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Abstract

We propose VoxMorph, a new interactive freeform deformation tool for high resolution voxel grids. Our system
exploits cages for high-level deformation control. We tackle the scalability issue by introducing a new 3-scale defor-
mation algorithm composed of a high quality as-rigid-as possible deformation at coarse scale, a quasi-conformal space
deformation at mid-scale and a new deformation-adaptive local linear technique at fine scale. The two first scales are
applied interactively on a visualization envelope, while the complete full resolution deformation is computed as a
post-process after the interactive session, resulting in a high resolution voxel grid containing the deformed model. We
tested our system on various real world datasets and demonstrate that our approach offers a good balance between
performance and quality.

1. Introduction

The fidelity of 3D digital models, obtained from real
objects, is increasing with the volumetric acquisition
systems’ accuracy. Beyond their use for medical di-
agnostics, they also allow to perform physical simula-
tions (e.g., digital dosimetry for radiowave effects stud-
ies) and are instrumental in body-centric engineering
design (e.g., prothesis design) and virtual reality (e.g.,
surgery training). These new applications all exploit the
full volumetric extend of such data, beyond the classi-
cal surface capture setups. In practice, these datasets
are generated via magnetic resonance imaging (MRI)
or scanners and are represented as large, high resolu-
tion voxel grids (also called 3D images). In particular,
an increasing number of high resolution full body 3D
medical images have been generated recently, such as in
the context of the Visible Human and Virtual Population
projects. These models may be provided in raw format
(i.e., 3D scalar or vector fields) or undergo specific seg-
mentation algorithms, leading to quantized voxel grids
indexing k components (e.g., one per organ) as illus-
trated in Figure 1.

Unfortunately, high quality deformation methods are
usually not linear and require costly iterative solving
processes, even on small models. Moreover, they are
often defined on surface or volume meshes and cannot
be applied directly to voxel grids. In many scenarios,
offline deformation computation is not an option – since
the user might need to explore the space of possible
shapes interactively.

Figure 1: Typical examples of input segmentated voxel grids.

In this paper, we propose a new interactive sys-
tem, called VoxMorph, that allows to perform quasi-
conformal deformations of high resolution voxel grids
with a low computation time. The goal is to provide
high quality results suitable for physical simulation such
as SAR measures on real datasets (i.e., segmented full
human body images) for various poses or as a plausi-
ble input for heavier, physics-based deformation frame-
works. The quasi-conformality and the scalability of the
deformation are critical properties of VoxMorph, espe-
cially in the context of medical data. Applying defor-
mations to typical high-resolution datasets (several hun-
dreds of millions of voxels) would take several hours,
even on a powerful work station. Therefore, we intro-
duce a deformation adaptive linearization scheme, that
reduces the full processing time by several orders of
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magnitude, enabling the typical try-and-test loop un-
avoidable in any modeling session. Furthermore, our
system behaves intuitively by preserving local geomet-
ric features and global shape structures, while providing
a real time feedback to control the deformation.

From the user’s point of view, VoxMorph is a cage-
based freeform deformation system, exploiting a sim-
ple (coarse) cage embedding the voxel model. This
cage acts as the unique deformation control interface
and is classically represented as a closed polygonal sur-
face mesh. The shape can be edited by moving selected
handles on the cage and freezing others.

From a technical point of view, VoxMorph is a 3-
scale deformation algorithm using suitable deformation
methods at different scales. At coarse scale, a non-linear
variational method allows to control the cage’s shape
using a few vertex constraints only while solving for
all others in an as-rigid-as possible fashion. Such a
behavior is known to be the most intuitive in interac-
tive shape deformation [1, 2]. As the cage vertex count
is typically low (e.g., a few hundreds), real time per-
formances are preserved. At medium scale, a linear
quasi-conformal space deformation method is used to
transfer the cage modification to its inner space while
locally preserving angles and distances. Here, the de-
formation can be evaluated smoothly on several tens of
thousands of points interactively. At fine scale, all the
actual input voxels need to be deformed but comput-
ing space deformation coordinates for each single voxel
is prohibitive. Therefore we propose a new motion-
adaptive linear approximation by the means of a tetra-
hedral transfer mesh, deformed at medium scale, and
defining a linear (barycentric) deformation on a per-
tetrahedron basis. This adaptive approximation pro-
vides a fast rasterization process for the input full res-
olution model in the transformed space defined by the
cage deformation. Although we illustrated this paper
using regular voxel grids, our method is cage-based and
therefore compatible with any discrete volumetric data
(e.g., adaptive, point-sampled and even meshes).

2. Background on Interactive Shape Deformation

Interactive freeform deformation (FFD) methods can
be classified into two main categories: surface deforma-
tion and space deformation.

Surface Deformation. Linear variational surface de-
formation methods offer a flexible handle-based FFD
framework. The user manipulates a typically sparse set
of positional and/or rotational constraints (called han-
dles) and the surface is updated accordingly.

Efficient for simple deformations, linear methods
cannot cope with large shape modifications [3], and
introduce many visible artifacts. Therefore non-linear
variational approaches have been introduced to offer
better detail and volume preservation at the cost of scal-
ability and, often, implementation easiness. This in-
cludes, the PriMo system [4], its extention to rigid cells
[5] and the As-Rigid-As-Possible (ARAP) surface de-
formation system [6].

Space Deformation. The idea of defining the deforma-
tion of an object by the means of its embedding space
has been introduced by Sederberg et al. [7]. With-
out any constraint on the actual model representation
(e.g., mesh, point set), such techniques suppose the pre-
liminary creation of a coarse, closed polygonal surface
mesh – called cage – surrounding the object to deform.
At initialization time, all the points of the model are
expressed as a weighted combination of cage vertices.
These weights are coordinates in the cage. At runtime,
when a user manually moves the cage vertices, all the
points are updated by multiplying their original cage co-
ordinates by the current cage vertices. Good coordinate
systems ensure at least smoothness and thus allow users
to control the shape of a potentially complex object by
only editing its cage. Among the popular cage coordi-
nate systems, we can cite the Mean Value Coordinates
(MVC) [8] which smoothly interpolate vertex data (e.g.,
positions) using arbitrary, closed manifold cages but
may not preserve the model features; the Green Coordi-
nates (GC) [9] which offer shape-preservation – actually
similar to surface deformation techniques – by consid-
ering both cage vertex positions and cage face normals;
and the Harmonic Coordinates [10] which are defined
as the solution of a Laplace equation with boundary
conditions on the cage itself. Note also, that cage co-
ordinates can be combined with a skeleton to control
the deformation using a sparse set of constraints [11].

Combined Deformation. Recent works have tackled the
problems stemming from both categories by combining
surface and space deformation. For instance, Borosan
et al. [12] proposed to perform surface deformation by
using ARAP on a subsampled model before transfer-
ring the resulting deformation to the full resolution one
using MVC coordinates. Similarly, [13] proposed to
combine an ARAP deformation and a skeleton to better
preserve volume. Unfortunately, such solutions cannot
scale above a few tens of thousands of samples whereas
the typical size of voxel grids usually exceeds hundreds
of millions of samples.
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Voxel Grid Deformation. Looking at the particular case
of voxel grids, most existing techniques make only use
of the original space deformation technique by Seder-
berg et al. [7] to get plausible poses of 3D segmented
medical images in order to perform SAR analysis for
instance. Nagaoka et al. [14] represent the segmented
voxel grid as an hexahedral mesh that is rasterized af-
ter the cage-based deformation. Skeleton-based volume
deformation methods have also been used in the con-
text of 3D medical images [15]: a mesh representing
the outer boundary of the voxel grid is deformed using
a manually defined skeleton and the final 3D image is
then computed using a mapping and a volume filling
algorithm. An alternative method based on a dummy
model deformation was proposed by Gao et al. [16].
In both cases, an interface allowing the user to spec-
ify the articulation angles is used. Unfortunately, both
methods impose a tedious model-specific manual pre-
process to get plausible deformations. In fact, most
medical images deformation used in today’s simulations
are still performed by cutting and pasting real or syn-
thetic limbs and organs with a tedious manual adjust-
ment at the junctions.

In the following, we focus on two recent techniques
which are instrumental in our approach.

As-Rigid-As Possible FFD. ARAP systems are defined
on a surface through an iterative process. In the first
step, rotation matrices are estimated for each vertex ac-
cording to the geometry of its 1-neighborhood. In the
second step, new vertex positions are found according to
the rotation matrices defined on the vertices and the ver-
tex positional constraints. This process is iterated until
convergence.

Quasi-conform FFD. GC express the position of a 3D
point η inside a triangular mesh P (i.e. cage) as a lin-
ear combination of its vertex positions and its triangle
normals:

η = F(η; P) =
∑
i∈IV

ϕi(η)vi +
∑
j∈IT

ψ j(η)n(t j)

with V = {vi}i∈IV ⊂ R3, the cage vertices, and T =

{t j} j∈IT , its triangular faces and n(t j) the outward face
normal of t j. ϕi(.) and ψi(.) are the cage coordinates.
The deformation induced by the deformed cage P′ –
with V′ = {v′i}i∈IV its vertices, T′ = {t′j} j∈IT′ its faces
– is defined as:

η→ F(η; P′) =
∑
i∈IV

ϕi(η)v′i +
∑
j∈IT

ψ j(η)s jn(t′j)

with {s j} j∈IT the stretch factor of t j insures scale invari-
ance.

Figure 2: A 3-scale deformation pipeline: the input voxel grid de-
formation process is controlled using a coarse cage with non-linear
ARAP deformation (left). When reaching a satisfying shape, the de-
formation is first transferred to a deformation-adaptive mid-resolution
volume mesh using GC (middle right). The full resolution voxel grid
is finally rasterized in its deformed space using the so-defined per-
simplex linear deformation (right).

3. VoxMorph

3.1. Overview

VoxMorph is a freeform deformation system for
voxel grids based on a 3-scale deformation procedure:

1. a non-linear variational deformation [6], operated
by the user on a coarse cage embedding the model

2. a linear global space deformation transferring the
the shape defined at lower scale in a quasi-
conformal way [9] to a mid-resolution visualiza-
tion surface for interactive rendering

3. a new local linear deformation technique transfer-
ring the shape modification from a mid-scale tetra-
hedral deformation-adaptive mesh, undergoing the
two previous steps, to the full resolution voxel grid
in an efficient 3D rasterization post-process.

The resulting voxel grid contains a deformed model
which can be used for simulation, visualization and vir-
tual reality (see Figure 2).

Figure 3: Visualization envelope: Starting from the input voxel
grid (left) a binary grid captures the foreground/background interface
(middle) from which a surface mesh is sampled for interactive visual
feedback (right).
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Figure 4: Deformation Cage: a dilated version of the fore-
ground/background binary grid (middle left) is meshed at its bound-
ary; the resulting surface is simplified (middle right) and used as the
interaction cage (right).

3.2. Preprocess

Our system runs on a 3D voxel grid G (e.g., medical
image), which defines a function I : N3 → E with E
being on a continuous (e.g., raw data) or discrete (e.g.,
post-segmentation) scale. By convention, null values
represent the background.

In order to provide the user with a high resolution vi-
sual feedback during interactive deformation, we start
by extracting the boundary of the foreground volume
(e.g., corresponding for instance to the skin of a full
body medical dataset). To do so, we generate a bi-
nary grid B from G with B[v] = 0 for null voxels and
B[v] = 1 elsewise. We extract a smooth mesh approx-
imation of the interface between the two labels using
a restricted Delaunay triangulation (RDT) with adap-
tive refinement as proposed by Boissonnat et al. [17].
We call the resulting visualization surface envelope (see
Figure 3) and will update it at each frame during inter-
action by applying the first two scales of our approach.
Note that this envelope has typically 3 orders of mag-
nitude less samples than the input high resolution voxel
grid.

Although the cage may be designed manually, in our
system we propose an optional automatic generation
process (see Figure 4). We reuse B and apply a su-
pervised dilatation to it to prevent artifacts occurring
when the cage is too close to the data. The interface
between the resulting domains and the background is
meshed again using a RDT before being simplified to a
prescribed resolution (typically few tens or hundreds of
vertices) using QEM simplification [18].

Last, we compute the GC encoding (see Section 2) of
the envelope relative to the cage. At each frame during
the modeling session, we transmit the cage deformation
to the envelope in a quasi-conformal way using GC de-
formation. Here, the intermediate envelope resolution

Figure 5: Interactive FFD: ARAP deformation performed on the
cage, with GC deformation transfer to the visualization envelope.

complies with GC complexity to preserve interactivity
at this stage. One interesting property of GC, compared
to other coordinate systems (e.g., MVC), is their good
space separation property: nearby components can un-
dergo very different deformations as long as cage faces
can be located between them (see Figure 6 left).

3.3. Interactive deformation

During interaction, the user controls the deformation
by manipulating cage vertices only. Indeed, moving
each cage vertex independently is a tedious task, even
for experienced users, and the result is often unpleas-
ant. Therefore, we provide the user with a higher level
mechanism by letting her specifying a few positional
constraints on the cage and solve for all the others using
ARAP (see Section 2). In particular, the user can spec-
ify fixed constraints and new positions to reach (green
and red spheres respectively in Figure 2) for an arbitrary

Figure 6: Comparison: Mean Value (MVC) versus Green (GC) coor-
dinates in our application context. Left: the cage proximity between
the arm and the hip leads to a strong distortion when deforming using
the MVC whereas GC offer a good separation of the space. Right:
Interpolating the coarse deformation with MVC exhibits ARAP dis-
torsions which are compensated by GC.
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subset of the cage vertices and the entire cage will un-
dergo a plausible motion fitting the constraints (exam-
ple Figure 5). The low number of cage vertices allows
to solve for ARAP interactively. The ARAP system can
be disabled at any time by the user to allow per-vertex
modeling.

Furthermore, the quasi-conformal property of GC
compensates for part of the distortions that can still
appear with ARAP (see Figure 6 right). The quasi-
conformal nature of the deformation is needed in the
context of medical image deformation, as the result is as
close as possible to what can be obtained with physics-
based deformations, using only a linear scheme. GC are
the only linear coordinates that ensure this property.

3.4. Full Resolution Deformation
While the combination of ARAP and GC can cope

with tens of thousands of samples, G is several orders
of magnitude larger. Not only does this prevent us from
using ARAP/GC interactively, but also the computation
of GC (with O(|P|) complexity for a single sample to
deform) is prohibitive, even as a postprocess performed
once the cage has reached a satisfactory shape. For in-
stance, the full deformation of the complete voxel grids
can take up to 5 hours and 20 minutes on the examples
we provide in Figure 9.

Therefore, we propose a third deformation scale, per-
formed after the interactive FFD session, which is local
and linear, and allows to quickly rasterize all input vox-
els in the deformed space. As ARAP/GC deformations
are smooth, they can be approximated, up to a target
level of accuracy, using a linear operator. We propose
to use an adaptive tetrahedral mesh – the transfer mesh
(TM) – generated in the inner volume of the cage, and
which both captures the ARAP/GC deformations and
transfers it linearly, on a per-tetrahedron basis, to its in-
ner space, providing quick deformation queries for any
fine voxel.

The TM ensures the correct rasterization of the tar-
get grid, without introducing holes in the result. Fur-
thermore, it captures the volume deformation in real-
time and allows to track volumetric measures (distor-
tion, stretch, ...) interactively. This feature is essential
for the user to control the quality of the on-going defor-
mation.

The key observation here is that linear deformation
transfer reproduces rigid motions effectively. Therefore,
the TM structure should adapt locally to quasi-rigid
deformations, i.e., each tetrahedron should be small
enough to bound non-rigidity in its motion. To do so,
we start by generating an initial TM to sample a defor-
mation error metric before refining the mesh structure

Figure 7: Transfer Mesh: an adaptive Delaunay tet-mesh undergoes
the ARAP/GC deformation defined interactively and transmits it lin-
early to the input voxel grid for a limited per-voxel computational
cost.

adaptively using a spatially varying sizing field. This
leads to a deformation-adaptive TM which is used in
a 3D rasterization process to output a deformed voxel
grid.

Initialization. We generate the initial TM by reusing B.
This time, we define the TM as an adaptive Delaunay
tetrahedrization restricted to the binary volume, subject
to a sizing field grid [19] F with the same resolution as
G so that F[v] prescribes a target tetrahedron size in the
vicinity of voxel v (see Figure 7). We initialize F to
a constant value trading intuitively speed for accuracy
(typically 5% of the voxel grid’s diagonal in our exper-
iments). The resulting TM is noted M = {S ,T } with
S = {si}i∈IS ⊂ |R

3, its vertices, and T = {t j} j∈IT , its tetra-
hedra indexed over S . The TM that is deformed using
ARAP/GC is noted M′ = {S ′,T }.

Deformation-Adaptive Meshing. Each tetrahedron ti of
M defines a basis Bti which is transformed into B′ti by
the ARAP/GC deformation. With B′ti = Bti Dti , the basis
change matrix Dti is defined as:

Dti = B′ti B
−1
ti .

Quick local variation of Dti in the volume indicates that
a linear interpolation would provide only poor approx-
imation quality. Therefore, we refine the TM itera-
tively using an adaptive meshing strategy (see Figure 8).
First, we compute Lti the Laplacian of the basis change
weighted by the tetrahedra volume:

Lti =

∥∥∥∑ j∈N(ti)(Dt j − Dti )v j

∥∥∥∑
j∈N(ti) v j

with N(ti) the 1-neighborhood of ti, v j the volume of
the neighbor j and ||.|| f the Frobenius norm. We mea-
sure a per-tetrahedron resizing factor αti from Lti and a
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Figure 8: Adaptive Linear Deformation Transfer: the Transfer
Mesh (right) is generated from a deformation-adaptive sizing field
(left).

threshold h as:

αti :=
{

1 if ||Lti || f < h
1/2 otherwise

Second, we compute a per-vertex smooth value:

α̃s j =

∑
ti∈N(s j) αti

card(N(s j))

withN(s j) the incident simplices of s j. Third, we com-
pute a per-voxel value α̂v using a barycentric interpola-
tion:

α̂v =

3∑
sk∈tv

λsk α̃k

with λsk the barycentric coordinates of the center of v in
the tetrahedron tv intersecting it. Note that the interpola-
tion of resizing factors is critical to avoid discretization
artifacts during remeshing. Last, we update F:

F[v] := F[v]α̂v

and update the TM accordingly. This process is iter-
ated until F converges or a prescribed TM resolution is
reached.

Barycentric Rasterization. The final step of this
third-scale deformation consists in computing the
actual output grid G′. We start by computing the
bounding box of the deformed cage and create G′ with
a voxel size similar to G. Then, we iterate over the TM
tetrahedra, and assign a label to the voxels contained
inside it. To do so, we compute the bounding box of
each tetrahedra t′i , then we iterate over the voxels in it:
for each voxel v′ that has not been visited, and is in t′i ,
we compute its barycentric coordinates in t′i and mul-
tiply them with the coordinates of the corresponding
tetrahedron ti in M to obtain a 3D position in the initial

space and a corresponding voxel v in G. Finally, we
set G′[v′] = G[v]. Once all the tetrahedra have been
processed, the voxels that have not been visited are set
to 0, since they are not in TM (i.e., background).

Finally, note that the construction of the TM we pre-
sented is generic and is not restricted to a particular un-
derlying deformation scheme.

4. Implementation and Results

We implemented our system in C++ with OpenGL
for rendering. We used CHOLMOD [20] as a Cholesky
solver and the CGAL library [19] for tetrahedral mesh
generation, surface meshing and simplification. Perfor-
mances were measured on an Intel Core2 Duo at 2.4
GHz with 8GB of main memory and a nVidia Quadro
FX580 device.

In Figure 9, we illustrate the deformation of four
voxel grids. The blue histograms represent the deviation
from a locally rigid deformation: the first one shows an-
gle distribution of genuine orthogonal pairs after defor-
mation (no distortion at 90◦) and the second the stretch
(no distorsion at 1). We can see that the resulting de-
formations are close to locally rigid ones, even under
strong motions, and that the stretch is minimized. Multi-
color histograms show the volume change on a per-label
basis after deformation. The global volume change is
bounded, in the worst case, to 11.6% for all the exper-
iments we conducted. These measures validate our 3-
scale approach, in particular the new adaptive fine-scale
stage. Table 1 summarizes the performance of our sys-
tem on the models from Figure 9 (and others). On the
largest model, a full resolution deformation can still be
obtained in less than 8 minutes, which is more than 50
times faster than a full GC deformation.

Model Voxels CV EV FPS TV CT

Hand 2 985k 263 2 545 50 9 879 28s
Head 4 792k 263 15 628 7.8 31 672 1m47
Arm 8 990k 95 6 264 28 15 314 56s
Thel. 122M 303 61 347 3. 78 789 4m17
Louis 412M 512 44 748 3. 168 712 7m55

Table 1: Performance table: with CV (resp. EV and TV) the cage
(resp. envelope and transfer mesh) vertex count, FPS the framerate
during interaction and CT the final full deformation postprocess time.
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Figure 9: Deformation of voxel grids using VoxMorph. The distance ratio and angles are calculated on the dual of the voxel grid. The errors
histograms indicate that the deformations are mostly conformal, and induce neither stretch nor angle distortions. The labels that endure large
volume changes are the ones with an originally very small volume: these variations come from unavoidable rasterization artifacts.
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5. Limitations & Future Work

Our deformation pipeline successfully generates high
quality deformations of high resolution voxel models
without resorting to full resolution meshing. As we
target general shape modeling scenarios, our system al-
lows for arbitrary deformations. If physically-based de-
formation is mandatory (e.g., posing applications), an
interesting venue for future work would be to combine
our 3-scale scalable approach with recent, computation-
ally demanding, material-aware methods [21]. Simi-
larly, while bending an arm is easier with a skeleton,
editing the morphology of a face is easier with our sys-
tem. In fact, a cage-based systems such as ours are
typically complementary to a skeleton-based one. Here
again, a 3-scale approach could be developed.

The (optional) automatic cage creation process raises
numerous interesting questions for future work. For in-
stance, how to handle two distinct components that are
too close, the dilatation step may not lead to a cage
allowing to manipulate them independently. Also, the
QEM simplification does not guarantee to still bound
the volume of interest. Fortunately, both cases can be
fixed by adjusting interactively the dilation factor, im-
posing manual editing of the cage structure only in very
rare cases. Still, high quality automatic cage creation is
an important direction for future work.

Currently, our system is limited to voxel grids fitting
in memory. Scaling up could be achieved by using com-
pressed representations or out-of-core/streaming envi-
ronments. Although existing spatial or surface deforma-
tion methods could be used to replace the two first scales
of our pipeline, our particular combination of ARAP
and GC seems to outperform consistently other choices
in the numerous experiments we conducted.

We mainly used our system for medical images but it
can also be used to deform other kind of volume data.
It is currently intensively used by physicists for editing
voxelized body models used in human-waves interac-
tions studies and digital dosimetry simulations, known
to be computed better on regular grids. This initial non-
expert user feedback indicates that our system can be
instrumental in other scenarios.

6. Conclusion

We have proposed VoxMorph, a 3-scale interactive
freeform deformation tool for voxel grids. By com-
bining a high quality non-linear deformation at coarse
scale, a quasi-conformal space deformation at mid-scale
and a new adaptive local linear deformation transfer
at fine-scale, our system allows to deform easily high

resolution voxel grids. VoxMorph provides a flexi-
ble yet predictable way for modifying volumetric data
and completes a more general methodological frame-
work that may include skeleton-based and physics-
based tools.
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