
Is This Still Normal? Putting Definitions of Timing
Anomalies to the Test

Benjamin Binder∗, Mihail Asavoae∗, Belgacem Ben Hedia∗, Florian Brandner† and Mathieu Jan∗
∗Universit Paris-Saclay, CEA, List

†Institut Polytechnique de Paris, Tlcom Paris, LTCI
F-91120, Palaiseau, France

Abstract—Correctness is an important concern during the
development of real-time systems. In addition to the functional
correctness, the timing behavior is often formally verified in order
to ensure that correct results are delivered in-time for all possible
execution conditions. The timing behavior of real-time software
is thus often validated through a rigorous timing analysis that
aims at determining the worst-case execution time.

Timing anomalies present a major obstacle during the valida-
tion of timing properties on modern computer platforms. Out-of-
order execution and concurrent accesses to shared resources may
sometimes lead to – at first sight – surprising timing behavior.
Several (semi-)formal definitions have been proposed in the
literature in order to capture such situations. However, as we
present in this work, none of the existing definitions appears to
be precise enough to be systematically used for detecting timing
anomalies in modern processors with out-of-order execution.

Index Terms—Formal Methods, Model Checking, Timing
Anomalies

I. INTRODUCTION

Hard real-time systems are often subject to certification.
This means that the correctness of the system has to be
verified in terms of the functional correctness as well as the
system’s timing behavior. The timing behavior can be validated
through static analysis [1], test-based measurements [2], or
probabilistic analysis [3], [4], which all try to determine a
tight estimation of the Worst-Case Execution Time (WCET)
of a piece of real-time software under all possible execution
conditions (in the latter case possibly assuming a given target
probability). None of these approaches is able to explore
all possible executions and thus only provide safe WCET
estimates when certain underlying hypotheses are satisfied.

Timing Anomalies (TA) pose a challenge to all three ap-
proaches due to their impact on these hypotheses. Intuitively,
a TA is a (local) condition at a given moment during the
execution of real-time software that leads to a surprising
effect on the (global) execution time. A counter-intuitive TA
occurs when the local condition is favorable (respectively
unfavorable) in terms of timing, e.g., a cache hit (miss),
but leads to an increase (decrease) of the global execution
time. Amplification TAs are situations where a local slowdown
(respectively speedup), e.g., a cache miss (hit), leads to a pro-
portionally larger increase (decrease) of the global execution
time. We generally retain from the above descriptions of TAs
the sense where the execution time is increased, since these
TAs may have an impact on the WCET of real-time software.

TAs are problematic for static analyses because it is no
longer safe to consider only the local worst-case conditions.
Instead, an exhaustive exploration of the reachable hardware
states has to be performed, which is costly or often even
prohibitive. The same issue arises for test-based approaches
relying on measurements, since the possible number of tests
to cover increases drastically. Probabilistic methods do not
fare better. Slight changes in the hardware state may trigger
a TA, which in turn may cause a considerable increase of
the execution time. TAs may thus invalidate fundamental
hypotheses of probabilistic approaches (e.g., independence and
stationarity) and thus pose a threat to the validity of the
obtained results [4].

TAs represent a major challenge for the real-time systems
community and consequently have gained quite some atten-
tion in recent years. However, the usual interpretation of
the term Timing Anomaly remains rather colloquial and the
understanding of the underlying effects is often only illustrated
through examples that provide some intuitive understanding.
Existing work is often incomplete, providing abstract notions
and making it difficult to implement the definitions – let alone
reason about TAs – on concrete software and/or hardware.
Moreover, most definitions are based on generic transition
systems and thus do not restrict in any way the kind of
processor that is modeled. Notably, the conditions under which
these definitions apply are not restricted. Hence, any procedure
for detecting TAs directly derived from them should be exact,
excluding false positives/negatives.

The goal of this work is thus to put existing definitions to
the test. Are those definitions able to capture the intuitive
understanding of TAs established in the community? Do
those definitions provide reliable and coherent answers when
applied to different execution scenarios? In order to answer
those questions, we have: 1) developed a parameterizable
formal model of a standard out-of-order (OoO) processor;
2) encoded the most relevant formal definitions of TAs
into executable procedures coupled to the processor model;
3) then assessed the definitions through model checking by
finding examples that lead to contradictions (among those
definitions). Our assessment1 shows that no definition is able
to identify TAs precisely on all the considered examples.

The rest of this paper is organized as follows. In Section II,

1Sources are available at: https://bitbucket.org/benjaminbinder/ta-models/

https://bitbucket.org/benjaminbinder/ta-models/

LD r1, 0(r2) ; A
ADD r3, r1, r4 ; B
ADD r5, r6, r7 ; C
LD r8, (0)r5 ; D

(a) Input assembly code

α
FU1 A D

FU2 B C

β
FU1 A D

FU2 C B

(b) Scheduling on functional units (FUs)

A B C D

4

6

11

13

∆α
∆β

α

β

Executed Instructions

E
xe

c.
Ti

m
e

(c
yc

le
s)

(c) Execution time as step function

1 2 3 4 5 6 7 8 9 10 11 12 13

α
A IF ID FU1 COM
B IF ID RS2 FU2 FU2 FU2 COM
C IF ID RS2 RS2 RS2 FU2 FU2 FU2 COM
D IF ID RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COM
B IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COM
C IF ID FU2 FU2 FU2 ROB ROB ROB COM
D IF ID RS1 RS1 RS1 FU1 FU1 FU1 ROB COM

∆α

•

∆β

•

(d) Execution traces showing latencies (), the order of commits (), the assignment to functional units (/ /), and the end of traces (/).

Fig. 1: Different ways of representing two execution traces that constitute a counter-intuitive TA (1b, 1c, 1d) on an out-of-order
(OoO) processor from a given program (e.g., 1a) showing data dependencies ().

we introduce various definitions of TAs found in the literature,
as well as the necessary assumptions to interpret them. In
Section III, we present our model for tracking TAs in OoO
processors, under our implementations of these definitions,
and how we use model checking to assess them. Then,
we probe the definitions in Section IV, through examples
that highlight their short-comings. In Section V, we discuss
additional related work. Finally, we discuss our assessment of
the definitions and outline remaining work in Section VI.

II. BACKGROUND AND INTERPRETATIONS

Lundqvist and Stenström first introduced the notion of
TAs [5], from the observation of different behaviors of a
processor when executing the same program, namely (execu-
tion) traces. Their definition is based on instruction sequences
whose first instruction has a variable latency, e.g., due to
a cache hit/miss. They define the notion of anomalies by
comparing two execution traces and provide examples for an
OoO processor. The definition is incomplete as it only allows
for a single latency variation at the first instruction and does
not define instruction latencies. Wenzel et al. adopt the same
framework [6]. Though latencies are clearly defined as the time
spent in functional units, their definition is still restricted to
a single variation. Moreover, the definition demands ”almost
identical” initial hardware states, without a clear definition.

In the following we consider a list of more recent definitions
for which we were able to develop formal models. In order
to make them applicable and evaluate their capabilities in the
detection of TAs, we need to rely on a set of interpretations
(which are to be detailed and explained when needed). We
will focus on the formal definitions of counter-intuitive TAs,

which are dominant in the literature. For each of them, first,
we introduce the definition before illustrating it through an
example. Then, we highlight problems that we encountered
while trying to encode the definition in a systematic manner
and we establish assumptions that enabled us to encode it.

The example of this section is presented in Fig. 1. It is based
on a commonly used representation (Fig. 1b) of a counter-
intuitive TA caused by a variation in the number of cycles that
instruction A spends in functional unit FU1, which impacts
the instruction scheduler of an OoO processor executing a
sequence of instructions such as the one of Fig. 1a with (read-
after-write) data dependencies. In Fig. 1d, we detail the two
execution traces assuming a concrete processor model, i.e., a
dual-issue processor with OoO execution on two functional
units (FUs) associated with reservation stations (RS) and in-
order commit (COM) through a reorder buffer (ROB).

A. Step Height in Step Functions

A simple definition of TAs is provided by Gebhard [7].
The evolution of traces (cumulative execution time) can be
represented as a step function (Fig. 1c). According to Gebhard,
a TA could thus be identified by comparing the step functions
of two traces: a TA occurs when the latency for an instruction
in one trace, i.e., the corresponding step height in the plot, is
smaller than in the other trace, but later the execution time is
larger.

This is illustrated by Fig. 1c, where the step height ∆α of
trace α is smaller than ∆β of trace β, but the execution time of
α at the end of the trace is larger than that of β (•13 > 11•).

However, the definition leaves several details open. For in-
stance, it relies on the notion of hardware states without a clear

definition. The same applies to instruction latencies, which
are only supposed to be non-negative and yield the execution
time when summed. Instruction latencies are obvious on in-
order processors, but the situation is more complex for OoO
processors. The notion of latencies used by Wenzel et al. [6],
for instance, is not admissible due to the second constraint.

For this approach, we thus assume instruction latencies as
the number of cycles between the commit of an instruction
(COM) and the previous commit (or trace start) according to
the program order of instructions. The instruction latencies for
trace α in Fig. 1d are thus 4, 3, 3, and 3 cycles for instructions
A through D respectively. This matches the step function in
Fig. 1c. Finally, note that we choose not to include borderline
cases with equal global times in both traces as TAs, since it
is not a strict inversion and it does not impact the WCET.

B. Intersections in Step Functions

An alternative definition of TAs, which also relies on the
notion of step-functions, was proposed by Kirner et al. [8]
(later Cassez et al. [9]). A TA occurs when the step functions
of two traces intersect, i.e., a trace that initially executed
instructions faster suddenly becomes slower than the other.

This situation is illustrated in Fig. 1c, where the traces inter-
sect at the last instruction: α initially situated below β passes
above. From the existence of such an intersection it follows
that the absolute values of the step functions switch order, as
indicated by the red arrows (and). Such an inversion can also
be observed in the detailed execution traces from Fig. 1d by
looking at the respective instances at which instructions were
committed (COM). Instruction A, for instance, was committed
in cycle 4 for α but in cycle 6 for β, as illustrated by the red
diagonal arrow. The situation is inverted for instruction D, as
indicated by the red arrow pointing in the opposite direction.
Red arrows pointing in opposite directions (vs.) then
indicate a TA (similarly to intersections in plots).

Another equivalent definition of TAs is used by Eisinger et
al. [10]. The only difference wrt. the above is that the two
axes of the step function are switched, i.e., the number of
instructions completed in an arbitrary time window is tracked.

C. Component Occupation

The previous definitions summarize the timing of individual
instructions using a single value, the instruction latency. Kirner
et al. [11] propose a different view that focuses on the usage
of a hardware component (resulting from a partitioning of
the whole architecture) throughout a trace. By comparing the
amount of time a FU is occupied among two traces along with
the traces’ execution times, they describe a new type of TAs
called parallel inversion.

The usage of FU1 for the traces depicted in Fig. 1d, for
instance, amounts to 4 and 6 cycles for α and β respectively.
Despite the higher usage of FU1, β’s execution time is lower,
which indicates a TA. The usage of FU2 is the same in both
traces and thus does not indicate a TA. A component including
both FUs again yields a TA.

The main problem with this definition is that the authors
do not describe what a suitable hardware component is, e.g.,
whether/how FUs have to be grouped together in a single
component. As illustrated by the example from above, the
hardware partitioning has an impact on the identification of
TAs. Unfortunately, the authors do not describe how to obtain
partitions that reliably identify TAs.

We assume any non-empty subset of the FUs to be a
possible component. In our formal model, the considered
subset is supplied as an input parameter and we assume that
a TA exists if a parallel inversion is signaled for the FU(s) of
this subset.

D. Instruction Locality

Reineke et al. [12] propose yet another point of view,
making it possible to mix per-instruction latencies with the
notion of occupation of a FU—the so-called locality. It is
based on a transition system that specifies the cycle-level
behavior of the considered processor. The authors assume that
one can derive an assignment of instructions to FUs from a
given state of the transition system. Consequently, it is possible
to extract on every cycle the locations (FUs or hardware
components) occupied by an instruction. The authors also
assume that the occupation of locations by an instruction may
change due to non-deterministic behavior. TAs are then defined
by comparing the occupation of locations by an instruction at
the first instant when two execution traces diverge, along with
the traces’ execution times.

Consider again Fig. 1d in order to illustrate the situation.
The depicted traces are clearly identical for the first two cycles
as indicated by the gray box on the left (). In cycle 3,
a non-deterministic choice causes the traces to diverge. As
a result, FU1 is occupied by 1 vs. 3 cycles for α and β
respectively (), which has an impact on the subsequent
instruction scheduling and leads to different execution times.
The TA is explained by the fact that instruction A occupies
FU1 longer in β, thus called a local worst-case trace, while
yielding a shorter execution time.

A first problem with this definition concerns the local occu-
pation of locations, which are described as convex predicates.
The authors do not explain how to chose suitable locations
(only that they should be at the pipeline-stage level) nor how
to obtain corresponding convex predicates. Then, it is unclear
how to compare the occupation once the states of the transition
system for two traces have diverged, e.g., when an instruction
occupies different locations in the two traces in the next cycle.
For this work, we assume that the transition system can be
represented by a table, similar to the one from Fig. 1d, that
assigns instructions to pipeline stages. We assume that every
instruction occupies only one location at a time in a trace
(cf. convex predicates). Since the RSs and the ROB only
model instructions waiting for a FU or for committing, i.e.,
due to the scheduling of other instructions, we furthermore
assume all pipeline stages except them to be part of the set
of suitable locations. We also assume that FUs are gathered
in a single execution stage as a suitable location. This allows

p
ro
gr
a
m IF ID

RSNFU
FUNFU

COM/

su
pe
rs
ca
l

/ /

In-order front-end OoO computation In-order back-end

ROB

/

Fig. 2: Parameterizable OoO pipeline with NFU functional units, fetching and committing superscal instructions per cycle.

(local) comparisons of the occupation even when different FUs
are used for the execution of an instruction. Finally, we do not
compare the occupation of locations after the moment when
the traces diverge.

III. FORMAL MODELING OF TAS IN OOO PROCESSORS

In this section, we present our formal and executable model
to evaluate the presence or absence of TAs under the various
definitions described above. We aim at making this assessment
by model checking, over executions of specific traces on
standard OoO architectures.

A. Parameterizable Out-of-Order (OoO) Pipeline Model

We base our work on a parameterizable hardware architecture
template, similar to previous work [13], which is representative
of modern in-order and out-of-order pipelines that are suscepti-
ble to TAs.2 OoO execution is implemented using Tomasulo’s
algorithm [14] with a reorder buffer (ROB) that ensures in-
order completion. The architecture template, illustrated by
Fig. 2, is composed of:

• an in-order front-end in charge of fetching (IF stage
in Fig. 2) and decoding (ID stage) instructions, where
the maximum number of instructions that can be
fetched/issued is given by the parameter superscal ;

• out-of-order compute stages performing the actual com-
putations in FUs, where NFU specifies the number of FUs
and RSs (FU1 through FUNFU

and RS1 through RSNFU
);

• an in-order back-end (COM stage) in charge of commit-
ting instructions in program order using the ROB, where
up to superscal instructions can be committed.

The instructions proceed through the pipeline from left to right
(), entering the pipeline at the IF stage and completing at the
COM stage. Instructions are assigned their (future) actual FU
in the ID stage and are then issued to the associated RS. When
several FUs can perform the computation for one instruction,
a random choice is made. The RSs and ROB track read-after-
write data dependencies between instructions () and thus
allow to execute instructions out-of-order on the FUs. Results
from FUs are immediately available () and instructions may
skip their RS and immediately proceed if the respective unit
is not busy (). Consequently, (dependent) instructions can
be executed back-to-back.

2For instance, CVA6 (https://www.openhwgroup.org/) and BOOM
(https://boom-core.org/).

We formalized this pipeline using the TLA+ language [15].
TLA+ allows us to specify a transition system (TS) consisting
of states, i.e., a set of state variables, a set of initial states,
and a next-state relation, i.e., a transition relation producing
a new state from a given state. In our case, the TS defines
how the instructions of one trace proceed through the pipeline
at the granularity of clock cycles. Notably, we model which
instruction is processed by each of the hardware components
depicted in Fig. 2 at any given instant.

The model depends on a set of input parameters (a in
Table I), which enable to set the instruction sequence under
analysis (program) and refine the characteristics of the archi-
tecture (superscal , NFU and IFLat). Each instruction (within
program) also contains execution constraints. It is associated
with a set of operable FUs (FU affinities) as well as a set of
possible latencies in the IF stage (modeling instruction cache
hits/misses)3 and in the FUs (e.g., modeling the data cache).

Our model makes use of some abstractions, i.e., the TS does
not capture the entire architecture state that would appear on
real hardware. As we only target timing effects that arise
during execution, we do not model certain aspects of the archi-
tecture. For instance, opcodes and registers are not explicitly
modeled, nor the actual computations of the FUs. More con-
cretely, the state variables of our TS explicitly capture global
time (variable currCycle), the status of the instructions in
the trace (prog), and hardware components (IF , ID , FU ,
RS , and COM). The prog variable is a record containing

the remaining instructions to fetch (through the first member
prog .rest) and the currently executing/completed instructions
(prog .exec). The latter record member (prog .exec) captures
the status of each instruction during execution (whether it
has produced a result and whether/when it was committed).
Additional variables track the actual assignment to FUs, the
actual latencies, and other bookkeeping information. Those
latter variables in combination with prog .exec thus essentially
implement the ROB.

The TS’s next-state relation implements the fetch and issue
logic in the front-end, the handling of the ROB, RSs, and FUs
for the OoO computation, as well as the in-order commit in
the back-end. The centerpiece of this function is Tomasulo’s
algorithm [14]—leaving out irrelevant functional aspects. We
will now discuss how the definitions are mapped to this model.

3An instruction cache miss in one superscalar IF stage stalls all IF stages.

TABLE I: Summary of model parameters (a), state-independent helper functions (b), and helper state variables (c) used
in the formalization of the definitions of TAs.

program Input program with constraints about FU affinities and possible FU latencies Sec. III-A
superscal Max. number of instructions fetched/issued/committed Sec. III-A
NFU Number of functional units Sec. III-A
IFLat Set of possible latencies at IF Sec. III-A

a

locFU Subset of FUs considered for component occupation Sec. III-B3
ProgDone(n) First n instructions were committed in both traces (Boolean) Sec. III-B
ComTime(t ,n) Time instant when n-th instruction was committed in trace t Sec. III-B1
StepHeight(t ,n) ComTime(t ,n)−ComTime(t ,n−1); ComTime(t , 1) for n = 1 Sec. III-B2b

FUusage(t , f) Number of cycles FU f is occupied in trace t Sec. III-B3
commonPre The two traces have not diverged at current time instant (Boolean) Sec. III-B4c
locWorst [t] Trace t represents the local worst case at current time instant (Boolean) Sec. III-B4

B. Uniform Formalization of the Definitions of TAs

The parameterizable architecture template allows us to model
the execution of a single trace, while tracking all of the trace’s
instructions as well as all the involved hardware components.
In order to reason about TAs, we need (at least) two traces.
We thus instantiate two essentially identical copies of the
architecture model and program, where the two traces are
restricted to the same instruction sequence, i.e., having the
same set of dependencies, possible latencies and FU affinities.
The differences between the two traces arise solely from
variations in the actual latencies and FUs of instructions
observed during execution. Instructions may advance through
the pipeline according to their own actual latencies and as-
signments to FUs, the usage of hardware components by other
instructions, and the dependencies among instructions.
This framework allows to implement the various definitions of
TAs into a uniform formalization. More precisely, we define,
in association with each definition, a procedure that decides
whether a TA is signaled for the considered definition. These
procedures are specified in the form of predicates (explained
in detail further below) drawing on elements of the pipeline
model. The predicates check the absence of TAs after the
completion of each instruction in both traces, as a direct
formalization of the key ideas and the assumptions introduced
in Sec. II. In this regard, we rely on additional code and state
variables, summarized in Table I. The table highlights state-
independent helper functions (b), which operate on a trace’s
history, and helper state variables (c).
1) Intersections in Step Functions (TAInter): The key ele-
ment of this definition (Sec. II-B) are commit events, which
are tracked by additional state variables and accessible via
the helper function ComTime(t ,n) (c.f. Table I). The related
predicate is then directly expressed as:

NoTAInter
∆
= ∀ k ∈ 1 . . progLen − 1 :
∀n ∈ k + 1 . . progLen :
∧ ProgDone(n)
∧ ComTime(α, k) < ComTime(β, k)
=⇒ ComTime(α, n) ≤ ComTime(β, n)

As illustrated for the motivating example, a TA occurs when
the intermittent order of the k -th instruction’s commit (second
conjunction) between the two traces (α and β) does not

match the global execution time (rhs. of the implication)4—
or inversely a TA is excluded when they always match, as
expressed here.
Note that it is not necessary to consider the case where α and
β switch positions in the formula, since TLC will explore all
possible pairs of traces and thus will safely detect the anomaly
anyway. This also applies to the subsequent formulas.
2) Step Height in Step Functions (TASteps): This definition
(Sec. II-A) is very similar as the previous one. Here, a TA
occurs when the order of the k -th instruction’s step heights
does not match the global execution time. Instead of the
commit time, the StepHeight(t ,n), which is in fact derived
from the commit time (cf. Table I), is used:

NoTASteps
∆
= ∀ k ∈ 1 . . progLen − 1 :
∀n ∈ k + 1 . . progLen :
∧ ProgDone(n)
∧ StepHeight(α, k) < StepHeight(β, k)
=⇒ ComTime(α, n) ≤ ComTime(β, n)

3) Component Occupation (TAComp): In order to express
the predicate based on component occupation (Sec. II-C),
additional state variables have to be added to the TLA+
specification that track the occupation of FUs, which is again
accessible through a helper function FUusage(t , f) (cf. Ta-
ble I):

NoTAComp
∆
= LET n

∆
= progLen IN

LET usage(t)
∆
=

∑
f ∈ locFU FUusage(t , f) IN

∧ ProgDone(n)
∧ usage(α) < usage(β)
=⇒ ComTime(α, n) ≤ ComTime(β, n)

From the individual occupation obtained through
FUusage(t , f), the occupation of the supplied component is
computed through summation. The FUs to consider in this
component is provided as a model parameter locFU (cf.
Table I), since the choice of the partitions has little impact on
the evaluation presented in Sec. IV. As before, the absence of
TAs is stated when the relationship between the component
occupation (usage at the second conjunction) of the two
traces is always the same as the global execution time (rhs.
of the implication).

4In TLA+, logical connectors’ alignment describes precedence; implication
has the lowest precedence.

4) Instruction Locality (TALoc): This definition (Sec. II-D)
is the most complex, since it is not based on simple numeric
features as the other definitions. Firstly, TAs are associated
with the time instant when the two traces diverge. As explained
in Sec. II-D, we consider the two traces identical as long as the
mapping of instructions to pipeline stages is identical. This is
expressed through the state variable commonPre (cf. Table I),
which is initialized to true and only reset to false when this
mapping differs. In our model, this is expressed through the
terms FUs[t][k] (and IFs[t][k]), which are records tracking the
content of any FU (IF stage) k in trace t , from the FU (IF)
state variable of the trace. They give access to the assignment
of instructions to FUs (member PC) and the current latency of
the instruction on the FU (member currLat). Any divergence
in the PC member causes commonPre to be reset.

Once the traces are about to diverge, the occupation of the
various pipeline stages have to be compared in order to
determine which of the traces represents the local worst case.
This is performed through the state variable locWorst :

locWorst ′ = [t ∈ {α, β} 7→ LET o
∆
= {α, β} \ t IN

∨ ¬commonPre ∧ locWorst [t]
∨ ∧ commonPre
∧ ∀ k ∈ 1 . . NFU : ∀ kk ∈ 1 . . NFU :

FUs[t][k].PC = FUs[o][kk].PC
=⇒ FUs[t][k]′.currLat ≥ FUs[o][kk]′.currLat

∧ Similar for IFs ...

This TLA+ formula reassigns a new value to each member
locWorst [t] of this state variable (cf. Table I) for the next
clock cycle—expressed by the prime operator in TLA+, i.e.,
the ′ symbol. The formula then distinguishes two cases.

In the first case, the two traces have already diverged
(¬commonPre), locWorst [t] then simply preserves its value
for both traces, as indicated by the first disjunction.

The second case considers in particular the situation when the
two traces are about to diverge, i.e., commonPre is still true
but will be reset in the next cycle. At this moment, it is still
possible to compare the occupation of the pipeline stages. We
use the FUs[t][k]′.currLat and FUs[o][kk]′.currLat terms
to detect the divergence in the next cycle (note the prime
operator). In the next cycle, the considered instruction of one
trace will have completed its computation in the considered
FU. The currLat value of that unit will thus be reset, and thus
results in diverging values in the rhs. of the implication, i.e.,
the other trace becomes the local worst case. Note that we use
independent FU indexes (k and kk) to allow for instructions
that merely execute on another FU (see Sec. II-D). A similar
check is also performed for the IF stage (as indicated by
the shaded comment). Note that we do not consider the other
hardware components for the comparison of latencies, since
they do not exhibit variable latencies or are not suitable
locations (Sec. II-D).

With these two additional state variables, it is possible to check
for TAs using:

NoTALoc
∆
= LET n

∆
= progLen IN

∧ ProgDone(n)
∧ ¬locWorst [α]
=⇒ locWorst [β] ∧ ComTime(β, n) ≥ ComTime(α, n)

The formula might appear surprising at first sight, as one might
expect a formula where locWorst [t] simply implies that t’s
global time is the largest. However, we have tried to state the
definition as in the original paper [12]. Note that this may give
quite different classifications of TAs, notably when both traces
become local worst case due to opposing latency variations
occurring at the same instant.

C. Formal Verification by Model Checking

In this paper, we do not intend to set up a (possibly ef-
ficient) procedure for detecting TAs over a wide range of
programs, i.e., from a specific (reliable) definition. We use
model checking in order to assess the various definitions of
TAs discussed in Sec. II. We invoke TLC, the TLA+ model
checker, on the parameterizable model, in order to explore
variations of otherwise identical traces while evaluating the
various predicates, as potential culprits for TAs. Verifying
the absence/presence of TAs in this way helps us to find
inconsistent scenarios, e.g., where some definitions identify
a TA for an instruction sequence while others do not.
The state space that is to be explored mainly depends on the
program and IFLat parameters, namely the length of the input
program, the program dependencies, and the specified execu-
tion variability through possible latencies and FU affinities.
The depth of the state space is approximately the program
length and the breadth is fully determined by the set of initial
states. Denoting as FULat the set of possible FU latencies
(imposed in fact as program constraints), checking the absence
of TAs for all the input programs of length N would require
exploring all possible dependencies (ΠN

k=02k ≈ 2N
2/2), as

well as all variations of IF and FU latencies for each in-
struction in each trace (|IFLat |2N and |FULat |2N) and all
FU affinities (NFU

2N). Those terms essentially multiply and
quickly result in a very large state space.
However, we do not need to consider all programs. We merely
aim at getting several scenarios, i.e., pairs of execution traces,
that expose the contradictions among the definitions and their
limitations. Those scenarios may differ from the input program
and/or architectural parameters, e.g., superscal and NFU .
Such scenarios are derived as counterexamples for specific –
violated – properties. These properties are invariants express-
ing, for instance, that some definitions always make consistent
statements about TAs (for fixed values of the parameters).
We systematically analyze the obtained counterexamples to
confront them to the intuitive understanding and then set up an
invariant expressing another inconsistent scenario, e.g., a con-
tradiction between another pair of definitions. Our probation
methodology starts from the motivating example (in Fig. 1d),
then progressively proceeds through more elaborated varia-
tions in order to obtain convincing counterexamples that are
short, easy to understand, and still illustrate a relevant short-
coming of at least one of the definitions. We supply program

1 2 3 4 5 6 7 8 9 10 11 12 13

α
A IF ID FU1 COM
B IF ID FU2 FU2 FU2 COM
C IF ID RS2 RS2 FU2 FU2 FU2 COM
D IF ID RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COM
B IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COM
C IF ID FU2 FU2 FU2 ROB ROB ROB ROB COM
D IF ID RS1 RS1 FU1 FU1 FU1 ROB ROB COM

∆α

•

∆β

•

Fig. 3: Importance of structural aspects (Sec. IV-A)

1 2 3 4 5 6 7 8 9 10

α
A IF ID FU1 COM
B IF ID RS2 FU2 COM
C IF ID RS2 FU2 COM
D IF ID RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COM
B IF ID RS2 RS2 RS2 FU2 COM
C IF ID FU2 ROB ROB COM
D IF ID RS1 RS1 RS1 FU1 FU1 FU1 COM

•

•

∆α

∆β = 0

Fig. 4: Step height and execution order (Sec. IV-B)

portions made of a few instructions and we perform progres-
sive variations on the dependencies and on the constraints
restricting the possible FU latencies and affinities. In most
examples, we only vary the FU latencies (since this is enough
to demonstrate the short-comings). In some cases, we also
allow variations on the IF latencies to highlight specific shot-
comings. Consequently, we do not face state space explosion
and the worst complexity in our execution scenarios exposed in
the next section is illustrated by a counterexample (Sec. IV-E)
requiring TLC to execute for 6 seconds and explore about
1,000 states. TLC provides counterexamples by enumerating
the sequence of states that represent the execution scenario. Its
output can be parsed automatically in order to obtain a visual
illustration, e.g., the basis of all examples in Sec. IV.

IV. SHORT-COMINGS OF EXISTING DEFINITIONS

In this section, we present the (counter)examples that we have
retained for illustrating the short-comings of the definitions.

A. Importance of Structural Aspects

This example shows that taking into account the structure of
the whole pipeline and its architectural features is important to
identify TAs. Let us resume the example of Fig. 1 (NFU = 2,
see Sec. III-A) and modify the superscal parameter (from 2 to
superscal = 1) to allow at most one instruction per cycle in
the in-order stages of our model. We only present the detailed
table-based execution traces, which nevertheless contain all the
information, and not the other representations, i.e., time plots.
The execution traces, in both scenarios, are given in Fig. 3.
Trace β takes longer compared to the dual-issue pipeline of
Fig. 1d and all of the formal definitions correctly reflect the
consequent intuitive absence of TAs. Though the definitions
agree here, this first example confirms that: (i) the common
scheduling diagrams (such as Fig. 1b), almost exclusively used
in the literature, are not sufficient to study TAs; (ii) executable

models of hardware platforms and program executions are
beneficial for the concrete assessment of TAs.

B. Step Height and Execution Order

Both TASteps and TAInter require the completion of entire
instructions, namely the observation of commit events. The
slightly modified example of Fig. 4 shows that the step height
of a specific instruction is likely to present TAs in unexpected
situations. It is primarily obtained as a violation of the
invariant NoTAInter =⇒ NoTASteps , i.e., the definition
TASteps states a TA though TAInter does not. There is no
clear intuitive TA, since trace β with the 3-cycle latency in
FU1 leads to the WCET. Yet, (only) TASteps indicates a
TA. Indeed, the latency for instruction C in trace β is zero,
because it is committed at the same time as B. While any
inversion in cumulative execution times necessarily originates
from variations in step heights at some points, this example
shows that the converse is not true. The step-height metric is
too coarse-grained since values cannot be negative (due to in-
order commit). Consequently, it is not adequate to define and
ultimately reason about TAs in terms of step heights.

C. Intersections and Execution Order

So far, we discarded only one definition among those based on
commit events. The other definition, TAInter seems, so far,
to be more adequate. However, this new example shows that
surprising TAs arise here too. It is obtained with the violation
of the invariant: NoTALoc =⇒ NoTAInter , where TALoc
is taken as an initial postulate. In the previous examples, no
instruction memory accesses are performed (plausible with an
instruction scratchpad). If instead we consider an instruction
cache, a cache miss might increase the fetch delay. In Fig. 5,
we present a pair of program executions with no variations
in FUs, but a possible instruction cache miss for the last two
instructions. Here again, there is no clear counter-intuitive TA,
since the WCET is indeed given by the worst-case scenario,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α
A IF ID FU1 FU1 FU1 COM
B IF ID RS2 RS2 RS2 FU2 FU2 FU2 COM
C IF IF IF ID RS2 RS2 RS2 FU2 FU2 FU2 COM
D IF IF IF ID RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COM
B IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COM
C IF ID FU2 FU2 FU2 ROB ROB ROB COM
D IF ID RS1 RS1 RS1 FU1 FU1 FU1 ROB COM

∆α

•

∆β

•

Fig. 5: Intersections and execution order (Sec. IV-C)

1 2 3 4 5 6 7 8 9 10 11

α
A IF ID FU1 FU1 FU1 COM
B IF ID FU2 FU2 FU2 COM
C IF ID RS3 RS3 FU3 FU3 FU3 COM
D IF ID RS1 RS1 FU1 FU1 FU1 COM
E IF ID RS2 FU2 FU2 FU2 ROB COM

β
A IF ID FU1 FU1 FU1 COM
B IF ID FU2 FU2 ROB COM
C IF ID RS3 RS3 FU3 FU3 FU3 COM
D IF ID RS2 FU2 FU2 FU2 ROB COM
E IF ID RS2 RS2 RS2 FU2 FU2 FU2 COM

•

•

Fig. 6: Commit events and relevance of locality (IV-D)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α
A IF ID FU1 FU1 FU1 COM
B IF ID RS1 RS1 RS1 FU1 COM
C IF ID RS1 RS1 RS1 FU1 FU1 FU1 COM
D IF ID RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COM
B IF ID RS1 RS1 RS1 FU1 FU1 FU1 COM
C IF ID RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM
D IF ID RS1 RS1 RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

α′
A IF ID FU1 FU1 FU1 COM
B IF ID RS1 RS1 RS1 FU1 COM
C IF IF IF ID RS1 FU1 FU1 FU1 COM
D IF IF IF ID RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

•

•

•

Fig. 7: Comparing occupation of locations for locality (Sec. IV-E)

1 2 3 4 5 6 7 8 9 10 11

α
A IF ID FU1 COM
B IF ID RS1 FU1 COM
C IF ID RS2 RS2 RS2 FU2 COM
D IF ID FU2 FU2 FU2 ROB COM
E IF ID RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 COM
B IF ID RS1 FU1 COM
C IF ID RS2 RS2 RS2 FU2 FU2 FU2 COM
D IF ID FU2 FU2 FU2 ROB ROB ROB COM
E IF ID RS1 RS1 FU1 FU1 FU1 ROB COM

α′
A IF ID FU1 COM
B IF ID RS1 FU1 FU1 FU1 COM
C IF ID RS2 RS2 RS2 FU2 COM
D IF ID FU2 FU2 FU2 ROB COM
E IF ID RS1 RS1 FU1 FU1 FU1 COM

•

•

•

∆β

∆′α

Fig. 8: Component occupation (Sec. IV-F)

i.e., the instruction cache miss (trace α). This is confirmed by
TALoc, which does not signal a TA (see the gray box and
occupation). In the case of TAInter (and TASteps), there
is an evident inversion and thus a TA. There is however
a particularly surprising timing effect. The favorable case,
i.e., the cache hit in trace β, entails a scheduling similar
to the one of traces β in the previous examples, namely
instruction C starting its computation before instruction B,
delaying the commit of B. Intuitively, the global execution
of the unfavorable case α needs 4 additional cycles, whereas
its cache miss shows a 2-cycle difference compared to the
cache hit. This is an amplification effect that shows that both
counter-intuitive and amplification TAs are closely related.

D. Deficiencies of Commit Events and Relevance of Locality

Showing unspecified behaviors is not the only shortcom-
ing of TAInter , this formulation is also unable to detect
all TAs. The example from Fig. 6 shows that its high-
level granularity based on commit events is insufficient, a
finer control of pipeline executions (e.g., as in TAComp or
TALoc) is required. This example is based on the execution
of a program with five instructions on an architecture with
NFU = 3. It is derived from the violation of the invariant:
(NoTAInter ∨NoTASteps) =⇒ NoTALoc, assuming here
that TALoc is reliable for detecting TAs. Instruction B has a
variable latency in FU2 and instruction D can execute either on
FU1 or FU2. The two execution scenarios in the figure show
choices of different FUs after a variable latency of instruction
B (plausible if instructions are preferably issued to FUs that are
not busy). The seemingly most favorable case, i.e., 2 cycles
in FU2 (trace β), eventually leads to the global worst case,
which is intuitively a TA. Yet, only the last instruction differs
in terms of commit events and hence the definitions based on
commit events, TAInter and TASteps , are unable to detect it.
The definition TALoc has the shorter trace α as local worst-
case (and not the trace β) because of instruction B, which does
correspond to a TA. Similarly, TAComp could detect a TA,
though depending on a hardware partitioning. For instance,
with the (sub)set locFU = {FU1,FU2,FU3} (all highlighted
cells), the TA is detected, because of the way FU2 is used.

E. Concern about Local Occupation for Applying Locality

We mentioned in Sec. II that a major concern of the original
work defining TALoc is how to reason about the local
occupation of FUs. However, the example in Fig. 7 shows
that the concern remains even with the hypotheses added in
the background section. All instructions execute on FU1 and,
considering only the traces α and β, trace β is the local worst-
case and there is no TA (whatever the definition). Let us as-
sume that the hardware model brings up (only) a third trace α′,
in which the last two instructions experience instruction cache
misses. α′ and β are concretely derived from the violation of
the invariant: (NoTAComp ∨NoTAInter) =⇒ NoTALoc.5

The local worst-case is now α′ and TALoc identifies a TA,
due to the variation in instruction fetching. Note that with
TALoc we cannot properly compare the local occupation of
FU1 by instruction B for traces β and α′, since these traces
have diverged when B starts its computation on FU1. Actually,
the variation in fetching (α vs α′) is independent of the one
in the FUs (and does not impact the scheduling on FUs). It is
however clear that the verification based on commit events still
states the absence of TAs as well as when applying TAComp.
Comparing local resource usage in this way is unreliable under
more than one source of variations.

F. Issue with Component Occupation

We already showed that the arbitrary choice of relevant FUs
for TAComp has an impact on stating the absence of TAs
(Sec. II). This example shows that TAComp is not stable
even with a preset hardware partitioning. From Fig. 8, we
consider two independent variations in the computation latency
of two instructions B and C. Firstly, we consider the traces
α and β and we fix, for TAComp, the subset of FUs as
locFU = {FU1}. Under TAComp these traces do not present
a TA since the component occupation is 5 for both α and β—
btw., the other TA definitions yield the same answer. How-
ever, the slightly modified trace α′ emphasizes the previously
introduced issue on comparing local resource usage, while
TAComp cannot address it: α′ and β are merely derived

5α and β are obtained from a property stating the absence of TAs from all
definitions.

1 2 3 4 5 6 7 8 9 10 11

α
A IF ID FU1 COM
B IF ID FU1 COM
C IF ID FU1 COM
D IF ID FU1 COM
E IF IF IF IF ID FU1 COM

β
A IF ID FU1 FU1 FU1 COM
B IF ID RS1 RS1 FU1 COM
C IF ID RS1 RS1 FU1 COM
D IF ID RS1 RS1 FU1 COM
E IF ID RS1 RS1 FU1 COM

∆α

•
∆β

•

Fig. 9: End of the instruction sequence (Sec. IV-G)

from the violation of the invariant: NoTAComp ∧NoTALoc.5

When we consider the α′ and β traces, both TALoc and
TAComp show the presence of a TA, since the component
occupation in trace α′ is 7. In any case, it is difficult to
interpret the results of TAComp since this definition gives
absolutely no information whether a certain scenario is iden-
tified as a TA. Actually, wrt. α′ and β, all definitions state a
TA incriminating instruction B (because of its commit event
or its FU latency). Yet, B cannot be the cause of a TA, since
its execution variation (i.e., the latency in FU1) is completely
hidden by the execution of D. Specifically, instruction D is
allowed to immediately start its computation in FU2, so the
computation of B in FU1 does not alter the FU scheduling
and C always starts its computation in cycle 7 (and from that
point, the single variation in FU2 has no surprising effect).
Intuitively, these independent variations do not generate a TA,
however no definition is able to separate the effects of the two
variations (e.g., starting in cycle 7).

G. Issue about the End of the Instruction Sequence

Up to now we focused on the main differences between the
proposed definitions, namely the notion of local variations
whose comparisons define what a favorable case is. The
global comparisons are simpler to establish since these are
based on the end of a certain last instruction; in our model,
the end of an instruction is clearly defined by its commit
event. All definitions rely on an instruction sequence within a
program but the choice of this sequence is essential to properly
assess the TAs. Let us consider the simple example with a
single FU and a single FU latency variation, in Fig. 9. This
counterexample is derived from an invariant involving copies
of the predicates of the definitions in which one can specify
as a parameter the last instruction to consider instead of the
program length. If we do not consider the last instruction, the
single variation drives the whole execution (with instruction
A in FU1) and all definitions confirm the absence of a TA.
However, no definition could accommodate the fact that the
last instruction(s) could add irrelevant extra cycles. If we
consider the complete sequence (including the instruction E),
all definitions state a TA. It is interesting to remark that E is
fully independent of the other instructions and no definition is
able to capture the variation of this last instruction.

V. FURTHER RELATED WORK

In this paper, we aim at focusing on the core of the various def-
initions of TAs. Yet, other questions deserve to be examined in
greater detail. First, we consider that TAs manifest essentially
in concrete hardware, as they were originally observed [5] and
as it was later supported [9]. Eisinger et al. [10] actually define
TAs from an abstract reference execution scenario. Reineke
et al. [12] also rely on an abstract behavior. Consequently,
their underlying TS cannot be a faithful model of the actual
hardware. It is unclear how to obtain suitable abstractions in
practice. These abstractions may have a strong impact on the
study of TAs, independently of the pipeline granularity. Then,
the definitions differ in which trace variations may trigger a
TA. In our examples, we did not seek to unduly justify why
we focused on those specific traces, since we consider that any
execution pair is suitable for defining TAs. Eisinger et al. [10]
successively compare traces to the reference behavior that
might correspond to the assumptions of a particular WCET
analysis. They thus verify a necessary (not sufficient besides)
condition for the validity of an execution-time upper bound,
instead of the strict absence of TAs. Similarly, Reineke et
al. [12] target the case always making the worst local decisions
against all other traces, which is logically related to the
verification of a specific WCET analysis. Cassez et al. [9]
target pairs involving the actual WCET. The TAs targeted by
these – essentially different – approaches impacting the WCET
could be generically called strong [10]. Some definitions are
unclear about how to deal properly with more than two traces
simultaneously. Finally, it is unclear what (initial) execution
context to consider when concretely applying the definitions.
Our model assumes that the pipeline is initially empty, but real
architectures may execute instructions in richer contexts.
In a larger scale, TAs are essential to numerous investigations
that intend to detect them or to study their effects. Eisinger et
al. [10] also used model checking to detect TAs automatically,
however (besides the abstract reference behavior) without
providing details about their formal models and with a too
coarse instruction-level granularity (TAInter , Sec. II-B). From
the previous section, we also consider the pipeline-stage level
retained by Engblom [16] and later Reineke et al. [12] the
right granularity. Asavoae et al. presented a first attempt to
make Reineke et al.’s definition executable and detect TAs by
model checking [17], [18]. This work assumes this definition
and shows how it can be auspiciously integrated into an
automatic tool. Hahn et al. analyzed amplification TAs and
their link with compositionality [19], however they did not
provide a formal definition. Hahn and Reineke continued this
work with the development of a pipeline designed to be free
from TAs [20]. They based their analysis on a monotonicity
property resting on a progress notion [21], as a sufficient
condition for the absence of TAs, and did not aim at pro-
viding a formal definition of TAs. Moreover, though these
concepts are intuitive, they are specialized for classical in-
order pipelines and it seems difficult to transpose them to an
OoO context. Jan et al. used model checking in order to prove

the absence of amplification TAs in predictable pipelines and
compare their hardware approach to avoid such TAs [22]. We
extended this work with a more complex case study showing
amplification TAs and thus provide abstractions to accelerate
their detection [23]. This approach is based on a prerequisite
for TAs (in a particular situation) and does not aim at assessing
the assumed definition.

VI. DISCUSSION AND CONCLUSION

The formal and executable models that we have developped
are essential to evaluate the existing definitions of TAs. Many
definitions of TAs found in the literature are dissociated
from concrete hardware architectures. As a consequence, these
definitions are mainly theoretical and cannot be integrated as is
into automatic tools. We thus specified precise assumptions to
make them all applicable to an automatic detection of TAs on
standard OoO architectures. We notably showed that common
FU scheduling diagrams are not sufficient to reason about TAs
and that structural aspects must be taken into account.
Then, the systematic investigation of TAs showed that the
definitions often lead to contradictory statements about TAs.
The various exposed execution scenarios represent different
situations (e.g., programs) reflecting plausible executions in
an OoO pipeline and showing specific limitations of the
definitions. Thus, even under a precise evaluation framework,
it is impossible to fix conditions under which a given definition
behaves consistently and could serve as a reference in place of
the intuitive interpretation: none of the existing definitions of
TAs dominate others.6 Moreover, we carefully analyzed the
counterexamples to clarify the reasons why some definitions
state a TA or not: no definition is reliable when put to
the test on an OoO pipeline, i.e., none is always consistent
with the intuitive understanding widespread in the community.
Consequently, a precise formal definition of TAs is still
needed.
The examples show that the contradictions of the previously
proposed formal definitions, corroborated with the intuitive
understanding, stem from a common deficiency: the notion
of causality. These definitions are based on the presumed
relation between local variations and global execution times.
Yet, nothing ensures that a variation of a global execution
time is due to the variation of an assessed local execution
time, even with a single local variation. Such a causality
link is however central in the intuitive perception of a TA.
We observed that the definitions based on commit events
can be easily manipulated by shifting the moment when a
certain instruction ends, independently of surprising timing
effects. The definitions based on components/locations could
target local variations that would not be intuitively considered
determining, as soon as an instruction sequence entails two
(local) variation sources. The omission of causality is thus the
main defect shared by all formal definitions.
We exemplified short-comings of the existing definitions of
TAs on a standard architecture and on simple, short instruction

6The same holds when considering TAInter and TAComp (by the same
authors) supplementary definitions.

sequences. These definitions would be incomplete a fortiori
on a more complex architecture and larger programs. Once a
precise definition established, TAs should be detected with
appropriate procedures in the scope of timing analysis, on
programs with multiple long execution paths. In particular, the
concern about the relevant end of a sequence for identifying
TAs turns into defining an observing interval. Here again,
the notion of causality should prevent from arbitrarily slicing
a program before studying the timing effects entailed by
its execution. All the TAs identified in the previous section
are interpreted through scheduling of instructions and depict
the most commonly described class of TAs in the literature.
However, TAs could also arise from speculation or cache
effects [12], even in in-order pipelines [7]. The notion of
causality will be all the more relevant in these cases. Our
ongoing work is to integrate the crucial notion of causality –
and its various incarnations – into a precise and practical for-
mal definition of TAs, and then to develop efficient detection
procedures that allow to prove the absence/presence of TAs in
the execution of a program on a given processor architecture.

REFERENCES

[1] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problemoverview of methods and survey of tools,” ACM
Trans. Embed. Comput. Syst., May 2008.

[2] S. Law and I. Bate, “Achieving appropriate test coverage for reliable
measurement-based timing analysis,” in ECRTS, 2016.

[3] F. J. Cazorla, L. Kosmidis, E. Mezzetti, C. Hernandez, J. Abella, and
T. Vardanega, “Probabilistic worst-case timing analysis: Taxonomy and
comprehensive survey,” ACM Comput. Surv., 2019.

[4] R. Davis and L. Cucu-Grosjean, “A survey of probabilistic timing
analysis techniques for real-time systems,” LITES, 2019.

[5] T. Lundqvist and P. Stenström, “Timing anomalies in dynamically
scheduled microprocessors,” in Real-Time Systems Symposium, 1999.

[6] I. Wenzel, R. Kirner, P. Puschner, and B. Rieder, “Principles of timing
anomalies in superscalar processors,” in QSIC, 2005.

[7] G. Gebhard, “Timing Anomalies Reloaded,” in WCET, 2010.
[8] R. Kirner, A. Kadlec, and P. Puschner, “Worst-case execution time

analysis for processors showing timing anomalies,” TU Wien, Tech.
Rep., 2009.

[9] F. Cassez, R. R. Hansen, and M. C. Olesen, “What is a Timing
Anomaly?” in WCET, 2012.

[10] J. Eisinger, I. Polian, B. Becker, S. Thesing, R. Wilhelm, and A. Met-
zner, “Automatic identification of timing anomalies for cycle-accurate
worst-case execution time analysis,” in DDECS, 2006.

[11] R. Kirner, A. Kadlec, and P. Puschner, “Precise worst-case execution
time analysis for processors with timing anomalies,” in ECRTS, 07 2009.

[12] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger,
and B. Becker, “A Definition and Classification of Timing Anomalies,”
in WCET, 2006.

[13] X. Li, A. Roychoudhury, and T. Mitra, “Modeling out-of-order proces-
sors for wcet analysis,” Real-Time Systems, 2006.

[14] R. M. Tomasulo, “An efficient algorithm for exploiting multiple arith-
metic units,” IBM Journal of Research and Development, 1967.

[15] L. Lamport, Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002.

[16] J. Engblom, “Processor pipelines and static worst-case execution time
analysis,” Ph.D. dissertation, 04 2009.

[17] M. Asavoae, B. B. Hedia, and M. Jan, “Formal Executable Models for
Automatic Detection of Timing Anomalies,” in WCET, 2018.

[18] M. Asavoae, M. Jan, and B. Ben Hedia, “Formal modeling and verifi-
cation for timing predictability,” in ERTS, 2020.

[19] S. Hahn, M. Jacobs, and J. Reineke, “Enabling compositionality for
multicore timing analysis,” in RTNS, 2016.

[20] S. Hahn and J. Reineke, “Design and analysis of sic: A provably timing-
predictable pipelined processor core,” in RTSS, 2018.

[21] S. Hahn, J. Reineke, and R. Wilhelm, “Toward compact abstractions for
processor pipelines,” in Correct System Design, 2015.

[22] M. Jan, M. Asavoae, M. Schoeberl, and E. A. Lee, “Formal semantics
of predictable pipelines: a comparative study,” in ASP-DAC, 2020.

[23] B. Binder, M. Asavoae, F. Brandner, B. B. Hedia, and M. Jan, “Scalable
detection of amplification timing anomalies for the superscalar tricore
architecture,” in FMICS, 2020.

	Introduction
	Background and Interpretations
	Step Height in Step Functions
	Intersections in Step Functions
	Component Occupation
	Instruction Locality

	Formal Modeling of TAs in OoO Processors
	Parameterizable Out-of-Order (OoO) Pipeline Model
	Uniform Formalization of the Definitions of TAs
	Intersections in Step Functions (TAInter)
	Step Height in Step Functions (TASteps)
	Component Occupation (TAComp)
	Instruction Locality (TALoc)

	Formal Verification by Model Checking

	Short-Comings of Existing Definitions
	Importance of Structural Aspects
	Step Height and Execution Order
	Intersections and Execution Order
	Deficiencies of Commit Events and Relevance of Locality
	Concern about Local Occupation for Applying Locality
	Issue with Component Occupation
	Issue about the End of the Instruction Sequence

	Further Related Work
	Discussion and Conclusion
	References

