e ab l e="false" />
<Port name="Rt" wr i t e ab l e="false" />
<Port name="Rd" readab le="false" />

</RegisterType>

Figure 16: Type of the general purpose register file of the MIPS core.

3.2 Component Types 35

(1) <Port name="Hi" o f f s e t="16" width="16" us ing="Rs" />
(2) <Port name="Pair" width="64" us ing="Rs Rt" />

Figure 17: Modeling (1) sub-registers and (2) register pairs using register ports.

The register file definition of the MIPS architecture is shown in Figure 16. It
consists of a writeable port Rd and two readable register ports Rs and Rt. The offset
and width attributes are omitted, all ports thus operate on the complete content of
the base registers. The base register at index zero is hardwired to the constant zero.

The offset and width attributes can be used to access bit-ranges of a base register
in a register file. It is also legal for ports to be wider than the base registers. In that
case two or more consecutive base registers are accessed through the wide port. The
same applies if the sum of the offset and width attributes is larger than the width
of the base register. This approach allows to elegantly describe sub-registers and
register pairs as depicted by the examples in Figure 17. The first line shows a port
to access a sub-register that covers bits 16 through 31, i.e., the upper half of a 32-bit
base register. The second line of the example shows a port to access 64 bits. In the
case of 32-bit base registers this corresponds to register pairs that span across two
base registers.

Often ports are added to a register file merely to simplify the processor descrip-
tion – this often applies to ports that model sub-registers or register pairs. These
virtual ports do not correspond to a hardware port of the register file. Instead, these
register ports refer to other ports of the register file via the using attribute, which
consists of a list of register ports that actually perform the access on behalf of the
virtual port. For example, the ports from Figure 17 are both virtual ports that are
not realized in hardware on their own. Instead, both refer to the ports Rs and Rt

respectively that perform the actual accesses.

Register ports that are both, readable and writeable, can be used to model
instructions that read and write the same register, e.g., the two-address instructions
of the x86 architecture. The read and the write operations of such a port share the
register index to address the same base register. This applies even if the two accesses
are performed by different pipeline stages. For example, almost all instructions of

<RegisterType name="R_t" width="dataWidth_p" repeatcount="16" >
<Port name="Rx" />
<Port name="Ry" wr i t e ab l e="false" />

</RegisterType>

Figure 18: The Rx register port is read and then overwritten by the two-address
instructions of the SPEAR processor.

3.2 Component Types 36

<RegisterType name="R_t" width="32" repeatcount="64" >
<Port name="n1" />
<Port name="n0" />

<!−− o ther r e g i s t e r por t s . . . −−>
</RegisterType>

Figure 19: Concurrent write operations to the same base register are resolved by
the order of the register ports for the CHILI model.

the SPEAR processor are two-address instructions due to encoding constraints. The
Rx register operand, depicted in Figure 18, is usually read and then overwritten by
the same instruction

Register files do not define any control signals, enable lines, and even the clock
signal is not specified. All these low-level details are omitted by the xADL language.
Instead, register files are implicitly clocked. All other control signals are automati-
cally derived from the hardware structure of the processor. This includes signals to
enable and disable the individual read and write ports, as well as signals that serve
as an index to address the proper base register.

A problem with register files are the semantics of concurrent accesses to the
same base register. In the case of a read operation performed concurrently with
a write operation, the written value is immediately visible at the read port, i.e.,
register files in the xADL language follow the write-first semantics. In the case of
multiple concurrent write operations, the relative ordering of the involved ports is
considered. The value of the port that is syntactically defined first is actually written
to the register file. Figure 19 depicts the register file definition of the CHILI VLIW
processor. It is perfectly legal for the CHILI processor to execute instructions that
write to the same register via the ports n0 and n1 concurrently. However, only the
value supplied by port n1 is actually written, the other value is simply discarded.

3.2.3 Storage Elements

The xADL language provides two classes of storage elements, caches and memories.
Both storage types are modeled in a very abstract form, because characteristics
of memory hierarchies highly depend on the underlying technology and bus inter-
connects. The specification of the memory sub-system thus relies on user-supplied
templates that are not part of the xADL language.

The characteristics of a memory can be declared using the MemoryType keyword.
Currently, only the timing in the form of min_delay and max_delay attributes is
captured by a memory type. The additional type attribute specifies a user-defined
name of a template that selects the desired memory implementation. This informa-
tion is ignored for the generation of retargetable compilers. However, other tasks

3.2 Component Types 37

<MemoryType name="Memory_t" type="sram"
min delay="3" max delay="10" >

<Input name="writeB" datawidth="8" addresswidth="32" />
<Input name="writeH" datawidth="16" addresswidth="32" />
<Input name="writeW" datawidth="32" addresswidth="32" />
<Output name="readB" datawidth="8" addresswidth="32" />
<Output name="readH" datawidth="16" addresswidth="32" />
<Output name="readW" datawidth="32" addresswidth="32" />

</MemoryType>

Figure 20: Definition of a memory type of the MIPS processor.

may make use of this information to select a particular memory implementation,
e.g., during simulation or hardware generation.

The content of the memory is written via Input and read via Output ports. The
datawidth attribute of a port species the number of bits that are accessed through
the particular port. For every input and output port an implicit address port is
generated. This implicit port is referred to by prepending an ‘@’ symbol to the
name of the corresponding port, which is often called data port. Address ports are
considered to be input ports, i.e., information is supplied to the memory through
these ports. The bit-width of the address port is defined using the addresswidth

keyword. The two optional properties baseaddress and alignment restrict the
range of memory cells that are addressable through the port. If the alignment is
not supplied, addresses need to be properly aligned according to the datawidth

attribute. Figure 20 depicts an example memory declaration taken from the MIPS
model. It offers multiple data ports to access data of byte, halfword, or word size of
the memory.

Cache types are declared in a similar fashion using the CacheType keyword. The
only difference is that instances of caches are connected to a memory or another
cache, where the data is fetched from in case of a cache miss. An example declaration
of a cache type is depicted in Figure 21. The data cache of the CHILI is based
on the template odm-dms and offers multiple read and write ports for concurrent
accesses. Similarly to the MIPS memory, the addressable data elements can be of
byte, halfword, or word size.

Similarly to register types, the relative ordering of the cache and memory ports
is used to resolve conflicts due to concurrent accesses. However, in the case of
storage elements both, input and output ports, are considered. For example, the
CHILI processor allows multiple memory accesses to the same memory location to
be executed concurrently. The memory model of the CHILI specifies that a read
operation always retrieves the original value from the memory and not the value
that is currently written. The output ports thus are specified before the input ports
– see Figure 21.

3.2 Component Types 38

<CacheType name="Cache_t" type="odm-dms"
min delay="1" max delay="10" >

<Output name="lb0" datawidth="8" addresswidth="32" />
<Output name="lb1" datawidth="8" addresswidth="32" />
<Output name="lh0" datawidth="16" addresswidth="32" />
<Output name="lh1" datawidth="16" addresswidth="32" />
. . .

<Input name="sb0" datawidth="8" addresswidth="32" />
<Input name="sb1" datawidth="8" addresswidth="32" />
. . .

</CacheType>

Figure 21: Excerpt of the data cache definition of the CHILI processor.

For the current application scenarios of the xADL language, the template-based
memory specifications are sufficient. However, work is in progress to replace them
by a more sophisticated model that is closer to real memory organizations. The
model will be based on buses that interconnect memories and caches. In addition,
the internal organization of storage elements will be modeled more accurately.

3.2.4 Functional Units

Functional units play a central role in xADL specifications, because all the user-
defined behavior is described using these hardware components. The keyword Unit-

Type can be used to define two kinds of functional units. Containers encapsulate a
complete data path or pipeline and may be comprised of instances of all component
types, including instances of other unit types. Containers are intended primarily as
a means to organize and structure the processor specification. Regular functional
units, on the other hand, consist of a set of operations that specify the behavior of
the functional unit and the instructions that it executes.

Functional units can be regarded as arbitrary combinatorial logic that performs
some form of computation. Input ports supply the data for these computations,
while Output ports hold the final results. Both kinds of ports are defined using a
name and the width of the data that is transferred through the port. Output ports,
in addition, can be associated with a default value that is supplied to the port if the
implementation of the particular operation does not assign a value to the given port.
If the default attribute is not specified by the user, the output port is considered
undefined. Uses of undefined ports later on lead to an error message during parsing.
A special default specifier for an output port is the inactive value. In contrast to
undefined ports, it is perfectly legal to use inactive ports throughout computations.
However, the computation and in particular all visible side-effects through registers
or other storage elements are suppressed. As a default value, the inactive value sup-
presses unwanted side-effects, if the functional unit writes to several independent

3.2 Component Types 39

<UnitType name="EX_t">
<Input name="Rs_i" width="dataWidth_p" />
<Input name="Rt_i" width="dataWidth_p" />
<Input name="ImmJ_i" width="jumpWidth_p" />
<Input name="ImmW_i" width="wordWidth_p" />

<Output name="Rd_o" width="dataWidth_p" de f au l t="inactive" />
<Output name="lo_o" width="dataWidth_p" de f au l t="inactive" />
<Output name="hi_o" width="dataWidth_p" de f au l t="inactive" />

<!−− l i s t o f opera t i ons or in s t ance s o f sub−components . . . −−>
</UnitType>

Figure 22: Simplified type of the arithmetic unit of the MIPS processor model.

register files and/or storage elements that are not necessarily defined by all oper-
ations within the functional unit. Consider for instance the arithmetic unit of the
MIPS processor depicted in Figure 22. The result of the divide and multiply opera-
tions of the MIPS processor model is stored to special registers using the hi_o and
lo_o ports. All other instructions store the result to the general purpose register
file via Rd_o. The inactive specifier disables the assignment to the respective other
register file by default and thus simplifies the specification.

For container units a list of component instances follows the port declarations.
Instantiating a component type will be explained later in Section 3.3 and 3.4, along
with the very useful generics feature of the xADL language. The following paragraphs
instead focus on regular functional units that specify operations.

Besides input and output ports, Constant and Temporary values can be declared
within a regular functional unit. Constants are intended to define a hardwired value
that can be used throughout the computations of an operation. Temporaries, as
their name suggests, are symbolic names that represent intermediate results. It is
important to note that temporaries do not correspond to memory cells, registers, or
latches, i.e., the value is not stored, but merely associated with a symbolic name that
can be referred to later on. Figure 23 shows the definition of the 32-bit constant value
exceptionAddr and a temporary tmp taken from the MIPS processor specification.
The constant specifies the location of the exception handler that is dispatched in
case of an arithmetic exception, e.g., an overflow during an addition.

<Constant name="exceptionAddr" value="0x40000040" width="32" />
<Temporary name="tmp" width="32" />

Figure 23: Definition of a constant and a temporary within a functional unit.

3.2 Component Types 40

move cmove sext zext trunc
abs add sub
and or xor not
rol ror shl shr ashr
mul mulu mult multu
div divu rem remu divrem divremu
ceq cneq clt cltu cle cleu
cgt cgtu cge cgeu
use signal csignal debug decode

Table 1: Built-in integer micro-operations available in xADL.

Operations describe the computations that are performed by a functional unit
during the execution of an instruction. Multiple independent operations may be
attached to a functional unit. But only one of them can be active at any given
moment in time, i.e., a functional unit executes either a single instruction or is
otherwise idle. The computations are described using a set of well-defined micro-
operations. Each micro-operation corresponds to a basic operation that is performed
on a set of input and output operands. Constants, temporaries, unit input ports,
and the special value inactive can be supplied as input operands, while temporaries
and unit output ports are valid output operands. The xADL language offers a rich
set of built-in micro-operations, some examples are listed in Table 1. It is important
to note that a micro-operation may define multiple output operands. For example,
the built-in operation add from Figure 24 specifies three output operands: (1) the
result, (2) an overflow flag, and (3) a carry bit. Similarly, the mult, multu as well
as the divrem, and divremu built-ins provide two output operands to represent the
full multiplication result in the first, and the division result and the remainder in
the latter case.

The data representation of the operands of a micro-operation is defined as a
simple bit-vector by the xADL language. The bit-vector may actually represent
integer values as well as floating point or fixed point values, depending on the micro-
operation. The components ports, immediates, constants and temporaries are thus
essentially untyped. This also applies to the contents of register files and memories.
Consequently, there is little room for sanity checks at the micro-operation level to
ensure type correctness. However, this is very likely to change in future versions
of the xADL language. We plan to extend the language by a more powerful type

<add d="<out-result>" o="<out-overflow >" c="<out-carry>"
a="<in-operand1 >" b="<in-operand2 >" />

Figure 24: Definition of the add micro-operation.

3.2 Component Types 41

<Operation name="nor" >
<Body>
<or d="tmp" a="Rs_i" b="Rt_i" />
<not d="Rd_o" a="tmp" />

</Body>
</Operation>

<Operation name="beq" >
<Body>

<shl d="tmp2" a="ImmW_i" b="const_2" />
<add d="tmp" o="overflow" c="carry" a="pc_i" b="tmp2" />
<ceq d="condition" a="Rs_i" b="Rt_i" />
<cmove d="pc_o" a="tmp" b="inactive" cond="condition" />
<csignal s="BEX" cond="condition" />

</Body>
</Operation>

Figure 25: Example operations of the MIPS model.

system combined with type inference mechanisms. In fact, work on this topic has
already started, but it is too early to report details in its current state.

The special value inactive, as before, suppresses side-effects that would be
visible through registers or storage elements. However, in combination with the
cmove built-in, the inactive value can be used to describe conditional updates of
register values or memory locations. The cmove micro-operation selects between two
input operands, a and b, depending on a condition cond, and assigns the selected
value to an output operand d. If either a or b specifies the inactive value, the
side-effects that would be visible through (possibly transitive) uses of d become
conditional. This roughly corresponds to an additional enable line that is added to
the data path. The line is derived from the condition associated with the cmove

built-in and controls all register and memory ports that make use of a value that
depends on d, i.e., uses d directly or uses the result of a computation that transitively
depends on d’s value.

In addition to these computational operations, several other micro-operations
are provided. The debug built-in prints intermediate results of arbitrary calcula-
tions to a file during simulation in order to facilitate the debugging of the behavior
of individual instructions or instruction phases. A limited way of interaction be-
tween instructions that are currently active in the processor’s pipeline are signals.
The signal and csignal built-ins raise signals that are visible to all other ac-
tive instructions; more details on signals are given in Section 3.5.3. The decode

micro-operation represents the instruction decoder, i.e., a hardware component that
analyzes the current instruction word and extracts the instruction’s opcode and
its operands. The immediate operands and indices of register operands are avail-

3.3 Component Instances 42

<Function name="complex_operation">
<Input name="operand" />
<Output name="result" />
<Output name="result1" />

</Function>

Figure 26: Example of a user-defined micro-operation.

able only after decoding. The use of registers and immediates is thus restricted
in pipeline stages preceding the decode stage, i.e., the stage containing the decode

micro-operation. Similarly, functional units are restricted, because control signals
are not available before the instruction is decoded.

The behavior of an operation is specified by the Body of the particular operation
using a sequence of micro-operations. Figure 25 shows two example operations from
the MIPS model. The first is a nor operation that calculates the negated logical or
of the Rs_i and Rt_i ports, which correspond to register operands. A more complex
MIPS instruction is described by the beq operation that implements a conditional
branch. The branch instruction conditionally assigns a new value to the program
counter via the output port pc_o. The branch target is calculated from the old
program counter using pc_i and an immediate operand ImmW_i. If the values of the
Rs_i and Rt_i register operands are equal, the program counter is updated. The
assignment is disabled otherwise using the inactive value. In addition, the signal
BEX is raised conditionally, which indicates that a branch has been taken and all
instructions fetched so far from the wrong path need to be aborted.

The xADL language does not provide constructs for loops, if-then-else structures,
or other complex control flow within operation bodies. In general these constructs
are rarely needed for the specification of a processor – none of the processors that
we have modeled so far require them. Nevertheless, in some cases additional flex-
ibility might be needed. Therefore, user-defined micro-operations can be declared.
However, these micro-operations are declared using a name and a set of Input and
Output operands – see Figure 26. The performed computations are not specified,
and need to be modeled externally. For example, the user-defined micro-operations
are treated as black boxes during compiler generation and are thus only accessible
through intrinsic compiler functions.

3.3 Component Instances

The actual data path of the target processor is composed from component instances
that are instantiated from the previously declared types. In its simplest form an
instantiation consists of a single line that provides the name and type of the com-
ponent. An example of such a simple declaration is given in Figure 27. Here a new
immediate ImmJ is instantiated based on the type ImmJ_t.

3.3 Component Instances 43

<Immediate name="ImmJ" type="ImmJ_t" />

Figure 27: Simple instantiation of an immediate type.

programcounter
integer float
base index
status configuration

Table 2: Categories to classify register instances.

Register instances are very often similarly simple, but may hold an additional
category attribute. The category is a hint to tools that process the processor model.
The backend generator, for example, relies on categories to assign data types to reg-
ister classes and find translation patterns for the instruction selector. The supported
register categories are listed in Table 2. The program counter of the processor, i.e.,
a register that is used directly or indirectly to fetch the next instruction word, is
identified by the programcounter category. Only a single register can be assigned
to this category. The other categories can be arbitrarily combined with each other.
For example, the general purpose register file of the MIPS model, depicted in Fig-
ure 28, is assigned to the integer, the base, and the index categories. It may thus
hold general integer values and may also serve as a base or index register for address
calculations. Note that register categories are likely to disappear in future versions
of the xADL language, when a more powerful type system is available that allows to
derive this information automatically.

Cache instances are associated with a memory or another cache in order to
retrieve data from there in case of a cache miss. The interfaces of the cache and
the other storage element have to match, such that for every port of the cache a
corresponding port is available to fetch and store data. Multiple caches may share
the same parent, but only if the ports of these two caches are disjoint. Concurrent
memory accesses to the parent through different caches are resolved according to
the order of the parent’s ports as described in Section 3.2.3. An example memory
organization consisting of a data cache that is directly connected to a memory is
depicted in Figure 29.

<Register name="R" type="R_t" category="integer base index" />

Figure 28: Register instance of the MIPS model.

3.4 Inheritance and Generics 44

<Memory name="Memory" type="Memory_t" />
<Cache name="DCache" type="DCache_t" memory="Memory" />

Figure 29: Memory and data cache instances of the MIPS model.

The computational resources of the target processor are finally derived from unit
types. Similarly to other instantiations, a name and a type are required to define
a new functional unit. The optional attribute repeatcount allows to instantiate
multiple identical copies from the same unit type. In particular for regular parallel
processors, such as most VLIW architectures, these copies reduce the specification
overhead significantly.

Functional units and storage elements specify connections to other components
using data links and pipeline links. Data is transferred along these links from one
component instance to the next. In addition, hazard links can be used to resolve
data hazards, caused by data dependencies in a pipelined processor. Hazard links
do not necessarily transfer data, but can also be used to force the pipeline to stall.
A detailed discussion of data, pipeline, and hazard links is given in Section 3.5.

<Unit name="EXE" type="EXE_t" repeatcount="unitCount_p" >
<!−− connec t ions to o ther components . . . −−>
<!−− hazard s p e c i f i c a t i o n s . . . −−>

</Unit>

Figure 30: Instantiation of multiple identical units of the CHILI VLIW processor.

3.4 Inheritance and Generics

A distinguishing feature of the xADL language is the use of inheritance and generics
to derive new component types from existing types. This is particularly useful in the
case of functional units, when new operations or additional units should be added
to an existing processor model that is otherwise not changed.

Inheritance allows to derive a new type from multiple existing component types.
The base types can be extended by additional ports, or, in the case of unit types,
by new operations or new component instances. If multiple base types are specified,
the new type consists of the union of the features of the base types, i.e., the union
of the ports, operations, and instances of all base types. Name conflicts lead to an
error message during parsing, if the conflicting features of the base types are not
compatible to each other. For example, unit input ports are compatible only if their
bit-width is equal, et cetera. Compatible features are collapsed and not duplicated
for the new type.

3.4 Inheritance and Generics 45

<UnitType name="DSP_EX_t" extends="EX_t" >
<Input name="Ac_i" width="AccuWidth_p" />
<Output name="Ac_o" width="AccuWidth_p" de f au l t="inactive" />

<Operation name="madd" >
<Body>
<mul d="tmp" a="Rs_i" b="Rt_i" />
<add d="Ac_o" a="Ac_i" b="tmp" />

</Body>
</Operation>

</UnitType>

Figure 31: Extending the arithmetic unit of the MIPS model by a DSP multiply-
accumulate instruction.

An example that demonstrates the use of inheritance is given in Figure 31
and 32. Here the MIPS model is extended to support additional instructions of
the application-specific extension MIPS DSP. First, the HILO_t register file is ex-
tended by an additional 64-bit port Ac representing accumulators – see Figure 32.
Secondly, the arithmetic unit is extended by additional ports to read and write
the accumulator registers and a madd operation that implements the corresponding
multiply-accumulate instruction as depicted in Figure 31.

The generics features of the xADL language are similarly intended to reduce the
overhead when new processor variants are to be derived from existing components
and processor templates. The approach is very similar to templates in C++, but
is, due to the scope of the xADL language, limited to static hardware structures.
Generics are restricted to container units to define templates of processors, pipelines,
or partial data paths. A generic unit encapsulates component instances that are
already interconnected. Some of them are instantiated from a fixed predefined type,
others refer to a type argument, and the concrete type is left open. Type arguments
are defined using the keyword Generic using a name and a base type. It is possible
to derive instances from a generic type argument, with the only difference that
the type argument of the instantiation is not a concrete type but a generic type
argument. These instances can also be connected to other components according to
the interface of the respective base type.

<RegisterType name="ACCU_t" extends="HILO_t" repeatcount="8" >
<Port name="Ac" width="AccuWidth_p" us ing="hi lo" />

</RegisterType>

Figure 32: Extending a register file of the MIPS processor by an additional accu-
mulator port.

3.5 Composing Data Paths 46

<UnitType name="MIPS_PIPELINE_t">
<Generic name="HILO_g" base="HILO_t" />
<Generic name="EX_g" base="EX_t" />

<Register name="HILO" type="HILO_g" />

<Unit name="EX" type="Ex_g" >
. . .

</Unit>

<!−− o ther component in s t ance s . . . −−>
</UnitType>

Figure 33: A generic container unit type modeling the MIPS pipeline.

Later, instances can be derived from the generic unit type itself. However, for
an instantiation the generic type arguments have to be assigned to concrete types
using the Generic keyword. Its name attribute specifies the type argument while
the concrete type is specified using the select attribute. The base type and all its
sub-types derived via inheritance are legal assignments for a generic type argument.
It is possible to define nested structures of generic types.

Figure 33 shows an example based on the MIPS processor model. A generic con-
tainer unit is declared that specifies the complete pipeline structure. The arithmetic
unit EX as well as the HILO register file are instantiated from type arguments. The
arithmetic unit is based on the unit type EX_t while the register is based on the
register type HILO_t. When a concrete component is to be instantiated from the
generic unit, these type arguments need to be assigned to concrete types as depicted
in Figure 34. In this example a MIPS variant with DSP extensions is modeled based
on the previously derived types ACCU_t and DSP_EX_t.

<Unit name="MIPS-DSP" type="MIPS_PIPELINE_t" >
<Generic name="HILO_g" s e l e c t="ACCU_t" />
<Generic name="EX_g" s e l e c t="DSP_EX_t" />

</Unit>

Figure 34: Instantiating a generic container unit.

3.5 Composing Data Paths

The data path of the processor is composed from component instances that are
interconnected using three kinds of links: (1) data links, (2) pipeline links, and

3.5 Composing Data Paths 47

(3) hazard links. Regular data links correspond to wires between a port of a func-
tional unit or storage element and an immediate or another port of a register file,
storage element, or functional unit. Data is transferred along the data link, but is
not buffered or stored in latches. These links thus connect blocks of combinatorial
logic within a single pipeline stage. Pipeline links on the other hand explicitly model
a pipeline register that stores the data for the following cycle. The data is then pro-
cessed by the other component during that cycle, i.e., the data is transferred from
one pipeline stage to another. Hazard links specify how data hazards are resolved,
either by bypassing, stalling the pipeline, or by explicitly ignoring the hazard. Haz-
ard links thus not only represent data wires but also control logic to detect and
resolve the hazard. Finally, signals can be used to resolve control hazards using
asynchronous communication between instructions that are currently active in the
processor pipeline.

3.5.1 Data and Pipeline Links

Data and pipeline links are specified using the Connect keyword within the body
of an instantiation of a functional unit or storage element, as shown in Figure 35.
A connect directive specifies a group of links that connect ports of the instance to
ports of other components or immediates. An input connect does so using the Input
keyword for input ports only, while output connects, specified using the Output

<Unit name="UCD" type="UCD_t" repeatcount="unitCount_p">
<Connect>
<Input input="Rn_i" s e l e c t="EXE[current].Rn_o"

stageboundary="true" />
</Connect>
<Connect>
<Input input="Rn_i" s e l e c t="MUL[current].Rn_o"

stageboundary="true" />
</Connect>
<Connect>
<Input input="PC_i[0]" s e l e c t="BRA.PC_o"

stageboundary="true" />
</Connect>

<!−− output connec t ions . . . −−>

<Hazard output="Rn_o" type="forward"
s e l e c t="EXE.Rx_i EXE.Ry_i EXE.Rn_i MUL.Rx_i ..." />

</Unit>

Figure 35: Unit instantiation including connections to other components.

3.5 Composing Data Paths 48

(a) (b) (c) (d)

Figure 36: Example connection patterns that can be realized using the Connect

keyword.

keyword, are restricted to output ports only. The input and output attributes
specify an input or output port of the current instance, while the select attribute
specifies a port of another instance or an immediate. The select attribute consists
of the name of a component followed by the name of the particular port separated
by a dot, e.g., BRA.PC_o. Links that are part of an input connect are restricted to
guarantee a well formed processor model. Every input port is the target of at most
one link in a connect to avoid ambiguous assignments. In addition, the source of
a link has to be either an immediate, a readable register port, the output port of
a storage element, or the output port of a functional unit. It is forbidden to form
cycles using input connects. Output connects are restricted even further. The target
of an output link has to be either a writeable register port or the data respectively
address port of a storage input port. In contrast to input connects, the links of an
output connect can specify the same output port multiple times.

Data and pipeline links can be distinguished by the boolean attribute stage-

boundary. If this attribute is assigned the value true (or alternatively yes or 1),
the link is interpreted as a pipeline link and a corresponding pipeline register is
implicitly created. It is legal to mix pipeline and regular data links in a connect.

A unit instantiation may in fact consist of multiple identical copies, a Connect

thus specifies the links for all of the copies at the same time. It is rather rare
that the connections of all copies are identical. Usually, the connections follow a
regular pattern, e.g., the nth copy is connected to the nth copy of another unit
instantiation, or only the first copy is connected to another component. The select
attribute as well as the port specifier can thus be restricted by appending a subscript.
The subscript is either a number, a number range, or the special keyword current

enclosed in brackets. The subscripts are a powerful construct to enumerate various
connection patterns as depicted in Figure 36. Assuming unit instantiations that
define three identical copies each. The connection patterns to connect the input
ports of the lower units to the output ports of the upper units can be modeled
using the following subscript pairs: (a) ([2], [1]), (b) ([current],[current]), (c)
([current],[1]), and (d) ([1],[current]). The first member of each pair denotes the
subscript of the input port, while the second denotes the subscript of the select.
Note that connection variant (d) is illegal, because the assignment to the involved
input port is ambiguous.

3.5 Composing Data Paths 49

<Connect>
<Input input="Odds_i" s e l e c t="R.R[0-16/odd]" />

</Connect>

Figure 37: Connect to read from a register file restricted by a modifier.

Links to and from register files can be further restricted, by appending a second
subscript to the name of the register port, e.g., R.Rd[31]. The subscript specifies
that only a subset of the registers in the register file should be accessible through the
link. This is useful to model hardwired register operands or model other restrictions
imposed by the instruction set of the processor, i.e., limited space to encode full
register indices. The subscript may either be a number, a numeric range, or one
of the keywords all and current. In addition, a modifier may be appended that
restricts the selection to either odd or even register indices. The modifier is separated
from the rest of the subscript by a ‘/’ symbol – see Figure 37.

A complete example of an unit instantiation and its connections is presented in
Figure 35. The functional unit UCD of the CHILI processor forwards the Rn_i and
PC_i value of unconditional arithmetic instructions and unconditional branches to
the next pipeline stage. As can be seen, the repeatcount attribute is specified, we
thus assume that multiple identical copies of the unit are created from this instan-
tiation. The copies are connected to the EXE and MUL units using the connection
pattern depicted in Figure 36(b), while the port for the program counter is connected
to the branch unit BRA using the pattern from Figure 36(a).

3.5.2 Hazard Links

The example in Figure 35 also shows a set of hazard links that specify how data
hazards are to be resolved with respect to the Rn, Rx, and Ry register operands
of CHILI instructions. Three kinds of hazard links are currently supported by the
xADL language: (1) forward links model the bypassing of register values from one
pipeline stage to another in order to hide execution latencies, (2) stall links do
not carry data, but instead cause the instruction that reads from or writes to the
port at the head of the link to wait until the respective other instruction has com-
pleted its current operation, and finally (3) links that are attributed with the hazard
type ignore do not imply any action whatsoever. The last class of hazard links is
primarily intended for documentation and verification purposes. It indicates that
in a particular situation data hazards should simply be ignored. This may lead to
unpredictable behavior and usually implies that software development tools need to
ensure correct program execution by avoiding data hazards. Often, however, pro-
cessor designers are willing to accept this restriction in order to save silicon area or
improve the maximal clock frequency. In order to detect whether a given hazard
link triggers, the involved register files and in particular the register indices need to

3.5 Composing Data Paths 50

be known. The processor designer is not required to explicitly supply this informa-
tion, it is automatically derived from the connects and hazard links of the processor
model.

A major problem with bypassing are instructions that are executed concurrently
either due to pipelining or due to the explicit parallel execution style of VLIW pro-
cessors. In the former case, bypassing is generally well-defined. Instructions that
were issued later, i.e., are currently executed in an early pipeline stage, are assigned
higher priority. Almost all pipelined processor implementations today follow this
definition, the xADL language thus also adopts this behavior. In the latter case,
the conventions adopted by different processors available today vary. It is thus not
possible to apply a predefined fixed solution without restricting the scope of the lan-
guage. A similar problem has already been discussed in Section 3.2.2 for concurrent
register writes. There, the priority is derived from the syntactical ordering of the
respective register ports. The same approach is taken for hazard links that trigger
concurrently. If forward and stall links trigger at the same time, the instruction
has to wait, i.e., stalls are assigned a higher priority than bypasses.

3.5.3 Signals

Pipeline and data links lead to very compact and concise processor specifications
and allow to elegantly model the structure of the processor’s pipeline. Data hazards
that possibly emerge can be handled using hazard links, and structural hazards are
resolved automatically using a resource model that is derived from the component
instances. Using these primitives a large number of real processor architectures can
already be modeled. However, primitives to describe the handling of control hazards
have not yet been described.

In contrast to data and structural hazards, control hazards often originate from
a small class of instructions that need to directly control the data path and its
operation. A typical example of such instructions are branches and jumps, but also
traps and instructions that cause exceptions sometimes affect the data path globally.
The data path and the pipeline are not represented as such in the xADL language,
thus control needs to be specified in a distributed fashion. Signals provide a way to
communicate asynchronously between these currently active instructions. A signal
corresponds to a global single-bit control line in hardware that causes individual
instructions in the pipeline to abort. The control line can be asserted for a single
cycle using the signal and csignal micro-operation. The AbortSignal keyword
specifies which instructions are aborted by a given signal. It can be attached
to functional unit types, unit instances, and individual operations. An asserted
signal causes instructions to be aborted immediately when they are executed by a
functional unit that is marked with this keyword.

Figure 38 shows the DE unit that models the decode stage of the MIPS processor.
Branches raise the BEX signal in order to abort instructions that have been fetched

3.5 Composing Data Paths 51

<Unit name="DE" type="DE_t">
<!−− connects and hazard l i n k s −−>

<AbortSignal s i g n a l="BEX" />
</Unit>

Figure 38: A signal aborts the instructions in the decode unit of the MIPS model
in case a branch has been taken.

along the execution path that was not taken. The example presented in Figure 25
in Section 3.2.4 shows the use of the csignal micro-operations to implement a
conditional branch instruction.

3.5.4 Parallel Pipelines

It is of course possible to model several parallel operating pipelines using pipeline
links. The xADL language does not impose any restrictions on the structure of these
pipelines, except that all pipelines that execute regular instructions are required to
start at a single root. Instructions that are fetched from memory, decoded, and then
executed by one of the pipelines are considered regular. The root is typically the
fetch unit that controls how instructions are fetched from memory and issued to the
different pipelines. Due to this restriction, it is not possible to model superscalar
out-of-order issue pipelines. However, instructions that are executed by different
parallel pipelines may be executed and even completed out-of-order.

Arbitrary additional pipelines may be defined that execute so-called parallel in-
structions. In contrast to regular instructions these are neither fetched from memory
nor decoded. Parallel instructions are instead issued on every cycle implicitly. The
use of register operands and immediates, as well as the structure of the functional
units implementing the behavior of the parallel instructions, are thus restricted,
because control signals cannot be extracted by the instruction decoder. Parallel
instructions are intended for rather simple, repetitive tasks that always perform the
same operation on every cycle. A cycle counter that increments a particular register
on every cycle, or a dispatcher that invokes an interrupt service routine on an asyn-
chronous interrupt are examples of typical uses. Parallel instructions are equivalent
to regular instructions during execution. In particular, hazard links as well as signals
can be used without restrictions.

3.5.5 Restricting Data Paths

The processor data path, composed of functional units, storage elements, and regis-
ters, specifies how instructions are to be implemented. Sometimes, however, the use

3.5 Composing Data Paths 52

EX

addiu
sub
...

DC

MEM

sextb
zextb
...
fwd

addr

load

!addr

!load
!loadaddress

data

Rd

Figure 39: The addressing modes of the MIPS processor are restricted using predi-
cates and conditions.

of the data path is restricted by external constraints that are not immediately visi-
ble from the the structural representation. For example, the result of the arithmetic
unit of the MIPS processor calculates the address to perform memory accesses. In
principle all operations of the arithmetic unit could be used to form an addressing
mode. However, the MIPS architecture restricts the valid addressing modes to a
single operation that adds a register and a 16-bit immediate. This restriction is not
imposed by limited capabilities of the hardware. Figure 39 illustrates the connection
between the arithmetic unit and the data cache. The arithmetic unit supplies the
data as well as the address to the data cache. The data cache may also be bypassed,
the arithmetic unit is then directly connected to the MEM unit.

The xADL language provides predicates and conditions to model such constraints
in a very simple and intuitive way. A Predicate is a simple boolean flag that
indicates that a certain property is met. Conditions, on the other hand, verify
whether a predicate has been defined. Both conditions and predicates can be defined
in the body of a unit type, an operation, a unit instance, or storage instance. In
addition, data links can be augmented with both constructs. Consider the example
given in Figure 39. The MIPS data path is restricted using the addr and load

predicates that are only provided by the addiu operation of the EX unit and the data
cache respectively – see Figure 40. The data cache requires the addr predicate to
be defined, and thus disallows other operations to supply addresses. The xADL code
for the cache instance and its condition is depicted in Figure 41. Similar conditions

<Operation name="addiu" >
<Predicate name="addr" />
<!−− opera t ion body . . . −−>

</Operation>

Figure 40: The addiu operation of the MIPS arithmetic unit defines a predicate to
restrict the addressing modes.

3.6 Meta-Information 53

<Cache name="DCache" type="DCache_t" memory="Memory" >
<Condition pr ed i c a t e="addr" />
<Predicate name="load" />

</Cache>

Figure 41: The data cache of the MIPS processor model restricts the valid addressing
modes using a condition and a predicate.

are attached to the sign- and zero-extend operations (sextb, zextb, ...) of the MEM

unit. Only data loaded from the cache can be extended, all other instructions merely
forward the result of the computation using the fwd operation.

3.6 Meta-Information

The third major part of an xADL processor specification is the meta-information
section that describes the instruction syntax, the binary encoding of instructions,
and the programming conventions of the application binary interface. These conven-
tions may depend on the environment such as the operating system and development
tool that are used in combination with the processor model. For example, two as-
sembly variants are commonly used for the x86 architecture. The AT&T-style is
adopted by most Unix-based operating systems, while the Intel-style is common on
the DOS/Windows platform. It is thus possible to specify multiple variants of the
processor’s meta-information in an xADL model. The descriptions are, in addition,
reusable within a processor model, but also across different processor descriptions.

3.6.1 Assembly Syntax

The instruction syntax is specified using the SyntaxFormat keyword that groups
definitions of a particular assembly language. For a processor model multiple syn-
tax formats can be defined, each format is assigned a name that is used to select
a particular assembly language for the corresponding programming conventions. A
syntax format is defined using four keywords: (1) a SyntaxDirective defines com-
mon assembly directives, (2) a SyntaxMaskDirective defines masks to extract bits
from symbols and symbolic expressions, (3) the SyntaxMapping keyword maps reg-
ister indices to assembly syntax representations, and (4) a SyntaxTemplate defines
a blueprint of the assembly notation of an instruction or group of instructions.

Syntax directives specify strings that allow to customize common assembly di-
rectives that may vary slightly from processor to processor. Typical examples are
directives to define a label, start a comment, or switch the current section of the
output file. The assembly directives are largely oriented towards the GNU Binu-

3.6 Meta-Information 54

<SyntaxFormat name="mips">
<SyntaxDirective name="comment" syntax="#" />
<SyntaxDirective name="bundle-end" syntax=";" />

<SyntaxMaskDirective syntax="%lo" mask="0xffff" />
<SyntaxMaskDirective syntax="%hi" mask="0xffff0000" />

<!−− syntax mappings and syntax t emp la t e s . . . −−>
</SyntaxFormat>

Figure 42: Definition of syntax directives and masks of the MIPS processor model.

tils,7 most directives thus provide a fallback to the GNU conventions. Usually only
the following three directives need to be supplied: bundle-start, bundle-end, and
comment. Processors that follow the VLIW approach adopt a convention to specify
instruction bundles, i.e., groups of instructions that are executed in parallel. Two
directives, bundle-start and bundle-end, are provided to specify the start and
end marker of bundles. Also the syntax of comments often varies between proces-
sor architectures and can be specified using the comment directive. Directives are
specified using a name and an attribute syntax that consists of a plain text string.
Example directives of the MIPS processor model are depicted in Figure 42.

Related to syntax directives are syntax mask directives that are used in con-
junction with symbols or symbolic expressions that need to be split in order to fit
into immediate operands. The problem arises during linking when the address of a
particular symbol is determined. The symbol can be placed at an arbitrary location,
the address may thus exceed the valid value range of immediate operands. A mask
directive specifies the assembly notation and a mask to split the address of a sym-
bol properly to fit certain immediate operands. The syntax attribute specifies the
notation, while the mask attribute defines a bit-mask that is applied to the symbol’s
address in order to perform the splitting. In addition, the masked address is shifted
such that the lowest bit of the mask is aligned at bit location zero. Consider for ex-
ample the MIPS architecture, it defines two syntax masks %hi and %lo that extract
the upper and lower half of the symbols address respectively – see Figure 42.

Syntax mappings specify a mapping of register indices to a corresponding as-
sembly notation. A mapping is specified using a name and a list of Map definitions.
Each of these definitions in turn associates a set of registers, specified by the se-

lect attribute, with a textual representation defined by the syntax attribute. The
select attribute consists of a list of numbers and range specifications separated by
blanks. Following a range specification, an optional modifier (/odd or /even) can
be specified that restricts the selection to either odd or even registers only. The
syntax is specified as plain text intermixed with a placeholder ‘%d’ that represents

7http://www.gnu.org/software/binutils/

http://www.gnu.org/software/binutils/

3.6 Meta-Information 55

<SyntaxMapping name="gpr_m" />
<Map syntax="zero" s e l e c t="0" />
<Map syntax="at" s e l e c t="1" />
<Map syntax="v%d" s e l e c t="2-3" s tep="1" />
<Map syntax="s%d" s e l e c t="23 16 17-22" />
<Map syntax="t%d" s e l e c t="24-25" o f f s e t="8" />
. . .

</SyntaxMapping>

Figure 43: A syntax mapping assigns symbolic names to register indices according
to the MIPS naming conventions.

the value of a counter variable. The counter variable represents the current register
index, that is possibly transformed using the offset and step attributes. The off-
set attribute is simply subtracted from the current counter value, while the step

attribute controls the increment of the counter when ranges are processed, i.e., the
counter is incremented by step for every register in the range. An example mapping
that follows the MIPS naming convention for the general purpose registers is shown
in Figure 43. The register indices 24 and 25, for example, are mapped to the names
t16 and t17 respectively. Syntax mappings are not applied automatically, but only
if the mapping is referred to by a syntax binding as will be explained below.

Syntax templates specify blueprints of the actual assembly syntax of the indi-
vidual instructions of the processor. Each template consists of a name attribute
and plain text that is intermixed with placeholders called Token. Tokens are in
turn associated with a name, but do not specify any additional information. The
actual fragment of assembly code that is represented by the token is later specified

<SyntaxFormat name="spear2">
<SyntaxTemplate name="op2_s">
<Token name="op" /><Token name="cond" /> ;
<Token name="op1" />, <Token name="op2" />

</SyntaxTemplate>

<SyntaxTemplate name="op1_s">
<Token name="op" /><Token name="cond" /> ;
<Token name="op1" />

</SyntaxTemplate>

. . .
</SyntaxFormat>

Figure 44: Syntax templates of the SPEAR processor model.

3.6 Meta-Information 56

<Operation name="ldli" syntax="spear2.op2_s" >
<Syntax syntax="op2_s.op" value="ldli" />
<Body>

<move d="Rx_o" a="Imm8s_i" />
</Body>

</Operation>

Figure 45: The mnemonic of SPEAR’s load immediate low instruction is specified
using a syntax binding.

using syntax bindings. Figure 44 shows the syntax format of the SPEAR processor,
including its syntax templates. Tokens named op are placeholders for the instruc-
tion’s mnemonics, while the operands of the instructions are encoded using the op1,
op2, and opf tokens. Almost all SPEAR instructions can be executed conditionally
depending on a flag. The cond token is used to append a condition code to the
instruction opcode.

In addition to the syntax format specification, the individual instructions need
to be associated with a syntax template and concrete values need to be assigned
to the respective syntax tokens. So-called syntax bindings establish a connection
between the structural processor model and the syntax templates. Instructions are
not represented as such in the xADL language, the syntax bindings are thus attached
to the operations of functional units or to the definition of links using the Syntax

keyword. The syntax attribute specifies the names of the syntax format, the syntax
template, and the token separated by a dot, e.g., spear2.op2_s.op denotes the op

token of the op2_s template of the spear2 syntax format. The format and template
names are optional and can be omitted, the binding is then simply applied to all
tokens that match the name. The binding specifies either a plain text string using
the value attribute that replaces the token, or binds an operand to the token. The
latter is only possible, if the binding is attached to a link that connects a register
port or an immediate to the data path. In the case of immediates, numeric values
as well as symbolic expressions are accepted by the assembler at the position of the
token. For register operands a number that represents the register index is accepted.
Additionally, if a syntax mapping is specified by the optional mapping attribute, the
symbolic names defined by the mapping are accepted. Figure 45 and 46 present

<Input input="FP_i" s e l e c t="FP.p" >
<Syntax syntax="opf" mapping="fp_m" />

</Input>

Figure 46: The syntax of operands is specified with the link that connects the
operand to the data path.

3.6 Meta-Information 57

examples of both syntax binding variants. The first example specifies the mnemonic
of the load immediate low instruction of the SPEAR processor. The second example
shows a binding that involves an operand and a syntax mapping. The opf token of
all syntax templates is bound to the register operand FP.p.

Figure 45 also shows an important attribute that is added to the XML tag of
the ldli operation. So far only values and operands have been bound to syntax
tokens, however, the connection between syntax templates and instructions has not
yet been established. This is the purpose of the syntax attribute of the Operation

keyword. It specifies that instructions that use the particular operation follow the
syntax format specified by the given attribute. The syntax of the ldli instruction in
the example thus follows the spear2.op2_s syntax, defined by the syntax template
op2_s of the spear2 syntax format. The name of the syntax format is again optional
and can be omitted.

3.6.2 Binary Encoding

The binary encoding of instructions largely follows the scheme described in the pre-
vious section for the assembly syntax. A BinaryFormat consists of three parts: (1)
BinaryTemplate definitions, (2) BinaryMapping specifications, and (3) a Bundle

definition that specifies the final layout of the encoded instructions or, in the case
of VLIW processors, the layout of multiple instructions in a bundle. Binary tem-
plates and binary mappings correspond to the respective counterparts presented for
the assembly syntax. Binary templates also consist of Token definitions, but, in
contrast to syntax templates, the layout of the tokens with respect to each other is
not defined. A binary template thus corresponds to an unordered tuple of tokens,
where each token has a name and a size in bits. The actual layout is described
using the Bundle keyword. This separation of concerns greatly simplifies binary
encoding specifications, especially, for complex encoding variants of modern VLIW

<BinaryFormat name="mips" >
<BinaryTemplate name="rtype_b" >
<Token name="op" s i z e="6" />
<Token name="rs" s i z e="5" />
<Token name="rt" s i z e="5" />
<Token name="rd" s i z e="5" />
<Token name="shamt" s i z e="5" />
<Token name="funct" s i z e="6" />

</BinaryTemplate>

<!−− more b inary t emp la t e s and bund le l a you t . . . −−>
</BinaryFormat>

Figure 47: Binary template for the MIPS rtype instruction format.

3.6 Meta-Information 58

<BinaryMapping name="some_mapping_m" />
<Map s e l e c t="17-31/odd" s tep="1" o f f s e t="17"/>

</BinaryMapping>

Figure 48: Binary mappings specify a space efficient encoding of register operands.

processors. The encoding information of individual instructions is separated from
the specifications of other instructions and the final layout of the instruction bun-
dle. Figure 47 presents an excerpt from the binary format specification of the MIPS
processor model.

The binary mapping serves a similar purpose as its counterpart for the syntax
specifications. But instead of text strings numeric representations are mapped. This
allows the specification of compact encodings for register operands. The example
presented in Figure 48 shows a mapping for a register operand, where only odd
indices in the range 17 through 31 are valid. By default the full register index would
be encoded, which would be space inefficient. The mapping shown here maps the
original register indices into the range 0 through 7.

The binding between fixed encoding values, encoding mappings, instruction
operands, and instructions also follows the conventions of the syntax specifications.
Binary bindings are similarly attached to operations and links that connect register
or immediate operands using the Binary keyword. Its binary attribute specifies the
name of a binary token (the template and format names are again optional). The
value attribute specifies a fixed constant that replaces the token. If the binding is
part of a link, the register or immediate operand is bound to the token. A simple
example is depicted in Figure 49.

The final layout of the binary tokens to form instructions or instruction bundles
is specified using the Bundle keyword. The layout specification is very flexible and
supports most common encoding conventions, including variable-length instruction
and bundle formats. Also the encoding schemes adopted by most VLIW proces-
sors, as described by Fisher et al. [61], can elegantly be modeled. For example,
the variable-length bundle format used by the CHILI processor is a combination of

<Operation name="addu" binary="rtype_b">
<Encoding binary="rtype_b.funct" value="0x20" />
<Body>
<add a="Rs_i" b="Rt_i" d="Rd_o" o="overflow" c="carry" />

</Body>
</Operation>

Figure 49: The binary representation of the add unsigned instruction of the MIPS
processor is specified using binary templates.

3.6 Meta-Information 59

<Bundle>
<Fields>
<Field name="instr" al ignment="32" po s i t i o n="0" />

</Fields>

<Layout>
<Choice>

<BinaryTemplate template="rtype_b" >
<Append f i e l d="instr" tokens="op rs rt rd shamt funct" />

</BinaryTemplate>
<!−− b inary t emp la t e s . . . −−>

</Choice>
</Layout>

</Bundle>

Figure 50: Final layout of the binary encoding of the MIPS processor.

an uncompressed and a fixed-overhead encoding scheme. But also distributed and
template-based encoding schemes can be specified using our approach. The layout
relies on two basic concepts: (1) fields and (2) regular expressions. Regular expres-
sions specify which instructions can be combined to form a legal bundle, while fields
determine the relative position of tokens in the encoded instruction or bundle.

Explicitly enumerating all possible instruction combinations is a cumbersome
and tedious task, especially for highly parallel processors. We thus use regular ex-
pressions to compactly represent this information.8 However, instructions are not
represented explicitly in xADL, it is thus impossible to refer to instructions directly.
Fortunately, every instruction is associated with a binary template, the layout is
thus defined via binary templates. The regular expressions are represented using
nested XML tags, very similar to complex data types in XML schema specifica-
tions [53]. The Choice keyword selects a variant out of multiple alternative binary
template, choice, or sequence definitions. It corresponds to the usual pipe operator
(‘|’) in regular expressions. The Sequence keyword represents a sequence of binary
templates, choices, or sequences, and corresponds to the usual star operator (‘∗’).
The length of a sequence can be restricted using the min and max attributes that
specify the minimal and maximal length of the sequence. Binary templates are usu-
ally referenced at the innermost level of choices and sequences, but may also appear
intermixed with the other keywords. A binary template is referenced using the Bi-

naryTemplate keyword, where the attribute template selects a binary template of
the current binary format.

The layout is finally specified by assigning the tokens of the binary template
to a field. A field represents a dedicated space within the instruction word that

8Bundles are typically finite in length, the expressiveness of regular expressions is thus sufficient
for this purpose.

3.6 Meta-Information 60

<Fields>
<Field name="head" al ignment="32" />
<Field name="body" f o l l ow s="head" al ignment="32" />
<Field name="tail" f o l l ow s="body" al ignment="32" />

</Fields>

Figure 51: Binary encoding using multiple fields.

is intended to encode certain parts of the instruction word or bundle. Multiple
fields can be defined, however, simple single-issue processors usually do not require
more than one field. In the case of VLIW processors, multiple fields are usually
required, if the encoding of individual instructions of the bundle is intermixed. Fields
are defined by a name using the Field keyword. The relative position of fields
is determined using the optional attributes follows, alignment, and position.
The follows attribute specifies another field that proceeds the current field in the
encoding. This option can be combined with the alignment attribute in order to
enforce an alignment, e.g., if the preceding field is of variable length. The position

attribute specifies an absolute offset relative to the instruction or bundle start. It
can be combined with the alignment attribute only if the position is zero, it then
specifies the alignment of the complete instruction word or bundle. The position

and follows attributes are mutually exclusive. An additional attribute, padding,
specifies a bit-pattern that is used to fill gaps between mis-aligned fields.

The tokens of a binary template that is referenced by a choice or sequence defi-
nition are assigned to a field using the Append keyword and its tokens attribute.
Multiple Append definitions are allowed within a template reference that can even
assign tokens to different fields. The tokens are appended at the end of the field, it
is thus not possible to intertwine the tokens of independent instructions in a single
field, which sometimes renders the use of multiple fields unavoidable.

Figure 50 shows the bundle specification of the MIPS processor model. The
MIPS is a single-issue processor, where the encoding of different instructions is
independent. A single field and a single choice that enumerates all binary templates
is thus sufficient to specify the instruction format. An example showing the use of
multiple fields is given in Figure 51. Consider a binary template with three tokens
opc, a, and b that is referenced by a single sequence of length two. The tokens are

opc1 opc2 a1 a2 b1 b2

head



body



tail

Figure 52: The instruction format defined by a dual-issue processor.

3.6 Meta-Information 61

appended to the fields head, body, and tail. The resulting instruction format is
depicted in Figure 52.

3.6.3 Programming Conventions

The ABI keyword is used to specify the programming conventions of a processor,
which cover usage conventions for registers, function calling conventions, the stack
layout, and the binary as well as the syntax format. A processor description may
specify multiple ABI’s in order to model the conventions adopted by different oper-
ating systems and development environments.

The register usage conventions are defined by the Registers keyword. It is
used to assign registers to predefined or user-defined register classes; the predefined
register classes are listed in Table 3. The register classes for the return address,
the stack pointer, and the frame pointer are singleton classes, i.e., only one register
can be assigned to each class. The return address class is mandatory and specifies a
register that stores the original program counter on a function call. The stack pointer
specifies a register that can be used to address memory locations of the current stack
frame; it is also mandatory. The definition of a frame pointer is optional, but enables
the use of variable-sized stack frames, e.g., the use of the C function alloca. Registers
that are assigned to the Reserved class are not available for general use, i.e., the
compiler is not allowed to modify these registers. User-defined register classes may
be defined using the UserClass keyword.

The other classes specify the usage of registers during a function call. The
CalleeSaved register class specifies the registers that have to be saved by the callee,
i.e., the called function has to save and restore these registers. On the other hand,
the CallerSaved registers can freely be used by the called function. The caller is
responsible to save and restore these registers. The Argument and Result register
classes specify registers that can be used to pass function arguments and result values
between the caller and callee during a function call. The order of the registers is
important for these two classes, because the argument and result values are assigned
to the registers in the specified order.

It is very hard to provide a language that allows to model function calling con-
ventions without prior assumptions. To our knowledge, none of the processor de-
scription languages available today are able to provide such a general model. The

Reserved ReturnAddress
StackPointer FramePointer
Result Argument
CalleeSaved CallerSaved

Table 3: Predefined register classes to specify register usage conventions.

3.6 Meta-Information 62

<ABI name="chili-elf" >
<Syntax s e l e c t="chili" />
<Binary s e l e c t="chili" />

<StackLayout arguments="last_fixed_on_stack" r e s u l t s="register"
al ignment="32" d i r e c t i o n="down" />

<Registers>
<ReturnAddress s e l e c t="R[63]" />
<StackPointer s e l e c t="R[62]" />
<FramePointer s e l e c t="R[61]" />
<Result s e l e c t="R[0] R[1]" />
<Argument s e l e c t="R[1-6]" />
<CallerSaved s e l e c t="R[15-54]" />
<CalleeSaved s e l e c t="R[7-14]" />
<Reserved s e l e c t="R[55-60]" />
<UserClass name="GVR" s e l e c t="R[55-60]" />

</Registers>
</ABI>

Figure 53: Programming conventions of the CHILI processor model.

xADL language thus also offers only a limited set of parameters that can be used to
customize the function call sequence. This includes the argument and result conven-
tions, as well as the stack layout. In addition, the register usage conventions specify
the use of registers during a function call as described above. The StackLayout key-
word allows to parametrize the stack organization and the use of the stack during
function calls.

As a general rule arguments are passed using the registers denoted by the Ar-

gument class. If the number of function arguments exceeds the number of suitable
registers in this class, the remaining arguments are passed on the stack. Similarly,
arguments to C functions with variadic argument lists9 are passed in registers until
the number of argument registers is exceeded. The remaining arguments are again
passed via the stack. These conventions can be customized using the arguments

attribute by the following options: (1) register specifies the default behavior, if
possible, arguments are passed using registers, (2) fixed_register is similar to the
default convention, however, variadic arguments are always passed via the stack,
(3) last_fixed_on_stack further restricts the argument conventions for variadic
function, the last fixed argument is already passed on the stack, and finally (4) the
stack_only convention enforces that all arguments are passed on the stack. Similar
options are available for return values using the results attribute.

9functions using ‘. . .’ in the argument list, e.g., printf.

3.7 Instruction Set 63

In addition to the argument conventions, the stack organization has to be speci-
fied. It is assumed that a dedicated register is available to be used as a stack pointer
as defined by the StackPointer class – a frame pointer is optional. The stack lay-
out can be controlled using the alignment and direction attributes. The former
species the alignment of a stack frame for a function, while the latter specifies the
direction of growth, i.e., if the stack grows up or down.

Further, the syntax and encoding format is determined using the Syntax and
Binary keywords respectively. Figure 53 presents the programming conventions
adopted by the CHILI processor model, which follow the typical conventions of a
RISC processor. A return address register, stack pointer, and frame pointer are
available. Return values and arguments are typically passed in registers, except
for functions with a large number of arguments or variadic arguments. Almost all
registers are available for computations, only registers 55 through 60 are reserved.

3.7 Instruction Set

As has been noted already, the instruction set is specified implicitly by the structural
xADL processor description. It is thus not possible to specify instructions as such
within the processor model. However, the instruction set abstraction is important
during the development of an application-specific processor. It summarizes the pro-
cessor’s capabilities and helps during the discussion and development of additional
processor features and instruction set extensions. At first the approach taken by the
xADL language may appear to be contradictory to this idea. But, on a second look
the structural processor model is only a means to specify instructions in a compact
form, similar to the AND/OR grammars used by many behavioral languages. This
section introduces how instructions are modeled using the xADL language. A sim-
ple algorithm that is based on the idea of instruction set extraction automatically
extracts the instruction set from the processor structure.

Instruction set extraction is, in fact, not a new method. It has already been
applied to structural models specified using the UDL/I [7] and MIMOLA [129, 118]
languages. However, the extraction algorithms in these systems are overly complex
and virtually impossible to follow for a processor designer. The problem, in both sys-
tems, is that not only the structure but also the behavior of the structural elements
has to be considered to find instructions. Our approach in contrast follows very sim-
ple rules. Only components and their connections need to be considered to extract
instruction paths from the processor’s pipeline. Along these instruction paths the
final instructions are created from the operations attached to the functional units
that comprise the path. Illegal instructions can be excluded using conditions and
predicates. If, at some point, instructions are not derived as expected by the proces-
sor designer, it is easy to trace the problem down by first examining the instruction
paths and then the conditions and predicates.

3.7 Instruction Set 64

The instruction set extraction operates on a hypergraph [21] representation of
the processor. A hypergraph H = (V, E) consists of a finite set V of vertices and a
finite set E of hyperedges, where each hyperedge e ∈ E is a non-empty subset of V ,
∅ ⊂ e ⊆ V . Regular graphs are a special case of hypergraphs, with ∀e ∈ E : |e| = 2.
A directed hypergraph can be defined using directed hyperedges, which are ordered
pairs (X, Y), where X ⊆ V and Y ⊆ V are possibly disjoint sets of nodes in V . The
first member of a hyperedge e = (X, Y) is referred to as head(e) = X, while tail(e) =
Y . Figure 54 depicts a simple hypergraph with E = {e1 = {v3, v5, v6}, e2 =
{v1, v2, v3}, e3 = {v4, v5}} and a variation of that graph using directed hyperedges
{e1 = ({v3}, {v5, v6}), e2 = ({v1, v2}, {v3}), e3 = ({v5}, {v4})}.

Definition. The set I = U ∪ S ∪ R ∪ I of component instances consists of the
union of unit instances U , cache and memory instances S, register instances R, and
immediates I.

Definition. The ports of component instances are denoted by the set P . The in-
put and output ports of units, as well as the data and the implicit address ports
of storage elements are directly represented in P . Immediates are, for the sake of
brevity, also treated as ports, thus I ⊆ P . Register ports that are both readable
and writeable are duplicated in P and considered separate ports.
Every port in P is associated with a component instance. The functions pin and
pout : I → P(P) specify the writeable ports and readable ports of an instance re-
spectively. The following ports are considered writeable: input ports of units and
storage elements, implicit address ports of storage elements, and writeable register
ports. Readable ports are: unit and storage output ports, immediates, and readable
register ports.
Writeable register ports as well as the address and data ports of storage input ports
are called sinks. The function sinks : I → P(P) returns the set of sinks of an
instance.
The following properties hold for the functions from above: pin(i)∩pout(i) = ∅ and
sinks(i) ⊆ cin(i) for all i ∈ I.

e1

e2

e3

(a)

e3

e2 e1

(b)

v1

v2

v3

v4 v5

v6

v1

v2

v3

v4 v5

v6

Figure 54: Examples of (a) a hypergraph and and (b) a directed hypergraph.

3.7 Instruction Set 65

Definition. Data and pipeline links are represented as a multi-set of ordered pairs
L ⊆ P × P . Every link is a member of a connect in C ⊆ P(L). The input and
output connects are in turn associated with a functional unit or storage element by
the functions cin respectively cout : U ∪ S → P(C). For every unit and storage
element at least one output connect is defined, i.e., ∀i ∈ U ∪ S : cout(i) 6= ∅, but
cout(i) = {∅} is allowed.

A standard multi-graph is induced by P and L that could be used to represent
the processor structure. However, this graph is incomplete and cumbersome to
handle. For example, a traversal of this graph is not immediately possible because
intermediate connections are missing, e.g., between the input ports and output ports
of a unit. We will show how to derive hyperedges for a hypergraph from the input
and output connects that simplify the handling of the processor representation.

Definition. Directed hyperedges are constructed from the input and output con-
nects of a unit or storage instance i ∈ U ∪ S as follows:

hin(i) = {(X, Y) | ∃c = {(u1, v1), . . . , (un, vn)} ∈ cin(i) :

X = {v1, . . . , vn}, Y = {u1, . . . , un}}
hout(i) = {(X, Y) | ∃c = {(u1, v1), . . . , (un, vn)} ∈ cout(i) :

X = {u1, . . . , un} ∪ pout(i), Y = {v1, . . . , vn} ∪ pin(i) \ sinks(i)}.

Note that the direction of hyperedges derived via hin is reverted with respect to
the original links, whereas the edges derived using hout are not. Also note, that the
internal behavior of a unit or storage element is not relevant for the construction of
hyperedges. However, the behavior is approximated by unifying the head and the
tail of the hyperedges constructed from output connects with the input and output
ports of its parent instance.

Definition. A directed hypergraph Hp = (V, E) that represents the data path of a
processor can now be defined:

V = P,

E =
⋃

i∈U∪S

(hin(i) ∪ hout(i)).

Due to the restriction of connects defined in Section 3.5.1, the duplication of
register files, and the special handling of storage input ports by hout, the hyper-
graph Hp representing a processor structure has to be free of cycles. If a processor
specification violates these restrictions it is rejected and an error is reported.

Figure 55 depicts the hypergraph constructed from a simple processor model,
consisting of functional units U1, U2, and U3, a cache C, an immediate Imm, and the
register files R1 and R2. The center of each hyperedge is represented by a diamond

3.7 Instruction Set 66

R1

Imm U1

U2

C

U3 R2

R3

e1 e2

e4

e5
e7

e3

e6

e8

e9
e10

e11

Figure 55: Example of a simple data path represented by a directed hypergraph.

symbol. For hyperedges corresponding to output connects the center lies within a
functional unit, whereas hyperedges of input connects are located outside. Unit U1
reads the operands from a register file and an immediate. The cache is used for load
and store operations, the data and address for stores are supplied by an input link
represented by hyperedge e5, while the address of load operations is supplied by e4.
Unit U2 processes the output of unit U1, while unit U3 either operates on data loaded
from the cache or calculated by unit U2. The results are finally stored in one of the
register files R2 and R3. Most hyperedges in the figure correspond to input connects,
except for e2, e6, e7, which are constructed from empty output connects, as well as
e10 and e11, which are derived from non-empty output connects. Note that edge e7
does not point to the two lower ports of the cache, these ports represent the data
and address ports of the cache’s input port and are thus sinks.

It is easy to see that paths can be constructed using the hyperedges of the graph.
The reverted paths then represent the flow of instructions through the processor
pipeline, we will refer to these paths as instruction paths. The following section
defines instruction paths and shows how to discover them in a processor model.

3.7.1 Instruction Paths

The hypergraph is an abstract representation of the instruction flow through the
data path of the processor. Each hyperedge represents a transition of an instruction
from one component instance to the next. The graph, however, does not represent
all features of the processor model, in particular hazard links and signals are not
present. Even the internal computations of functional units are merely approximated
by extending the hyperedges of output connects. However, these details are not
needed for the definition of instruction paths, which can be seen as an intermediate
step of the instruction extraction procedure.

3.7 Instruction Set 67

Definition. The hyperedge p ∈ E is called a predecessor of e ∈ E, denoted by the
predicate pred(e, p), if head(e) ∩ tail(p) 6= ∅.

Definition. A hyperedge e of a hypergraph that represents a processor structure
Hp = (V, E), e ∈ E, is an endpoint, denoted by endpoint(e), if one of the following
conditions holds:

(1) @p ∈ E : pred(e, p),

(2) ∃r ∈ R : tail(e) ∩ pin(r) 6= ∅.

An endpoint in the original processor structure is a functional unit or storage
element where instructions possibly retire, i.e., the execution of the instruction is
completed. Generally, only very few endpoints exist in a processor model. Further-
more, these often match particular instruction classes, e.g., memory store instruc-
tions retire at some cache or memory, branches often complete early in the pipeline,
while regular instructions typically complete at the end of the pipeline. Condition
(1) usually applies to input connects of storage elements and thus represents end-
points of store instructions, while (2) applies to functional units that are connected
to a writeable register port using an output connect. Condition (2) applies to branch
instructions updating the program counter register, as well as to regular instructions
that retire after storing the computed result in a register.

Considering the example from Figure 55, store instructions retire at the cache C,
while all other instructions are completed at unit U3. Thus, three hyperedges can
be considered endpoints in this data path: e5, e10, and e11. All three endpoints
meet condition (1) from above. The endpoints e10, and e11, in addition, also satisfy
condition (2).

Definition. The set of instruction paths IP of a processor structure represented by
the graph Hp = (V, E) consists of instruction paths ip ∈ IP ⊆ P(E) starting at an
endpoint e ∈ IP that meets the following conditions:

(1) endpoint(e),

(2) ∀p ∈ ip : ¬pred(e, p),

(3) ∀f ∈ ip, f 6= e : ∃p ∈ ip : pred(f, p),

(4) ∀p ∈ IP : (∃f ∈ E : pred(f, p)) → (∃g ∈ IP : pred(g, p)),

(5) ∀i ∈ U ∪ S : |hin(i) ∩ ip| ≤ 1 ∧ |hout(i) ∩ ip| ≤ 1,

(6) ∀i ∈ I, f, g ∈ ip, f 6= g : tail(f) ∩ tail(g) ∩ pin(i) = ∅.

Instruction paths start with an endpoint, which is ensured by condition (1). In
addition, it is not allowed by condition (2) to include a predecessor to this endpoint
in the path – predecessors are possible for endpoints that are linked to register files.
The edges of the path need to be connected to each other, as defined by condition (3).
Condition (4) ensures that all paths properly terminate at immediates or register
ports, but not in the middle of the data path. Finally, condition (5) specifies that

3.7 Instruction Set 68

at most one input and output connect of an unit or storage element is allowed in
a path. Not all instruction paths according to condition (1) through (5) are legal.
Hyperedges constructed from output connects of different instances may point to
the same port. This is illegal, because only one value can be assigned to a port.
The last condition thus restricts the set of instruction paths to legal paths only. If
a processor specification contains illegal paths an error is reported and the model is
rejected.

Theoretically, the number of instruction paths in a hypergraph can be very large,
e.g., if long chains of units are defined, where each unit offers multiple input and
output connects. In practice, the number of paths is rather small due to the high
complexity of the control logic that would be required to realize such processors.

Nevertheless, instruction paths are a powerful mechanism to compactly specify
the flow of instructions through the processor pipeline. For example, the data path
presented in Figure 55 consists of five paths: {e1, e2, e3, e6, e8, e10}, {e1, e2, e4,
e7, e9, e10}, {e1, e2, e3, e6, e8, e11}, {e1, e2, e4, e7, e9, e11}, and {e1, e2, e5}. The
highlighted edge of each path represents its endpoint.

3.7.2 Instructions

Based on the instruction paths, individual instructions are extracted by combining
the operations of the functional units along the path. An instruction can thus be
uniquely identified by the set of operations and its instruction path.

Definition. The set of operations defined by the functional units in a processor
structure is referred to as O. Every operation in O is attached to a functional unit,
the function unitop : U → P(O) defines a mapping between units and operations.
Using unitop we can further define the function edgeop : E → P(O) as follows: let
e be the hyperedge of an output connect of a functional unit u ∈ U , e ∈ hout(u),
then edgeop(e) = unitop(u), otherwise edgeop yields ∅.

Definition. An instruction is a tuple (ip, ops) ∈ IP × P(O), where the following
conditions are satisfied:

(1) ∀o ∈ ops : ∃e ∈ ip : o ∈ edgeop(e),

(2) ∀e ∈ ip : |ops ∩ opedge(e)| = 1 ∨ opedge(e) = ∅.

These conditions specify that (1) every operation has to be associated with an
edge that is also part of the instruction, while (2) states that every operation is
associated with exactly one edge, and that every edge that can be associated with
an operation is actually associated with an operation of the instruction. In other
words, a one to one mapping between the operations and the hyperedges originating
from output connects of functional units exists for an instruction.

3.7 Instruction Set 69

Definition. The set of symbols appearing as a condition or predicate in a processor
model is referred to as A.
The conditions of an instance can be retrieved using the function icond : I → P(A),
those of an operation using opcond : O → P(A). In addition, a function econd :
E → P(A) yields the union of all conditions attached to links that comprise a hy-
peredge.
Predicates can be retrieved using analogous functions, ipred : I → P(A) for in-
stances, oppred : O → P(A) for operations, and epred : E → P(A) for hyperedges.

Definition. The predicates and conditions of an instruction q = (ip, ops) ∈ IP ×
P(O) can be derived as follows: let insts = {i ∈ U ∪ S | ∃e ∈ ip : e ∈ hin(i) ∨ e ∈
hout(i)},

conds(q) =
⋃

i∈insts

icond(i) ∪
⋃
e∈ip

econd(e) ∪
⋃

o∈ops

opcond(o)

preds(q) =
⋃

i∈insts

ipred(i) ∪
⋃
e∈ip

epred(e) ∪
⋃

o∈ops

opred(o).

Definition. An instruction q ∈ IP × P(O) is said to be legal, if all conditions
attached to an operation, component instance, or link are ensured by a matching
predicate, i.e., if conds(q) ⊆ preds(q). The set of legal instructions of an xADL
processor model is denoted by Instrs.

The set of legal instructions comprises the instruction set of the target processor.
As an example consider the processor structure from Figure 55. Assume that unit
U1 specifies a single operation decode, unit U2 the arithmetic operations add and
sub, and U3 a single operation commit. In total 7 instructions are defined, by
combining the following set of operations with the paths from the previous section:
{decode, add, commit}, {decode, sub, commit}, {decode, commit}, and {decode}.

Based on the instruction set, the assembly syntax and binary encoding of each
instruction can be defined using the syntax and binary bindings that are attached to
the operations and links. A behavioral model can be derived by combining the micro-
operations in the operations set of the instruction. Even further, the hyperedges
allow to relate the instructions to the underlying instances and connections. We
can thus derive accurate timing and resource models of the individual instructions.
The adlgen tool implements an algorithm to extract the instruction set according
to the definitions from above. It also provides an analysis framework to analyze the
processor data path and its instructions. Most importantly, the adlgen tool provides
a rich set of generators. An overview of the tool and its implementation is given in
the next chapter.

4 The adlgen Tool

The adlgen tool is the central component of the software environment developed
around the xADL language. The tool reads the XML processor specification, parses
the definitions, and creates an internal representation of the processor structure. The
instruction set of the processor is then extracted from this data structure according
to the definitions from the previous chapter. The individual instructions are also
represented by an internal data structure, which provides, besides the operations and
the instruction path of an instruction, a detailed model of the instruction’s behavior.
Which is in turn represented by a simple sequence of micro-operations that are
enriched with information on data hazards, signals, data dependencies, and timing.
Both representations are tightly coupled, such that the individual instructions and
even micro-operations can be mapped to their corresponding hardware components
and vice verse. In addition, all instructions are annotated with operand sets, hazard
information, the assembly syntax, and binary encoding.

When the intermediate representations of the processor structure and its instruc-
tion set have been constructed, generator modules are invoked. Modules are the basic
interface that connects the application-independent parts of the adlgen tool to the
respective application-specific generators. A module usually processes the hardware
components, the instruction set, or both in order to generate source code, configura-
tion files, diagrams, reports, or other artifacts of interest. For example, the compiler
generator mainly inspects the register instances and the instruction set in order to
generate C source code and translation patterns for the instruction selector in order
to customize a compiler backend.

Different modules sometimes require the same or very similar information, e.g.,
the timing of instructions or a summary of the dependencies and interactions among
instructions. Common algorithms and data structures can be reused and shared
among modules using so-called provider. A provider encapsulates an algorithm that
analyzes or otherwise operates on the processor representations in order to provide
additional information that is not available through the structural processor repre-
sentation and the instruction set model.

The organization of the adlgen tool is oriented towards a regular compiler for
the code generation from traditional programming languages. However, it operates
on the processor structure and the abstract representation of the instruction set
rather than on programs. It is further not limited to a single application scenario,
but instead allows for multiple, quite different, generator modules. Ranging from
simple reports and diagrams to complex source code generators that automatically
customize a retargetable compiler or simulation framework. The tool consists of
four major phases: (1) the frontend parses and validates the processor specification,
(2) the second phase called base creates the basic data structures to represent the
processor structure and its instruction set. Next, (3) provider compute globally
shared summaries and abstractions from the detailed base models that are finally
used by (4) the generator modules, which derive the desired artifacts. As for a

70

4.1 Frontend 71

(a) frontend

(b) base

(c) provider

(c) modules

xADLmodel Parser

Web

FE

fetch
IC

DE

decode

EX

addiu
sub
...

DC

MEM

sextb
zextb
...
fwd

WB

writeback

abort

R

PC

ImmW ImmJ

addr

load

!addr

!load
!load

fe
fe

Rs

Rt

ex

Rd

bypass

ISA

sb $[0-31], <imm16>($[0-31]) Operands: R::Rt, ImmW, R::Rs
Ops: FE::fe, ICache::memory_access, DE::de, EX::addiu, MEM_ST::sh, DCache

sw $[0-31], <imm16>($[0-31]) Operands: R__Rt, ImmW, R__Rs
Ops: FE::fe, ICache, DE::de, EX::addiu, MEM_ST::sw, DCache

lb $[0-31], <imm16>($[0-31]) Operands: R__Rd, ImmW, R__Rs
Ops: FE::fe, ICache, DE::de, EX::addiu, DCache, MEM_LD::lb, WB::wb

lw $[0-31], <imm16>($[0-31]) Operands: R__Rd, ImmW, R__Rs
Ops: FE::fe, ICache, DE::de, EX::addiu, DCache, MEM_LD::lw, WB::wb

addiu $[0-31], $[0-31], <imm16> Operands: R__Rd, R__Rs, ImmW
Ops: FE::fe, ICache, DE::de, EX::addiu, MEM::fwd, WB::wb

extract

Timing Memory Jump

LLVM acc Simulgen VHDLgen Report

Output

Figure 56: Organization of the adlgen tool, (a) the frontend parses the xADL file, (b)
base creates an internal representation, (c) provider share common analysis data,
and (d) modules generate the final artifacts.

compiler, the initial phases are very generic, while later phases become more and
more application-specific. Figure 56 summarizes the organization of the adlgen tool,
which is described in more detail in the following sections.

4.1 Frontend

The frontend roughly corresponds to the respective phase of a traditional compiler.
The tool processes the command-line options and subsequently parses the XML pro-
cessor description. The command-line options typically specify a list of generator
modules, including module specific options, and switches to select the active proces-
sor configuration and programming conventions. The actual parsing is performed by
an external XML library10 that first validates the processor description against an

10http://xmlsoft.org/

http://xmlsoft.org/

4.2 Base 72

XML schema definition of the xADL language, and then creates a Document Object
Model (DOM), i.e., an extended abstract syntax tree.

4.2 Base

In the following, a representation of the processor model is generated from the DOM
data structure, called web. This model precisely mirrors the structural hardware
description using a graph representation, very much like the hypergraphs from the
previous chapter. All configuration parameters have been resolved at this point.
Also the programming conventions have been determined, such that a representation
of the calling conventions and register usage conventions can be created. This also
implies that an assembly syntax and a binary encoding variant has been determined,
and that corresponding representations are computed. Types and instantiations,
as well as connects and hazard links are resolved during the construction of the
web structure and validated for consistency, i.e., name conflicts, missing definitions,
matching bit-widths, et cetera.

The web data structure is traversed in order to assign the functional units and
immediates to pipeline stages. Register ports and ports of storage elements are
assigned to pipeline stages separately, because the individual ports can be accessed
by different instructions in different pipeline stages concurrently. Functional units
are assigned to a pipeline stage as a whole. The stage assignment operates on
chains of hyperedges that form a linear sequence. Every chain starts at an endpoint
and is ended by readable register ports or immediates. The number of hyperedges
that contain at least one pipeline link is called the length of a chain. The chains
are processed by a simple worklist algorithm in descending order according to their
length. Initially, the worklist contains all chains of the data path. The longest chain,
which corresponds to the longest pipeline in the data path, is processed first and
removed from the worklist. The functional units and immediates, as well as the ports
of register files and storage elements are assigned to a pipeline stage by counting the
number of pipeline links between the end of the chain and the respective element.
These assignments may partially determine the stage assignment of other chains, if
the particular chain covers a functional unit or register port that has already been
assigned to a stage. These overlapping chains are processed next and subsequently
removed from the worklist. The stage counting now begins at elements that are
already assigned to a stage by incrementing and decrementing the stage counter
while traversing the chain towards the end and start point respectively. If all chains
in the worklist are independent from the prior stage assignments, the longest chain is
selected and the algorithm starts anew. These steps are repeated until the worklist
is empty and all chains have been processed. Inconsistent stage assignments are
detected and reported to the user during the processing, the processor model is
rejected and not further processed. The instruction paths of all regular instructions
have to end at stage zero, i.e., at least one of the paths chains has to start at a stage
count of zero. This does not apply to parallel instructions.

4.2 Base 73

(a)

2

0 1 2 3 4

1 2 3 4

(b)

3
2

0 1 2 3 4

0 1

2 3 4 5

Figure 57: Assignment of pipeline stages to the components and ports of a data
path, (a) a legal pipeline structure, (b) an illegal data path organization.

As an example consider the simplified data path in Figure 57(a). The nodes cor-
respond to functional units and register ports, while the edges represent hyperedges
with pipeline links. Four chains can be formed, where the longest is shown at the
bottom. The elements along this chain are assigned to the stages zero through four.
This numbering influences the stages of the the chain shown right above, and leads
to the assignment of stage number two to the unit in the middle – marked with
a green circle. This in turn influences the assignment of the two other chains. In
particular, the stage number of the element at the top left corner is not zero but one.
The regular instructions of this data path thus need to include the first chain in their
respective instruction paths. A conflicting assignment is shown in Figure 57(b). The
element at the center of the data path shows the conflicting assignments of stage
number two and three respectively. The corresponding processor model is rejected
and an error is reported to the user.

The instruction set is then extracted from the web according to the definitions
from Section 3.7. As a first step the instruction paths are constructed by a simple
depth-first traversal of the web data structure. In contrast to a depth-first search in a
regular graph directed hyperedges may point to several independent successor nodes
that all need to be considered at the same time. Consequently, a worklist stores the
set of vertices that need to be processed next. Branches in the hypergraph are stored
on a stack in order to backtrack and discover all possible paths. The algorithm is
invoked for every endpoint of the hypergraph, an instruction path is complete when
the worklist becomes empty. The processing stops when both, the worklist and
the stack, become empty. Termination is guaranteed, because the web structure is
verified to be free of cycles beforehand.

The individual instructions are then constructed by enumerating all possible
combinations of the operations of the instruction paths. As described in the previ-
ous chapter, an instruction is represented by a set of operations and its instruction
path. However, to simplify the processing in later phases additional information
is computed and attached to the instructions. For example, a behavioral model is
derived by combining the micro-operations of the operations. The data transfers
between functional units and other components, represented by data and pipelining
links, are modeled by simple move micro-operations that are annotated with ad-
ditional information on hazard links originating from or targeting at the involved

4.2 Base 74

Operations : FE::fe, ICache, DE::de, EX::ori, MEM::fwd, WB::wb

Operands : R::Rd[0-31], R::Rs[0-31], ImmW

Syntax : mips.op3i_s = ‘ori $[0-31], $[0-31], <imm16>’

op = ‘ori’

rd = ‘$’, WB::Rd_o [0-31]-> R::Rd, gpr_m

rs = ‘$’, R::Rs [0-31]-> DE::Rs_i, gpr_m

imm = ‘’, ImmW [0-0]-> DE::ImmW_i

Encoding : mipsel.i16type2_b

instr:001101rrrrrrrrrriiiiiiiiiiiiiiii

op = 001101 (0x34)

rd = WB::Rd_o [0-31]-> R::Rd

rs = R::Rs [0-31]-> DE::Rs_i

immw = ImmW [0-0]-> DE::ImmW_i

Figure 58: Meta-information associated internally with the or immediate instruction
of the MIPS processor.

ports of the link. Similarly, cache and memory accesses are represented using the
internal pseudo micro-operations read and write. It is always possible to arrange
the micro-operations in a linear sequence according to their data dependencies using
a simple list scheduling algorithm [3], even if the path consists of multiple indepen-
dent functional units that operate in parallel. This linear sequence is further sorted
ascending according to the pipeline stage assigned to the respective parent units and
links of the micro-operations. In addition to the behavioral model, syntax and bi-
nary encoding information is stored with every instruction. The respective bindings
are collected from the operations and links comprising the instruction.

Figure 58 depicts a textual representation of the internal meta-information that
is associated with each instruction. The list of operations at the top represents
the instruction path and its operations, while the operands set specifies the register
and immediate operands of the instruction. The syntax information is shown below,
on the left hand side the syntax format and template, on the right hand side the
resulting syntax string, where operands are represented by placeholders in brackets.
The individual syntax bindings are listed below. A similar representation is used
to display the binary encoding information. First, the instruction’s binary format
and template is shown, followed by the bits encoded by the instr field – which is
the only field defined by the MIPS model. Below the individual binary bindings
are shown. The behavioral model of the instruction is presented in Figure 59. It
shows a sequence of micro-operations sorted according to their respective pipeline
stages and data dependencies. The annotations on the right hand side indicate
the pipeline stage (st) and parent operation (op). The arrows on the left side,
indicate the information that is available on bypasses for the particular instruction.
In addition, the instruction is potentially aborted by another instruction via the

4.3 Provider 75

FE::pc_i = move(pc::p_fe) [st: 0, op: fe]

FE::pc_o = add(FE::pc_i, const_4) [st: 0, op: fe]

pc::p_fe = move(FE::pc_o) [st: 0, op: fe]

ICache::@read = move(FE::pc_o) [st: 0]

ICache::read = read(ICache::@read) [st: 0]

DE::ImmW_i = move(ImmW) [st: 1, op: de]

DE::Rs_i = move(R::Rs[0,31]) [st: 1, op: de]

DE::IW_i = move(ICache::read) [st: 1, op: de]

ab
or

t
on

B
E
X

decode(IW_i) [st: 1, op: de]

DE::Rs_o = move(DE::Rs_i) [st: 1, op: de]

DE::ImmWu_o = zext(DE::ImmW_i) [st: 1, op: de]

EX::ImmWu_i = move(DE::ImmWu_o) [st: 2, op: ori]

EX::Rs_i = move(DE::Rs_o) [st: 2, op: ori]

EX::Rd_o = or(EX::Rs_i, EX::ImmWu_i) [st: 2, op: ori]

MEM::Rd_i = move(EX::Rd_o) [st: 3, op: fwd]

MEM::Rd_o = move(MEM::Rd_i) [st: 3, op: fwd]

WB::Rd_i = move(MEM::Rd_o) [st: 4, op: wb]

WB::Rd_o = move(WB::Rd_i) [st: 4, op: wb]

R::Rd[0,31] = move(WB::Rd_o) [st: 4, op: wb]

Figure 59: Behavioral model of the or immediate instruction.

BEX signal when the instruction is executing in stage 1. This is indicated by the red
annotation on the left hand side of the figure.

The base component of the adlgen tool provides an application-independent rep-
resentation of the processor’s hardware organization and its instruction set. These
two representations are tightly coupled, the abstract behavior of instructions pro-
vides various views that include the semantics of the instruction, its timing behavior,
and its interactions with other instructions through hazard links and signals.

4.3 Provider

Provider are extensions to the infrastructure offered by the base component. A
provider analyzes the structural model or the instruction set, and provides access
to its analysis results through a well-defined interface. The services offered by a
provider are usually very generic in order to reuse the information across different
application-specific generator modules. In contrast to the data structures of the base
component that have to be created on every invocation of the adlgen tool, provider
are only expected on demand when a generator module or another provider requests
information via the provider’s interface.

4.3 Provider 76

flag: unknown pc relative
index: direct indexed

direction: none unknown
increment decrement

autoincrement: no autoincrement
pre autoincrement pre autodecrement
post autoincrement post autodecrement

Table 4: Addressing modes recognized by the memory provider.

The aldgen tool offers several predefined provider implementations: (1) the tim-
ing analysis, (2) the memory, and (3) the jump provider. The timing provider
analyzes the instruction set of the processor and offers a summary of the timing
characteristics of every instruction. The summary specifies the latency in cycles of
the instruction for certain execution scenarios. The analysis considers interactions
due to data dependencies, data hazards, control dependencies. The data depen-
dence analysis covers true, false, and output dependencies caused by registers and
memory locations. Also bypasses described by hazard links are considered by the
analysis. However, the abstract summary information is not able to reflect the ef-
fects of partial or incomplete bypassing. Thus, in the presence of partial bypasses
the analysis calculates conservative bounds that ensures that the data is guaran-
teed to be available under any circumstances. Control dependencies may arise from
branches, jumps, and trapping instructions that potentially alter the control flow
during execution. Thus updates of the program counter and interactions via signals
need to be analyzed in addition to the regular data dependencies. The summary,
again, computes conservative bounds to ensure a safe approximation of the control
dependencies.

The memory provider analyzes the memory access patterns and addressing modes
of instructions. The behavioral model of the instructions is scanned for read and
write micro-operations. Micro-operations supplying the address and data for the
memory accesses are subsequently analyzed and classified using four attributes: (1)
flag, (2) index, (3) direction, and (4) autoincrement – see Table 4. The first at-
tribute provides useful hints about the memory access in general, e.g., if the ad-
dressing mode was successfully classified or whether the access is relative to the
program counter. Secondly, indexed addressing modes are represented. A direct
addressing mode consist of a single base address operand, while indexed address-
ing modes add or subtract an additional index operand to/from the base address.
The direction attribute specifies whether the index is added to or subtracted from
the base operand. The final attribute is relevant for memory operations with au-
toincrement addressing modes, where the base address is automatically incremented
or decremented before or after the memory access. Note that the attributes can
be combined, e.g., the SPEAR processor offers a load instruction with a combined

4.3 Provider 77

memory analysis - lw $[0-31], <imm16>($[0-31]) :

load am: pre_inc base: pc::p_fe auto: const_4 [pc_rel]

load am: indexed_inc base: R::Rs index: ImmW

sl: 1 ld: 1 ss: 0 sd: 0 am: indexed_inc

Figure 60: Memory access summary for the MIPS load word instruction.

indexed-increment and post autodecrement addressing mode that corresponds to the
C expression ‘*(basereg-- + imm)’. Additional patterns for typical addressing
modes of DSP architectures, e.g., bit-reversed or modulo addressing, are also possi-
ble, but currently not supported. In addition, side-effects due to register updates,
other memory accesses, and modifications of the value loaded from or stored to the
memory are summarized. Instructions without side-effects are most often useful
for the various generator modules, these simple load or store instructions are thus
marked by an additional flag. Note that the memory access to fetch the instruction
from memory is not considered a side-effect, but only if the loaded instruction word
is exclusively processed by the decode micro-operation.

Figure 60 shows an excerpt of the analysis results computed by the memory
provider for the MIPS model. It shows a list of memory accesses of the load word
instruction. The first load represents the memory access to fetch the instruction
and is thus not further considered. The second memory access loads data from
the memory and stores the loaded data unmodified into a register. The address
computations are successfully recognized as an indexed-increment addressing mode.
The flags at the bottom indicate that the instruction loads data (ld) and can further
be classified as a simple load (sl) with an indexed addressing mode.

Another important characteristic of an instruction is its branching behavior, i.e.,
whether the instruction updates the program counter. This information is analyzed
by the jump provider, which scans the instruction’s micro-operations for, possibly
conditional, updates of the program counter register. The update patterns are sub-
sequently classified as conditional or unconditional, absolute or relative, and register-
based or symbol-based. In contrast to the memory analysis that is very precise in
capturing the addressing modes, the patterns accepted by the branch analysis are less
sharp. In particular, for symbol-based branches involving immediates. The scope of
these branches is often limited by the bit-width of the immediate operand. Many
architectures thus try to extend the range by transforming the immediate’s value.
From the user perspective these tricks are usually not visible, instead the develop-
ment tools, foremost the assembler and linker, hide these complexities. The jump
analysis thus accepts a broad spectrum of transformations of immediate operands
and still recognizes the given instruction as a regular branch or jump.

For regular instructions the program counter is typically incremented during an
early execution phase. Branches, however, typically consist of multiple assignments
to the program counter, where the actual assignment of the branch’s target is exe-

4.3 Provider 78

jump analysis - jr $[0-31] :

jump summary: jump_expr(ABS, REG, UCD)

jump analysis - j <imm26> :

jump summary: jump_expr(ABS, SYM, UCD)

jump analysis - bgezal $[0-31], <imm16> :

jump summary: jump_expr(REL, SYM, CND) save: R::Rd

Figure 61: Branch behavior of two jump and a branch instruction of the MIPS
model.

cuted late in the pipeline. The branch analysis is able to handle at most two updates,
where the first is required to continue the execution linearly and only the second
assignment is interpreted to be the actual branch pattern. Branches that do not
follow this convention are not recognized properly and thus treated conservatively.
This model implies that the execution at first continues linearly after the branch,
until the actual target address is assigned to the program counter. The cycles be-
tween the first and the second assignment is referred to as branch delay slots. Some
processors explicitly define branch delay slots, however, longer branch delay slots
are often cumbersome to handle, both in software and hardware. It is thus com-
mon to abort instructions that would otherwise execute in the branch delay slots.
Signals provide a very intuitive and well analyzable way to control the behavior of
instructions that are executed in branch delay slots. The jump analysis thus uses
the timing behavior of the branch and the interactions that can be observed through
signals to derive the number of branch delay slots. In addition, the jump analysis
also recognizes whether the original program counter is stored in a register by the
jump or branch instruction. Instructions that store the program counter often can
be used to realize function calls efficiently.

The result of the jump analysis for two jump and a conditional branch instruction
is shown in Figure 61. The analysis results of the jump register instruction are shown
first. This instruction is rather simple, because the value of a general purpose register
is simply assigned to the program counter. It is thus classified as an unconditional,
absolute, register-indirect jump. The jump instruction is more complex, because
the limited scope of the 26 bit-wide immediate operand is not sufficient to cover the
full 32-bit address range of the program counter. The MIPS architecture solves this
problem by first shifting the immediate’s value to the left by two and then merging
the upper four bits of the current program counter with the shifted value. The
analysis recognizes the instruction to be a symbol-based, unconditional, absolute
jump. The final example, shows a conditional branch and link instruction that
is recognized as a symbol-based, conditional, relative branch. The analysis also
recognizes that the address of the instruction following the branch is stored into a
register as indicated by the save annotation at the bottom.

4.4 Modules 79

4.4 Modules

Modules finally process the structural processor model, the instruction set model,
and the analysis results computed by provider in order to derive source code, test
cases, diagrams, documentation, or other kinds of artifacts. The interfaces between
modules, the base framework, and the provider is well-defined, it is thus possible
to extend the adlgen tool with little effort and even load modules dynamically on
demand.

Currently, nine generator modules are provided by the adlgen toolkit. The Simul-
gen [24, 25, 58, 165] module allows to automatically derive a cycle-true simulator of
the processor pipeline. The simulation engine is based on mixed interpretation [58]
and dynamic code generation [165]. Initially, all instructions are interpreted using
a very simple scheme. Every instruction is split according to the pipeline stages
of its behavioral model. For every stage a separate C/C++ simulation function
is generated that is invoked by the interpreter. The simulation functions operate
on a software emulation of the processor’s hardware state, i.e., registers, caches,
memories, and pipeline links are represented by global variables that are read and
written accordingly. In fact, the simulation functions operate on a shadow state
that is required in order to model the parallel operation of the different pipeline
stages and instructions, e.g., for VLIW processors. Thus after every cycle the actual
processor state needs to be updated from the shadow state by invoking so-called
epilogue functions for every active instruction. The interpreter keeps track of the
currently active instructions and invokes the simulation and epilogue functions for
a particular instruction one after the other on every simulated cycle. For a simple
five-stage processor this can lead up to ten function calls on every cycle in the worst
case. In the case of VLIW processors, the overhead is even bigger, due to the in-
dependently operating pipelines. For longer running programs the simulation speed
of this simple interpreter is not satisfactory. The simulation speed is thus improved
using dynamic compilation. In addition to the interpreter functions, corresponding
code generation functions are derived from the processor model. When a particular
basic block of the simulated program is executed over and over again, the block’s
instructions are translated to native machine code of the simulator’s host machine.
Subsequently, when the same code is to be simulated, the fast native code is invoked
instead of the slow simulation functions. We use the just-in-time compiler provided
by the LLVM compiler infrastructure [115] to perform high-level code optimizations
and the low-level code generation. The compilation process starts by invoking the
code generator functions in parallel to the interpreter functions. The functions build
a new function in LLVM’s intermediate representation that represents a linear in-
structions sequence of a basic block of the simulated program. If the compiled basic
blocks are still executed frequently, multiple basic blocks are recompiled and com-
bined into a so-called region – also referred to as traces. The LLVM functions for
regions, in contrast to the basic block functions, represent non-linear code fragments
that can even contain loops. Experimental results show that this approach reduces

4.4 Modules 80

the compilation overhead, but at the same time achieves an outstanding simulation
speed of up to several hundred MHz [24, 165].

The simulation framework is further able to optimize asynchronous interrupts
that are modeled using parallel instructions. The simulation of interrupts is very
costly, because the compilation overhead is drastically increased and the compiled
code is considerably slower. The problem arises from the asynchronous nature of
interrupts, where interrupt checks need to be performed on every cycle in order to
ensure that all interrupts are detected properly. However, most of the checks are
useless, because interrupts are relatively rare compared to the clock frequency of
typical processors. The interrupt dispatch can be modeled independently from the
regular instructions in xADL processor descriptions using parallel instruction. It is
thus possible to specifically optimize the simulation of the interrupt dispatch using a
rollback mechanism [25]. This reduces both, the simulation and the code generation
overhead, and thus significantly improves the overall simulation speed.

The Simulgen module is very mature and has been used to generate simulators
for several processors. The VHDLgen module, in contrast, is an early prototype that
has been developed in the course of a lecture.11 It is able to automatically derive
large portions of a synthesizable VHDL description from a processor model, including
the register files, the functional units, the data paths connecting the computational
resources, as well as the control unit. In its current form, only the generation of the
instruction decoder and the generation of memories and caches is missing. Also the
generation of register files is limited, depending on the capabilities of the underlaying
FPGA technology. A prototype implementation of the MIPS processor using a Xilinx
Virtex 4 FPGA (XC4VL25) on a Xilinx ML-401 board shows that correct VHDL
code can be generated from the processor descriptions. The synthesized core is able
to execute medium sized MIPS programs at about 25 MHz and occupies about 20%
of the logic cells of the FPGA – including all register files and 64 KB of SRAM for
data and instructions.

The vcg generator module allows to derive a visualization of the processor struc-
ture. The instances as well as links are represented using a directed graph that
is rendered and displayed by the XVCG12 graph editor. During the design of a
processor these diagrams are often helpful to verify that the connections between
the individual components are correctly modeled. The report module is similarly
intended for debugging purposes. It generates an XML report of the processor’s
instruction set that includes, besides the behavioral model, also information on the
instruction syntax and encoding. An additional XSLT-stylesheet can be used to
render the information as HTML.

The LLVM module is a compiler generator targeting the LLVM compiler infras-
tructure [115] that automatically derives a register file description, an instruction
set model, a resource model for instruction scheduling, tree patterns for instruction

11http://en.wikiversity.org/wiki/Computer_Architecture_Lab/WS2007
12http://rw4.cs.uni-sb.de/users/sander/html/gsvcg1.html

http://en.wikiversity.org/wiki/Computer_Architecture_Lab/WS2007
http://rw4.cs.uni-sb.de/users/sander/html/gsvcg1.html

4.4 Modules 81

selection, and additional C++ clue code in order to retarget the LLVM backend to
the processor described by the model. Another compiler generator is available for
the proprietary compiler backend acc, which uses a modified version of GCC13 as
frontend. The generator consists of three modules rd-acc, ot-acc, and pd-acc that
generate a register file description, operation tables for instruction scheduling [174],
and tree patterns for an instruction selector based on lburg [64] respectively. An
automatic completeness test of the instruction selector can be used to prove that
the derived tree patterns cover all input programs that are possibly accepted by the
compiler frontend, i.e., if the instruction selector is able to produce machine code for
all valid input programs. The completeness test as well as the compiler generators
are described in more detail in the following chapter.

13http://gcc.gnu.org/

http://gcc.gnu.org/

5 Compiler Backend Generation

The automatic generation of compiler backends is a central application area of the
xADL language. This task is particularly challenging, because the generated back-
end components are not only required to generate correct code for the specified
processor, but also efficient code. The major challenge is to bridge the gap between
the semantic model of the compiler’s intermediate representation and the behavior
of the processor’s instructions. The instruction selection phase of a compiler usu-
ally performs this task. A processor description that is intended to support the
automatic generation of compiler backends thus requires a very detailed, but still
abstract, behavioral model of the instruction set. However, a behavioral model alone
is not sufficient to generate correct and efficient code. The instructions, generated
through instruction selection, have to be reordered in order to efficiently utilize the
available hardware resources, and most importantly guarantee that structural and
data hazards among the instructions are avoided. This is particularly important
for application-specific processors, because hardware resources that automatically
resolve hazards are often eliminated due to area and power constraints. The com-
piler is thus responsible that all data and the computational resources are available
in a timely fashion. The instruction scheduling phase of the compiler’s backend is
typically responsible for this reordering. For VLIW processors the scheduler groups
the instructions into bundles for parallel execution. In contrast to the instruction
selection, this phase is not concerned with the semantics of the involved instructions,
but solely with their timing and resource usage. Processor description languages tar-
geting the automatic generation of compiler backends thus ideally provide a precise
structural view of the processor’s hardware organization that is tightly coupled with
the instruction set model. The xADL language, in combination with the adlgen tool,
provides the required information, and is exceedingly well suited for the automatic
generation of compiler backends.

The backend generator heavily depends on the functionality provided by the
instruction set of the given processor. For minimalistic processors that only offer
limited capabilities the generator may fail to derive a complete compiler, i.e., one
that can generate machine code for all input programs possibly accepted by the
compiler frontend. It is thus of utmost importance that the generator tool provides
meaningful feedback to the processor designer regarding the completeness of the
derived instruction selector. The xADL language provides enough information to
perform a formal completeness test that proves whether the derived instruction
selector is complete.

5.1 Background

A compiler translates a program specified via a programming language to machine
code of the target processor. Typically this translation proceeds in three phases:

82

5.1 Background 83

(1) the frontend parses the input program and generates a target-independent in-
termediate representation, (2) the middleend then applies high-level transforma-
tions and optimizations to this intermediate form, (3) the backend translates the
target-independent intermediate representation to machine code and further applies
processor-specific optimizations. When a compiler is to be retargeted for a new
processor, it is often sufficient to customize the backend only. This is particularly
true for retargetable compilers that are designed to support multiple target pro-
cessors. To retarget a compiler for a given processor the three main phases of the
backend have to be adopted: (1) the instruction selector, (2) the instruction sched-
uler, and (3) the register allocator. Depending on the processor’s features additional
transformations and optimizations might prove beneficial, but these are not strictly
required.

5.1.1 Instruction Selection

The instruction selector is the first highly target-dependent transformation in a
compiler. During this phase the target-independent intermediate representation is
translated to a target-dependent representation, the machine-level IR. This process
is a highly complex problem that is usually solved using heuristics that try to mini-
mize the expected execution time, code size, and power consumption. The resulting
representation is very close to the actual machine code of the target processor. The
most significant difference at this point is that the instruction operands are not yet
lowered completely to the machine level. Local variables are translated to an infinite
set of virtual registers that is later mapped to the limited set of hardware registers
by the register allocator.

A very popular approach for instruction selection is tree pattern matching [49,
65, 64]. Here, statements of the input program are represented as trees. The leaf
nodes in the trees correspond to operands, i.e., virtual registers and constants, other
nodes represent operators of the source language. Two nodes are connected by an
edge, if the calculation performed by the first node depends on the calculations of
the other. The instruction selector computes a cost-minimal cover of the tree using
an augmented tree grammar [36]. The tree rules of the grammar consist of a tree
pattern, a cost function, and an emit function. The pattern describes a fragment of
the compiler’s intermediate representation that is covered by its rule. The terminal
symbols of the rule patterns match the operands and operators of the IR, while non-
terminal symbols connect the individual rules of a cover. Rules with a tree pattern
consisting of a single non-terminal are referred to as chain rules.

The cost function associates a rule instance, i.e., a rule and the concrete IR
nodes that it covers, with a numeric cost. The costs can either be static or dynamic.
In the former case the costs can only be constant, while in the latter case global
compiler options or the IR nodes of the rule instance can be considered by the cost
function. If the dynamic cost function evaluates to infinity for a rule instance,14 the

14Infinity is usually represented using a large integer number.

5.1 Background 84

Pattern Cost Emit
(1) r → ar 1 mov r = ar

(2) ar → r 1 mov ar = r

(3) r → V 0 V

(4) imm → C 0 C

(5) r → imm 1 ldi r = imm

(6) r → ∗∗∗(r1, r2) 3 mul r = r1 ∗ r2
(7) r → +++(r1, r2) 1 add r = r1 + r2
(8) r → +++(r1, imm) 1 add r = r1 + imm

(9) r → LD(+++(ar1, imm)) 5 ld r = [ar1 + imm]

Table 5: Example tree grammar for instruction selection.

rule is effectively disabled and not considered by the instruction selector, such cost
functions are called dynamic checks.

The cover can be computed very efficiently using dynamic programming by
traversing the tree representation twice. First, during the labeling phase, the vi-
able rule instances are enumerated for every tree node bottom-up starting at the
leaf nodes. The nodes are annotated with state labels that specify the minimal
costs to derive a given non-terminal symbol for the node and its sub-trees. A sec-
ond top-down sweep, called the reduce phase, selects the cost-optimal rule instance
for every IR node and invokes the appropriate emit function, which generates the
machine-level representation.

Definition. A tree grammar [36] is defined as G = (S, N,F , R), where N is the set
of non-terminal symbols, F is a ranked alphabet of terminal symbols, and R is a set
of production rules. Derivations of the grammar begin with the start symbol, also
called axiom, S ∈ N . The rules consist of a non-terminal symbol on the left hand
side of the production rule and a term in the form of a tree on the right hand side
q → t, where q ∈ N and t ∈ T (N ∪ F):

(1) N ⊆ T (N ∪ F),

(2) F0 ⊆ T (N ∪ F),

(3) ∀p ≥ 1, f ∈ Fp, t1, . . . , tp ∈ T (N ∪ F) : f(t1, . . . , tp) ∈ T (N ∪ F).

For instruction selector specifications, the production rules r ∈ R are further
augmented with cost and emit functions, denoted by cost(r) and emit(r) respec-
tively.

A simple example tree grammar is presented in Table 5. The first two rules are
chain rules that convert the ar to the r non-terminal symbol, and vice verse. Rule
(3) and (4) match leaf nodes, i.e., virtual registers and constant operands. The chain
rule (5) further allows to convert the imm non-terminal to the r non-terminal by
loading the constant into a register. The other rules match an operator, where the

5.1 Background 85

Vb
imm:∞

r: 0 (3)
ar: 1 + 0 (2&3)

+
imm:∞

r: 1 + 0 + 0 (8)
ar: 1 + 1 (2&8)

C60

imm: 0 (4)
r: 1 (4&5)

ar: 1 + 1 (2&4&5)

LD
imm:∞

r: 5 + 1 + 0 (9)
ar: 1 + 6 (2&9)

∗
imm:∞

r: 3 + 0 + 6 (6)
ar: 1 + 9 (2&6)

Va
imm:∞

r: 0 (3)
ar: 1 + 0 (2&3)

Figure 62: Tree pattern matching using dynamic programming.

operands are denoted using numbered non-terminals. Patterns are allowed to be
nested as shown by rule (9), witch covers a load operation and its addressing mode.
The listed rules can be used to cover the tree of the C expression ‘a * b[15]’ as
shown in Figure 62. Every IR node in the tree is annotated with a state label that
lists the costs to derive the individual non-terminals for the node and its sub-trees,
followed by the numbers of the rule producing the respective non-terminal. The cost-
optimal cover is highlighted using bold font. Note that the load and the plus nodes
are covered by a single rule, thus no rule is selected for the plus node separately.
The resulting machine code is presented in Table 6.

Aho and Johnson were the first to use dynamic programming for optimal in-
struction selection on trees [2]. Work by Hoffman and O’Donnell [95] was combined
with this approach and lead to the code generation framework TWIG [1]. Later,
the tree pattern matching approach was improved by Emmelmann et al. [49], Fraser
et al. [65, 64, 66], and Ertl et al. [52].

Code Rule Number Costs
(1) 3 0
(2) 3 0
(3) mov ar1 = b 2 1
(4) 4 0
(5) ld r1 = [ar1 + 60] 9 5
(6) mul r2 = a ∗ r1 6 3

Table 6: Final machine code generated from a tree cover.

5.1 Background 86

Although pattern matching on Directed Acyclic Graphs (DAGs) is known to be
NP-complete in general [151, 30], instruction selection has also been applied to more
general graphs. Ertl shows that for certain classes of tree grammars optimality
can be guaranteed even when applied to DAGs [51]. Koes and Goldstein [108]
formulate the code selection on DAGs as a 0-1-integer problem that can be solved to
optimality for almost all instances. Eckstein et al. use Partitioned Binary Quadratic
Programming (PBQP) to solve the instruction selection problem for SSA graphs [46].
The PBQP can be solved using an optimal branch-and-bound algorithm or using a
faster heuristic. Ebner et al. [45] extend this approach to more general DAG patterns
to model instructions with multiple result values.

5.1.2 Completeness of Instruction Selectors

An important property of the instruction selector is its completeness. An instruction
selector specification is complete, if for all input programs possibly accepted by
the compiler frontend a valid derivation can be found, i.e., it is always possible
to derive a machine code sequence. Developing a complete instruction selector is
hard. Idiosyncratic architectures that offer different special-purpose register files,
complex instruction sets, complex addressing modes, and architecture extensions
lead to large specifications that can easily get out of hand. Dynamic cost functions
that possibly evaluate to infinity, i.e., dynamic checks, further complicate this task,
because compiler flags, optional architecture features, and checks that depend on
the input program may affect the set of applicable rules.

Therefore, it is important to develop techniques that allow to prove the complete-
ness automatically. Traditional approaches are based on finite tree automata, which
are closely related to tree grammars [36]. The instruction selector and the compiler’s
IR are described using two tree automata. These automata are then compared to
prove that the language accepted by the automaton representing the instruction
selector is a super-set of the language accepted by the automaton modeling the IR.
However, dynamic checks cannot be represented using finite tree automata. Unfor-
tunately, these checks are very common in today’s compilers, rendering the existing
completeness tests useless for these systems.

Definition. A Nondeterministic Finite Tree Automaton (NFTA) over the ranked
alphabet F is a tuple A = (Q,F , Qf , ∆), where Q is a set of states, Qf ⊆ Q is a set
of final states, and ∆ is a set of transition rules:

f(q1, . . . , qn) → q,

where n ≥ 0, f ∈ F , q1, . . . , qn, q ∈ Q.

The tree automaton runs on ground terms over F . It starts at the leaves and
moves upwards, inductively associating a state with each visited sub-term. A ground
term t ∈ T (F) is accepted by a finite tree automaton if there exists a reduction

5.1 Background 87

starting from the ground term and leading to a configuration q, where q is a final
state. The tree language L(A) recognized by A is the set of all ground terms
accepted by A. Similar to NFTA, Deterministic Finite Tree Automata (DFTA) can
be defined, with the only restriction that no two rules are allowed that have the
same left hand side. The class of languages accepted by NFTA and DFTA is equal,
in fact for every NFTA an equivalent (minimal) DFTA can be constructed.

Recognizable tree languages have some useful closure properties that are helpful
when developing a completeness test for instruction selectors. Most notably this class
of languages is closed under intersection, complementation, and union. In addition,
testing whether a given recognizable tree language is empty is decidable. This allows
to verify if the language of one finite tree automaton completely covers the language
of another finite tree automaton. For example, consider two languages L(A) and
L(A′) accepted by A and A′ respectively. We can prove that L(A) ⊆ L(A′) by
showing that L(A) ∩ L(A′) is empty. Alternatively, it is possible to calculate the
minimal DFTA for each of the two languages and compare the states.

Unfortunately, more general classes of tree languages do not have these prop-
erties. For example, tree automata that are capable of expressing additional con-
straints often lose these properties.

Definition. An Automaton With Equality and Disequality Constraints (AWEDC),
consisting of a tuple (Q,F , Qf , ∆), where F is a finite ranked alphabet, Q is a finite
set of states, Qf ⊆ Q a set of final states, and ∆ a set of transition rules:

f(q1, . . . , qn)
c−→ q,

where f ∈ F , q1, . . . , qn, q ∈ Q, and c is a boolean combination of equality and
inequality constraints.

These constraints can be used to model Read-Modify-Write (RMW) operations
that require the memory address of the read to be equal to the address of the write.
Emptiness for this class of languages is not decidable, a general completeness test
based on this class of languages is thus infeasible.

Related to recognizable tree automata are regular tree grammars, in fact, it
can be shown that for every regular tree grammar a corresponding tree automaton
can be constructed. Instruction selectors are usually specified using a tree grammar
notation, while completeness tests are based on tree automaton theory. More details
on tree languages, automata, and grammars can be found in [36] along with proofs
of the claimed properties in this section.

Work on formal completeness tests is rare. Emmelmann [48] presents an approach
that relies on regular tree grammars to express the compiler’s IR and prove the
completeness of a given instruction selector specification. Dynamic checks, very
frequently found in existing compilers, cannot be handled using his technique. Rules
carrying such checks are ignored, instead, counter examples are presented to the

5.1 Background 88

developer, who is then responsible to verify completeness by hand. Giegerich et
al. [73, 72] use order-sorted signatures to describe code generators. As a side-effect
they are able to verify the completeness of a specification by mapping to a regular
tree grammar.

5.1.3 Instruction Scheduling

The instruction scheduling phase reorders the instructions of the machine-level in-
termediate representation in order to minimize the execution time and code size
requirements and maximize the resource utilization of the processor’s resources. A
major problem is the interaction with register allocation, i.e., aggressive scheduling
can be counter productive, when more spill code is generated. The scheduling is thus
usually performed twice, once before register allocation, i.e., by the prepass sched-
uler, and again afterwards, i.e., by the postpass scheduler. The scheduling algorithm
typically processes one basic block at a time, by scanning the instructions of the
block in order to determine their data and control dependencies. The scheduling
algorithm is required to preserve the dependencies of the corresponding Data De-
pendence Graph (DDG). In addition, restrictions by the processor hardware need to
be considered through a resource model.

List scheduling is a very elegant and simple technique that is adopted by a large
number of compilers today. The basic idea is to process the data dependence graph
using a ready list. A node in the DDG becomes ready, when all its predecessors in
the graph have been scheduled. The scheduler heuristically selects one of the ready
nodes, based the node’s priority, which is derived from its instruction, its neighbors,
and the maximal path length to a root node. Before that instruction is actually
scheduled, the resource model is queried for conflicts or hazards. The resource
model tracks the currently active instructions along with the blocked resources,
either using traditional resource tables [47], operation tables [174], or finite state
automatons [152, 14].

Instruction scheduling goes back to the problem of micro-code compaction and
became prominent with the first RISC computer architectures [93, 92, 71]. It was
then further refined [190] and adopted for almost all modern processor architectures.
Recently, an optimal scheduling technique based on integer linear programing has
been proposed by Wilken et al. [191]. The scheduling phase is particularly important
for VLIW architectures, because the scheduler not only reorders the instructions
but also groups independent instructions into bundles for parallel execution. The
traditional basic-block-based techniques only provide limited parallelism for wide
VLIW processors, which lead to the development of region scheduling techniques [60,
43, 100, 122].

5.1 Background 89

5.1.4 Register Allocation

During register allocation the virtual registers generated by the instruction selector
are mapped to the registers available in hardware. Typically not all virtual registers
can be kept in hardware registers, thus spill code needs to be generated to save and
restore register values to/from memory as needed. The register allocator relies on
a model of the available hardware registers and their interferences, as well as on
information on the legal register classes for the operands of the instructions. These
constraints are expressed using sets of hardware registers – so-called register classes.
The registers of a class share common properties and meet common constraints,
e.g., the registers are legal operands to certain instructions. Overlapping registers
are specified using alias sets, i.e., sets of conflicting registers that cannot be used to
hold different values at the same time.

A very popular approach to register allocation is coloring of the interference
graph, as proposed by Chaitin et al. [32]. Interfering virtual registers are represented
as nodes in this graph that are connected by an edge. Two virtual registers interfere,
when both are live at a given program point, i.e., the values of both registers need
to be available in a hardware register. The coloring fails, when the number of
virtual registers exceeds the number of hardware registers. In this case, registers are
heuristically selected for spilling. The interference graph is constructed again and
another coloring attempt is made. These steps repeat until a valid coloring is found.

Graph coloring is the basis of many modern register allocators, and was extended
by Chow and Hennessy [35], and Briggs et al. [28]. Briggs et al. [29] propose an
extension to the graph coloring scheme that is able to handle register pairs. An even
more flexible extension for processors with partitioned and possibly aliasing register
files was presented by Runeson and Nystrõm [169], and Smith et al. [176]. Recently
Hack showed that the interference graphs of programs in SSA form [40] are chordal
and thus allow an optimal coloring to be computed in polynomial time [83, 82].
Optimal and near-optimal register allocation can be performed via linear and non-
linear programing [75, 9, 90]. Computing the interference graph is often too costly
for systems that generate machine code dynamically. The linear scan algorithm [150]
thus avoids the interference graph completely. Instead, the live ranges of the virtual
registers are represented as numeric intervals that are processed in ascending order
by a single sweep. The register assignment and spilling decisions are based on the
extend of the currently active live ranges.

5.1.5 The LLVM Compiler Infrastructure

The Low Level Virtual Machine15 (LLVM) [115] is a retargetable compiler framework
with support for static and dynamic code generation that can be used very flexibly
for the development of classical static compilers [101], the implementation of dy-
namic execution and runtime environments [69], and simulation tools [37, 99, 34, 22].

15http://www.llvm.org/

http://www.llvm.org/

5.1 Background 90

Several backends are available with the official LLVM package, which includes code
generators for x86, x86-64, ARM, PowerPC, MIPS, Alpha, Sparc, Cell, and PIC16.
Numerous other backends are available separately, e.g., for a Transport Triggered
Architecture implementation [101]. In the context of the xADL software environment
LLVM is used for two application scenarios: (1) as a code generator for the dynamic
compiling simulation engine [24, 25], and (2) as a customizable and retargetable
static compiler for the automatic generation of compiler backends [26, 23].

The code generation facilities in LLVM are retargeted from tablegen specifica-
tions. These specifications provide a model of the processor’s hardware resources,
register files, and instruction set. The instruction selector is customized by trans-
lation rules based on tree patterns that are also specified using the tablegen tool.
Several register allocators are available for LLVM, most of them target specific code
generation scenarios, e.g., the local allocator aims for fast code generation, while the
bigblock allocator is intended for programs with particularly large basic blocks. For
general purpose code generation tasks an extended linear scan register allocator is
available. All these allocators are based on the same tablegen specification, which
simply consists of an enumeration of the individual registers and register classes
of the target processor. In addition, sub-registers and conflicting registers can be
specified for every register definition.

The instruction selection is a single-pass bottom-up tree matcher operating on
a directed acyclic graph. In comparison to traditional tree pattern matching, this
approach offers limited capabilities. For example, it is not possible to specify non-
terminals for the translation rules, neither does the instruction selector guarantee
compatible register classes between the IR fragments matched by different rules. The
compiler developer has to ensure that the individual tree patterns are compatible
to each other. Cost functions are also missing, instead, an implicit cost model is
used, where specific tree patterns are favored over less specific, e.g., a pattern that
matches a node and its child nodes is favored over a pattern that matches the node
alone. The emit functions are specified as a DAG of machine-level instructions, which
replace the original IR nodes in the DAG. The original IR DAG is transformed into
a machine-specific DAG stepwise.

A list scheduler then operates on a slightly transformed version of this DAG in
order to derive an initial ordering of the instructions before register allocation. A
framework for postpass scheduling is currently not available with the original LLVM
framework.16 We have thus added a basic-block-based postpass list scheduler to
LLVM, which is able to group instructions into VLIW bundles. Both schedulers
use traditional resource tables to detect conflicting instructions and resolve hazards
during the instruction reordering.

16As of this writing such a postpass scheduling framework will be available with the next LLVM
release 2.6

5.2 Register Specifications 91

5.1.6 The acc Backend

The acc compiler is a proprietary research backend that was developed in conjunc-
tion with the xADL language and its tools. The backend serves as a testbed for the
development of new optimization techniques for embedded systems. The abstrac-
tion of the target machine provided by the processor descriptions allows to quickly
compare the effects of different optimizations and processor variants.

A modified version of GCC 4.1.1 exports the internal intermediate representation
of the source program to an XML file, which is imported into our own high-level
intermediate language. High-level constructs, such as array references, function calls
and variable declarations, are then converted into a processor-independent low-level
form. In addition, an ABI interface allows to rewrite function calls and global
symbols. Instruction selection is performed using a modified version of lburg [65, 64],
a tree pattern matcher generator. Virtual registers are replaced with hard registers
using an extended Briggs-style global graph coloring register allocator ; see [169]. A
list scheduler is invoked before and after register allocation that reorders machine
instructions to heuristically minimize the number of stalls. Structural and data
hazards are detected during the scheduling using operation tables [174, 146].

The register allocator is customized using a set of C macros that define the
available registers and register classes of the target processor. Similar macros also
specify the hardware resources and operation tables for instruction scheduling. The
tree rules for the instruction selector follow the conventions of the burg/iburg tool [65,
64]. The emit and cost functions consist of regular C/C++ code that is attached to
the tree rules.

5.2 Register Specifications

The first step during the generation of a compiler backend is the enumeration of the
available hardware registers of the target processor for the register allocator. Both,
the LLVM and the acc backend, represent registers using symbolic names that are
grouped by register classes. The register definitions are derived automatically from
the register instances and their ports from the xADL processor description, where
every register accessible through a port is represented separately. Register definitions
of ports with the same bit-width and offset are collapsed.

For every register definition, an alias set specifies registers possibly conflicting
with that register. It is straightforward to determine the alias set for a given hard-
ware register by examining the bit-ranges accessible through other register ports of
its register file. Sub-registers, i.e., registers that are completely covered by another
hardware register, are similarly determined.

The register definitions are then grouped into classes that are also automatically
derived from the xADL specification. More precisely, from: (1) constant registers, (2)
subscript constraints attached to data and pipeline links connecting register ports

5.3 Instruction Definitions 92

def R32_0: HWRegister<"0", [], []>;

def R32_1: HWRegister<"1", [], []>;

def R32_2: HWRegister<"2", [], []>;

def R32_3: HWRegister<"3", [], []>;

...

def RC_R_32 : HWRegisterClass<[i32], 32, [

R32_2, R32_3, R32_4, R32_5, R32_6, R32_7, R32_8, R32_9,

R32_10, R32_11, R32_12, R32_13, R32_14, R32_15, R32_24, R32_25,

R32_16, R32_17, R32_18, R32_19, R32_20, R32_21, R32_22, R32_23,

R32_0, R32_1, R32_26, R32_27, R32_28, R32_29, R32_30, R32_31]>;

Figure 63: Register and the register class definitions of the MIPS model for LLVM’s
register allocator.

to the data path, and (3) register classes defined by the programming conventions
section. For every constant register a separate singleton register class is created. This
class is not intended for the register allocator, but for the instruction selector, which
elegantly matches the given constant to a dedicated non-terminal symbol. Register
ports are natural candidates for register classes, because the register ports represent
the actual operands of the instructions. Usually, all registers that are accessible via
a register port are valid operands, but in some cases additional constraints need to
be considered that are attached to the link connecting the register port to the data
path. These constraints can be expressed using separate register classes that cover
only a subset of the port’s original register class. Equivalent classes of ports that
have the same offset and bit-width, and that are connected through links with the
same constraints are collapsed to a single definition. The register usage conventions
specified using the programming conventions section of the xADL description are
considered during the generation of the register classes. In particular, the reserved
registers are marked as forbidden for the register allocation.

An excerpt of the tablgen specification for the LLVM register allocator is shown
in Figure 63. All hardware registers are simply enumerated and assigned a unique
identifier. The brackets on the right represent the set of sub-registers and aliased
registers. The register structure of the MIPS is very regular, thus both sets are
empty. The register class RC_R_32 groups these registers. Caller-saved registers are
favored over callee-saved and are thus printed first. Reserved registers and registers
serving a special purpose, e.g., the frame pointer, are listed at the end of the class
and further marked unusable for the register allocator.

5.3 Instruction Definitions

The individual instructions of the target processor are declared using a unique iden-
tifier, a syntax string, input and output operand sets, and additional information on

5.3 Instruction Definitions 93

def I_JAL: BaseInstruction<"jal $ImmJ", (outs),

(ins Imm26:$ImmJ, variable_ops)>

{

bits<16> ADLInstr = 49;

let isCall = 1;

let Defs = [

R32_0, R32_1, R32_2, R32_3, R32_4, R32_5, R32_6, R32_7,

R32_8, R32_9, R32_10, R32_11, R32_12, R32_13, R32_14, R32_15,

R32_24, R32_25, R32_26, R32_27, R32_28, R32_29, R32_30, R32_31,

hi32, lo32];

}

Figure 64: Example definition of the MIPS jump and link instruction for the LLVM
compiler infrastructure.

side-effects. The required information can be extracted easily from the instruction
set model of an xADL processor description. The operand sets of the instructions
are readily available from the internal representation of the adlgen tool and can di-
rectly be reused without further processing. Register operands are annotated with a
register class that lists the set of legal registers for the instruction. Further, equality
constraints for the register allocator are derived. These constraints specify which
register operands have to be allocated to the same hardware register. The register
allocator of the acc framework is slightly more powerful and allows multiple equality
constraints per instruction, while the LLVM framework supports a single constraint
only. The instruction definitions for LLVM are further restricted to a single out-
put operand due to limitations of the tablegen instruction selector specifications.
The syntax string is built from the syntax bindings attached to the respective in-
structions. Bindings associated with an operand are replaced by corresponding
placeholders and mapped to the respective operand definition.

In addition, flags are attached to every instruction indicating the relevant side-
effects that need to be considered during code generation. Memory accesses are
indicated using the load and store flag respectively. Branches, jumps, function calls,
return instructions, as well as trapping instructions are marked accordingly using
the branch, terminator, call, return, and barrier flags. Side-effects on registers are
further specified using additional implicit operands via the defs and uses attributes.
For instructions that represent a function or subroutine call the defs attribute consist
of all callee-saved registers that are possibly destroyed during the execution of the
function. This automatically ensures that the register allocator generates the proper
spill code to save the register values to memory. The notational conventions for this
information is slightly different for the LLVM and the acc framework, however, the
captured instruction properties are the same for both backends.

Figure 64 shows an example definition of the MIPS jump and link instruction
for the LLVM backend. According to the jump provider, the instruction performs

5.4 Resource Models 94

a register-indirect jump and stores the original program counter to register 31 of
register instance R. The instruction definition is thus augmented with the isCall,
and Defs attributes.

5.4 Resource Models

The resource model specifies an abstract representation of the processor’s hardware
resources, i.e., its functional units, register ports, and storage elements, for the in-
struction scheduler. The scheduler reorders the instructions of a basic block such
that the expected execution time is minimized and the processor’s resources are
utilized optimally. Resources that are blocked due to the execution of another in-
struction thus need to be tracked during the scheduling phase. In the case of the acc
compiler a list scheduler relies on operation tables to recognize data and structural
hazards, while the scheduler of the LLVM framework relies on traditional resource
tables.

5.4.1 Resource Tables for the LLVM Compiler

The processor’s resource model is accessible to LLVM’s instruction scheduler using
a standardized interface, the hazardrecognizer. The interface returns whether the
candidate instruction selected by the scheduler is safe to be scheduled or, in case of
an hazard, whether the hazard is resolved automatically by the hardware or needs
to be resolved explicitly.

Blocked resources are represented by an array of bits, where the columns rep-
resent the resources usage and the rows the utilization over time. Instructions are
associated with similar bit-arrays, representing the blocked resources on a cycle-per-
cycle basis during the execution of the instruction. In the case of VLIW processors,
instructions are often associated with multiple such arrays representing different
instruction variants. The behavior of instruction variants is identical, except that
different variants are executed by different computational resources of the target
processor, i.e., variants correspond to the instruction slots of a VLIW bundle.

The flow of an instruction through the pipeline is exactly represented by its in-
struction path. An abstract resource model can thus be computed elegantly from the
instruction paths, where the ports connected by the path’s hyperedges correspond
to resources. Note that it is safe to ignore the data and pipeline links of the path,
even though the links represent hardware resources by themselves. The ports at the
head and tail of the involved links are blocked by the resource model anyway, thus
there is no need to explicitly represent the links in the resource model. The number
of resources in the table is further reduced by eliminating redundant entries. For
example, resources that are only used by a single instruction or resources that are
always blocked during the same cycle can never cause conflicts and are eliminated
in order to minimize the overhead during scheduling.

5.4 Resource Models 95

For parallel processors, such as VLIW architectures, multiple instruction variants
may be available. These variants are represented by a single instruction definition
in order to avoid premature resource assignments. However, during the postpass
scheduling step the instruction variants become vital, because the final code layout
is computed and the instructions are grouped into bundles for parallel execution.
The scheduler thus has to ensure that only legal instruction variants are grouped
into a bundle according to the constraints defined by the instruction encoding. An
automaton derived from the binary coding specifications of the processor model is
thus integrated with the hazardrecognizer.

5.4.2 Operation Tables for the acc Backend

The list scheduler of the acc backend relies on an advanced resource model proposed
by Shrivastava et al. [174, 146]. Operation tables are an extension of the traditional
resource table approach that is able to handle irregular and partial bypassing con-
figurations of the target processor. Operation tables consist of a traditional resource
table, which is derived from the xADL processor model as described above. In addi-
tion to structural hazards caused by resource conflicts, an operation table also cap-
tures the data flow through the processor pipeline and the state of the bypass logic
using three operations : (1) readOperand, (2) writeOperand, and (3) destOperand.
These operations specify the cycles when register operands of the instruction are
read or written from/to either a register file or a pipeline register. If bypasses are
present for a register operand, the corresponding read operation specifies multiple
source registers. The destOperand occurs once for every register operand written
by the instruction and helps to detect violations of output dependencies during the
scheduling process.

In contrast to traditional resource tables the data flow of the register operands
cannot be extracted from the instruction paths alone. Additional information from
the behavioral instruction model is required that is gathered by traversing the
instruction’s micro-operations. A first forward traversal recursively follows move

micro-operations starting from a micro-operation reading a register operand. The
information on hazard links is collected from the visited operations and correspond-
ing readOperations appended to the operation table of the instruction. The writeOp-
erations are similarly computed by a backward traversal starting from move micro-
operations writing a register operand. For every destination operand a corresponding
destOperation is added to the operation table at the same cycle as the first write-
Operation.

Figure 7 presents the operation table of the add unsigned instruction of the
MIPS processor model. The sum of the operands Rs and Rt is computed by the
EX unit on cycle three. The values of these operands can be retrieved either from
the general purpose register file R or via a bypass from the pipeline registers EX::Rd
or MEM ::Rd. The destination register Rd on the other hand is written to these

5.5 Instruction Selector Specifications 96

Cycle Resources Operations
1 FE
2 DE
3 EX read Rs: {R, EX::Rd, MEM ::Rd}

read Rt: {R, EX::Rd, MEM ::Rd}
write Rd: EX::Rd
dest Rd: R

4 MEM write Rd: MEM ::Rd
5 WB write Rd: R

Table 7: Operation table of the add unsigned instruction of the MIPS processor.

pipeline registers at cycles three and four, the result is finally committed to the
general purpose register file in cycle five.

5.5 Instruction Selector Specifications

The instruction selector is the central component of a retargetable compiler backend.
It maps the compiler intermediate representation of the input program to machine
instructions, such that the expected execution time and code size of the resulting
machine code is minimized. The backend generator of the adlgen tool is capable
to automatically derive tree patterns, emit functions, and cost functions for tree-
pattern-based instruction selectors.

5.5.1 Representing Tree Rules

The traditional representation of the instruction selector specifications as defined
in Section 5.1.1 associates the production rules of the tree grammar with a cost
and emit function. Usually, these functions are represented as plain code, typically
C/C++ code. The cost functions, and foremost the dynamic checks, inspect global
flags and properties of the IR nodes matched by the respective rule instances, while
the emit functions construct a data structure that represents the emitted machine
instructions. Source code is impractical for a generator tool that transforms and
combines rules.

We thus extend the tree grammar representation of traditional instruction se-
lectors. The dynamic checks are explicitly represented using conditions that are
attached to the individual terminal and non-terminal symbols of the grammar’s
production rules. Conditions are represented as a conjunctions of simple conditions,
each testing a single global property or a single property of the IR node matched
by the respective terminal or non-terminal symbol. A simple condition in turn is
a subset test over a given domain, e.g, the range from 0 to 65535 over the set of
integer numbers.

5.5 Instruction Selector Specifications 97

Definition. A tree grammar with conditions is defined by G = (S, N,F , R, D),
where S, N , and F correspond to the start, non-terminal, and terminal symbols of
regular tree grammars. D = P(D1) × . . . × P(Dn) is the cartesian product of the
powersets of the domains of the simple tests. The production rules in R are slightly
modified, a rule consists of a non-terminal on the left hand side and a tree with
conditions on the right hand side q → t, where q ∈ N and α ∈ T ′(N ∪ F , D):

(1) N ×D ⊆ T ′(N ∪ F , D),

(2) F0 ×D ⊆ T ′(N ∪ F , D),

(3) ∀p ≥ 1, f ∈ Fp, d ∈ D, t1, . . . , tp ∈ T ′(N ∪ F , D) :

(f(t1, . . . , tp), d) ∈ T ′(N ∪ F , D).

Definition. A term t ∈ T ′(N ∪ F , D) can also be represented as a partial function
t : N∗ → N ∪ F ×D with the domain Pos(t) of positions :

(1) Pos(t) is nonempty and prefix-closed,

(2) ∀p ∈ Pos(t), t(p) ∈ Fn ×D, n ≥ 1: {j | pj ∈ Pos(t)} = {1, . . . , n},
(3) ∀p ∈ Pos(t), t(p) ∈ F0 ∪N ×D : {j | pj ∈ Pos(t)} = ∅.

The positions uniquely identify sub-terms within a term, where the root position
is represented by the symbol ε. For example, consider the term t = f(a, g(b, c),
where conditions are omitted for the sake of brevity. The root symbol is denoted by
t(ε) = f , similarly, the position of symbol c is 11, i.e., t(11) = c.

Definition. A fragment of the compiler intermediate representation corresponding
to a ground term t ∈ T ′(F , D) can be covered by a production rule of the instruction
selector r : q → t′, denoted by matches(r, t), if the following conditions are satisfied:

(1) ∀p ∈ Pos(t′), t(p) = (f, c), t′(p) = (e, d), e ∈ F : f = e,

(2) ∀i ∈ {1, . . . , n}, p ∈ Pos(t′), t(p) = (f, (c1, . . . , cn)),

t′(p) = (e, (d1, . . . , dn)) : ci ⊆ di.

Condition (1) ensures that the pattern of the rule actually matches the IR nodes
of the fragment, where arbitrary IR nodes are accepted on positions corresponding
to non-terminal symbols in the rule pattern. Furthermore, condition (2) ensures
that the hidden properties of the IR nodes match the conditions attached to the
symbols of the pattern.

Definition. The cost function of a rule r ∈ R applied to an IR fragment t ∈
T ′(F , D) is defined as:

cost(r, t) =

{
n ∈ N , if matches(r, t)

∞ , otherwise.

5.5 Instruction Selector Specifications 98

Definition. The emit function of a rule r : q → t, denoted by emit(r), is represented
as an ordered multi-set of pairs over Instrs×B of instructions and operand bindings,
with the following kinds of operand bindings:

(1) opso(i)× {new reg},
(2) opsi(i)× Pos(t),

(3) opsi(i)× N,

(4) ∀(j, b) ∈ emit(r) : opsi(i)× opso(j),

where opsi(i), opso(i), opso(j) denote the input and output operands of instructions
i, j ∈ Instrs.

The operand bindings specify the assignment of the instruction’s operands to
(1) a newly created temporary virtual register, (2) a virtual register, constant, or
symbol of the IR, (3) a numeric value, or (4) an output operand of an instruction
emitted by the current rule. The notation for operand bindings (2) and (3) can
easily be confused, we thus use the convention that the positions of bindings of kind
(2) are underlined.

Corollary 1. Equality constraints between two IR nodes covered by a rule r → t can
be expressed using operand bindings of the form (o, p), (o, q), where p, q ∈ Pos(t),
p 6= q. The nodes are required to be at leaf positions, i.e., @j ∈ N : pj ∈ Pos(t)∨qj ∈
Pos(t). The set of tree languages defined by tree grammars with conditions is thus
non-regular.

5.5.2 Deriving Non-terminals

Non-terminals can be seen as a kind of temporary variables in the tree grammar that
allow to chain different rules together. The backend generator uses non-terminals to
represent immediate and register operands defined by the processor description. In
addition, an artificial start non-terminal stmt is provided that is produced by rules
without a result, e.g., branches and store instructions.

The concrete data representation of immediates is not explicitly defined by the
xADL language, but is implicitly given by the micro-operations using them. Thus all
immediates are mapped to a single non-terminal immediate that matches symbols
and constants in the IR – see Figure 65(a). Immediates with limited bit-width may
only represent a subset of the legal constant values of the source language. The
matching rules thus need to verify that the involved data representations, i.e., the
data type, bit-width, and signedness, of the IR and the rule pattern match. This is
ensured by appending proper conditions to the respective rule patterns as explained
later.

Registers and their associated ports correspond to non-terminals during instruc-
tion selection. This ensures that the result register generated by a rule meets the

5.5 Instruction Selector Specifications 99

(1) immediate → INT CONST
(2) immediate → SYMBOL

(a) Matching symbols and constants.

(1) RC R 32→ VREG{RC R 32}
(2) RC R 320 → INT CONST{0}

(b) Covering virtual register.

Figure 65: Default rules generated for register and immediate non-terminals.

register constraints of the respective consumer. Separate non-terminal symbols are
created for the register classes derived for the register allocator as described in the
previous section. Matching rules are then generated to match the terminal symbol
VREG , which represents virtual registers in the IR, that are augmented with con-
ditions to ensure that the register class of the virtual register matches the register
class represented by the rule’s non-terminal – see Figure 65(b). Conditions are rep-
resented by curly braces following the terminal symbol in the tree pattern. In this
example, only virtual registers of register class RC_R_32 and the constant zero can
be matched.

5.5.3 Deriving Conversion Rules

Two register ports access possibly overlapping ranges of bits of the same hardware
register. If two ports overlap, data written to one port can be read through the
other and vice verse. This is equivalent to a conversion of the corresponding register
non-terminals in the tree grammar at no cost. However, the conversion is only legal,
if the data representation of the IR node can be preserved, i.e., the bit-width of the
destination port is sufficient to hold the data type of the involved IR nodes. This is
ensured by appending a proper value range condition to the respective conversion
rule.

It is also possible to convert the non-terminals of non-overlapping register ports
using certain bit-manipulation operations, e.g., shifts. However, these conversions
are not for free, because the data has to be transferred from the bit-range of the
source register to the bit-range of the destination register explicitly. The bit-
manipulation instructions can be found using tree patterns using templates that
will be described in more detail in Section 5.5.5.

Consider, a 32-bit register file R with two ports, where the first port accesses a
complete base register and the latter accesses the upper half of a base register only.
The two ports obviously overlap, it is thus possible to read data written to one port
via the other. In the IR this corresponds to a shift operation, as depicted by rules
(1) and (2) in Figure 66. The rules are only applicable, if the signed respectively the
unsigned data representation fits into 16 bits as denoted by the conditions in curly
braces. An assignment to the sub-register can also be interpreted as a bit-insertion
operation shown by rule (3). Data can be transferred between the respective register
ports explicitly using a shift left operation (4), or using a logical or arithmetic shift

5.5 Instruction Selector Specifications 100

(1) RC R 16 31→ SHR{0, . . . , 65535}(RC R 32, 16)

(2) RC R 16 31→ ASHR{−32768, . . . , 32767}(RC R 32, 16)

(3) RC R 32→ INSERT (RC R 32, RC R 16 31, 16, 16)

(4) RC R 16 31→ RC R 32{−32768, . . . , 65535}
(5) RC R 32→ RC R 16 31{0, . . . , 65535}
(6) RC R 32→ RC R 16 31{−32768, . . . , 32767}
(7) RC R 32→ RC R 320

Figure 66: Conversion rules derived from overlapping register ports and constant
registers.

right as depicted by rules (5) and (6) respectively. Finally, constant registers can be
converted to regular register operands using rule (7).

5.5.4 Initial Rule Set

Deriving mapping rules from the instructions of an architecture is more complex, as
instructions may have side-effects. Currently, two classes of side effects are consid-
ered: (1) memory accesses and (2) control flow changes, e.g., through branches or
exceptions. The information on these side-effects is retrieved from the corresponding
provider.

Due to limitations of the tree pattern matching approach, only a subset of the
memory access operations can be considered by the backend generator. Instructions
that access a memory and write to at least one register port are ignored during the
processing, because these instructions can only be modeled using a DAG pattern,
but not using a tree. Furthermore, it is not safe to use instructions accessing memory
for computations other than the memory access. For example, a memory store with
an autoincrement addressing mode cannot be used to increment a register, because
of the unpredictable side-effect on the memory state. Thus, a matching rule is only
generated for instructions recognized as simple load and store operations by the
memory provider. The non-terminal produced by the matching rule is derived from
the destination register for load instructions. Store instructions do not compute a
result that needs to be represented by a non-terminal symbol, thus the start symbol

(1) RC R 32→ LD(+(RC R 32, immediate{0, . . . , 65535}))
(2) stmt → ST (RC R 32, +(RC R 32, immediate{0, . . . , 65535}))

Figure 67: Rule patterns derived from the load word and store word instructions of
the MIPS model.

5.5 Instruction Selector Specifications 101

(1) stmt → GOTO(immediate)

(2) stmt → COND(= (RC R 32, 0),GOTO(immediate))

Figure 68: Rule patterns derived from the jump and branch on zero instructions of
the MIPS processor.

stmt is assigned to the corresponding rules. The rule patterns simply consist of a
LD respectively a ST terminal symbol, where the sub-trees represent the addressing
mode, which is supplied by the memory provided. Figure 67 shows two example rules
derived from the load word and store word instructions of the MIPS processor model.

In many compiler backends, a post-processing pass, e.g., a peephole optimizer,
recombines instructions with advanced addressing modes to circumvent this limi-
tation. Recently, an extension to tree-pattern-based instruction selection has been
presented by Ebner et at. [45, 44] that is able to process patterns in the form of
general DAGs. The compiler generator in its current form does not support these
DAG patterns, but an extension is planned in the future in order to exploit the
benefits of this approach.

The control flow behavior of an instruction is similarly analyzed and classified
by the jump provider. If the jump analysis fails to analyze the branching behavior,
the respective instruction is not considered by the backend generator. For other
instructions recognized as branches, specialized branch patterns are constructed.
Symbol-based branches that do not have other side-effects can be used to realize
the control flow within functions of the source language. Register-indirect absolute
branches, on the other hand, can be used to return from functions, only if the register
operand is compatible with the return address register specified by the programming
conventions. Similarly, branches that store the original value of the program counter
can be used to model function calls, if the destination register is compatible with
the return address register. As for the addressing modes of memory operations,
the micro-operations that compute the branch target are not directly considered
by the backend generator. Instead, the summary computed by the jump analysis
provides the rule patterns. Example rules generated from the jump and branch on
zero instructions of the MIPS processor are shown in Figure 68.

Considering instructions without memory and control flow side-effects only, map-
ping rules are created by processing the respective micro-operations. A rule is
created for every assignment to a register port marked as data register. Micro-
operations supplying values to the assignment are then added to the rule pattern
and mapped to corresponding terminal symbols using a look-up table. Values pro-
duced by preceding micro-operations are translated to patterns recursively until a
micro-operation is encountered reading the value of a register port or immediate.
Register operands are represented by the non-terminal of their register class, while
immediates are represented by the immediate non-terminal in the resulting tree pat-

5.5 Instruction Selector Specifications 102

tern. During the traversal move micro-operations are skipped, i.e., the rule pattern
is not modified when a move is visited.

Along with the construction of rule patterns, conditions are created that have to
be satisfied for a mapping rule to be applicable during instruction selection. The ac-
tual conditions depend on the currently considered micro-operation and differ from
case to case. For example, consider the mulu micro-operation, which interprets its
input operands as unsigned integer values and performs an unsigned multiplication.
A corresponding condition is thus attached to the rule that restricts the multiplica-
tion to values greater than zero. The trunc micro-operation, which simply discards
the upper bits of its input operand, similarly restricts the value range of the matched
IR node to fit into its output operand. Again, a corresponding condition is appended
to the rule pattern. Other micro-operations, such as sext and zext, imply similar
constraints.

The emit functions are also constructed in parallel with the tree patterns. When
ever a move micro-operation is encountered that reads a register or immediate
operand of the instruction, a corresponding operand binding is appended to the
emit function. The position specifier of the binding can easily be computed during
the construction of the tree pattern and is automatically updated.

The rules are further associated with a cost derived from the instruction’s worst-
case latency computed by the timing provider.

Consider for example, the micro-operations of the or immediate instruction of
the MIPS processor depicted in Figure 69. Two register assignments can be found
for this instruction: (1) an update of the program counter register on line three,
and (2) an assignment to register port Rd of the register file R on the last line. The
branch and memory analyses yield no side-effects, a selection rule is thus constructed
for this instruction; see Figure 70. First, the instruction’s destination register deter-
mines the non-terminal on the left hand side of the rule, the rest of the pattern is not
yet known and represented by the symbol ‘ ’. During the backward traversal sev-
eral move micro-operations are skipped until the or micro-operation is encountered,
which causes the OR terminal symbol to be appended. This process is continued
until micro-operations are encountered that read the operands of the instruction.

(1) FE::pc_i = move(pc::p_fe) (11) DE::ImmWu_o = zext(DE::ImmW_i)
(2) FE::pc_o = add(FE::pc_i, 4) (12) EX::ImmWu_i = move(DE::ImmWu_o)
(3) pc::p_fe = move(FE::pc_o) (13) EX::Rs_i = move(DE::Rs_o)
(4) ICache::@read = move(FE::pc_o) (14) EX::Rd_o = or(EX::Rs_i,
(5) ICache::read = read(ICache) EX::ImmWu_i)
(6) DE::ImmW_i = move(ImmW) (15) MEM::Rd_i = move(EX::Rd_o)
(7) DE::Rs_i = move(R::Rs[0,31]) (16) MEM::Rd_o = move(MEM::Rd_i)
(8) DE::IW_i = move(ICache::read) (17) WB::Rd_i = move(MEM::Rd_o)
(9) decode(IW_i) (18) WB::Rd_o = move(WB::Rd_i)
(10) DE::Rs_o = move(DE::Rs_i) (19) R::Rd[0,31] = move(WB::Rd_o)

Figure 69: Micro-operations of the or immediate instruction.

5.5 Instruction Selector Specifications 103

µ-op. Tree pattern Operand Bindings
(6) RC R 32→ OR(RC R 32,ZEXT16 (immediate)) (ImmW, 21)
(7) RC R 32→ OR(RC R 32,ZEXT16 ()) (Rs, 1)
(11) RC R 32→ OR(,ZEXT16 ())
(14) RC R 32→ OR(,)
(19) RC R 32→ (Rd, new reg)

Figure 70: Tree patterns constructed from the micro-operations of MIPS’ or imme-
diate instruction.

The processing stops here, after the corresponding non-terminal symbols have been
appended to the pattern. The operand bindings (Rs, 1) and (ImmW, 21) are created
simultaneously. The first binds the register operand R::Rs to the virtual register
represented by the first child of the OR, while the second associates the immediate
operand ImmW with the corresponding non-terminal. The immediate operand is fur-
ther restricted by a condition {−32768, . . . , 65535} that is not shown by the figure.
The MIPS processor supports the bypassing of register values, the timing analysis
yields a worst-case execution latency of one cycle for the or immediate instruction,
which completes the construction of the instruction selection rule.

Note that tree patterns may only produce a single result. This restriction does
not apply to the micro-operations in xADL. To overcome this shortcoming, we du-
plicate rules for each result produced. The same situation arises with instructions
having multiple results. We generate multiple independent rules and try to re-
combine redundant instructions using a post-processing pass after the instruction
selection is completed. The side-effect on the respective other destination registers
are either suppressed by assigning constant registers to the operands, if applicable.
Otherwise, the register allocator is responsible to pick an available register and if
necessary generate the spill code.

5.5.5 Specializations and Templates

In order to derive a complete code selector, each operator of the IR has to be covered
by at least one rule. However, in general the instruction set will not directly match all
the required operations in the IR. One such case occurs, when a particular operation
in the IR is simulated using a more general instruction by hard-wiring some of its
inputs. Likewise, certain useful operations can be obtained by forcing the input
operands to be equal. However, sometimes a single instruction is not sufficient,
missing operations have to be emulated by combining multiple instructions.

Specializations are simplifications of existing rule patterns by additional condi-
tions, by modifying the operand bindings, or using algebraic laws. Numerous such
specializations are supported by the current compiler generator implementation.
Besides the general commutativity, associativity, and distributivity rules, simplifica-
tions that eliminate terminal symbols from the rule patterns play a central role. For

5.5 Instruction Selector Specifications 104

Tree Pattern Operand Binding
(1) RC R 32→ OR(RC R 32, immediate{0, . . . , 65535}) (Rs, 1), (ImmW, 2)
(2) RC R 32→ OR(immediate{0, . . . , 65535}, RC R) (Rs, 2), (ImmW, 1)
(3) RC R 32→ immediate{0, . . . , 65535} (Rs, 0), (ImmW, ε)
(4) RC R 32→ RC R 32 (Rs, ε), (ImmW, 0)

Figure 71: Specialization applied to the original rule of the or immediate instruction.

example, a + terminal symbol can be eliminated by forcing one of its operands to
zero, similarly, a logical not can be derived from a nor operation by supplying the
same input operands twice. Unary operators can often be eliminated by restricting
the input operands using conditions. A typical example is the TRUNCn terminal
symbol, which represents a truncation of its input operand to n bits. This sym-
bol can be eliminated using an additional condition, which ensures that the input
operands fit into the truncated data representation. Similar specializations can be
performed for the SEXTn , ZEXTn , and ABS symbols.

Example specializations of the initial rule computed for the or immediate instruc-
tion are shown in Figure 71. The first rule is derived by eliminating the ZEXT16

terminal symbol, which further restricts the value range of the immediate operand.
Rules (2) is created through the application of the commutativity law. Next, the
OR terminal symbol itself is eliminated by forcing either the register operand (3) or
the immediate operand (4) to zero.

Templates on the other hand combine multiple independent instructions to form
new translation rules. A template consists of a set of required tree patterns optionally
containing free variables. The tree patterns specify, in an architecture independent
way, which instructions need to be available to emulate the desired operation. The
backend generator repeatedly checks, if a particular template is applicable, i.e., if
all required tree patterns are available, and then invokes a combine function. The
combine function specifies how the rules matched by the required pattern are to
be combined with each other. The adlgen tool already provides a collection of
predefined templates that are applicable to all processor models. Those templates
are kept in a separate module and can be easily extended if necessary.

(1) %TmpL → SHL(%V alue, INT CONST{%n})
(2) %Result → ASHR(%TmpL, INT CONST{%n})

(a) Required tree patterns.

%Result → SEXT%n(%V alue)
(b) Resulting pattern

Figure 72: Template to match the sign-extend operator.

5.5 Instruction Selector Specifications 105

For instance, the semantics of a sign-extend operation can be simulated by a
combination of shifts. Figure 72 depicts the required, as well as the resulting tree
patterns. Variables, proceeded by a ‘%’ symbol, always have to represent the same
term for all required tree patterns in order for the template to be applicable, e.g.,
the non-terminal symbol on the left hand side of the top-most rule is required to
be compatible with the first operand of the arithmetic shift right operation of the
second rule. The resulting pattern is constructed by replacing the variables with the
concrete trees of the matched rules.

5.5.6 Emitting the Instruction Selector Specification

The rule set derived from a xADL processor model is shared among the acc and
LLVM compiler generators. However, the instruction selector specifications of the
two compiler frameworks not only differ in their syntax, but also the foundations
of the intermediate representation and the instruction selectors themselves are dif-
ferent. Compiler-specific emitter components are available with the adlgen tool
that processes the rule set prior to the actual generation of the instruction selector
specification for the particular compiler.

In the case of the acc backend this processing is minimal, because the dynamic
programming approach adopted by its instruction selector closely follows the tree
grammar model presented above. The terminal symbols are mapped to the actual
tree codes used by the backend’s intermediate representation and C/C++ code is
generated from the conditions and operand bindings. Figure 73 shows the resulting
code generated for rule (1) of the or immediate instruction from Figure 71. The
tpm_width function is a compact form of the immediate’s value range condition.
The TPM_EMIT macro constructs the machine-level representation of the or imme-
diate instruction. Operand bindings are represented using the arrays ops0 and k,
which hold the machine-level operands of the current instruction and the operands
generated by the emit functions of the rules matching the child nodes.

The processing for the LLVM framework is slightly more complicated, due to the
restrictions of the simple single-pass instruction selector. The main problem is that

RC_R_32: BIT_IOR_EXPR(RC_R_32, __immediate)

%cost %{ tpm_width(t->tpm_kid(1), 16, 1) ? 1 : INF_COST %}

%code %{

EMIT_RESULT d0, ops0[3] = {d0 = NEW_REG(RC_R_32), k[0], k[1]};

TPM_EMIT(66, ops0); /* ori $[0-31], $[0-31], <imm16> */

return d0;

%};

Figure 73: Final instruction selection rule for the acc backend.

5.6 Completeness of Instruction Selector Specifications 106

// mult $[0-31], $[0-31]

def RP0072: Pat<(mul RC_R_32:$R_Rsa, RC_R_32:$R_Rtb),

(I_MFLO_R

(I_MULT_lo RC_R_32:$R_Rsa, RC_R_32:$R_Rtb))>;

Figure 74: Final instruction selection rule for the LLVM backend.

the instruction selector does not support non-terminal symbols. It simply assumes
that all rules are compatible to each other, i.e., all the rules produce the same implicit
non-terminal. In the case of regular processors with a single register class, this is
not a problem, because the results produced by one instruction are guaranteed to be
compatible with all its consumers. For other processors, however, invalid code might
be generated, if the register classes of the producer and consumer instructions do
not match. The backend generator thus has to transform the rule set such that all
rules produce a common base non-terminal, which is specified manually by the user
via a command line option of the adlgen tool. Rules that do not produce the base
non-terminal by default are combined with conversion rules that explicitly convert
the rule’s non-terminal to the base non-terminal. The resulting copy operations can
often be eliminated by the register allocator, the impact on the code quality is thus
negligible. Consider the example in Figure 74, the MIPS multiply instruction does
not write its result to the general purpose register file represented by the register
class RC_R_32. Instead, the result is written to the special HI and LO registers.
However, the move from lo instruction allows to copy the multiplication result to
the general purpose register file. The instruction selection pattern generated for the
LLVM backend emits both instructions to ensure correct code.

5.6 Completeness of Instruction Selector Specifications

In the last section we have shown how an initial rule set for an instruction selector
can be derived from the instructions of an xADL processor model, and how spe-
cialization and templates help to improve the final code quality and increase the
covered tree patterns. Even though these mechanisms are quite powerful in discov-
ering additional rule patterns, they still rely on the instructions provided by the
target processor. Consequently, if the capabilities of the processor are restricted,
the number of rule patterns discovered by the backend generator may severely im-
pact the completeness of the instruction selector. It may well be the case that the
instruction set is so restricted that a complete instruction selector cannot be derived
at all. It is thus important for a backend generation tool to provide feedback on
the completeness of the derived rule set. A major problem for such a completeness
test are dynamic checks that may cause rules to be disabled because of properties
that are not represented by the terminal symbols of the intermediate representation.
These properties are referred to as hidden properties.

5.6 Completeness of Instruction Selector Specifications 107

v → INT CONST {−∞, . . . ,∞}
v → +(v, v) {−∞, . . . ,∞}

(a) IR specification

r → INT CONST {−32768, . . . , 32767}
r → INT CONST {0, . . . , 65535}
r → +(r, r) {−∞, . . . ,∞}

(b) Instruction selector specification

Figure 75: Example specifications using dynamic checks.

Figure 75 presents an excerpt from a specification of a compiler’s IR and an in-
struction selector using a tree grammar notation. Rules matching the INT CONST
terminal symbol are associated with a dynamic check that allows only certain con-
stant values to match. In the case of the IR specification this condition covers the
complete range of legal values for integer constants, while the target architecture is
only capable of processing signed and unsigned 16-bit integer constants. Clearly, the
instruction selector is not complete for programs that make use of larger constants.

Previous approaches based on finite tree automata [48] cannot handle this ex-
ample, because dynamic checks cannot be represented by traditional tree automata.
The problem here is that the set of legal integer constants is subsumed by a single
terminal symbol INT CONST . Dynamic checks thus need to be expressed explic-
itly using a formal model. The instruction selector model presented in the previous
sections is well suited for this task. Using terminal splitting the conditions can be
split such that a traditional tree automaton can be constructed, where the dynamic
checks and conditions are explicitly represented by dedicated terminal symbols. The
preprocessed specification can then be verified by a traditional completeness test [48].
If the test fails, counter examples can be computed that provide valuable feedback
to the processor designer. Based on the counter examples the designer may choose
to extend the processor model to increase the coverage, or, if applicable, provide
additional templates to the backend generator to emulate the missing operations
using existing instructions.

Note that the completeness is only guaranteed in combination with an instruction
selector that always finds a valid covering if one exists. The test is thus applicable to
the acc backend, but not to the simple instruction selector of the LLVM framework.

5.6.1 Equality Constraints

According to Corollary 1, operand bindings of tree grammars with conditions can
be used to express equality constraints. Equality constraints cannot be handled by
the approach presented in the following, due to the observations from Section 5.1.2.
The corresponding tree languages lack certain properties required for a completeness
test to be feasible in general.

Rules with equality constraints are thus eliminated from the rule set prior to the
completeness test. Note that this does not invalidate the test’s result, i.e., if the

5.6 Completeness of Instruction Selector Specifications 108

completeness of the reduced rule set can be proven, this property also holds for the
original rule set. This is not true when the completeness test fails. The original rule
set may actually be complete, even if the test fails. In practice this is very unlikely
to be the case, due to the properties of typical compiler intermediate representations
and processor instruction sets.

5.6.2 Preliminaries

We use normalized tree grammars with conditions – also see Section 5.5.1 – to
represent the compiler’s intermediate representation and the instruction selector
specification.

Definition. A tree grammar with conditions G = (S, N,F , R, D) is in normal form,
if all rules in R have one of the following forms:

q →(f(q1, . . . , qn), c),

q →(a, c),

where f, a ∈ F are terminal symbols, q1, . . . , qn, q ∈ N are non-terminal symbols,
and c ∈ D is a condition. The terminal symbol matched by a given rule r ∈ R can
be obtained using the function term(r) → F , its condition using cond(r) → D.

Every tree grammar can easily be normalized by introducing new temporary non-
terminals [36]. For example, the following rule v → +(v, INT CONST), where the
conditions are omitted, can be normalized using a new temporary non-terminal tmp
as follows:

tmp → INT CONST

v → +(v, tmp)

Definition. A rule is said to be unconditional if its associated condition is al-
ways fulfilled, i.e., ∀i ∈ {1, . . . , n} : ci = Di. A condition is unsatisfiable if ∃i ∈
{1, . . . , n} : ci = ∅, the corresponding rule can never be applied and can safely be
eliminated.

In the following sections some operations and predicates on conditions are re-
quired.

Definition. Two conditions a = (a1, . . . , an) and b = (b1, . . . , bn) overlap, if ∀i ∈
{1, . . . , n} : ai ∩ bi 6= ∅. Similarly the intersection of two conditions is defined as
a

⋂
b = (a1 ∩ b1, . . . , an ∩ bn).

Definition. An essential operation is to split the complete condition domain D into
a set of non-overlapping conditions. Given a condition c = (c1, . . . , cn) the function
split : D → P(D) performs such a splitting by constructing conditions from all
possible combinations of the simple tests ci and their complements. Note that this
guarantees c ∈ split(c).

5.6 Completeness of Instruction Selector Specifications 109

Consider for example, the domain D = P(D1)×P(D2) and a corresponding con-
dition c = (c1, c2) ∈ D. The splitting calculated by split(c) is {(c1, c2), (c1, c2), (c1, c2),
(c1, c2)}.

5.6.3 Terminal Splitting

In its original form the grammar Gir that specifies the compiler’s IR consists only
of unconditional rules, while the grammar Gis, specifying the instruction selector,
may also contain conditional rules. Although both grammars represent conditions,
a direct matching between these two cannot be established yet. In order to establish
such a mapping we need to split the conditions occurring in Gir and Gis such that
for all terminal symbols the conditions between the two grammars are either equal
or do not overlap. More formally we require after this splitting that the following
criterion is met.

Criterion 1. For each rule r1 in Gir and r2 in Gis, where term(r1) = term(r2) the
following condition holds: cond(r1) = cond(r2) ∨ ¬overlap(cond(r1), cond(r2)).

Because of this criterion a direct mapping between the terminal symbols and
conditions occurring in one grammar with those of the other grammar is possible.
For the final completeness test we simply treat the original terminal symbol of a
rule and its condition as a single entity, which acts as a symbol during the actual
completeness test.

Algorithm 1 performs the desired splitting. First, the original grammar of the
instruction selector is copied and all rules are removed from the grammar. The
grammar is then reconstructed rule by rule in three steps by splitting the conditions
of the rules in Gis and Gir. When a rule is re-added to Gis, the rules with overlapping
conditions in Gis are first replaced by equivalent copies with split conditions. The
conditions are computed by intersecting the original condition with those computed
by split. Secondly, the rules in Gir are processed in the same way. In step three,
equivalent copies of the rule that is to be re-added are appended to Gis, where the
conditions are derived from rules in Gir that match the same terminal symbol and
are associated with overlapping conditions. The resulting splitting ensures that the
previously stated Criterion 1 is satisfied.

Proof (Sketch). Initially Gis is empty and all rules in Gir are unconditional, thus
Criterion 1 is satisfied. Performing the steps one and two of the algorithm clearly
preserves this property. If a rule r1 in Gir and a rule r2 in Gis share the same
terminal and the same condition both rules are split in the same way by intersecting
the condition with conditions in C, which by definition do not overlap. On the other
hand, if the conditions of r1 and r2 do not overlap the splitting does not invalidate
the criterion, because the intersection may only result in subsets of the original
conditions.
Finally, rules that are appended to Gis in step three inherit their condition from a
rule in Gir and consequently Criterion 1 is preserved.

5.6 Completeness of Instruction Selector Specifications 110

Algorithm 1 split terminals(Gir, Gis)

(1) Gtemp = Gis

(2) remove all rules from Gis

(3) for each rule r ∈ Gtemp

(4) let C = split(cond(r))
(5) // Step 1 - Split rules in Gis

(6) for each rule r′ ∈ Gis : term(r′) = term(r)
(7) remove r′ from Gis

(8) for each c ∈ C
(9) add a copy r′′ of r′ to Gis with cond(r′′) = c

⋂
cond(r′)

(10) // Step 2 - Split rules in Gir

(11) for each rule r′ ∈ Gir : term(r′) = term(r)
(12) remove r′ from Gir

(13) for each c ∈ C
(14) add a copy r′′ of r′ to Gir with cond(r′′) = c

⋂
cond(r′)

(15) // Step 3 - Append rules to Gis

(16) for each rule r′ ∈ Gir : overlap(cond(r′), cond(r)) ∧ term(r′) = term(r)
(17) add a copy r′′ of r to Gis with cond(r′′) = cond(r′)

The splitting also preserves the semantics of the original grammars, i.e., the
calculated conditions do not allow patterns to match that did not match before.
Similarly it is ensured that patterns that were accepted before the processing are
still accepted afterwards.

Proof (Sketch). All conditions computed in the first two steps of the algorithm are
derived using intersection against conditions in C. The intersection ensures that the
new rules only match a subset of the original rule, while the properties of C ensure a
complete coverage of the condition domain D. The semantics of the original gram-
mar is thus preserved.
Step three of the algorithm splits a rule r based on conditions from Gir. Because
of step two of the algorithm it is ensured that all rules in Gir that share the same
terminal symbol with r are associated with conditions that match only a subset of
r’s condition. The rules in Gir initially were unconditional and covered the com-
plete condition domain. This property is preserved throughout the algorithm, i.e.,
the combined conditions of the split rules in Gir still cover the complete domain.
Consequently the semantics of the original grammar is preserved.

The instruction selector in Figure 75 is capable of matching signed and un-
signed 16-bit values. The conditions appearing in the two grammars clearly over-
lap and need to be split as shown in Figure 76. This results in three ranges
{−32768, . . . ,−1}, {0, . . . , 32767}, and {32768, . . . , 65535}. The IR specification
is processed in a similar way, but in addition retains all integer values not covered
by the instruction selector.

5.6 Completeness of Instruction Selector Specifications 111

v → INT CONST {−∞, . . . ,−32769}
v → INT CONST {−32768, . . . ,−1}
v → INT CONST {0, . . . , 32767}
v → INT CONST {32768, . . . , 65535}
v → INT CONST {65536, . . . ,∞}
v → +(v, v) {−∞, . . . ,∞}

(a) IR specification after splitting

r → INT CONST {−32768, . . . ,−1}
r → INT CONST {0, . . . , 32767}
r → INT CONST {32768, . . . , 65535}
r → +(r, r) {−∞, . . . ,∞}

(b) IS specification after splitting

Figure 76: Terminal splitting for a simple example supporting only 16-bit signed
and unsigned constants.

5.6.4 Chain Rules

In the model presented in the last section we require a normalized rule grammar.
Although this does not restrain the power of our approach we do allow some exten-
sions for convenience. For example, chain rules, i.e., rules of the form p → q, where
p and q are both non-terminals, are permitted by our implementation. Even more,
chain rules may be associated with conditions similar to regular rules.

Both conditional and unconditional chain rules are eliminated before terminal
splitting by duplicating regular rules in the tree grammar that have the non-terminal
q on the left hand side, i.e., produce the non-terminal q. The left hand side q of the
duplicate is replaced by the left hand side of the chain rule p. This step is repeated
to capture transitive chains of chain rules until the rule set does not change anymore.
In the case of conditional chain rules the conditions of the chain rule and the regular
rule need to be intersected in order to preserve the semantics. After this step chain
rules are no longer required and can safely be discarded.

Consider the IS grammar from Figure 75 as an example. Given a conditional
chain rule r8 → r that is associated with a condition {−128, . . . , 127} the following
rules are added to the grammar:

r8 → INT CONST {−128, . . . , 127}
r8 → INT CONST {0, . . . , 127}
r8 → +(r, r) {∞, . . . ,−∞}

5.6.5 Final Completeness Test

After the application of chain rules and terminal splitting the final completeness test
can be performed. The algorithm is based on the work by Emmelmann [48] with the
notable difference that we also need to consider conditions that may be associated
with the rules of the IR and instruction selector specifications.

For the actual completeness test two tree automata are derived from the two
grammars. The automaton Air = (Q,Fa, Qf , ∆) is derived from the tree grammar

5.6 Completeness of Instruction Selector Specifications 112

with conditions Gir = (S, N,F , R, D) as follows: The states of the automaton Q =
{qA | A ∈ N} are deduced from the non-terminals of the grammar. Similarly, the
final state Qf = {qS} is defined using the start symbol S. The ranked alphabet
of the automaton is derived from the terminals matched by rules in Gir and their
associated conditions: Fa = {fc | ∃r ∈ R : f = term(r) ∧ c = cond(r)}. For each
rule r of the form A → f(A1, . . . , An) ∈ R with its associated condition c = cond(r),
a corresponding transition rule fc(qA1, . . . , qAn) → qA is added to the automaton,
qA, qA1, . . . qAn ∈ Q, fc ∈ Fa. Rules of the form q → a are processed in the same
way. The constructed automaton reflects the semantics of the IR specification Gir.

Proof (Sketch). The languages of the automaton and the grammar are obviously
not equivalent. However, a direct mapping can be established between the two
languages. A proof by induction over the derivation length yields the equivalence of
the two languages under this mapping.

The automaton Ais is similarly constructed using Gis. An important property
of the two automata is that the alphabets are compatible, i.e., for every symbol
in the alphabet of Ais a corresponding symbol exists in the alphabet of Air. This
follows immediately from Criterion 1. Note that the opposite is generally not true,
in particular, when the instruction selector specification is not complete.

As in the original approach, a set of states called U , is computed from these two
tree automata. A state is a tuple [P ; q], where P ⊂ Sis is a set of states of Ais, and
q ∈ Sir is one state of Air. U is the smallest set of states that fulfills the following
property: For all symbols fc with arity n and states [P1; q1], . . . , [Pn; qn] ∈ U , let

P = {s | ∃s1 ∈ P1, . . . , sn ∈ Pn : fc(s1, . . . , sn)
Ais−−→ s}

Q = {s | fc(q1, . . . , qn)
Air−−→ s}.

All states of the from [P ; q] need to be in U , where q ∈ Q. This immediately
leads to an algorithm. Starting with an empty set, new states are inductively added
to U until no new states can be found. Termination is guaranteed as the number of
states in both automata is finite.

By examining U it is now easy to decide whether the original instruction selector
specification completely covers the compiler’s IR. The code selector is not complete
if a state [P ;Zir] can be found in U , where Zir is the final state of Air, but Zis, the
final state ofAis, is not in P. It is even possible to give counter examples by storing an
example tree for each state during the calculation of U . For details on both of these
algorithms and correctness proofs refer to the original work by Emmelmann [48].

6 Experimental Results

Several processor models have been developed with the xADL language ranging from
very simple RISC processors to sophisticated VLIW processors supporting predi-
cated execution. The resulting processor models are typically very compact and
readable, and can easily be extended. The development of a new processor model
is usually only a matter of a few days. This indicates that the structural specifica-
tion style of the xADL language is well suited for the description of processors and
their instruction set. The xADL language and the accompanying backend generators
for the LLVM and acc compilers have been evaluated using four processor models:
(1) a two-way configuration of the CHILI VLIW processor, (2) a four-way CHILI
configuration, (3) a MIPS processor model, and (4) a model of the time-predictable
research processor SPEAR.

We have compared the backends derived from these models to high-quality pro-
duction compilers. In the case of the acc compiler no handcrafted backends exist,
we thus compare against an unmodified version of the same GCC compiler that also
serves as a frontend to our backend. The comparison is still kept short, because
quite different code generation technologies are compared. The main focus of the
performance evaluation is thus on the LLVM-based compilers. Here, the generated
compilers have been compared against handcrafted production compilers based on
GCC. In addition, a manually developed, well-tuned research backend targeting the
CHILI processor that is based on LLVM is considered for the evaluation. The ex-
periments thus allow to relate the results of the generated compilers to well-tested
production systems and cutting-edge compiler technology following different code
generation strategies.

6.1 Processor Models

The MIPS processor model closely follows the traditional five-stage pipeline imple-
mentation described by Hennessy and Patterson [147]. The processor description
faithfully models the complete MIPS1 integer instruction set, including the manda-
tory branch and load delay slots of early MIPS implementations. In total 57 instruc-
tions are described by 1143 lines of xADL code (LOC). The instructions operate on
32 general purpose registers and additional special purpose registers for division and
multiply instructions. A slightly simplified diagram of the model’s component in-
stances is shown in Figure 77. The block diagram also depicts a parallel instruction
(IDU) that handles the dispatch of an interrupt service routine in the case of an
asynchronous interrupt.

SPEAR [41] is a time-predictable research processor, specifically designed to sup-
port the single-path programming paradigm [153]. Most instructions can thus be
augmented with a predicate that controls whether the instruction commits its re-
sult to the register file. The SPEAR model covers the complete instruction set of

113

6.1 Processor Models 114

Syntax Encoding Types Components
Model LOC LOC #Tmpl. LOC #Tmpl. LOC #Ty. LOC #Ists.

CHILI-v2 1580 191 12 141 6 800 20 350 14
CHILI-v4 1739 220 12 156 6 830 20 454 24

MIPS 1143 183 14 134 9 592 14 157 12
SPEAR 1298 109 5 223 12 733 13 172 14

Table 8: Statistics on the MIPS, SPEAR, and CHILI processor models.

the second generation implementation SPEAR2 [62]. Instructions with and without
predicates are modeled as separate instructions, which explains the high number of
107 instructions in comparison to the MIPS model. SPEAR defines multiple regis-
ter files: 16 general purpose registers, four frame pointer, as well as separate status
and predicate registers. The frame pointer registers can be used as an addressing
mode to certain load and store operations only – some of them with autoincrement
addressing modes – but do not support any other operations. Transfers between
the frame pointer registers and the general purpose register file are thus often nec-
essary. This restriction can be attributed to constraints of the instruction encoding
as SPEAR defines 16-bit instructions only. The instructions are executed by a four-
stage pipeline, without branch or load delay slots.

The CHILI is a configurable VLIW processor developed by OnDemand Micro-
electronics. The main application field targeted by CHILI is multimedia processing
in embedded devices, primarily real-time de- and encoding of video streams. The
four-way parallel default configuration thus offers high computing power that is fur-
ther supported by specific instruction set extensions providing hardware support of
typical operations performed by video processing software. Due to the computational
power, the memory interface becomes a limiting factor. The CHILI instruction set
defines large load and branch delays to hide memory latencies. Branch latencies can
further be eliminated using predicated execution. Predicated instructions, however,
occupy two slots of the VLIW bundle, because the predicate is computed by a ded-
icated operation in parallel with the predicated instruction. This approach is very
flexible and efficient, but can adversely affect code size when large code blocks are
augmented with predicates. Similarly to SPEAR, the predicated variants are explic-
itly enumerated by the instruction extraction algorithm, which results in 886 and
1672 instructions for the two-way and four-way parallel configurations respectively.
Due to the long latencies and the encoding constraints of predicated instructions,
the instruction scheduler is critical for acceptable performance of compiler generated
code.

Table 8 shows detailed statistics on the xADL specifications of the three proces-
sors. The specifications are very compact and consists of 1739 lines of xADL code
at most. The table further shows the number of lines spent on the syntax and the
binary encoding specifications, as well as on types and component instantiations,
along with numbers on the respective templates, types and instantiations defined.

6.1 Processor Models 115

F
E

fe
tc

h
IC

D
E

de
co

de

E
X

ad
di

u
su

b
..
.

D
C

M
E
M

se
xt

b
ze

xt
b

..
.

fw
d

W
B

w
ri
te

ba
ck

C
P

ep
c

ID
U

di
sp

at
ch

is
r

a
b
or

t

st
a
t

st
a
t

cy
c

ep
c

M
em

or
y

U

o
p
er

a
ti
o
n

..
.

F
u
n
ct

io
n
a
l
u
n
it
.

C
..
.

C
a
ch

e/
M

em
or

y.
R

..
.

R
eg

is
te

r
fi
le

.
I

..
.

Im
m

ed
ia

te
.

..
.

D
a
ta

li
n
k
.

..
.

P
ip

el
in

e
li
n
k
.

..
.

H
a
za

rd
li
n
k
.

..
.

S
ig

n
a
l.

a
b
or

t

R

P
C

Im
m

W
Im

m
J

a
d
d
r

lo
a
d

!a
d
d
r

!l
o
a
d

!l
o
a
d

fe

fe

R
s

R
t

ex

R
d

b
yp

a
ss

is
r

Figure 77: Block diagram of the MIPS processor model.

6.1 Processor Models 116

Definitions Expanded Instruction Set
Model #Uts. #Ops. #Uts. #Ops. #Paths #Insts.

CHILI-v2 19 77 31 129 15 886
CHILI-v4 19 77 60 253 27 1672

MIPS 7 61 7 61 3 57
SPEAR 7 62 7 62 3 104

Table 9: Statistics on the MIPS, SPEAR, and CHILI instruction set models.

The models further specify programming conventions and processor configurations,
which occupy between 69 and 91 lines. Note that the numbers in the table do not
add up, because of these additional specifications. The reusable and extensible type
definitions account for more than 50% of the code lines, the fixed instantiations on
the other hand account for just 26% for the four-way CHILI and less than 13% for
the MIPS model. This indicates that types help factoring out common hardware
fragments, types of well structured descriptions can easily be reused. This is also
reflected by the two CHILI configurations, where all types are reused, except for
register, memory, and cache types that require additional ports for the 4-way par-
allel configuration. But even in these cases inheritance can be applied, leading to
readable and compact specifications.

The instruction set extraction algorithm mainly relies on the functional units
and the operations associated with them. Table 9 relates the number of unit instan-
tiations and operations statically defined in the xADL specification to the number of
unit instances and operations present in the expanded hypergraph representation,
i.e., unit instantiations are possibly expanded to multiple instances. In particular,
the regular structure of the parallel CHILI data path can be specified very compactly
using the xADL language. The instruction set is extracted from this graph represen-
tation by first discovering the instruction paths, and subsequently computing the
individual instructions from the operations along the various paths. This approach
is very powerful in enumerating instruction variants. From the four-way parallel
CHILI configuration, for example, 1672 instructions are created, which corresponds
to about one line of xADL code per instruction. Even for the MIPS model, only about
20 lines of code are spent per instruction. The results also show that the number
of instruction paths is considerably smaller. This helps during the development of
xADL processor models, because the designer can focus on the overall structure, i.e.,
the instruction paths, first and later add operations as needed to realize instructions.

It is hard to compare the xADL approach with other processor description lan-
guages. For one, the processor models available with various other systems are
rarely published. On the other hand, the different systems often target distinct ap-
plication scenarios, and thus certain information available in one language may be
omitted in another. To give an indication how the xADL language compares to other
processor description language the MIPS model was compared against other pub-
licly available MIPS-based specifications, namely a cycle-true MIPS-R3000 ArchC

6.2 Backend Generation for acc 117

ISA Behavior Structure Compiler
Model LOC LOC #Instrs LOC LOC LOC #Rules
R3000 2533 386 58 2121 – – –

acesMIPS 4184 828 85 – 533 2353 173

Table 10: Statistics on the ArchC MIPS R3000 and acesMIPS EXPRESSION de-
scriptions.

model [12] (model version 0.7.2) and a MIPS-based VLIW acesMIPS specified using
the EXPRESSION [88] language (model version 0.99). In particular, the ArchC
R3000 model matches the xADL MIPS model very closely. The 57 MIPS integer
instructions and the syscall operation are specified using 2533 lines of code, 2121 of
which are plain SystemC code modeling the instruction behavior. Another 386 lines
specify the instruction set architecture including the syntax and binary encoding.
The instruction behavior is hardly analyzable, due to the use of SystemC. ArchC
models are thus not suited for the automatic generation of compiler backends.

The acesMIPS is a VLIW processor based on the MIPS instruction set. It defines
85 integer and floating point instructions using 4184 lines of EXPRESSION code.
More than 50% is spent on tree pattern specifications that are used to retarget the
tree pattern matching instruction selector of the EXPRESS compiler. In total, 173
matching rules are defined using 2353 lines of code. The instruction set specification
requires 828 lines of code, but does not cover the instruction’s binary encoding.
Additional 533 code lines model the hardware resources and memory hierarchy.
The comparison shows that the structural approach taken by the xADL language
leads to comparatively smaller specifications and offers a high potential for reuse.
Table 10 summarizes the statistics on the MIPS-R3000 ArchC and the acesMIPS
EXPRESSION descriptions. Note that the line numbers again do not add up because
comments and empty lines are skipped for the break down.

6.2 Backend Generation for acc

The MIPS model was used to evaluate the backend generator for the acc backend.
We executed a subset of the MiBench [80] and MediaBench [116] benchmark suites
using a cycle-accurate simulator, omitting those using floating point operations.
cmac, dct32, dct8x8, serpent, and twofish are additional benchmarks supplied by
our research partner. All benchmarks are medium sized, ranging from 800 to 4400
lines of code. The rule set of the generated compiler consists of 163 rules, covering
integer operators only.

We compared the generated backend with the original, highly-optimizing MIPS
backend of GCC 4.1.1, which also serves as the frontend for the acc compiler. While
the generated backend benefits from a number of high-level loop transformations and
optimizations applied by the frontend, most of the traditional backend optimizations

6.2 Backend Generation for acc 118

ad
pc

m
-c

od
er

ad
pc

m
-d

ec
od

er

bi
tc

ou
nt

bl
ow

fis
h

cm
ac

cr
c3

2

dc
t3

2

dc
t8

x8

di
jk

st
ra

g7
21

-e
nc

od
e

qs
or

t

se
rp

en
t

sh
a

st
rin

gs
ea

rc
h

tw
of

is
h

av
er

ag
e

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

2.26
2.13

2.37

1.45

1.86

1.46

1.01

2.25

1.25
1.03

1.57

1.94
2.05

1.45
1.55

1.71

gcc-O0 acc-O0 acc-O gcc-O

Figure 78: Performance improvements of the generated MIPS backend in compari-
son to the GCC compiler without optimizations.

are implemented on RTL-level, i.e., the machine-level representation of GCC, and
are thus not available to the acc compiler.

Figure 78 shows the speedup of the original GCC compiler and the automatically
generated backend in comparison to GCC without optimizations (gcc -O0). The
benchmarks were compiled using two different optimization levels, once without opti-
mizations (-O0) and once with optimizations enabled (-O). The average improvement
of the acc backend without optimizations in comparison to the baseline compiler is

ad
pc

m
-c

od
er

ad
pc

m
-d

ec
od

er

bi
tc

ou
nt

bl
ow

fis
h

cm
ac

cr
c3

2

dc
t3

2

dc
t8

x8

di
jk

st
ra

g7
21

-e
nc

od
e

qs
or

t

se
rp

en
t

sh
a

st
rin

gs
ea

rc
h

tw
of

is
h

av
er

ag
e

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0.81 0.83
0.81

0.92

0.79

0.94

1

0.92

0.83

0.99 0.99

0.68

0.81
0.86

0.95

0.88

Figure 79: Performance improvements of the generated MIPS backend in compari-
son to the GCC compiler with optimizations enabled.

6.3 Backend Generation for LLVM 119

Benchmark LOC Benchmark LOC
automotive-bitcount 932 security-sha 269

consumer-jpeg 26,098 telecomm-crc32 284
network-dijkstra 187 telecomm-fft 476

office-stringsearch 3,250 telecomm-adpcm 304
security-blowfish 1,913

Table 11: Size of the benchmark programs in source lines.

about 44%. Apart from the code generator, register allocator and instruction sched-
uler, currently no other optimizations are available in the acc backend. It is thus
lacking redundancy elimination and loop invariant code motion of address calcu-
lations, which leads to a considerable performance penalty in comparison the the
optimized code generated by GCC. Furthermore, the high-level optimizations by the
GCC frontend are not as effective as initially expected. Enabling additional opti-
mizations often does not yield any changes to the input of the acc backend, while
GCC’s optimizations at the RTL-level significantly improve the code quality. On
average the high-level optimizations lead to a runtime improvement of about 71%
in comparison to the baseline compiler. The cmac and stringsearch benchmarks
benefit the most from the additional high-level optimizations. With optimizations
enabled, the code produced by the generated compiler reaches about 88% of GCC’s
performance on average, as can be seen in Figure 79.

6.3 Backend Generation for LLVM

The backend generator for the LLVM framework was evaluated using the CHILI and
MIPS processor models. Due to incompatibilities of the assembler and linker, the
SPEAR compiler is currently limited to trivial programs that only refer to labels with
local linkage. Runtime and code size statistics are thus omitted for SPEAR. A subset
of the MiBench benchmark suite, as provided by the LLVM test infrastructure, was
compiled and subsequently executed by cycle-accurate simulators generated from
the respective processor descriptions [24, 25]. The accuracy of the simulators has
been verified against cycle-true reference simulators, the generated simulators for the
CHILI processors, for example, perfectly match the reference simulator provided by
OnDemand Microelectronics and only show a difference of exactly one cycle, due
to a slightly different shutdown procedure at the end of a simulation run. Table 11
lists the number of source lines including comments for each benchmark program.
The benchmarks were run using the small input data sets in order to reduce the
simulation time.

The benchmarks for MIPS were compiled using GCC version 4.1.1 and the GNU
Binutils version 2.19.1 configured for the mips-elf target. The newlib system li-

6.3 Backend Generation for LLVM 120

Model #Instr. Def. #Reg. Def. #Reg. Cl. #Res. #Rules
CHILI-v2 817 64 1 2 1416
CHILI-v4 817 64 1 4 1416

MIPS 61 35 3 1 111
SPEAR 106 22 4 2 42

Table 12: Statistics on the generated LLVM backends for the MIPS, SPEAR, and
CHILI processor models.

brary17 provides a basic C library implementation. GCC version 4.2.0, together
with the GNU Binutils 2.16, provided by OnDemand Microelectronics serves as
a reference compiler for the CHILI architecture. The system libraries are based
on newlib version 1.14.0. The automatically generated compilers rely on LLVM
version 2.4, which uses a modified version of GCC 4.2 as frontend. The GNU Binu-
tils and newlib libraries are shared among the respective reference compilers and
the generated compilers. The reference compilers are invoked with aggressive opti-
mizations (-O3), while the LLVM compilers use the standard optimization options
(-std-compile-opts).

As can be seen in Table 12, the LLVM backends derived from the two-way and
four-way configurations of the CHILI processor are virtually identical, except for
the resources present in the reservation tables of the instruction scheduler. The
table lists, from left to right, the number of instruction definitions, register defini-
tions, register classes, abstract resources of the resource tables, and the number of
instruction selection patterns generated from the respective processor descriptions.
The number of instruction definitions differs from the instruction number listed by
Table 9, because equivalent instruction variants are merged. Hence, the number of
instruction definitions is lower for the parallel CHILI models. On the other hand,

17http://sourceware.org/newlib/

Code Size Cycles
Benchmark GCC xADL % GCC xADL %

automotive-bitcount 31,468 25,364 -19 726,162 991,642 +36
consumer-jpeg 245,148 161,648 -34 7,932,872 9221,371 +16

network-dijkstra 39,116 38,564 -1 342,801,926 314414,695 -8
office-stringsearch 27,672 25,700 -7 5,367,471 7274,936 +36
security-blowfish 36,768 26,544 -28 867,965 877,218 +1

security-sha 31,796 29,352 -8 13,270,780 17812,223 +34
telecomm-crc32 29,816 27,716 -7 7,464,707 8350,673 +12

telecomm-fft 45,172 44,976 – 140,766,729 137254,431 -2
telecomm-adpcm 27,588 27,372 -1 7,122,022 12125,699 +70

Table 13: Code size and execution time results for the MIPS processor.

http://sourceware.org/newlib/

6.3 Backend Generation for LLVM 121

au
to
m
ot
ive
-b
itc
ou
nt

co
ns
um
er
-jp
eg

ne
tw
or
k-
di
jks
tra

of
fic
e-
st
rin
gs
ea
rc
h

se
cu
rit
y-
blo
wf
ish

se
cu
rit
y-
sh
a

te
le
co
m
m
-c
rc
32

te
lec
om
m
-ff
t

te
lec
om
m
-a
dp
cm

Av
er
ag
e

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0.73

0.86

1.09

0.74

0.99

0.75

0.89

1.03

0.59

0.85

Figure 80: Performance difference of the generated backend in comparison to GCC.

instructions with multiple result values are duplicated, due to restrictions of the
LLVM instruction selector. This leads to a higher number of instruction definitions
for the MIPS and SPEAR models.

The backend generator quite successfully discovers translation patterns from the
instruction sets. For every instruction definition of the MIPS and CHILI models
almost two instruction selection patterns are generated, leading to the huge number
of 1416 rules for the CHILI models. One might think that this number is caused by
duplicates due to commutativity. However, this is not the case, because the table-
gen tool already handles commutativity, the respective patterns are thus suppressed
during the emission by the compiler generator. This can also be seen by compar-
ing the number of matching rules generated for the acc backend to the number of
instruction selection patterns in Table 12. From the 163 matching rules only 111
are considered for the LLVM backend. The majority of the omitted patterns are
duplicates derived through the application of the commutativity law.

The measured execution times and the code size of the stripped benchmark pro-
grams for the MIPS instruction set are shown in Table 13. The results indicate
that the automatically generated MIPS compiler is competitive to the well-tuned
production compiler GCC, in particular, when code size is taken into account. The
fft and dijkstra benchmarks show a reduction of the execution time by 2% and
8% respectively. The severe increase in execution time of 70% in the case of the
adpcm benchmark is caused by useless branches generated late during the compila-
tion process from conditional assignments. The branch optimization of the LLVM
framework runs earlier and thus misses these cases. The relative performance is
depicted by Figure 80. On average, a slowdown of only 15% has been observed over
all benchmarks.

6.3 Backend Generation for LLVM 122

au
to
m
ot
ive
-b
itc
ou
nt

co
ns
um
er
-jp
eg

ne
tw
or
k-
dij
ks
tra

of
fic
e-
st
rin
gs
ea
rc
h

se
cu
rit
y-
bl
ow
fis
h

se
cu
rit
y-
sh
a

te
lec
om
m
-c
rc
32

te
le
co
m
m
-ff
t

te
lec
om
m
-a
dp
cm

Av
er
ag
e

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0.74

1.08

1.2

0.85

1.03

0.88 0.91

1
1.04

0.97

GCC CHILI-v2 CHILI-v4

Figure 81: Performance improvement of the generated CHILI backends in compar-
ison to GCC.

The performance results obtained for the two CHILI processor configurations
are very close to the handcrafted production compilers – see Figure 81. Several
benchmarks show considerable speedups, in particular the dijkstra and the the jpeg
benchmarks show an improvement of up to 20%. In contrast to the MIPS model,
the generated compilers for the CHILI models do not show such severe slowdowns.
The adpcm benchmark performs much better for the CHILI, because the condi-
tional assignments are directly supported by the processor, useless branches are
thus avoided. The four-way parallel configuration even outperforms the production
compiler by 4%. The code produced by the generated compilers for the bitcount

Code Size Cycles
Benchmark GCC xADL % GCC xADL %

automotive-bitcount 349,660 296,504 -15 909,105 1,266,562 +39
consumer-jpeg 2,374,672 1,248,448 -47 11,394,100 10,477,805 -8

network-dijkstra 485,944 470,872 -3 2,885,225 2,429,125 -16
office-stringsearch 334,516 303,384 -9 624,684 767,442 +23
security-blowfish 405,408 306,192 -24 1,554,181 1,476,850 -5

security-sha 354,676 327,864 -8 12,457,571 15,212,856 +22
telecomm-crc32 354,108 327,132 -8 8,637,804 9,816,493 +14

telecomm-fft 415,824 401,140 -4 188,668,150 190,661,456 +1
telecomm-adpcm 339,116 324,856 -4 10,404,612 10,936,309 +5

Table 14: Code size and execution time results for the two-way parallel CHILI
configuration.

6.3 Backend Generation for LLVM 123

Code Size Cycles
Benchmark GCC xADL % GCC xADL %

automotive-bitcount 348,892 296,376 -15 881,144 1,183,104 +34
consumer-jpeg 2,341,904 1,241,408 -47 10,794,047 9,976,958 -8

network-dijkstra 485,560 470,744 -3 2,894,236 2,414,124 -17
office-stringsearch 334,004 303,384 -9 624,087 738,406 +18
security-blowfish 400,160 306,192 -23 1,541,883 1,491,519 -3

security-sha 351,860 327,608 -7 10,791,045 12,215,822 +13
telecomm-crc32 353,980 327,132 -8 8,637,327 9,520,911 +10

telecomm-fft 415,184 400,884 -3 187,968,275 188,243,462 +1
telecomm-adpcm 338,988 324,728 -4 10,116,131 9,755,433 -4

Table 15: Code size and execution time results for the four-way parallel CHILI
configuration.

benchmark, however, performs poorly. Address calculations for memory operations
accessing an array are not optimally translated and cause some extra instructions.
Due to the small loops of the bit counting algorithms this has a large impact. Never-
theless, slight slowdowns of only 5% and 3% respectively have been observed over all
benchmarks for both CHILI configurations. Considering the code size these results
are motivating for future work. As for the MIPS, the code size is again consider-
ably smaller. On average the code size of the stripped executables produced by the
xADL-based backends is reduced by 15%. The size of the jpeg benchmark program,
for example, is reduced by 47%, for blowfish benchmark the reduction amounts to
about 25%.

We have further compared the performance results against a handcrafted research
backend for the CHILI processor that was developed in cooperation with out research
partner OnDemand Microelectronics. This backend was enhanced with additional
optimization passes to hide the long branch and load latencies. A very effective
if-conversion pass utilizes the strong support for predicated execution to eliminate
branches. Branches are further aggressively rewritten by a dedicated branch opti-
mization. The register allocator was enhanced to avoid conflicting assignments for
independent calculations in order to increase the available parallelism. The scheduler
was similarly enhanced. The weights of the data dependence graph are computed by
well-tuned heuristics that improve the resource utilization. The priority assignment
during the selection of candidates from the ready list is optimized to avoid unfa-
vorable schedules and reduce resource contention. To obtain comparable results the
if-conversion pass was disabled for this evaluation, because the generated compilers
are lacking a similar optimization.

In general the generated compilers are again competitive to the handcrafted
research backend. For the four-way CHILI configuration even a speedup of 5%
is achieved for the stringsearch benchmark, also the execution time of the crc32
benchmark is improved by 3%. The other results are more balanced than for the

6.3 Backend Generation for LLVM 124

au
to
m
ot
ive
-b
itc
ou
nt

co
ns
um
er
-jp
eg

ne
tw
or
k-
dij
ks
tra

of
fic
e-
st
rin
gs
ea
rc
h

se
cu
rit
y-
bl
ow
fis
h

se
cu
rit
y-
sh
a

te
lec
om
m
-c
rc
32

te
le
co
m
m
-ff
t

te
lec
om
m
-a
dp
cm

Av
er
ag
e

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0.92 0.94

1
1.05

0.99

0.76

1.03
1

0.89

0.95

LLVM CHILI-v2 CHILI-v4

Figure 82: Performance improvement of the generated CHILI backends in compar-
ison to LLVM.

previous comparisons. Only one benchmark shows significant slowdowns of up to
32%. The results of the sha benchmark can be attributed to the superior priority
assignment of the handcrafted compiler during scheduling. This leads to an improved
utilization of the available computational resources. Transformations during the
construction of the data dependence graph also improve the utilization of branch
delay slots. The results for the bitcount and adpcm benchmarks are similarly caused
by unfavorable scheduling decisions. On average over all benchmarks a slowdown of
only 7% has been measured for the two-way parallel CHILI configuration. For the
four-way parallel configuration the slowdown is even smaller and amounts to only

Code Size Cycles
Benchmark LLVM % LLVM %

automotive-bitcount 295,604 0 1,090,557 16
consumer-jpeg 1,240,056 1 10,017,733 5

network-dijkstra 470,724 0 2,423,692 0
office-stringsearch 302,612 0 767,195 0
security-blowfish 305,092 0 1,484,544 -1

security-sha 327,600 0 10,398,265 46
telecomm-crc32 327,132 0 9,815,961 0

telecomm-fft 400,820 0 189,185,087 1
telecomm-adpcm 324,600 0 9,313,023 17

Table 16: Code size and execution time results for the handcrafted LLVM compiler
targeting the two-way parallel CHILI configuration.

6.4 Completeness of Instruction Selector Specifications 125

Code Size Cycles
Benchmark LLVM % LLVM %

automotive-bitcount 295,476 0 1,085,154 9
consumer-jpeg 1,227,896 1 9,344,536 7

network-dijkstra 470,596 0 2,417,219 0
office-stringsearch 302,484 0 772,938 -4
security-blowfish 305,092 0 1,469,591 1

security-sha 327,344 0 9,301,773 31
telecomm-crc32 327,132 0 9,815,831 -3

telecomm-fft 400,692 0 188,944,990 0
telecomm-adpcm 324,472 0 8,722,612 12

Table 17: Code size and execution time results for the handcrafted LLVM compiler
targeting the four-way parallel CHILI configuration.

5%. In contrast to the previous comparisons to the production compiler based on
GCC, the size of the produced executables is almost identical for the generated and
handcrafted compilers based on LLVM.

Note, that a MIPS backend was added to LLVM during a Google Summer of
Code project. However, a comparison to the generated backend was not considered
for this evaluation. LLVM’s MIPS backend is in an early development phase and
does not yet achieve competitive results, it even fails to generate correct code for
about half of the benchmarks at this point.

6.4 Completeness of Instruction Selector Specifications

The backend generator for the acc compiler is able to verify, whether the derived
instruction selector specification is complete using the completeness test based on
terminal splitting. The intermediate representation of the acc backend is very similar
to the TREE/GENERIC language that is also used by GCC. Before the instruction
selection phase, the IR is rewritten to eliminate high-level constructs present in
the original language, e.g., array and struct reference expressions are rewritten into
regular arithmetic and load or store operations. In total, this low-level IR consists
of about 40 operators, some of which are target-independent and are handled using
default rules. Ignoring the target-independent operations, the initial tree grammar
specifying the compiler’s IR consists of only 32 rules and two chain rules.

The generated instruction selector heavily relies on dynamic checks, all of these
checks, except equality constraints, can be modeled using the proposed terminal
splitting approach. As mentioned in the previous chapter, testing whether two
nodes in the IR are the same cannot be modeled. Rules with equality constraints
are thus treated conservatively, i.e., are removed from the rule set and completely
ignored throughout the completeness test. In practice this is not an issue, it is very

6.4 Completeness of Instruction Selector Specifications 126

Model IS-Rules Non-terminals Chain Cond Chain
SPEAR 303 67 18 16
MIPS 521 90 13 12
CHILI 4159 1882 19 16

Table 18: Properties of the normalized tree grammars before terminal splitting.

unlikely that a combination of rules with equality constraints will contribute to the
completeness of the instruction selector. None of the rules in our experiments carried
an equality constraint. The dynamic checks employed by the backend generator
within the adlgen tool test the following properties:

• the value of constants or the value range of IR nodes,

• whether the value of an IR node is guaranteed to be a power of two,

• the signedness of the IR node’s type,

• the size of the node’s type,

• the register class of virtual registers.

In our experiment we only consider integer arithmetic, thus the value range
of constants is modeled over the domain of 32-bit integer values. Consequently,
the size of types is limited to 32 bits. In addition we can exploit the fact that
the compiler frontend does not generate arbitrary types, but merely 32-bit pointer
types and integer types of the sizes 1, 8, 16, and 32.18 Testing for the signedness of
the IR node’s type and powers of two is modeled using powersets over the boolean
values true and false. The domain for the register class test depends on the current
processor model and is computed automatically by the backend generator.

The compiler generator represents the instruction selection rules in a compiler-
independent format that is not yet normalized. Thus, in a preprocessing step, the
instruction selector rules need to be normalized by duplicating fragments of the
original patterns and introducing new non-terminal symbols. As depicted in Ta-
ble 18, this leads to a large number of non-terminals and rules compared to the
initial rule set. This is especially true for the CHILI processor models. Note, that
the non-terminals and rules of identical sub-patterns are reused as much as possible,
nevertheless the large number of predicated instruction variants of the CHILI leads
to a large growth in the number of rules.

In addition we observe that the vast majority of chain rules actually is associ-
ated with a condition. This can be attributed to the design of GCC’s intermediate
language, where in some cases the semantics of an operation depends on the type

18Wider machines can be handled, but for the current experimental setup this is not needed.

6.4 Completeness of Instruction Selector Specifications 127

Model IS-Rules IR-Rules States Time CT Time Total
SPEAR 2332 172 170 0.4s 0.6s
MIPS 3304 274 267 0.8s 1.4s
CHILI 9195 273 255 29.9s 36.5s

Table 19: Number of rules in the tree grammars of the instruction selector and the
compiler’s IR after the application of chain rules and terminal splitting.

of the operands to that operation. For example, signed and unsigned comparisons
are represented using the same operation in the IR. The only way to determine the
actual type of the comparison is to check the type of the operands.

Table 19 shows the input to the final completeness test after terminal splitting
and the application of chain rules. As expected, the high number of conditional
chain rules combined with terminal splitting again leads to a large growth in the
number of rules. The number of non-terminals on the other hand does not increase
during this phase.

Similar to results in previous work the number of states calculated during the
actual completeness test is relatively small compared to the number of rules. This
is not surprising as the instruction selection rules are ambiguous and thus often lead
to the same state. The total runtime on a 3 GHz Intel Xeon running Linux 2.6.18 is
limited to a few of seconds for normal-sized instruction selector specifications. Even
testing the completeness of the large CHILI specification requires only 36.5 seconds.
About 30 seconds thereof are spent on the completeness test itself, whereas the
remaining time is mostly spent on the application of chain rules. Note that the
current implementation is not tuned for speed.

7 Conclusion

The development of embedded systems faces rigid constraints regarding technical
as well as non-technical aspects. The heat dissipation, power consumption, and
area requirements need to be minimized, while at the same time the performance
and programmability of these systems is steadily rising. Production costs and the
duration of product development cycles need to be minimized in order for the final
products to be competitive. Application-specific instruction set processors have suc-
cessfully been used in the past to achieve these opposing goals. The development of
such processors is a challenging task that requires intimate knowledge of the prob-
lem domain and appropriate support tools to evaluate different design alternatives
quickly.

In this work the novel xADL processor description language was presented that
allows the specification of application-specific processors for embedded systems. The
language is focused on the structural organization of the processor’s register files,
memories, and computational resources. However, the instruction set of the proces-
sor, even though not explicitly specified, is a central design concept of the language
and its support tools. Instructions are automatically extracted from the structural
processor model along instruction paths. The information of the instruction set view
combined with the detailed structural processor model enables a very flexible use of
the language. For example, software development tools for the given processor can
automatically be customized, including the assembler, linker, compiler, and instruc-
tion set simulator. Even a prototype system that allows to derive VHDL hardware
models has been shown to be feasible. Compared to other processor description lan-
guages, the presented approach facilitates the reuse of hardware components using
extensible types similar to classes and templates known from the programming lan-
guage C++. This leads to compact, but still readable and intuitive, specifications
of the processor.

In addition to the xADL language itself, the generator tool adlgen was described.
In particular, the compiler backend generator for the acc backend and the LLVM
compiler infrastructure. The compiler generator is capable to derive specifications
for the three central components required during the code generation phase of a
compiler: (1) the register allocator, (2) the instruction scheduler, and (3) the in-
struction selector. The quality of the generated compiler components was evaluated
using four processor models and compared against handcrafted high-quality pro-
duction compilers based on the open-source compiler GCC. The results show that
the generated compilers are competitive in terms of code quality. The generated
compiler targeting the MIPS instruction set architecture on average shows moder-
ate slowdowns of 15% for a set of benchmark programs taken from the MiBench
and MediaBench benchmark suites. The generated compilers for two configurations
of the VLIW processor CHILI are even closer to the handcrafted production sys-
tems. On average slight slowdowns of 5% and 3% have been measured. For some
benchmarks the xADL-based compilers even outperform the well-tuned production
systems by up to 20%.

128

7 Conclusion 129

A major problem of the compiler generator is the fact that it relies on the capa-
bilities provided by the described processor. If the capabilities are too limited the
generator might fail to derive a compiler that is able to translate all valid input pro-
grams accepted by the compiler frontend. The completeness of instruction selector
specifications was thus studied in this work. Traditional completeness tests based
on tree automata are too limited to be applicable in the context of modern compiler
systems. Dynamic checks that occur quite frequently can not be represented by these
approaches and may thus lead to overly conservative results. Terminal splitting was
proposed to explicitly represent the dynamic checks of the initial instruction selec-
tor specification by dedicated terminal symbols. A traditional completeness test is
then applied to the transformed instruction selector specification to verify its com-
pleteness. The presented approach was integrated with adlgen’s compiler generator
and evaluated for three example processors. If the test fails to prove the desired
property, counter examples are computed. These counter examples provide valuable
feedback to the processor designer. Even though terminal splitting lead to an in-
creased problem size for the actual completeness test, the time required for testing
an instruction selector specification is in the order of only a few seconds in practice.

Due to the motivating results, we believe that the xADL language and its accom-
panying tools have a high potential for future research and innovation. The language
itself is currently extended by a powerful type system and improved modeling capa-
bilities of memory hierarchies. We plan to extend the compiler generator to process
instructions with multiple outputs more efficiently, in particular autoincrement ad-
dressing modes that are very important in the digital signal processing domain. Also
the high-speed simulation framework that has been developed in conjunction with
the xADL language offers potential for future innovation. Current work focuses on
optimization methods for the efficient simulation of rare events, such as external
interrupts, cache misses, or branch miss-predictions, using a rollback mechanism.
The overhead of decoding the instructions for execution during the simulation is an-
other area for improvements. We plan to investigate sophisticated software decoding
and caching techniques to minimize this overhead. Various other generation tools
are planned, including tools to automatically synthesize efficient binary encoding
schemes for the instructions of a processor, improvements to the VHDL-based hard-
ware generator, and techniques to automatically derive instruction set extensions
for a processor model and a given input program.

REFERENCES 130

References

[1] Alfred V. Aho, Mahadevan Ganapathi, and Steven W. K. Tjiang. Code gen-
eration using tree matching and dynamic programming. ACM Transactions
on Programming Languages and Systems (TOPLAS), 11(4):491–516, 1989.

[2] Alfred V. Aho and Stephen C. Johnson. Optimal code generation for expres-
sion trees. Journal of the ACM (JACM), 23(3):488–501, 1976.

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison Wesley, 2nd edition, August 2006.

[4] Hiroki Akaboshi. A study on design support for computer architecture design.
PhD thesis, Department of Information Systems, Kyushu University, Japan,
1996.

[5] Hiroki Akaboshi, Hiroyuki Tomiyama, and Hiroto Yasuura. Compiler genera-
tion from hardware description language. In APCHDL ’93: Proceedings of the
1st Asia Pacific Conference on Hardware Description Languages, pages 76–78,
December 1993.

[6] Hiroki Akaboshi and Hiroto Yasuura. COACH: A computer aided design tool
for computer architects. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 76(10):1760–1769, 1993.

[7] Hiroki Akaboshi and Hiroto Yasuura. Behavior extraction of MPU from HDL
description. In APCHDL ’94: Proceedings of the 2nd Asia Pacific Conference
on Hardware Description Languages, pages 67–74, October 1994.

[8] Andrew Appel, Jack Davidson, and Norman Ramsey. The Zephyr compiler in-
frastructure. http://www.cs.virginia.edu/zephyr/papers/overview98.

ps, November 1998.

[9] Andrew W. Appel and Lal George. Optimal spilling for CISC machines with
few registers. In PLDI ’01: Proceedings of the ACM SIGPLAN 2001 Confer-
ence on Programming Language Design and Implementation, pages 243–253,
New York, NY, USA, 2001. ACM.

[10] David August, Jonathan Chang, Sylvain Girbal, Daniel Gracia-Perez, Gilles
Mouchard, David A. Penry, Olivier Temam, and Neil Vachharajani. UNISIM:
An open simulation environment and library for complex architecture design
and collaborative development. IEEE Computer Architecture Letters, 6(2):45–
48, 2007.

[11] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An infrastructure
for computer system modeling. Computer, 35(2):59–67, 2002.

http://www.cs.virginia.edu/zephyr/papers/overview98.ps
http://www.cs.virginia.edu/zephyr/papers/overview98.ps

REFERENCES 131

[12] Rodolfo Azevedo, Sandro Rigo, Marcus Bartholomeu, Guido Araujo, Cristiano
Araujo, and Edna Barros. The ArchC architecture description language and
tools. International Journal of Parallel Programming, 33(5):453–484, 2005.

[13] Mark W. Bailey and Jack W. Davidson. A formal model and specification
language for procedure calling conventions. In POPL ’95: Proceedings of
the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 298–310, New York, NY, USA, 1995. ACM.

[14] Vasanth Bala and Norman Rubin. Efficient instruction scheduling using finite
state automata. In MICRO 28: Proceedings of the 28th annual International
Symposium on Microarchitecture, pages 46–56, Los Alamitos, CA, USA, 1995.
IEEE Computer Society Press.

[15] Alexandro Baldassin, Paulo Centoducatte, Sandro Rigo, Daniel Casarotto,
Luiz C. V. Santos, Max Schultz, and Olinto Furtado. Automatic retargeting
of binary utilities for embedded code generation. In ISVLSI ’07: Proceedings
of the IEEE Computer Society Annual Symposium on VLSI, pages 253–258,
Washington, DC, USA, 2007. IEEE Computer Society.

[16] Alexandro Baldassin, Paulo Cesar Centoducatte, and Sandro Rigo. Extending
the ArchC language for automatic generation of assemblers. In SBAC-PAD
’05: Proceedings of the 17th International Symposium on Computer Architec-
ture on High Performance Computing, pages 60–68, Washington, DC, USA,
2005. IEEE Computer Society.

[17] Marcus Bartholomeu, Rodolfo Azevedo, Sandro Rigo, and Guido Araujo. Op-
timizations for compiled simulation using instruction type information. In
SBAC-PAD ’04: Proceedings of the 16th Symposium on Computer Architec-
ture and High Performance Computing, pages 74–81, Washington, DC, USA,
2004. IEEE Computer Society.

[18] Jeff Bastian and Soner Önder. Specification of Intel IA-32 using an architecture
description language. In WADL ’04: Workshop on Architecture Description
Languages, pages 151–166, Boston, USA, 2004. Springer Verlag.

[19] Ulrich Bieker, Martin Kaibel, Peter Marwedel, and Walter Geisselhardt.
STAR-DUST: Hierarchical test of embedded processors by self-test programs.
Technical Report 700, University of Dortmund, Deptartement of CS XII, 1998.

[20] Ulrich Bieker and Peter Marwedel. Retargetable self-test program generation
using constraint logic programming. In DAC ’95: Proceedings of the 32nd
annual ACM/IEEE Design Automation Conference, pages 605–611, New York,
NY, USA, 1995. ACM.

[21] John Adrian Bondy and U. S. R. Murty. Graduate texts in mathematics -
Graph theory, volume 244. Springer, 2007.

REFERENCES 132

[22] Aimen Bouchhima, Patrice Gerin, and Frédéric Pétrot. Automatic instrumen-
tation of embedded software for high level hardware/software co-simulation.
In ASP-DAC ’09: Proceedings of the 2009 Asia and South Pacific Design Au-
tomation Conference, pages 546–551, Piscataway, NJ, USA, 2009. IEEE Press.

[23] Florian Brandner. Completeness of instruction selector specifications with
dynamic checks. In COCV ’09: 8th International Workshop on Compiler
Optimization Meets Compiler Verification, 2009.

[24] Florian Brandner. Fast and accurate simulation using the LLVM compiler
framework. In RAPIDO ’09: 1st Workshop on Rapid Simulation and Perfor-
mance Evaluation: Methods and Tools, 2009.

[25] Florian Brandner. Precise simulation of interrupts using a rollback mechanism.
In SCOPES ’09: Proceedings of the 12th International Workshop on Software
and Compilers for Embedded Systems, pages 71–80, 2009.

[26] Florian Brandner, Dietmar Ebner, and Andreas Krall. Compiler generation
from structural architecture descriptions. In CASES ’07: Proceedings of the
2007 International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, pages 13–22. ACM, 2007.

[27] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François
Yergeau, editors. Extensible Markup Language (XML) 1.0 - W3C Recommen-
dation. World Wide Web Consortium (W3C), 5th edition, November 2008.

[28] Preston Briggs, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Color-
ing heuristics for register allocation. In PLDI ’89: Proceedings of the ACM
SIGPLAN 1989 Conference on Programming Language Design and Implemen-
tation, pages 275–284, New York, NY, USA, 1989. ACM.

[29] Preston Briggs, Keith D. Cooper, and Linda Torczon. Coloring register pairs.
ACM Letters on Programming Languages and Systems (LOPLAS), 1(1):3–13,
1992.

[30] John Bruno and Ravi Sethi. Code generation for a one-register machine.
Journal of the ACM (JACM), 23(3):502–510, 1976.

[31] Jianjiang Ceng, Manuel Hohenauer, Rainer Leupers, Gerd Ascheid, Heinrich
Meyr, and Gunnar Braun. C compiler retargeting based on instruction se-
mantics models. In DATE ’05: Proceedings of the Conference on Design,
Automation and Test in Europe, pages 1150–1155. IEEE Computer Society,
2005.

[32] Gregory J. Chaitin. Register allocation & spilling via graph coloring. In
SIGPLAN ’82: Proceedings of the 1982 SIGPLAN Symposium on Compiler
Construction, pages 98–105, New York, NY, USA, 1982. ACM.

REFERENCES 133

[33] Anupam Chattopadhyay, Arnab Sinha, Diandian Zhang, Rainer Leupers, Gerd
Ascheid, and Heinrich Meyr. Integrated verification approach during ADL-
driven processor design. Microelectronics Journal, 40(7):1111–1123, 2009.

[34] Eric Cheung, Harry Hsieh, and Felice Balarin. Memory subsystem simulation
in software TLM/T models. In ASP-DAC ’09: Proceedings of the 2009 Asia
and South Pacific Design Automation Conference, pages 811–816, Piscataway,
NJ, USA, 2009. IEEE Press.

[35] Frederick Chow and John Hennessy. Register allocation by priority-based
coloring. In SIGPLAN ’84: Proceedings of the 1984 SIGPLAN Symposium on
Compiler Construction, pages 222–232, New York, NY, USA, 1984. ACM.

[36] Hubert Comon, Max Dauchet, Remi Gilleron, Christof Löding, Florent
Jacquemard, Denis Lugiez, Sophie Tison, and Marc Tommasi. Tree automata
techniques and applications. http://www.grappa.univ-lille3.fr/tata,
2007.

[37] Jason Cong, Karthik Gururaj, Guoling Han, Adam Kaplan, Mishali Naik, and
Glenn Reinman. MC-Sim: an efficient simulation tool for MPSoC designs. In
ICCAD ’08: Proceedings of the 2008 IEEE/ACM International Conference
on Computer-Aided Design, pages 364–371, Piscataway, NJ, USA, 2008. IEEE
Press.

[38] Several Contributors. GNU C Compiler Internals.
http://en.wikibooks.org/wiki/GNU_C_Compiler_Internals.

[39] Henk Corporaal. Microprocessor Architectures: From VLIW to TTA. John
Wiley & Sons, Inc., New York, NY, USA, 1997.

[40] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the con-
trol dependence graph. ACM Transactions on Programming Languages and
Systems (TOPLAS), 13(4):451–490, 1991.

[41] Martin Delvai, Wolfgang Huber, Peter Puschner, and Andreas Steininger. Pro-
cessor support for temporal predictability – the SPEAR design example. In
Proceedings of the 15th Euromicro International Conference on Real-Time Sys-
tems, pages 169 – 176. IEEE Computer Society, 2003.

[42] João Dias and Norman Ramsey. Converting intermediate code to assembly
code using declarative machine descriptions. In CC ’06: Proceedings of the
15th International Conference on Compiler Construction, volume 3923, pages
217–231. Springer Verlag, 2006.

[43] Kemal Ebcioglu and Alexandru Nicolau. A global resource-constrained paral-
lelization technique. In ICS ’89: Proceedings of the 3rd International Confer-
ence on Supercomputing, pages 154–163, New York, NY, USA, 1989. ACM.

http://www.grappa.univ-lille3.fr/tata
http://en.wikibooks.org/wiki/GNU_C_Compiler_Internals

REFERENCES 134

[44] Dietmar Ebner. SSA-based code generation techniques for embedded archi-
tectures. PhD thesis, Institut für Computersprachen, Technische Universität
Wien, July 2009.

[45] Dietmar Ebner, Florian Brandner, Bernhard Scholz, Andreas Krall, Peter Wie-
dermann, and Albrecht Kadlec. Generalized instruction selection using SSA-
graphs. In LCTES ’08: Proceedings of the 2008 ACM SIGPLAN-SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems, pages
31–40. ACM, 2008.

[46] Erik Eckstein, Oliver König, and Bernhard Scholz. Code instruction selection
based on SSA-graphs. Lecture Notes in Computer Science - Software and
Compilers for Embedded Systems, 2826/2003:49–65, 2003.

[47] Alexandre E. Eichenberger and Edward S. Davidson. A reduced multipipeline
machine description that preserves scheduling constraints. In PLDI ’96: Pro-
ceedings of the ACM SIGPLAN 1996 Conference on Programming Language
Design and Implementation, pages 12–22, New York, NY, USA, 1996. ACM.

[48] Helmut Emmelmann. Testing completeness of code selector specifications. In
CC ’92: Proceedings of the 4th International Conference on Compiler Con-
struction, pages 163–175. Springer, 1992.

[49] Helmut Emmelmann, Friedrich-Wilhelm Schröer, and Rudolf Landwehr. BEG:
a generator for efficient back ends. In PLDI ’89: Proceedings of the ACM SIG-
PLAN 1989 Conference on Programming Language Design and Implementa-
tion, pages 227–237, New York, NY, USA, 1989. ACM.

[50] Frank Engel, Johannes Nührenberg, and Gerhard P. Fettweis. A generic tool
set for application specific processor architectures. In CODES ’00: Proceedings
of the eighth International Workshop on Hardware/Software Codesign, pages
126–130, New York, NY, USA, 2000. ACM.

[51] M. Anton Ertl. Optimal code selection in DAGs. In POPL ’99: Proceedings of
the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 242–249. ACM, 1999.

[52] M. Anton Ertl, Kevin Casey, and David Gregg. Fast and flexible instruction
selection with on-demand tree-parsing automata. In PLDI ’06: Proceedings of
the 2006 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 52–60. ACM, 2006.

[53] David C. Fallside and Priscilla Walmsley, editors. XML Schema Part 0:
Primer - W3C Recommendation. World Wide Web Consortium (W3C), 2nd
edition, October 2004.

[54] Stefan Farfeleder, Andreas Krall, and Nigel Horspool. Ultra fast cycle-accurate
compiled emulation of inorder pipelined architectures. EUROMICRO Journal
of Systems Architecture, 53(8):501–510, 2007.

REFERENCES 135

[55] Stefan Farfeleder, Andreas Krall, Edwin Steiner, and Florian Brandner. Effec-
tive compiler generation by architecture description. In LCTES ’06: Proceed-
ings of the 2006 ACM SIGPLAN/SIGBED Conference on Language, Compil-
ers, and Tools for Embedded Systems, pages 145–152. ACM, 2006.

[56] Andreas Fauth, Günter Hommel, Alois Knoll, and Carsten Müller. Global
code selection of directed acyclic graphs. In CC ’94: Proceedings of the 5th
International Conference on Compiler Construction, pages 128–142. Springer,
1994.

[57] Andreas Fauth, Johan Van Praet, and Markus Freericks. Describing instruc-
tion set processors using nML. In EDTC ’95: Proceedings of the 1995 European
Conference on Design and Test, pages 503–507. IEEE Computer Society, 1995.

[58] Andreas Fellnhofer. Automatic generation of interpreting instruction set simu-
lators. Diploma thesis, Institut für Computersprachen, Technische Universität
Wien, 2008.

[59] Dirk Fischer, Jürgen Teich, Ralph Weper, Uwe Kastens, and Michael Thies.
Design space characterization for architecture/compiler co-exploration. In
CASES ’01: Proceedings of the 2001 International Conference on Compil-
ers, Architecture, and Synthesis for Embedded Systems, pages 108–115, New
York, NY, USA, 2001. ACM.

[60] Joseph A. Fisher. Trace scheduling: A technique for global microcode com-
paction. IEEE Transactions on Computers, C-30(7):478–490, July 1981.

[61] Joseph A. Fisher, Paolo Faraboschi, and Young Cliff. Embedded Computing:
A VLIW Approach to Architecture, Compilers and Tools. Morgan Kaufmann
(Elsevier), 2005.

[62] Martin Fletzer. SPEAR2 - an improved version of SPEAR. Diploma thesis,
Embedded Computing Systems Group, Institut für Technische Informatik,
Technische Universität Wien, 2008.

[63] Christopher W. Fraser and David R. Hanson. A Retargetable C Compiler:
Design and Implementation. Addison-Wesley Longman Publishing Co., Inc.,
1995.

[64] Christopher W. Fraser, David R. Hanson, and Todd A. Proebsting. Engineer-
ing a simple, efficient code-generator generator. ACM Letters on Programming
Languages and Systems (LOPLAS), 1(3):213–226, 1992.

[65] Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. BURG:
fast optimal instruction selection and tree parsing. ACM SIGPLAN Notices,
27(4):68–76, 1992.

REFERENCES 136

[66] Christopher W. Fraser and Todd A. Proebsting. Finite-state code generation.
In PLDI ’99: Proceedings of the ACM SIGPLAN 1999 Conference on Pro-
gramming Language Design and Implementation, pages 270–280, New York,
NY, USA, 1999. ACM.

[67] Markus Freericks. The nML machine description formalism. Technical Re-
port 1991/15, Computer Science Department, Technische Universität Berlin,
Berlin, Germany, 1991.

[68] Lei Gao, Stefan Kraemer, Rainer Leupers, Gerd Ascheid, and Heinrich Meyr.
A fast and generic hybrid simulation approach using C virtual machine. In
CASES ’07: Proceedings of the 2007 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, pages 3–12, New York,
NY, USA, 2007. ACM.

[69] Nicolas Geoffray, Gaël Thomas, Charles Clément, and Bertil Folliot. A lazy
developer approach: Building a JVM with third party software. In PPPJ ’08:
Proceedings of the 6th International Symposium on Principles and Practice of
Programming in Java, pages 73–82. ACM, 2008.

[70] Frank Ghenassia. Transaction-Level Modeling with SystemC: TLM Concepts
and Applications for Embedded Systems. Springer-Verlag New York, Inc., Se-
caucus, NJ, USA, 2006.

[71] Philip B. Gibbons and Steven S. Muchnick. Efficient instruction scheduling for
a pipelined architecture. In SIGPLAN ’86: Proceedings of the 1986 SIGPLAN
Symposium on Compiler construction, pages 11–16, New York, NY, USA,
1986. ACM.

[72] Robert Giegerich. Code selection by inversion of order-sorted derivors. Theo-
retical Computer Science, 73(2):177–211, 1990.

[73] Robert Giegerich and Karl Schmal. Code selection techniques: Pattern match-
ing, tree parsing, and inversion of derivors. In ESOP ’88: Proceedings of the
2nd European Symposium on Programming, pages 247–268. Springer, 1988.

[74] Ricardo E. Gonzalez. Xtensa: A configurable and extensible processor. IEEE
Micro, 20(2):60–70, 2000.

[75] David W. Goodwin and Kent D. Wilken. Optimal and near-optimal global
register allocations using 0–1 integer programming. Software-Practice & Ex-
perience, 26(8):929–965, 1996.

[76] Gert Goossens, Dirk Lanneer, Werner Geurts, and Johan Van Praet. Design
of ASIPs in multi-processor SoCs using the Chess/Checkers retargetable tool
suite. In SoC ’06: Proceedings of the International Symposium on Systems-
on-Chip, pages 1–4, November 2006.

REFERENCES 137

[77] Peter Grun, Ashok Halambi, Nikil Dutt, and Alex Nicolau. RTGEN: An
algorithm for automatic generation of reservation tables from architectural
descriptions. In ISSS ’99: Proceedings of the 12th International Symposium on
System Synthesis, pages 44–50, Washington, DC, USA, 1999. IEEE Computer
Society.

[78] Peter Grun, Ashok Halambi, Asheesh Khare, Vijay Ganesh, Nikil Dutt, and
Alex Nicolau. EXPRESSION: An ADL for system level design exploration.
Technical Report #98-29, Department of Information and Computer Sciences,
University of California, Irvine, September 1998.

[79] Yuri Gurevich. Evolving algebras 1993: Lipari guide. Specification and vali-
dation methods, pages 9–36, 1995.

[80] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin,
Trevor Mudge, and Richard B. Brown. MiBench: A free, commercially repre-
sentative embedded benchmark suite. In Proceedings of the IEEE 4th annual
Workshop on Workload Characterization, 2001.

[81] John C. Gyllenhaal, B. Ramakrishna Rau, and Wen-Mei W. Hwu. HMDES
version 2.0 specification. Technical Report IMPACT-96-3, IMPACT Research
Group, University of Illinois, Urbana, IL, USA, 1996.

[82] Sebastian Hack and Gerhard Goos. Optimal register allocation for SSA-form
programs in polynomial time. Information Processing Letters, 98(4):150–155,
2006.

[83] Sebastian Hack, Daniel Grund, and Gerhard Goos. Register allocation for
programs in SSA-form. In CC ’06: Proceedings of the 15th International
Conference on Compiler Construction, pages 247–262. Springer, 2006.

[84] George Hadjiyiannis and Srinivas Devadas. Techniques for accurate perfor-
mance evaluation in architecture exploration. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 11(4):601–615, 2003.

[85] George Hadjiyiannis, Silvina Hanono, and Srinivas Devadas. ISDL: An instruc-
tion set description language for retargetability. Technical report, Electrical
Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, USA, 1996.

[86] George Hadjiyiannis, Silvina Hanono, and Srinivas Devadas. ISDL: An in-
struction set description language for retargetability. In DAC ’97: Proceedings
of the 34th annual Design Automation Conference, pages 299–302, New York,
NY, USA, 1997. ACM.

[87] George Hadjiyiannis, Pietro Russo, and Srinivas Devadas. A methodology
for accurate performance evaluation in architecture exploration. In DAC ’99:
Proceedings of the 36th annual ACM/IEEE Design Automation Conference,
pages 927–932, New York, NY, USA, 1999. ACM.

REFERENCES 138

[88] Ashok Halambi, Peter Grun, Vijay Ganesh, Asheesh Khare, Nikil Dutt, and
Alex Nicolau. EXPRESSION: A language for architecture exploration through
compiler/simulator retargetability. In DATE ’99: Proceedings of the confer-
ence on Design, Automation and Test in Europe, pages 485–490. ACM, 1999.

[89] Ashok Halambi, Aviral Shrivastava, Nikil Dutt, and Alex Nicolau. A customiz-
able compiler framework for embedded systems. In SCOPES ’01: Proceedings
of the 5th International Workshop on Software and Compilers for Embedded
Systems, 2001.

[90] Lang Hames and Bernhard Scholz. Nearly optimal register allocation with
PBQP. In JMLC ’06: Proceedings of the 7th Joint Modular Languages Con-
ference: Modular Programming Languages, pages 346–361, 2006.

[91] Silvina Hanono and Srinivas Devadas. Instruction selection, resource alloca-
tion, and scheduling in the AVIV retargetable code generator. In DAC ’98:
Proceedings of the 35th annual Conference on Design automation, pages 510–
515. ACM, 1998.

[92] John L. Hennessy and Thomas Gross. Postpass code optimization of pipeline
constraints. ACM Transactions on Programming Languages and Systems
(TOPLAS), 5(3):422–448, 1983.

[93] John L. Hennessy and Thomas R. Gross. Code generation and reorganiza-
tion in the presence of pipeline constraints. In POPL ’82: Proceedings of
the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 120–127, New York, NY, USA, 1982. ACM.

[94] Andreas Hoffmann, Heinrich Meyr, and Rainer Leupers. Architecture Ex-
ploration for Embedded Processors with Lisa. Kluwer Academic Publishers,
Norwell, MA, USA, 2002.

[95] Christoph M. Hoffmann and Michael J. O’Donnell. Pattern matching in trees.
Journal of the ACM (JACM), 29(1):68–95, 1982.

[96] Manuel Hohenauer, Felix Engel, Rainer Leupers, Gerd Ascheid, and Hein-
rich Meyr. A SIMD optimization framework for retargetable compilers.
ACM Transactions on Architecture and Code Optimization (TACO), 6(1):1–
27, 2009.

[97] Manuel Hohenauer, Hanno Scharwaechter, Kingshuk Karuri, Oliver Wahlen,
Tim Kogel, Rainer Leupers, Gerd Ascheid, Heinrich Meyr, Gunnar Braun, and
Hans van Someren. A methodology and tool suite for C compiler generation
from ADL processor models. In DATE ’04: Proceedings of the Conference on
Design, Automation and Test in Europe, pages 1276–1281, Washington, DC,
USA, 2004. IEEE Computer Society.

REFERENCES 139

[98] Tamio Hoshino. UDL/I version two: A new horizon of HDL standards. In
CHDL ’93: Proceedings of the 11th IFIP WG10.2 International Conference
sponsored by IFIP WG10.2 and in cooperation with IEEE COMPSOC on Com-
puter Hardware Description Languages and their Applications, pages 437–452,
Amsterdam, The Netherlands, 1993. North-Holland Publishing Co.

[99] Yonghyun Hwang, Samar Abdi, and Daniel Gajski. Cycle-approximate re-
targetable performance estimation at the transaction level. In DATE ’08:
Proceedings of the Conference on Design, Automation and Test in Europe,
pages 3–8, New York, NY, USA, 2008. ACM.

[100] Wen-Mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang,
Nancy J. Warter, Roger A. Bringmann, Roland G. Ouellette, Richard E. Hank,
Tokuzo Kiyohara, Grant E. Haab, John G. Holm, and Daniel M. Lavery. The
superblock: an effective technique for VLIW and superscalar compilation. The
Journal of Supercomputing, 7(1-2):229–248, 1993.

[101] Pekka Jääskeläinen, Vladimı́r Guzma, A. Cilio, and Jarmo Takala. Codesign
toolset for application-specific instruction-set processors. In Proceedings of
SPIE Volume 6507 - Multimedia on Mobile Devices 2007, January 2007.

[102] Osamu Karatsu. UDL/I standardization effort another approach to HDL stan-
dard. In EURO ASIC ’91: Proceedings of the EURO ASIC’91 Conference,
pages 388–393, May 1991.

[103] Daniel Kästner. TDL: A hardware and assembly description language. Tech-
nical Report TDL1.3, Transferbereich 14, Saarland University, Saarbrücken,
Germany, 1999.

[104] Daniel Kästner. PROPAN: A retargetable system for postpass optimisations
and analyses. In LCTES ’00: Proceedings of the ACM SIGPLAN Workshop on
Languages, Compilers, and Tools for Embedded Systems, pages 63–80, London,
UK, 2001. Springer-Verlag.

[105] Daniel Kästner. TDL: A hardware description language for retargetable post-
pass optimizations and analyses. In GPCE ’03: Proceedings of the 2nd Inter-
national Conference on Generative Programming and Component Engineering,
pages 18–36, New York, NY, USA, 2003. Springer-Verlag New York, Inc.

[106] Donald E. Knuth. Semantics of context-free languages. Theory of Computing
Systems, 2(2):127–145, June 1968.

[107] Donald E. Knuth. The genesis of attribute grammars. In WAGA: Proceedings
of the International Conference on Attribute Grammars and their Applica-
tions, pages 1–12, New York, NY, USA, 1990. Springer-Verlag New York, Inc.

[108] David Ryan Koes and Seth Copen Goldstein. Near-optimal instruction se-
lection on DAGs. In CGO ’08: Proceedings of the sixth annual IEEE/ACM

REFERENCES 140

International Symposium on Code generation and Optimization, pages 45–54.
ACM, 2008.

[109] Andreas Krall, Ivan Pryanishnikov, Ulrich Hirnschrott, and Christian Panis.
xDSPcore: A compiler-based configurable digital signal processor. IEEE Mi-
cro, 24(4):67–78, 2004.

[110] Gerd Krüger. Automatic generation of self-test programs – a new feature of
the MIMOLA design system. In DAC ’86: Proceedings of the 23rd ACM/IEEE
Design Automation Conference, pages 378–384, Piscataway, NJ, USA, 1986.
IEEE Press.

[111] Gerd Krüger. A tool for hierarchical test generation. In ICCAD ’88: IEEE In-
ternational Conference on Computer-Aided Design, pages 420–423, November
1988.

[112] Alexey Kupriyanov, Frank Hannig, Dmitrij Kissler, Rainer Schaffer, and Jür-
gen Teich. MAML – an architecture description language for modeling and
simulation of processor array architectures, part I. Technical Report 03-2006,
University of Erlangen-Nuremberg, Department of CS 12, Hardware-Software-
Co-Design, Am Weichselgarten 3, 91058 Erlangen, Germany, March 2006.

[113] Dirk Lanneer. Design Models And Data-Path Mapping For Signal Process-
ing Architectures. PhD thesis, Department of Electrical Engineering (ESAT),
Integrated Systems Group (INSYS), Katholieke Universiteit Leuven, Leuven,
Belgium, March 1993.

[114] Dirk Lanneer, Johan Van Praet, Augusli Kifli, Koen Schoofs, Werner Geurts,
Filip Thoen, and Gert Goossens. CHESS: Retargetable code generation for
embedded DSP processors. In Peter Marwedel and Gert Goossens, editors,
Code Generation for Embedded Processors, pages 85–102. Kluwer Academic
Publishers, 1995.

[115] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO ’04: Proceedings of the Interna-
tional Symposium on Code Generation and Optimization, pages 75–86. IEEE
Computer Society, 2004.

[116] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. Media-
Bench: A tool for evaluating and synthesizing multimedia and communicatons
systems. In MICRO 30: Proceedings of the 30th annual ACM/IEEE Inter-
national Symposium on Microarchitecture, pages 330–335, Washington, DC,
USA, 1997. IEEE Computer Society.

[117] Rainer Leupers, Johann Elste, and Birger Landwehr. Generation of interpre-
tive and compiled instruction set simulators. In ASP-DAC ’99: Proceedings of
the 1999 Asia and South Pacific Design Automation Conference, pages 339–
342, January 1999.

REFERENCES 141

[118] Rainer Leupers and Peter Marwedel. A BDD-based frontend for retargetable
compilers. In EDTC ’95: Proceedings of the 1995 European Conference on
Design and Test, pages 239–243. IEEE Computer Society, 1995.

[119] Rainer Leupers and Peter Marwedel. Retargetable generation of code selectors
from HDL processor models. In EDTC ’97: Proceedings of the 1997 European
Conference on Design and Test, pages 140–144. IEEE Computer Society, 1997.

[120] Dake Liu. Embedded DSP Processor Design: Application Specific Instruction
Set Processors. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2008.

[121] Frank Löhr, Andreas Fauth, and Markus Freericks. SIGH/SIM - an environ-
ment for retargetable instruction set simulation. Technical Report 1993/43,
Computer Science Department, Technische Universität Berlin, Berlin, Ger-
many, 1993.

[122] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and
Roger A. Bringmann. Effective compiler support for predicated execution
using the hyperblock. In MICRO 25: Proceedings of the 25th annual Interna-
tional Symposium on Microarchitecture, pages 45–54, Los Alamitos, CA, USA,
1992. IEEE Computer Society Press.

[123] Peter Marwedel. The MIMOLA design system: Detailed description of the
software system. In DAC ’79: Proceedings of the 16th Design Automation
Conference, pages 59–63, Piscataway, NJ, USA, 1979. IEEE Press.

[124] Peter Marwedel. The MIMOLA design system: Tools for the design of dig-
ital processors. In DAC ’84: Proceedings of the 21st Conference on Design
automation, pages 587–593. IEEE Press, 1984.

[125] Peter Marwedel. A retargetable compiler for a high-level microprogramming
language. In MICRO 17: Proceedings of the 17th annual Workshop on Micro-
programming, pages 267–274, Piscataway, NJ, USA, 1984. IEEE Press.

[126] Peter Marwedel. A new synthesis for the MIMOLA software system. In
DAC ’86: Proceedings of the 23rd ACM/IEEE Design Automation Confer-
ence, pages 271–277, Piscataway, NJ, USA, 1986. IEEE Press.

[127] Peter Marwedel. Tree-based mapping of algorithms to predefined structures.
In ICCAD ’93: Proceedings of the 1993 IEEE/ACM International Conference
on Computer-aided Design, pages 586–593, Los Alamitos, CA, USA, 1993.
IEEE Computer Society Press.

[128] Peter Marwedel. Code generation for core processors. In DAC ’97: Proceedings
of the 34th annual Design Automation Conference, pages 232–237, New York,
NY, USA, 1997. ACM.

REFERENCES 142

[129] Peter Marwedel and Rainer Leupers. Instruction set extraction from pro-
grammable structures. In EURO-DAC ’94: Proceedings of the Conference on
European Design Automation, pages 156–161, Los Alamitos, CA, USA, 1994.
IEEE Computer Society Press.

[130] Prabhat Mishra and Nikil Dutt. Modeling and validation of pipeline specifica-
tions. ACM Transactions on Embedded Computing Systems (TECS), 3(1):114–
139, 2004.

[131] Prabhat Mishra and Nikil Dutt. Processor Description Languages, volume 1.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[132] Prabhat Mishra and Nikil Dutt. Specification-driven directed test generation
for validation of pipelined processors. ACM Transactions on Design Automa-
tion of Electronic Systems (TODAES), 13(3):1–36, 2008.

[133] Prabhat Mishra, Ashok Halambi, Peter Grun, Nikil Dutt, Alex Nicolau, and
Hiroyuki Tomiyama. Automatic modeling and validation of pipeline speci-
fications driven by an architecture description language. In ASP-DAC ’02:
Proceedings of the 2002 Asia and South Pacific Design Automation Confer-
ence, pages 458–463, Washington, DC, USA, 2002. IEEE Computer Society.

[134] Prabhat Mishra, Arun Kejariwal, and Nikil Dutt. Rapid exploration of
pipelined processors through automatic generation of synthesizable RTL mod-
els. In RSP ’03: Proceedings of the 14th IEEE International Workshop on
Rapid System Prototyping, pages 226–232, Washington, DC, USA, 2003. IEEE
Computer Society.

[135] Prabhat Mishra, Mahesh Mamidipaka, and Nikil Dutt. Processor-memory
coexploration using an architecture description language. ACM Transactions
on Embedded Computing Systems (TECS), 3(1):140–162, 2004.

[136] Prabhat Mishra, Aviral Shrivastava, and Nikil Dutt. Architecture description
language ADL-driven software toolkit generation for architectural exploration
of programmable SOCs. ACM Transactions on Design Automation of Elec-
tronic Systems (TODAES), 11(3):626–658, 2006.

[137] Wai Sum Mong and Jianwen Zhu. A retargetable micro-architecture simulator.
In DAC ’03: Proceedings of the 40th annual Design Automation Conference,
pages 752–757, New York, NY, USA, 2003. ACM.

[138] J. Eliot B. Moss, Trek Palmer, Timothy Richards, Edward K. Walters, II,
and Charles C. Weems. CISL: A class-based machine description language for
co-generation of compilers and simulators. International Journal of Parallel
Programming, 33(2):231–246, 2005.

REFERENCES 143

[139] J.E.B. Moss, T. Palmer, T. Richards, I.I. Walters EK, and C.C. Weems.
CMDL: A class-based machine description language for co-generation of com-
pilers and simulators. In IPDPS ’04: Proceedings of the 18th International
Symposium on Parallel and Distributed Processing, page 202, April 2004.

[140] Steven S. Muchnick. Advanced compiler design and implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 8th edition, 2006.

[141] Achim Nohl, Gunnar Braun, Oliver Schliebusch, Rainer Leupers, Heinrich
Meyr, and Andreas Hoffmann. A universal technique for fast and flexible
instruction-set architecture simulation. In DAC ’02: Proceedings of the 39th
Conference on Design Automation, pages 22–27. ACM, 2002.

[142] Achim Nohl, Volker Greive, Gunnar Braun, Andreas Andreas, Rainer Leupers,
Oliver Schliebusch, and Heinrich Meyr. Instruction encoding synthesis for
architecture exploration using hierarchical processor models. In DAC ’03:
Proceedings of the 40th annual Design Automation Conference, pages 262–
267, New York, NY, USA, 2003. ACM.

[143] Lothar Nowak. Graph based retargetable microcode compilation in the MI-
MOLA design system. In MICRO 20: Proceedings of the 20th annual Work-
shop on Microprogramming, pages 126–132, New York, NY, USA, 1987. ACM.

[144] Soner Önder and Rajiv Gupta. Automatic generation of microarchitecture
simulators. In ICCL ’98: Proceedings of the 1998 International Conference
on Computer Languages, pages 80–89, Washington, DC, USA, 1998. IEEE
Computer Society.

[145] Christian Panis, Ulrich Hirnschrott, Gunther Laure, Wolfgang Lazian, and Jari
Nurmi. DSPxPlore: Design space exploration methodology for an embedded
DSP core. In SAC ’04: Proceedings of the 2004 ACM Symposium on Applied
Computing, pages 876–883, New York, NY, USA, 2004. ACM.

[146] Sanghyun Park, Eugene Earlie, Aviral Shrivastava, Alex Nicolau, Nikil Dutt,
and Yunheung Paek. Automatic generation of operation tables for fast ex-
ploration of bypasses in embedded processors. In DATE ’06: Proceedings of
the conference on Design, Automation and Test in Europe, pages 1197–1202.
European Design and Automation Association, 2006.

[147] David A. Patterson and John L. Hennessy. Computer Organization & Design:
The Hardware/Software Interface. Morgan Kaufmann, 3rd edition, 2007.

[148] Stefan Pees, Andreas Hoffmann, and Heinrich Meyr. Retargetable compiled
simulation of embedded processors using a machine description language.
ACM Transactions on Design Automation of Electronic Systems (TODAES),
5(4):815–834, 2000.

REFERENCES 144

[149] Stefan Pees, Andreas Hoffmann, Vojin Živojnović, and Heinrich Meyr. LISA –
machine description language for cycle-accurate models of programmable DSP
architectures. In DAC ’99: Proceedings of the 36th ACM/IEEE Conference
on Design Automation, pages 933–938. ACM, 1999.

[150] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM
Transactions on Programming Languages and Systems (TOPLAS), 21(5):895–
913, 1999.

[151] Todd Proebsting. Least-cost instruction selection in DAGs is NP-complete.
http://research.microsoft.com/~toddpro/papers/proof.htm.

[152] Todd A. Proebsting and Christopher W. Fraser. Detecting pipeline struc-
tural hazards quickly. In POPL ’94: Proceedings of the 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 280–286,
New York, NY, USA, 1994. ACM.

[153] Peter Puschner. Experiments with WCET-oriented programming and the
single-path architecture. In WORDS ’05: Proceedings of the 10th IEEE Inter-
national Workshop on Object-Oriented Real-Time Dependable Systems, pages
205–210, February 2005.

[154] Zdeněk Přikryl, Tomáš Hruška, and Karel Masař́ık. Distributed simulation
and profiling of multiprocessor systems on a chip. WSEAS Transactions on
Circuits, 7(8):788–799, 2008.

[155] Wei Qin. Modeling and Description of Embedded Processors for the Develop-
ment of Software Tools. PhD thesis, Department of Electrical Engineering,
Princeton University, November 2004.

[156] Wei Qin and Sharad Malik. Automated synthesis of efficient binary decoders
for retargetable software toolkits. In DAC ’03: Proceedings of the 40th annual
Design Automation Conference, pages 764–769, New York, NY, USA, 2003.
ACM.

[157] Wei Qin and Sharad Malik. Flexible and formal modeling of microprocessors
with application to retargetable simulation. In DATE ’03: Proceedings of
the Conference on Design, Automation and Test in Europe, pages 556–561,
Washington, DC, USA, 2003. IEEE Computer Society.

[158] Wei Qin, Subramanian Rajagopalan, and Sharad Malik. A formal concur-
rency model based architecture description language for synthesis of soft-
ware development tools. In LCTES ’04: Proceedings of the 2004 ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools for Embed-
ded Systems, pages 47–56. ACM, 2004.

[159] Norman Ramsey and Jack W. Davidson. Machine descriptions to build tools
for embedded systems. In LCTES ’98: Proceedings of the ACM SIGPLAN

http://research.microsoft.com/~toddpro/papers/proof.htm

REFERENCES 145

Workshop on Languages, Compilers, and Tools for Embedded Systems, pages
176–192, London, UK, 1998. Springer-Verlag.

[160] Norman Ramsey and Mary F. Fernández. Specifying representations of ma-
chine instructions. Transactions on Programming Languages and Systems
(TOPLAS), 19(3):492–524, 1997.

[161] Mehrdad Reshadi and Nikil Dutt. Reducing compilation time overhead in
compiled simulators. In ICCD ’03: Proceedings of the 21st International Con-
ference on Computer Design, pages 151–153, Washington, DC, USA, 2003.
IEEE Computer Society.

[162] Mehrdad Reshadi, Nikil Dutt, and Prabhat Mishra. A retargetable framework
for instruction-set architecture simulation. ACM Transactions on Embedded
Computing Systems (TECS), 5(2):431–452, 2006.

[163] Mehrdad Reshadi, Prabhat Mishra, and Nikil Dutt. Instruction set compiled
simulation: A technique for fast and flexible instruction set simulation. In DAC
’03: Proceedings of the 40th annual Design Automation Conference, pages
758–763, New York, NY, USA, 2003. ACM.

[164] Mehrdad Reshadi, Prabhat Mishra, and Nikil Dutt. Hybrid-compiled simula-
tion: An efficient technique for instruction-set architecture simulation. ACM
Transactions on Embedded Computing Systems (TECS), 8(3):1–27, 2009.

[165] David Rigler. Dynamic binary translation for automatically generated simula-
tors. Diploma thesis, Institut für Computersprachen, Technische Universität
Wien, 2008.

[166] Sandro Rigo, Rodolfo J. Azevedo, and Guido Araujo. The ArchC architecture
description language. Technical Report 15, Institute of Computing, Universi-
dade Estadual de Campinas, Compinas, Brazil, June 2003.

[167] Hans Roeven, Jeroen Coninx, and Marleen Ade. CoolFlux DSP: The embed-
ded ultra low power C-programmable DSP core. In GSPx ’04: International
Signal Processing Conference, pages 1–7, 2004.

[168] Kim Rounioja and Kimmo Puusaari. Implementation of an HSDPA receiver
with a customized vector processor. In SoC ’06: Proceedings of the Interna-
tional Symposium on Systems-on-Chip, pages 1–7, November 2006.

[169] Johan Runeson and Sven-Olof Nyström. Retargetable graph-coloring register
allocation for irregular architectures. In SCOPES ’03: Proceedings of th 7th
International Workshop on Software and Compilers for Embedded Systems,
volume 2826 of Lecture Notes in Computer Science, pages 240–254. Springer,
2003.

REFERENCES 146

[170] Oliver Schliebusch, Andreas Hoffmann, Achim Nohl, Gunnar Braun, and Hein-
rich Meyr. Architecture implementation using the machine description lan-
guage LISA. In ASP-DAC ’02: Proceedings of the 2002 Asia and South Pacific
Design Automation Conference, pages 239–244, Washington, DC, USA, 2002.
IEEE Computer Society.

[171] Eric C. Schnarr, Mark D. Hill, and James R. Larus. Facile: A language and
compiler for high-performance processor simulators. In PLDI ’01: Proceedings
of the ACM SIGPLAN 2001 Conference on Programming Language Design
and Implementation, pages 321–331, New York, NY, USA, 2001. ACM.

[172] Aviral Shrivastava. Compiler-in-the-Loop Exploration of Programmable Em-
bedded Systems. PhD thesis, Architectures and Compilers for Embedded Sys-
tems Lab, Department of Information and Computer Science, University of
California, Irvine, USA, 2006.

[173] Aviral Shrivastava, Nikil Dutt, Alex Nicolau, and Eugene Earlie. PBExplore:
A framework for compiler-in-the-loop exploration of partial bypassing in em-
bedded processors. In DATE ’05: Proceedings of the Conference on Design,
Automation and Test in Europe, pages 1264–1269, Washington, DC, USA,
2005. IEEE Computer Society.

[174] Aviral Shrivastava, Eugene Earlie, Nikil Dutt, and Alex Nicolau. Operation ta-
bles for scheduling in the presence of incomplete bypassing. In CODES+ISSS
’04: Proceedings of the 2nd IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, pages 194–199. ACM,
2004.

[175] Chuck Siska. A processor desription language supporting retargetable multi-
pipeline DSP program development tools. In ISSS ’98: Proceedings of the 11th
International Symposium on System Synthesis, pages 31–36, Washington, DC,
USA, 1998. IEEE Computer Society.

[176] Michael D. Smith, Norman Ramsey, and Glenn Holloway. A generalized al-
gorithm for graph-coloring register allocation. In PLDI ’04: Proceedings of
the ACM SIGPLAN 2004 Conference on Programming Language Design and
Implementation, pages 277–288, New York, NY, USA, 2004. ACM.

[177] Jürgen Teich, Ralph Weper, Dirk Fischer, and Stefan Trinkert. A joined archi-
tecture/compiler design environment for ASIPs. In CASES ’00: Proceedings of
the 2000 International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems, pages 26–33, New York, NY, USA, 2000. ACM.

[178] Hiroyuki Tomiyama, Hiroki Akaboshi, and Hiroto Yasuura. Compiler genera-
tor for hardware/software codesign. In APCHDL ’94: Proceedings of the 2nd
Asia Pacific Conference on Hardware Description Languages, pages 267–270,
October 1994.

REFERENCES 147

[179] Manish Vachharajani, Neil Vachharajani, and David I. August. The Liberty
Structural Specification language: A high-level modeling language for compo-
nent reuse. In PLDI ’04: Proceedings of the ACM SIGPLAN 2004 Conference
on Programming Language Design and Implementation, pages 195–206. ACM,
2004.

[180] Manish Vachharajani, Neil Vachharajani, David A. Penry, Jason A. Blome,
Sharad Malik, and David I. August. The Liberty Simulation Environment:
A deliberate approach to high-level system modeling. ACM Transactions on
Computer Systems, 24(3):211–249, 2006.

[181] Johan Van Praet, Gert Goossens, Dirk Lanneer, and Hugo De Man. Instruction
set definition and instruction selection for ASIPs. In ISSS ’94: Proceedings
of the 7th International Symposium on High-level Synthesis, pages 11–16, Los
Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[182] Johan Van Praet, Dirk Lanneer, Werner Geurts, and Gert Goossens. Processor
modeling and code selection for retargetable compilation. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 6(3):277–307, 2001.

[183] Johan van Praet, Dirk Lanneer, Gert Goossens, Werner Geurts, and Hugo
de Man. A graph based processor model for retargetable code generation. In
EDTC ’96: Proceedings of the 1996 European Conference on Design and Test,
pages 102–107, Washington, DC, USA, 1996. IEEE Computer Society.

[184] Koen Van Renterghem, Pieter Demuytere, Dieter Verhulst, Jan Vandewege,
and Xing-Zhi Qiu. Development of an ASIP enabling flows in ethernet ac-
cess using a retargetable compilation flow. In DATE ’07: Proceedings of the
Conference on Design, Automation and Test in Europe, pages 1418–1423, San
Jose, CA, USA, 2007. EDA Consortium.

[185] Vojin Živojnović, Stefan Pees, and Heinrich Meyr. LISA - machine description
language and generic machine model for HW/SW co-design. In Workshop on
VLSI Signal Processing, IX, pages 127–136, November 1996.

[186] Oliver Wahlen, Manuel Hohenauer, Rainer Leupers, and Heinrich Meyr. In-
struction scheduler generation for retargetable compilation. IEEE Design &
Test, 20(1):34–41, 2003.

[187] Edward K. Walters II, J. Eliot B. Moss, Trek Palmer, Timothy Richards, and
Charles C. Weems. CASL: A rapid-prototyping language for modern micro-
architectures. Computer Languages, Systems and Structures, 34(4):195–211,
2008.

[188] E.K. Walters II, J.E.B. Moss, T. Palmer, T. Richards, and C.C. Weems. Mod-
eling modern micro-architectures using CASL. In IPDPS ’07: Proceedings
of the 21th International Symposium on Parallel and Distributed Processing,
pages 1–6, March 2007.

REFERENCES 148

[189] Albert Wang, Earl Killian, Dror Maydan, and Chris Rowen. Hardware/soft-
ware instruction set configurability for system-on-chip processors. In DAC ’01:
Proceedings of the 38th ACM/IEEE Conference on Design Automation, pages
184–188, 2001.

[190] H. S. Warren, Jr. Instruction scheduling for the IBM RISC System/6000
processor. IBM Journal of Research and Development, 34(1):85–92, 1990.

[191] Kent Wilken, Jack Liu, and Mark Heffernan. Optimal instruction schedul-
ing using integer programming. In PLDI ’00: Proceedings of the ACM SIG-
PLAN 2000 Conference on Programming Language Design and Implementa-
tion, pages 121–133, New York, NY, USA, 2000. ACM.

Publications

1. Peter Molnar, Andreas Krall, and Florian Brandner
Stack Allocation of Objects in the Cacao Virtual Machine
In Proc. of PPPJ09 (7th International Conference on the Principles and Prac-
tice of Programming in Java), Calgary, Canada, 2009

2. Florian Brandner
Precise Simulation of Interrupts using a Rollback Mechanism
In Proc. of SCOPES09 (International Workshop on Software and Compilers
for Embedded Systems), Nice, France, 2009

3. Florian Brandner
Completeness of Instruction Selector Specifications with Dynamic Checks
In Proc. of COCV09 (8th International Workshop on Compiler Optimization
Meets Compiler Verification), York, England, 2009

4. Florian Brandner, Martin Schoeberl, Tommy Thorn
Embedded JIT Compilation with CACAO on YARI
In Proc. of ISORC09 (International Symposium on Object/component/service-
oriented Real-time distributed Computing, Tokyo, Japan, 2009)

5. Florian Brandner, Andreas Fellnhofer, Andreas Krall, David Riegler
Fast and Accurate Simulation using the LLVM Compiler Framework
RAPIDO09 (Workshop on Rapid Simulation and Performance Evaluation:
Methods and Tools), Phapos, Cyprus, 2009

6. Dietmar Ebner, Florian Brandner, Bernhard Scholz, Andreas Krall, Peter Wie-
dermann and Albrecht Kadlec
Generalized Instruction Selection using SSA-Graphs
In Proc. of LCTES08 (Conference on Languages, Compilers, and Tools for
Embedded Systems), Tuscon, AZ, 2008

7. Florian Brandner, Dietmar Ebner, and Andreas Krall
Compiler Generation from Structural Architecture Descriptions
In Proc. of CASES07 (International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems), Salzburg, Austria, 2007

8. Dietmar Ebner, Florian Brandner, and Andreas Krall
Leveraging Predicated Execution for Multimedia Processing
In Proc. of ESTIMEDIA07 (5th International Workshop on Embedded Sys-
tems for Real-Time Multimedia), Salzburg, Austria, 2007

149

9. Stefan Farfeleder, Andreas Krall, Edwin Steiner, and Florian Brandner
Effective Compiler Generation by Architecture Description
In Proc. of LCTES06 (Conference on Languages, Compilers, and Tools for
Embedded Systems), Ottawa, Canada, 2006

10. Andreas Krall, Christian Thalinger, Dietmar Ebner and Florian Brandner
Static Verification of Global Heap References in Java Native Libraries
In SPACE06 (Third Workshop on Semantics, Program Analysis, and Com-
puting Environments for Memory Management), Charleston, South Carolina,
2006

11. Florian Brandner
Instruction set simulation
Masters Thesis, Vienna University of Technology, 2004

150

Curriculum Vitae

since 10/05 Vienna University of Technology

PhD Student at the Institute of Computer Languages

10/05 – 02/09 Vienna University of Technology

Research Assistant at the Christian Doppler Laboratory

Compilation Techniques for Embedded Processors

10/04 – 09/05 Alternative Civilian Service

Otto Wagner Spital, Vienna, Austria

09/99 – 10/04 Vienna University of Technology

Student of Computer Science

Graduated with honors

03/04 – 10/04 StarCore LLC.

Compiler Developer, Vienna, Austria

01/04 – 02/04 Atair GmbH

Software Developer, Vienna, Austria

06/03 – 01/04 Technical University of Denmark

Exchange student at DTU in Lyngby, Denmark

09/91 – 06/99 BG/BRG Bruck an der Mur

Secondary School, Bruck an der Mur, Austria

09/89 – 07/91 Volksschule II Frohnleiten

Elementary School, Frohnleiten, Austria

09/86 – 07/89 Volksschule Graz-Herrgottwies

Elementary School, Graz, Austria

151

	Introduction
	Processor Description Languages
	Behavioral Languages
	Structural Languages
	Mixed Languages
	Architecture Styles

	Application of Processor Description Languages
	Documentation and Design
	Verification and Validation
	Assembler and Linker
	Compiler
	Instruction Set Simulator
	Hardware Synthesis
	Encoding Optimization

	Retargetable Compilation
	Scope and Contributions

	Related Work
	MIMOLA - A Structural Language
	Program Specification
	Structure Declaration
	Compiler Generation

	EXPRESSION - A Mixed Language
	Instruction Set View
	Structural View
	Compiler Generation

	The xADL Language
	Configuration
	Component Types
	Immediate Operands
	Register Files
	Storage Elements
	Functional Units

	Component Instances
	Inheritance and Generics
	Composing Data Paths
	Data and Pipeline Links
	Hazard Links
	Signals
	Parallel Pipelines
	Restricting Data Paths

	Meta-Information
	Assembly Syntax
	Binary Encoding
	Programming Conventions

	Instruction Set
	Instruction Paths
	Instructions

	The adlgen Tool
	Frontend
	Base
	Provider
	Modules

	Compiler Backend Generation
	Background
	Instruction Selection
	Completeness of Instruction Selectors
	Instruction Scheduling
	Register Allocation
	The LLVM Compiler Infrastructure
	The acc Backend

	Register Specifications
	Instruction Definitions
	Resource Models
	Resource Tables for the LLVM Compiler
	Operation Tables for the acc Backend

	Instruction Selector Specifications
	Representing Tree Rules
	Deriving Non-terminals
	Deriving Conversion Rules
	Initial Rule Set
	Specializations and Templates
	Emitting the Instruction Selector Specification

	Completeness of Instruction Selector Specifications
	Equality Constraints
	Preliminaries
	Terminal Splitting
	Chain Rules
	Final Completeness Test

	Experimental Results
	Processor Models
	Backend Generation for acc
	Backend Generation for LLVM
	Completeness of Instruction Selector Specifications

	Conclusion

