
A Comparative Study of the Precision of Stack Cache
Occupancy Analyses

Amine Naji
U2IS

ENSTA ParisTech
Université Paris-Saclay

amine.naji@ensta-paristech.fr

Florian Brandner
LTCI, CNRS

Telecom ParisTech
Université Paris-Saclay

florian.brandner@telecom-paristech.fr

ABSTRACT

Utilizing a stack cache in a real-time system can aid pre-
dictability by avoiding interference between accesses to reg-
ular data and stack data. While loads and stores are guar-
anteed cache hits, explicit operations are required to man-
age the stack cache. The (timing) behavior of these oper-
ations depends on the cache occupancy, which has to be
bounded during timing analysis. The precision of the com-
puted occupancy bounds naturally impacts the precision of
the timing analysis. In this work, we compare the precision
of stack cache occupancy bounds computed by two different
approaches: (1) classical inter-procedural data-flow analy-
sis and (2) a specialized stack cache analysis (SCA). Our
evaluation, using MiBench benchmarks, shows that the SCA
technique usually provides more precise occupancy bounds.

Categories and Subject Descriptors

F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program analysis; C.3 [Special-
Purpose and Application-Based Systems]: Real-time
and embedded systems

Keywords
Program Analysis, Stack Cache, Real-Time Systems

1. INTRODUCTION
To meet the timing constraints in systems with hard dead-

lines, the worst-case execution time (WCET) of software
needs to be bounded. Many features of modern processor
architectures, such as caches, improve the average perfor-
mance, but have an adverse effect on WCET analysis. Time-
predictable computer architectures [7] thus propose alterna-
tive designs that are easier to analyze, particularly focusing
on the memory hierarchy [5, 6]. One such design is the stack
cache [1, 8], i.e., a cache for stack data complementing a reg-
ular data cache. This promises improved analysis precision,
since unknown access addresses can no longer interfere with
stack accesses (and vice versa). Secondly, the stack cache
design is simple and thus easy to analyze [4].

The cache can be implemented using a circular buffer us-
ing two pointers: the memory top pointer MT and the stack
top pointer ST. The ST points to the top element of the
stack and data between ST and MT is present only in the
cache. The remaining data above1 MT is available only in
main memory. In contrast to traditional caches, memory
accesses are guaranteed hits and the compiler (programmer)
is responsible to enforce that all stack data is present in the
cache when needed using three stack control instructions:
reserve (sres), free (sfree), and ensure (sens). The worst-
case (timing) behavior of these instructions only depends on
the worst-case spilling and filling of sres and sens respec-
tively, which can be bounded by computing the maximum
and minimum cache occupancy [4], i.e., the value of MT−ST.

Stack cache occupancy bounds, and the associated spill/fill
costs can be computed using the recently proposed Stack
Cache Analysis (SCA) [4]. The approach splits the analysis
problem into several smaller steps, using context-insensitive
data-flow analyses to capture function-local properties and
longest/shortest path searches on the call graph to model
calling contexts. An alternative solution would be to simply
model the problem as a traditional inter-procedural data-
flow analysis (iDFA) [2]. This appears simpler to imple-
ment, as the various steps of SCA are modeled in a single
concise analysis. However, the impact on analysis precision
has not been investigated so far. Indeed, overestimating the
occupancy can increase the spill costs associated with sres

instructions, while underestimating the occupancy can in-
crease the fill costs of sens instructions. This work thus
compares the precision of the two analysis approaches with
respect to the attained max./min. occupancy bounds.

The paper is structured as follows: Section 2 provides
some background related to the stack cache as well as static
program analysis. We then present the two approaches to
analyze the occupancy bounds for the stack cache. The anal-
yses are evaluated in Section 4 before concluding.

2. BACKGROUND
The stack cache is implemented as a ring buffer with two

pointers [1]: stack top (ST) and memory top (MT). The top of
the stack is represented by ST, which points to the address of
all stack data either stored in the cache or in main memory.
MT points to the top element that is stored only in main
memory. The stack grows towards lower addresses.

The difference MT−ST (occupancy) represents the amount
of occupied space in the stack cache, which cannot exceed
the size of the cache’s memory |SC|, thus 0 ≤ MT−ST ≤ |SC|.

1We assume that the stack grows towards lower addresses.

13

The stack control instructions manipulate the two stack point-
ers and initiate memory transfers to/from the cache to main
memory, while preserving the equation from above. A brief
summary is given below, details are available in [1]:

sres k: Subtract k ≤ |SC| from ST. If the cache size is
exceeded, a memory spill is initiated to decre-
ment MT until MT− ST ≤ |SC|.

sfree k: Add k ≤ |SC| to ST. If this would result in
MT < ST, MT is set to ST. Memory is not accessed.

sens k: Ensure that the occupancy is larger than
k ≤ |SC|. If this is not the case, a memory fill
is initiated to increment MT until MT− ST ≥ k.

The compiler manages the stack frames of functions quite
similar to other architectures with exception of the ensure
instructions. For brevity, we assume a simplified placement
of these instructions. Stack frames are allocated upon en-
tering a function (sres) and freed immediately before re-
turning (sfree). A function’s stack frame might be (par-
tially) evicted from the cache during calls. Ensure instruc-
tions (sens) are thus placed immediately after each call. We
also restrict functions to only access their own stack frames.2

2.1 Data-Flow Analysis
Data-flow analysis (DFA) is used to gather information

about a program without executing it. A DFA is a tuple
A = (D, T,⊓), where D is an abstract domain (e.g., values
of stack pointers), transfer functions Ti : D → D in T model
the impact of individual instructions i on the domain, and
⊓ : D × D → D is a join operator. Together with a CFG
an instance of an (intra-procedural) DFA can be formed,
yielding a set of data-flow equations. The join operator (⊓)
and transfer function (T) are instantiated to form IN(i) and
OUT(i) functions, which are associated with an instruction
i and represent values over D. The resulting (recursive)
equations are finally solved by iteratively evaluating these
functions until a fixed-point is reached [2].

Inter-procedural analyses additionally consider the call re-
lations between functions. In this case, additional data-flow
equations are constructed modeling function calls and re-
turns [2]. Often these analyses are context-sensitive, i.e., the
analyses distinguish between (bounded) chains of functions
calls. Such a chain of nested function calls is then called a
call string, which defines a calling context that can be dis-
tinguished from other parts of the program calling the same
function. Call strings typically have a length limit. The
longer the call strings, the higher the ability to distinguish
different contexts. Consequently, the analysis results are
more precise. Increasing the call string length may also in-
crease the computation complexity and the required memory
footprint since additional data-flow equations are created for
each context. A call string length of zero corresponds to a
context insensitive data-flow analysis.

3. CACHE OCCUPANCY ANALYSES
We present how to compute the cache’s occupancy, which

ca be used to bound timing, using an inter-procedural data-
flow analysis (iDFA) and a tailored stack cache analysis.

3.1 Inter-procedural Data-flow Analysis
The domain of the iDFA approach are positive integer val-

ues in D = {0, . . . , |SC|}, where |SC| represents the stack

2Data that is larger than the stack cache or that is shared
can be allocated on a shadow stack outside the stack cache.

cache’s size. Since both, the min. and the max. occupancy
are needed, two analysis problems have to be defined. We
will start with the max. occupancy. The analysis starts at
the program entry, where the occupancy is assumed to be
0. It then propagates occupancy values along all execution
paths, while considering the effect of the instructions along
the path. Only the stack control instructions (see Section 2)
can have an impact: (1) sres instructions increase occu-
pancy by their argument k, (2) sens instructions make sure
that the occupancy is larger than k, and (3) sfree instruc-
tions reduce the occupancy by k. The resulting data-flow
equation for an instruction i are given below:

OUTOcc(i) =

min(INOcc(i) + k, |SC|) if i = sres k

max(INOcc(i), k) if i = sens k

max(0, INOcc(i)− k) if i = sfree k

INOcc(i) otherwise

The occupancy right before an instruction (due to control-
flow joins) is derived by taking the maximum occupancy
from any of its predecessors (Preds), except for the pro-
gram’s entry. In the case of inter-procedurual analysis, pre-
decessors can also be calls or returns from other functions:

INOcc(i) =

{

0 if i = entry,

maxs∈Preds(i)(OUTOcc(s)) otherwise

The data-flow equations to compute the min. occupancy
are very similar. Only the max operator of the INOcc(i)
equation needs to be replaced by the min operator. Context
sensitivity can easily be ensured by adding context informa-
tion to the data-flow equations of the respective instructions.

This model is also implemented and validated in Absint’s
aiT timing analyzer tool [10].

3.2 Stack Cache Analysis
The stack cache analysis (SCA) [4] relies on similar DFA

analyses. However, instead of a single, large inter-procedural
DFA, several smaller function-local analyses are used. The
impact of other functions at function calls in these DFAs
are modeled through minimum and maximum displacement
values, which represent the min./max. amount of data po-
tentially evicted from the the stack cache during a func-
tion call. Displacement values are computed by perform-
ing shortest/longest path search on program’s call graph
whose weights represent the reserved stack space k. Com-
plex context-sensitive analysis thus can be avoided.

The analysis is based on the observation that the occu-
pancy at any instruction within a function can be computed
from the occupancy at the function’s entry and the displace-
ment of all the potential function calls on any path leading
to the particular instruction. The min. occupancy thus can
be computed by considering the initial min. occupancy and
the max. displacement. Likewise, the min. displacement
allows to derive the max. occupancy.

The program is thus analyzed in several steps. First,
the min. and max. displacement of each function is com-
puted using longest/shortest path searches on a weighted
call graph. Next, local DFAs are performed to compute lo-
cal lower and local upper bounds on the min. and max. oc-
cupancy within each function assuming a stack cache that
is full at function entry. Finally, the concrete occupancy
bounds are computed for each function considering the oc-
cupancy bounds at its respective callers and the previously

14

computed local occupancy bounds. The final phase can de-
liver fully context-sensitive information, if so desired.

This analysis was implemented and validated against run-
time measurements in previous work [8].

4. EXPERIMENTS
We evaluated both approaches using the LLVM-based com-

piler framework of the Patmos processor [9], which comes
with a stack cache and its associated control instructions.
Benchmarks of the MiBench benchmark suite [3] were com-
piled using optimizations (-O2) and subsequently analyzed
using both techniques, assuming a stack cache size of 256 byte,
4 byte cache blocks, and a contexts string length of 0. Fig-
ure 1 shows the percentage of functions where the occupancy
bound at function entry of SCA was either greater, equal,
or smaller than that computed by iDFA.

ba
si
cm

at
h

bi
tc
nt

s

cj
pe

g

cr
c

32

cs
us

an

di
jk
st
ra

sm
al
l

dj
pe

g

dr
ijn

da
el eb

f fft

la
m

e

pa
tri

ci
a

qs
or

t

ra
w
da

ud
io sa

y

se
ar

ch
sm

al
l
sh

a

0

25

50

75

100

m
a

x
.

O
c

c
.

m
in

.
O

c
c

.

P
e

rc
e

n
t

greater equal smaller

Figure 1: Percentage of occupancy bounds (max./min) by
SCA being (1) greater, (2) equal, or (3) smaller than iDFA.

When considering max. occupancy, SCA is less precise
when the delivered bound is greater, i.e., the lower portion
of the first bar of each benchmark should be as small as
possible. Indeed, these cases are rare (< 3% over all bench-
marks), while SCA is often more precise (34% on average).

The situation is inverse when considering min. occupancy.
Here, SCA is less precise when the delivered bounds is smaller.
This would be represented by the upper portion of the sec-
ond bar. However, this appears for one function of the three
benchmarks tiff2bw, tiffdither, and tiffmedian respec-
tively. SCA is usually even more precise (52% on average).

We repeated these experiments for iDFA with other call
string lengths (1, 2, 3, 10 and 20). However, we only ob-
served minor improvements for max. occupancy and almost
no change for min. occupancy. The bitcnts benchmark, for
instance, has a maximum call depth of 20, ignoring recur-
sive functions, and still does not show relevant improvements
with call strings of length 20 due to the impact of recursion
elsewhere as explained later.

Overall, SCA is almost always as precise or even more
precise than iDFA. The results are similar, albeit less pro-
nounced, with longer context string lengths.

4.1 Discussion
A closer look reveals that the imprecision of iDFA is mostly

due to chains of function calls, whose lengths exceed the
analysis’ context string length (e.g., due to recursion). Let
us first examine such situations for max. occupancy.

The problem of iDFA with long call chains is that calling
contexts are no longer distinguished, i.e., all information is
merged in a single calling context. The occupancy informa-
tion computed for these regions is, as expected, rather pes-
simistic, leading to considerable overestimation of the max.
occupancy. Even worse, the overly conservative occupancy
level is propagated out of these merged calling contexts along
control-flow edges of function returns. Recall that the meet
operator for this analysis is the max operator. This means
that the conservative max. occupancy bounds are even fur-
ther propagated, way beyond the merged calling contexts
that initially caused the imprecision. This particularly ap-
plies to recursive functions.

Example 1. Figure 2 shows an example illustrating this sit-
uation. Assume that function A consists of one basic block
and that function B is called before function D. Since B and
C recursively call each other, their respective max. occu-
pancy grows until they reach the stack cache size during
the fixed-point computation of iDFA (unless unbounded call
strings are used). The transfer functions for the return in-
structions then propagate the maximum to their respective
callers, which leads to a max. occupancy that is close to the
stack cache size right after the function call to C within B

(and vice verse). A similarly high occupancy is propagated
out of the recursion to the instruction succeeding the call
from A to B. The high occupancy might actually occur within
the recursion. However, the actual occupancy at this point
is much lower. The overestimation is further propagated to
function D. Resulting in overly conservative analysis results
there, even when the context string length is not exceeded.

A B C

D

Imprecision

Figure 2: Imprecision propagated out of recursive functions
when computing max. occupancy with iDFA.

Patmos’ newlib C library contains (potentially) recursive
functions in the start-up code of each program. iDFA thus
assumes that the stack cache is filled up entirely before even
reaching the program’s main function. Since the computed
max. occupancy at main is considerably overestimated, im-
precision is propagated throughout large portions of the con-
sidered benchmarks. An important observation here is that
increasing the call string length will not help fixing this prob-
lem, as the precision limit will be reached before the end
of the recursion (unless infinite call strings are used). The
SCA approach does not face this problem. Instead of rely-
ing on the occupancy propagated outwards by the recursive
functions, it simply relies on their displacement values. A
possible fix for this problem for iDFA would be to memo-
rize the occupancy level before each call. The occupancy
propagated backwards from a return then always has to be
smaller than the memorized value. However, the potentially
large displacement of the called function is ignored, which
may still lead to considerable overestimation.

A similar problem arises for non-recursive programs with
deep call chains containing two subsequent function calls
that eventually invoke the same function. iDFA then be-
haves similar to recursive programs as shown in Figure 3.

Example 2. Assume that, in this example, the function call
from B to C appears before the call from B to D. Then, iDFA

15

initially propagates an accurate occupancy level through the
calls from A to B and finally to C. At first, even the occu-
pancy at D is computed correctly. However, due to the deep
call chain leading up to C, both calling contexts for D (orig-
inating from B or D) are merged. Due to the intermittent
execution of D the occupancy is higher for this call chain.
This increases the max. occupancy of C. The increase is
subsequently propagated out of C to both of its callers. This
incidentally increases the occupancy after the call to C within
B. Which then again increases the occupancy at the follow-
ing call to D. This leads to a feedback loop similar to that
seen for recursive functions in the previous example.

A B D

C

Figure 3: Feedback loop enforcing imprecision of non-
recursive functions for iDFA computing max. occupancy.

Still, iDFA can be more precise than SCA (as shown by
or results). This is explained by an underestimation of the
min. displacement. As mentioned before, the min. displace-
ment is obtained by performing a shortest path search on the
program’s call graph. The path here represents nested func-
tion calls and its length the minimal amount of stack space
required in the stack cache by the functions stack frames
respectively. Now, consider a case where two leaf functions3

are called within a single basic block, i.e., when one function
is called the other function is called too. In this case, the
minimal path search will chose the function with the smaller
stack frame to compute the min. displacement. However,
since both functions are called, the actual min. displacement
is determined by the larger stack frame. This situation can,
of course, also appear in more general forms. The imprecise
min. displacement ultimately leads to an underestimation of
the max. occupancy observed in our experiments. However,
this appears to be of minor importance in practice.

For min. occupancy iDFA appears to be even more im-
precise. For one, this is explained by the fact that the max.
displacement (in contrast to the min. displacement) can be
computed precisely. SCA’s min. occupancy thus does not
suffer from inherent imprecision. In addition, iDFA spreads
imprecision as before in the presence of deep call chains.
This may even lead to feedback loops in non-recursive pro-
grams as described before. Two observations are particu-
larly interesting at this point. While the iDFA approach
is amenable to improvements by memorizing the max. oc-
cupancy before calls, such a fix appears to be impossible
here. The problem is that a lower bound cannot be estab-
lished as easily for function calls when the min. occupancy is
computed. Secondly, it appears that the precision could be
improved using very long call strings (ignoring cases incur-
ring recursion). This, however, leads to a paradox situation:
the precise computation of the min. occupancy would then
require high levels of context sensitivity in order to com-
pute the worst-case filling at sens instructions. The filling,
however, only depends on the nesting of functions called
right before the ensure and thus is by its nature context-
insensitive. The SCA approach exploits precisely this prop-
erty, and evidently achieves excellent results.

3Leaf functions do not call any other function.

5. CONCLUSION
We compared the precision of stack cache occupancy bounds

computed by two different approaches. On the one hand,
the iDFA approach, which models the problem as a tra-
ditional inter-procedural data-flow analysis. On the other
hand, the SCA approach that splits the analysis problem
into several smaller steps, using context-insensitive data-
flow analyses along with longest/shortest path searches on
the call graph. Our experiments revealed that iDFA suffers
from imprecision in nearly all benchmarks of the MiBench
benchmark suite. The lack of precision is due to chains of
function calls, whose lengths exceed the analysis’ context
string length (e.g., due to recursion). As a future work, we
plan to compare the efficiency (i.e computation complexity
and required memory footprint) of iDFA and SCA.

Acknowledgments

This work was supported by a grant (2014-0741D) from Dig-
iteo France: “Profiling Metrics and Techniques for the Op-
timization of Real-Time Programs” (PM-TOP).

6. REFERENCES
[1] S. Abbaspour, F. Brandner, and M. Schoeberl. A

time-predictable stack cache. In Proc. of the Workshop
on Software Technologies for Embedded and
Ubiquitous Systems. 2013.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.
Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 2nd edition, 2006.

[3] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. MiBench: A free,
commercially representative embedded benchmark
suite. In Proc. of the Workshop on Workload
Characterization, WWC ’01, 2001.

[4] A. Jordan, F. Brandner, and M. Schoeberl. Static
analysis of worst-case stack cache behavior. In Proc. of
the Conf. on Real-Time Networks and Systems, pages
55–64.ACM, 2013.

[5] S. Metzlaff, I. Guliashvili, S. Uhrig, and T. Ungerer. A
dynamic instruction scratchpad memory for embedded
processors managed by hardware. In Proc. of the
Architecture of Computing Systems Conference, pages
122–134. Springer, 2011.

[6] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee.
PRET DRAM controller: Bank privatization for
predictability and temporal isolation. In Proc. of the
Conference on Hardware/Software Codesign and
System Synthesis, pages 99–108. ACM, 2011.

[7] C. Rochange, S. Uhrig, and P. Sainrat.
Time-Predictable Architectures. ISTE Wiley, 2014.

[8] S.Abbaspour, A. Jordan, and F. Brandner. Lazy
spilling for a time-predictable stack cache:
Implementation and analysis. In Proc. of the
International Workshop on Worst-Case Execution
Time Analysis, pages 83–92. OASICS, 2014.

[9] M. Schoeberl, P. Schleuniger, W. Puffitsch,
F. Brandner, C. Probst, S. Karlsson, and T. Thorn.
Towards a Time-predictable Dual-Issue
Microprocessor: The Patmos Approach, volume 18,
pages 11–21. OASICS, 2011.

[10] T-CREST. Report on architecture evaluation and
WCET analysis. Technical report, 2013.

16

