Automatic Tool Generation from Structural
Processor Descriptions

Florian Brandner

Institute of Computer Languages
Christian Doppler Laboratory™* -
Compilation Techniques for Embedded Processors
Technische Universitdt Wien
brandner@complang.tuwien.ac.at

Abstract. Processor description languages are a promising approach
to the rapid design of customized processors that are specialized for
a given application domain. The xADL processor description language
allows to derive a behavioral instruction set model from a structural
hardware specification automatically. Traditional approaches often lead
to redundant specifications due to the use of separate descriptions mod-
eling these two views. The feasibility of our approach is demonstrated
using two tool generators that retarget software development tools for
a RISC and VLIW processor models. The compiler generator derives a
highly optimizing code generator, while the simulator generator derives
a cycle-accurate simulation engine. Experiments show that the derived
tools compete with corresponding hand-crafted tools.

1 Introduction

The success of embedded systems in mobile communication and entertainment
devices, in commodity appliances, the domestic environment, as well as in the
(safety) critical control systems of cars and airplanes made these small computer
systems an indispensable part of everybody’s daily life. The demands on these
systems in terms of reliability, efficiency, and computational power are steadily
rising, while at the same time the physical dimensions are required to shrink and
the costs per unit need to be reduced on every new product generation.

Application-Specific Instruction Processors (ASIP) have become a valuable
tool to deliver high computing power under rigid power and chip area constraints.
However, the development of such a processor is a delicate task that requires
intimate knowledge of processor design, software development, compilers, and,
of course, the particular problem domain at hand.

Processor Description Languages (PDL) — often referred to as Architecture
Description Languages (ADL) — are a promising approach to capture the behav-
ior, the hardware structure, and the instruction set of an ASIP using a compact

** This work is supported in part by OnDemand Microelectronics and the Christian
Doppler Forschungsgesellschaft.

and concise specification. PDLs typically provide various views of the processor
targeting different abstraction levels: (1) the behavioral level is primarily con-
cerned with the abstract behavior of individual instructions, while (2) the struc-
tural view defines the processor’s hardware organization and its computational
resources. Languages focusing on the former processor view are called behavioral
languages, those focusing on the latter structural. Sometimes a language allows
to capture both views using a combined specification, it is then called a mized
language.

Processor models, specified using such a processor description languages, can
be used in various ways. A very common task is to (semi-)automatically de-
rive the software development tools, such as the compiler, the linker, and the
assembler for the given processor. In addition, simulation tools, test cases, and
even hardware prototypes can be derived. The quality of the obtained artifacts
largely depends on the information that is specified by the processor descrip-
tion. High-level tasks, such as compiler generation, require an abstract model of
the instruction behavior. Whereas low-level tasks, e.g., the generation of hard-
ware models, require a detailed model of the processor’s computational resources
and their interaction. Mixed languages typically provide the highest flexibility
in terms of these application tasks, because both a rather high-level behavioral
and a rather low-level structural view of the processor is available.

In this work, the processor description language xADL [1] is presented, which
allows to derive a corresponding behavioral model from a structural processor
specification automatically using instruction set extraction. xADL models capture
the behavioral as well as the structural details of a processor equally well and thus
provides great flexibility with regard to verification, validation, and generation
tasks. Redundancies known from mixed languages are, however, avoided, because
only a single specification of the processor organization is required. We demon-
strate the feasibility of our approach using two tool generators: (1) a compiler
generator [2, 3] that automatically derives a highly optimizing code generator for
the LLVM compiler infrastructure [4], and (2) a simulator generator [5,6] that
derives a highly accurate high-performance instruction set simulator based on
dynamic binary translation. Experiments show that the derived tools can com-
pete with hand-crafted tools for the MIPS RISC and CHILI VLIW processors.
The code produced by the generated compilers achieves speedups of up to 20%
in comparison to hand-crafted compilers. On average over all our benchmarks
moderate slowdowns of only 5-15% have been observed for different processor
models. The simulation framework is similarly competitive and achieves a simu-
lation speed of up to 483 MHz for individual benchmarks. The average simulation
speed over all our benchmarks for different processor models is in the range from
43 MHz to 79 MHz.

In the following section a short overview over the related work in the field
of processor description languages is given. Followed by an introduction to the
basic principles of the xADL language in Section 3. Section 4 shortly covers the
tool generators that allow to derive an optimizing compiler backend and a cycle-

accurate instruction set simulator from a given processor model. The results of
the empirical evaluation are presented in Section 5 before concluding in Section 6.

2 Related Work

One of the most influential languages in the context of processor description is
nML [7]. The processor is modeled using a behavioral description of the instruc-
tion set. The specification can be structured using an attributed grammar in
order to reuse common information among individual instructions or instruction
groups. New instructions are specified using either A ND-rules or OR-rules. AND-
rules combine information provided by independent rules, while OR-rules allow
to compactly enumerate instruction variants. In its latest form, nML [8] also
includes a basic skeleton that defines the internal organization of the processor
hardware. In particular the early work on code generation using the retargetable
compiler Chess is well described [9]. Programs that are compiled using Chess
are represented using a Control/Data-Flow Graph (CDFG). Operations of the
CDFG are matched with nodes of the instruction set graph (ISG), a representa-
tion of the target processor’s instructions and storage elements.

An equally mature framework has been developed for the LISA language [10].
Instructions are composed of so-called operations that provide information on
the behavior, the assembly syntax, and the binary encoding. The instruction
behavior is described using C, C+-+, or SystemC, which prohibits high-level
applications such as compiler generation. Ceng proposed an additional section
to model the abstract behavior of instructions for the automatic generation of a
compiler [11]. The LISA language further supports a wide range of applications,
including the customization of compiler optimizations [12], efficient simulation
using interpretation, compilation [13], and partial native execution [14].

The EXPRESSION language [15] is a typical mixed processor description
language, i.e., a processor model consists of several views that capture the in-
struction set, the hardware structure, and abstract instruction semantics for
retargetable compilation separately. The language has been used in a wide area
of applications, among others for retargetable compilation [16], retargetable sim-
ulation [17], and verification as well as validation [18].

The MIMOLA language [19] and its software systems (MSS) is one of the
few well known structural processor description languages. It originated from ar-
chitecture synthesis and microprogramming of the synthesized hardware blocks.
Several generations of hardware synthesis tools, compilers and test program gen-
erators have been developed within the MSS [18]. MIMOLA has been primarily
designed for synthesis, however, the language semantics is also precisely de-
fined for simulation. Later work even investigated the use of interpretation and
compiled simulation [20] based on an instruction set abstraction that has been
extracted from the processor model [21]. The extracted model can also be used
to derive the instruction selector for a compiler based on tree pattern match-
ing [22]. A similar extraction algorithm has been proposed by Akaboshi et al.
for the COACH processor modeling system [23].

A recent book by Prabath Mishra and Nikil Dutt provides an excellent intro-
duction to processor description languages and their applications [8]. The book
also covers most of the languages and systems presented here in more detail.

3 Processor Description

The xADL language, in contrast to most contemporary PDLs, primarily cap-
tures a structural view of the processor’s computational resources. The struc-
ture is modeled using a set of interconnected components that are enriched with
semantic annotations about their behavior. All components are derived from
types, which can be seen as reusable templates or blue prints of a given hardware
resource. In addition, meta-information such as the assembly syntax and binary
encoding of the processor’s instruction is captured, along with programming con-
ventions. Furthermore, processor models can be parametrized using configura-
tions, which allow to control certain architectural features, e.g., the bit-width
of the data path, the number of registers, the number of parallel computational
units, et cetera.

The instruction set is not explicitly specified by an xADL processor descrip-
tion. Nevertheless, the instruction set abstraction is a fundamental concept of the
language design. The instructions are automatically derived from the structural
model using instruction set extraction.

3.1 Components and Types

Types and the corresponding component instances thereof are the building blockz
of xADL processor models. The language provides abstractions for common hard-
ware resources, such as registers, memories, and caches. In addition, constant
immediate values that are embedded into the instruction word are modeled us-
ing specialized types and components. The respective types define ports that
allow to interconnect the components among each other. Additional properties,
such as the size and number of registers, features of caches and memories, etc.
can be specified.

Components derived from the mentioned types only provide limited capabil-
ities to describe arbitrary computations. Therefore, functional unit types can be
defined, which provide ports to interface with other components along with a
set of user-defined operations. Operations in turn consist of a sequence of micro-
operations. The xADL language defines a rich set of built-in micro-operation, e.g.
primitive arithmetic and logical operations, comparison operations, (conditional)
copy operations, as well as debug and control operations.

The types of any given processor model can be reused in order to derive vari-
ations of a processor or combined to form completely new processors. The lan-
guage also allows to customize existing types using type arguments, i.e., generics,
and a form of inheritance, similar to templates and sub-classing in the program-
ming language C++.

The component instances of a processor model are interconnected using data
and pipeline links, which roughly correspond to wires and pipeline registers of
the underlaying hardware implementation. These links are grouped by so-called
connects, which allow a compact representation of valid link combinations to con-
nect the various ports of components. In addition, hazard links and signals allow
the modeling of bypasses and additional control logic to resolve data hazards
as well as control hazards. It is important to note that the interaction among
instructions in the pipeline through the various kinds of links and signals is well-
defined and thus analyzable, which is particularly important when a behavioral
view of the processors instruction set is to be derived.

The resulting network of components and data links corresponds to an en-
riched block diagram of the processor’s hardware structure, that carries infor-
mation about the pipeline, the data flow withing the pipeline, the computations
of functional units, and the hazard resolution logic.

3.2 Instruction Set Extraction

The instruction set extraction operates on a slightly simplified form of the fine-
grained structural processor model, which only captures the data flow between
the ports of the processor’s components. Information, such as the pipeline struc-
ture or the hazard detection logic is eliminated. This simplifies the extraction
algorithm and leads to a very nice abstraction that can be easily followed by the
processor designer.

The data flow of the processor is represented using a directed hypergraph [24].
A directed hypergraph H = (V, E) consists of a finite set V' of vertices and a
finite set E of directed hyperedges. An hyperedge is an ordered pair (X,Y),
where X C V and Y C V are possibly disjoint sets of nodes in V. The vertices
of the hypergraph correspond to the ports of the processor’s components. The
hyperedges are derived by reverting the connects of the structural processor
model. Additional hyperedges are constructed to represent the internal behavior
of computational resources.

Figure 1 presents the hypergraph of a simple processor model, consisting
of an immediate, three register files, a cache and three functional units. The
vertices are derived from the component ports which are further connected by
the reverted connects of the structural model. Additional edges represent the
internal computations of the functional units and the cache, i.e., edges e2, €6,
e7, €l0, and ell. Certain ports of caches and memories are not considered when
these additional edges are constructed. For example, edge e7 does not include
the two lower ports of the cache, which represent the address and data ports for
store operations. The cache does not compute a value on store operations, the
data flow thus stops at the involved ports.

The algorithm for instruction set extraction processes the hypergraph rep-
resentation in two steps. First paths through the hypergraph are computed,
which are referred to as instruction paths. Such a path represents a possible
flow of an instruction through the processors’ pipeline. Second, instructions are
constructed by enumerating all possible combinations of the operations of the

U2
4 eb s
Imm :>-o-<
e3 1
1
U / R2
el | e2 8
R1 :>-¢-< —\
e4 €9
I
5 "\g_/ R3
: e7
N—

Fig. 1. Example of a simple data path represented by a directed hypergraph.

functional units along the individual paths. Instructions can be uniquely identi-
fied by their instruction path and the computed set of operations. The behavior
of the instructions is finally represented as a linear sequence of micro-operations
that are gathered from the instruction’s operations. Furthermore, this represen-
tation is annotated with information about data dependencies, bypassing, and
hazards, which is available from the structural processor model. The instruc-
tion representations encountered during the extraction process constitute the
behavioral view of an xADL processor model.

Consider, for example, the processor from Figure 1. Assuming that the func-
tional units are associated with one operation op; respectively. The instruction
set extraction computes five paths: {el, e2, €3, €6, €8, €10}, {el, €2, e4, €7, €9, 10},
{el,e2,e3,¢e6,e8,ell}, {el,e2,e4,e7,e9,ell}, and {el,e2,e5}. Each path corre-
sponds to exactly one instruction, e.g., the instruction corresponding the the
first path can be modeled as a pair ({ el, e2, e3, €6, €8, €10 }, {ops, opa, ops}),
whereas the instruction of the last path is represented by ({el,e2,e5}, {op1}).

4 Tool Generation

xADL processor models are processed by the adlgen tool [1], which not only pro-
vides a parser for the language itself, but also provides a rich interface for the
development of analysis and generation tools. Various generators have already
been developed within the adlgen framework, among them a compiler genera-
tor [2,3] and a simulator generator [5, 6].

The compiler generator [2] derives a complete compiler backend, including
register specifications for register allocation, an abstract resource model for in-
struction scheduling, and most importantly tree patterns for instruction selec-
tion. The initial generator [2] has been extended and is now able to derive a
backend for the open-source LLVM compiler infrastructure [1] and a proprietary
compiler. Deriving the instruction selection rules proceeds in two steps. First,
an initial rule set is derived from the behavioral instruction models. This rule
set heavily relies on the capabilities of the underlaying processor, and is in many

cases not sufficient to derive machine code for all operations of the compiler’s in-
termediate language. Thus, during a second phase templates and specializations
are applied to the initial rule set in order increase the coverage by combining
existing rules. However, even these additional rules may not be sufficient for a
full covering, i.e., if the processor lacks certain fundamental capabilities or if
template and specialization patterns are missing. We thus apply a formal com-
pleteness test [3] to the final rule set, which reports counter examples if the
compiler intermediate language is not covered completely.

Another generator tool, the simulator generator [5, 6], is capable of deriving a
cycle-accurate instruction set simulator from a given xADL processor description.
In contrast to the compiler generator, the simulator requires additional informa-
tion that is not entirely available through the behavioral instruction set model,
it thus also relies on the structural processor view. The resulting instruction
set simulator operates in three modes: (1) interpretation, (2) basic-block-level
dynamic binary translation, and (3) region-based translation. The simulated pro-
gram is initially executed and monitored using a simple interpreter. If the moni-
toring detects a region within the program that is executed frequently, the simu-
lation of this region is optimized. At first, only basic blocks within the region are
translated to machine code of the host computer and subsequently executed na-
tively. Later, if these basic blocks are still executed frequently, possibly multiple
basic blocks are recompiled into a region. Regions may contain arbitrary control
flow, in particular loops, and may thus drastically improve the simulation speed.
In many cases simulation proceeds within a region for thousands of simulated
cycles before the fast native execution is exited and simulation has to fall back
to the slower interpreter.

5 Evaluation

Several processor models have been developed with the xADL language ranging
from very simple RISC processors to sophisticated VLIW processors supporting
predicated execution. The resulting processor models are typically very compact
and readable, and can easily be extended. The development of a new processor
model is usually only a matter of a few days. This indicates that the structural
specification style of the xADL language is well suited for the description of
processors and their instruction set. The xADL language and the accompanying
generators have been evaluated using three processor models: (1) a two-way
configuration of the CHILI VLIW processor, (2) a four-way CHILI configuration,
(3) a MIPS processor model.

5.1 Processor Models

The MIPS processor model closely follows the traditional five-stage pipeline im-
plementation described by Hennessy and Patterson [25]. The processor descrip-
tion faithfully models the complete MIPS1 integer instruction set, including the

Syntax Encoding Types Components

Model LOC LOC #Tmpl. LOC #Tmpl. LOC #Ty. LOC #Ists.
CHILI-v2 1580 191 12 141 6 800 20 350 14
CHILI-v4 1739 220 12 156 6 830 20 454 24
MIPS 1143 183 14 134 9 592 14 157 12

Table 1. Statistics on the MIPS and CHILI processor models.

mandatory branch and load delay slots of early MIPS implementations. In to-
tal 57 instructions are described by 1143 lines of xADL code (LOC). CHILI is
a configurable VLIW processor developed by OnDemand Microelectronics. Its
instruction set defines large load and branch delays to hide memory latencies.
Branch latencies can further be eliminated using predicated execution, which
occupies two slots of the VLIW bundle, one for the predicate and one for the
predicated instruction. The rich set of predicated instruction variants is explic-
itly enumerated by the instruction extraction algorithm, which results in 886
and 1672 instructions for the two-way and four-way parallel configuration re-
spectively.

Table 1 shows detailed statistics on the xADL specifications of the three pro-
cessors. The models are very compact and consists of 1739 lines of xADL code at
most. The table further shows the number of lines spent on the syntax and the
binary encoding specifications, as well as on types and component instantiations,
along with numbers on the respective templates, types and instantiations defined.
The models further specify programming conventions and processor configura-
tions, which occupy between 69 and 91 lines.! The component type definitions
account for more than 50% of the code lines, the instantiations on the other
hand account for just 26% for the four-way CHILI and less than 13% for the
MIPS model. This indicates that the types help factoring out common hardware
fragments.

The instruction set extraction algorithm relies only on the functional units
and the operations associated with them. Table 2 relates the number of unit
instantiations and operations statically defined in the xADL specification to the
number of unit instances and operations present in the expanded hypergraph
representation. The extraction algorithm is very powerful in enumerating in-
struction variants. From the four-way parallel CHILI configuration, for example,
1672 instructions are created, which corresponds to about one line of xADL code
per instruction. Even for the MIPS model, only about 20 lines of code are spent

! The numbers in the table do not add up, due to these specifications.

Definitions Expanded Instruction Set

Model #Uts. #0ps. #Uts. #0ps. #Paths #Insts.
CHILI-v2 19 7 31 129 15 886
CHILI-v4 19 77 60 253 27 1672
MIPS 7 61 7 61 3 57

Table 2. Statistics on the MIPS and CHILI instruction set models.

ISA Behavior Structure Compiler
Model LOC LOC #Instrs LOC LOC LOC #Rules
R3000 2533 386 58 2121 - - -
acesMIPS 4184 828 85 - 533 2353 173

Table 3. Statistics on the ArchC MIPS R3000 and acesMIPS EXPRESSION descrip-
tions.

per instruction. The results also show that the number of instruction paths is
considerably smaller than the number of instructions. This helps during the de-
velopment of xADL processor models, because the designer can focus on the
overall structure, i.e., the instruction paths, first and later add operations as
needed to realize instructions.

To give an indication how the xADL language relates to other processor de-
scription language the MIPS model was compared against other publicly avail-
able MIPS-based specifications, namely a cycle-true MIPS-R3000 ArchC [26]
model (version 0.7.2) and a MIPS-based VLIW acesMIPS specified using the
EXPRESSION [15] language (version 0.99). Table 3 summarizes the number of
lines spent on individual aspects of these two models.? Both models are consid-
erably larger than the 1143 lines of the xADL MIPS model. Also note that the
ArchC model is not suited for the automatic generation of a compiler backend,
due to the use of the SystemC language, which does not provide an abstract
model. The acesMIPS specification, on the other hand, includes a dedicated sec-
tion providing an abstract view of the instruction set for compiler generation.
However, the compiler specification alone requires more than twice the number
of code lines.

5.2 Generated Compiler

In order to evaluate the code quality produced by the generated compilers, a
subset of the MiBench benchmark suite, as provided by the LLVM test infras-
tructure, was compiled and subsequently executed using cycle-accurate simula-
tors that were also generated from the respective processor descriptions [5, 6].
Table 4 lists the number of source lines including comments for each benchmark
program. The benchmarks were run using the small input data sets in order to
reduce the simulation time.

2 The line numbers again do not add up, due to comments and empty lines.

Benchmark LOC Benchmark LOC
automotive-bitcount 932 security-sha 269
consumer-jpeg 26,098 telecomm-crc32 284
network-dijkstra 187 telecomm-fft 476
office-stringsearch 3,250 telecomm-adpcm 304
security-blowfish 1,913

Table 4. Size of the benchmark programs in source lines.

Model #Instr. Def. #Reg. Def. #Reg. Cl. #Res. #Rules

CHILI-v2 817 64 1 2 1416
CHILI-v4 817 64 1 4 1416
MIPS 61 35 3 1 111

Table 5. Statistics on the generated LLVM backends for the MIPS and CHILI processor
models.

The reference benchmarks for MIPS were compiled using GCC version 4.1.1
and the GNU Binutils version 2.19.1, both configured for the mips-elf tar-
get. The newlib system library provides a basic C library implementation. GCC
version 4.2.0 together with GNU Binutils 2.16, both provided by OnDemand
Microelectronics serve as a reference compiler for the CHILI architecture. The
system libraries are based on newlib version 1.14.0. The automatically generated
compilers rely on LLVM version 2.4, which uses a modified version of GCC 4.2 as
frontend. The GNU Binutils and newlib libraries are shared among the respec-
tive reference compilers and the generated compilers. The reference compilers
are invoked with aggressive optimizations (-03), while the LLVM compilers use
the standard optimization options (-std-compile-opts).

As can be seen in Table 5, the LLVM backends derived from the two-way
and four-way configurations of the CHILI processor are virtually identical, except
for the resources present in the reservation tables of the instruction scheduler.
The table lists, from left to right, the number of instruction definitions, register
definitions, register classes, abstract resources of the resource tables, and the
number of instruction selection patterns generated from the respective processor
descriptions. The number of instruction definitions differs from the instruction
number listed by Table 2, because semantically equivalent instruction variants
are merged. Hence, the number of instruction definitions is lower for the parallel
CHILI models. On the other hand, instructions with multiple result values are
duplicated, due to restrictions of the LLVM instruction selector. This leads to a
higher number of instruction definitions for the MIPS processor model.

The backend generator quite successfully discovers translation patterns from
the instruction sets. For every instruction definition of the MIPS and CHILI

Code Size Cycles
Benchmark GCC xADL % GCC xADL %
automotive-bitcount 31,468 25,364 -19 726,162 991,642 436
consumer-jpeg 245,148 161,648 -34 7,932,872 9221,371 416
network-dijkstra 39,116 38,564 -1 342,801,926 314414,695 -8
office-stringsearch 27,672 25,700 -7 5,367,471 7274,936 +36
security-blowfish 36,768 26,544 -28 867,965 877,218 +1
security-sha 31,796 29,352 -8 13,270,780 17812,223 +34
telecomm-crc32 29,816 27,716 -7 7,464,707 8350,673 +12
telecomm-fft 45,172 44,976 — 140,766,729 137254,431 -2
telecomm-adpcm 27,588 27,372 -1 7,122,022 12125,699 470

Table 6. Code size and execution time results for the MIPS processor.

B GCC M CHILI-v2 [CHILI-v4 B MIPS

Fig. 2. Performance improvement of the generated CHILI and MIPS backends in com-
parison to the GCC reference compiler.

models almost two instruction selection patterns are generated, leading to the
huge number of 1416 rules for the CHILI models.

The measured execution times and the code size of the stripped benchmark
programs for the MIPS instruction set are shown in Table 6. The results indicate
that the automatically generated MIPS compiler is competitive to the well-tuned
production compiler GCC, in particular, when code size is taken into account.
The fft and dijkstra benchmarks show a reduction of the execution time by 2%
and 8% respectively. The severe increase in execution time of 70% in the case
of the adpcm benchmark is caused by useless branches generated late during
the compilation process from conditional assignments. The branch optimization
of the LLVM framework runs earlier and thus misses these cases. The relative
performance is depicted by Figure 2. On average, a slowdown of only 15% has
been observed over all benchmarks.

The performance results obtained for the two CHILI processor configura-
tions are very close to the handcrafted production compilers — see Figure 2.

Code Size Cycles
Benchmark GCC xADL % GCC xADL %
automotive-bitcount 348,892 296,376 -15 881,144 1,183,104 +34
consumer-jpeg 2,341,904 1,241,408 -47 10,794,047 9,976,958 -8
network-dijkstra 485,560 470,744 -3 2,894,236 2,414,124 -17
office-stringsearch 334,004 303,384 -9 624,087 738,406 +18
security-blowfish 400,160 306,192 -23 1,541,883 1,491,519 -3
security-sha 351,860 327,608 -7 10,791,045 12,215,822 413
telecomm-cre32 353,980 327,132 -8 8,637,327 9,520,911 +10
telecomm-fft 415,184 400,884 -3 187,968,275 188,243,462 +1
telecomm-adpcm 338,988 324,728 -4 10,116,131 9,755,433 -4

Table 7. Code size and execution time results for the four-way parallel CHILI config-
uration.

M Translator MIPS B Translator CHILI-v4 [Interpreter MIPS M Interpreter CHILI-v4

1000.0MHz 482 5MHz
100.0MHz 111.9MHz 99.6MHz 73.5MHz 79.7MHz
8.3MHz
10.0MHz MHz 3.5MHzZ
1.0MHz -Q Hi
0.1MHz
& . @ & QQ,
()\\000 q},g b&@‘ eeq} \0 \\6 ,C}O ,'zrb &
< Q@ Y & O S &@ & v
S Q © N & & S S
& & & & & s & &
S <§ & & o X

Fig. 3. Simulation speed in MHz for CHILI and MIPS with compilation enabled and
disabled — note the logarithmic scale.

Several benchmarks show considerable speedups, in particular the dijkstra and
the the jpeg benchmarks show an improvement of up to 20%. In contrast to
the MIPS model, the generated compilers for the CHILI models do not show
such severe slowdowns. The adpcm benchmark performs much better for the
CHILI, because the conditional assignments are directly supported by the pro-
cessor, useless branches are thus avoided. The four-way parallel configuration
even outperforms the production compiler by 4%. The code produced by the
generated compilers for the bitcount benchmark, however, performs poorly. Ad-
dress calculations for memory operations accessing an array are not optimally
translated and cause some extra instructions. Due to the small loops of the bit
counting algorithms this has a large impact. Nevertheless, slight slowdowns of
only 5% and 3% respectively have been observed over all benchmarks for both
CHILI configurations. Considering the code size, these results are motivating for
future work. On average the code size of the stripped executables produced by
the xADL-based backends is reduced by 15%. The size of the jpeg benchmark
program, for example, is reduced by 47%, for blowfish benchmark the reduction
amounts to about 25%.

5.3 Generated Simulators

The performance of the generated simulators was similarly evaluated using a
subset of the MiBench benchmark suite. The benchmarks were compiled with
optimization enabled (-O) using GCC version 3.4.6 for MIPS, which is part
of the official development kit SDE Lite 6.06, and GCC' 4.2.0 for the four-way
parallel CHILI processor. All measurements were performed on a single core
AMD Athlon(tm) 64 Processor 3500+ with 2200 MHz and 1 GB of RAM running
a 32-Bit Linux operating system.

1000MHz

100MHz 2
a
m}
10MHz
1MHz
OMHz
10k 100k ™ 10M 100M 1000M 10000M

& jpeg O crc32 W blowfish

Fig. 4. Simulation speed over time for the MIPS architecture.

We compared the simulation speed of the interpreter and translator for both
architectures — see Figure 3. The MIPS simulator reaches about 3.2 MHz, the
CHILI simulator about 0.7 MHz. The translator is up to 500 times faster for the
longer running benchmarks and reaches up to 480 MHz. On average the MIPS
simulator executes at a speed of 43 MHz, the CHILI simulator even reaches
79 MHz on average. Figure 4 shows the peak simulation speed over time for
three benchmarks for the MIPS architecture. With all optimizations enabled a
peak simulation speed of 800 MHz can be reached for the blowfish benchmark.
For the very short running bitcount benchmark the translator is slower since the
compile time cannot be compensated.

Figure 5 shows the relative number of cycles simulated using interpretation or
execution of JIT-compiled code in basic blocks and regions. Except for bitcount
interpretation is only used to simulate a small fraction of the overall cycles, on
average 11.7% for CHILI and 11% for MIPS. For c¢rc32 the complete main loop
is compiled to a single region resulting in very high simulation speed.

[0 Region M BasicBlock B Interpreter

-- !! || 1
. ,

Fig. 5. Ratio of simulated cycles using the interpreter, JIT-compiled code in basic
blocks, and compiled code in regions for the MIPS (1.) and CHILI (r.) architecture.

6 Conclusion

This work highlighted the basic design principles of the novel xADL processor
description language, which is based on a structural specification of the proces-
sor’s hardware organization. The instruction set abstraction, even though not
described explicitly, is provided by an easy to follow extraction algorithm that
provides a behavioral view of the processor. Due to the used abstractions and
types, xADL specifications are short and comprehensible compared to other ap-
proaches.

Experiments have shown that the structural and behavioral view provided by
an xADL processor model allows the automatic generation of competitive soft-
ware development tools. It is possible to derive an optimizing compiler backend,
which generates fast and compact code for the modeled processor that nearly
reaches the quality of hand-crafted compilers. Similarly, accurate simulation tools
can be derived that use mixed interpretation and dynamic binary translation of
basic blocks and regions to improve simulation speed.

References

1. Brandner, F.: Compiler Backend Generation from Structural Processor Models.
PhD thesis, Institut fiir Computersprachen, Technische Universitéit Wien (2009)

2. Brandner, F., Ebner, D., Krall, A.: Compiler generation from structural architec-
ture descriptions. In: CASES ’07: Proceedings of the 2007 International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems. (2007) 13-22

3. Brandner, F.: Completeness of instruction selector specifications with dynamic
checks. In: COCV ’09: 8th International Workshop on Compiler Optimization
Meets Compiler Verification. (2009)

4. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: CGO ’04: Proceedings of the International Symposium
on Code Generation and Optimization. (2004) 75-86

5. Brandner, F.: Fast and accurate simulation using the LLVM compiler framework.
In: RAPIDO ’09: 1st Workshop on Rapid Simulation and Performance Evaluation:
Methods and Tools. (2009)

6. Brandner, F.: Precise simulation of interrupts using a rollback mechanism. In:
SCOPES ’09: Proceedings of the 12th International Workshop on Software and
Compilers for Embedded Systems. (2009) 71-80

7. Fauth, A., Praet, J.V., Freericks, M.: Describing instruction set processors using
nML. In: EDTC ’95: Proceedings of the 1995 European Conference on Design and
Test. (1995) 503-507

8. Mishra, P., Dutt, N.: Processor Description Languages. Volume 1. Morgan Kauf-
mann Publishers Inc. (2008)

9. Van Praet, J., Lanneer, D., Geurts, W., Goossens, G.: Processor modeling and code
selection for retargetable compilation. ACM Transactions on Design Automation
of Electronic Systems (TODAES) 6(3) (2001) 277-307

10. Pees, S., Hoffmann, A., Zivojnovié, V., Meyr, H.: LISA — machine description
language for cycle-accurate models of programmable DSP architectures. In: DAC
’99: Proceedings of the 36th Conference on Design Automation. (1999) 933-938

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Ceng, J., Hohenauer, M., Leupers, R., Ascheid, G., Meyr, H., Braun, G.: C compiler
retargeting based on instruction semantics models. In: DATE ’05: Proceedings of
the Conference on Design, Automation and Test in Europe. (2005) 1150-1155
Hohenauer, M., Engel, F., Leupers, R., Ascheid, G., Meyr, H.: A SIMD optimiza-
tion framework for retargetable compilers. ACM Transactions on Architecture and
Code Optimization (TACO) 6(1) (2009) 1-27

Nohl, A., Braun, G., Schliebusch, O., Leupers, R., Meyr, H., Hoffmann, A.: A
universal technique for fast and flexible instruction-set architecture simulation. In:
DAC ’02: Proceedings of the 39th Conference on Design Automation. (2002) 22-27
Gao, L., Kraemer, S., Leupers, R., Ascheid, G., Meyr, H.: A fast and generic
hybrid simulation approach using C virtual machine. In: CASES ’07: Proceedings
of the 2007 International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems. (2007) 3-12

Halambi, A., Grun, P., Ganesh, V., Khare, A., Dutt, N., Nicolau, A.: EXPRES-
SION: A language for architecture exploration through compiler/simulator retar-
getability. In: DATE ’99: Proceedings of the conference on Design, Automation
and Test in Europe. (1999) 485-490

Halambi, A., Shrivastava, A., Dutt, N., Nicolau, A.: A customizable compiler
framework for embedded systems. In: SCOPES ’01: Proceedings of the 5th Inter-
national Workshop on Software and Compilers for Embedded Systems. (2001)
Reshadi, M., Mishra, P., Dutt, N.: Hybrid-compiled simulation: An efficient tech-
nique for instruction-set architecture simulation. ACM Transactions on Embedded
Computing Systems (TECS) 8(3) (2009) 1-27

Mishra, P., Dutt, N.: Specification-driven directed test generation for validation
of pipelined processors. ACM Transactions on Design Automation of Electronic
Systems (TODAES) 13(3) (2008) 1-36

Marwedel, P.: The MIMOLA design system: Tools for the design of digital pro-
cessors. In: DAC ’84: Proceedings of the 21st Conference on Design automation.
(1984) 587-593

Leupers, R., Elste, J., Landwehr, B.: Generation of interpretive and compiled
instruction set simulators. In: ASP-DAC ’99: Proceedings of the 1999 Asia and
South Pacific Design Automation Conference. (1999) 339-342

Marwedel, P., Leupers, R.: Instruction set extraction from programmable struc-
tures. In: EURO-DAC ’94: Proceedings of the Conference on European Design
Automation. (1994) 156-161

Leupers, R., Marwedel, P.: Retargetable generation of code selectors from HDL
processor models. In: EDTC ’97: Proceedings of the 1997 European Conference on
Design and Test. (1997) 140-144

Akaboshi, H., Yasuura, H.: Behavior extraction of MPU from HDL description.
In: APCHDL ’94: Proceedings of the 2nd Asia Pacific Conference on Hardware
Description Languages. (1994) 67-74

Bondy, J.A., Murty, U.S.R.: Graduate texts in mathematics - Graph theory. Vol-
ume 244. Springer (2007)

Patterson, D.A., Hennessy, J.L.: Computer Organization & Design: The Hard-
ware/Software Interface. 3rd edn. Morgan Kaufmann (2007)

Azevedo, R., Rigo, S., Bartholomeu, M., Araujo, G., Araujo, C., Barros, E.: The
ArchC architecture description language and tools. International Journal of Par-
allel Programming 33(5) (2005) 453-484

