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Figure 1: 1: Unit vectors are grouped according to their spherical coordinates. 2: For each group (window), we apply a uniform
mapping that relocates subparts to the whole surface of the unit sphere. 3: To compress the vectors, we apply any existing
unit vector quantization with an improved precision.

ABSTRACT
We propose a new e�cient ray compression method to be used prior
to transmission in a distributed Monte Carlo rendering engine. In
particular, we introduce a new compression scheme for unorganized
unit vector sets (ray directions) which, combined with state-of-the-
art positional compression (ray origin), provides a signi�cant gain in
precision compared to classical ray quantization techniques. Given
a ray set which directions lie in a subset of the Gauss sphere, our
key idea consists in mapping it to the surface of the whole unit
sphere, for which collaborative compression achieves a high signal-
over-noise ratio. As a result, the rendering engine can distribute
e�ciently massive ray waves over large heterogeneous networks,
with potentially low bandwidth. This opens a way toward Monte
Carlo rendering in cloud computing, without the need to access
specialized hardware such as rendering farms, to harvest the latent
horsepower present in public institutions or companies.
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1 INTRODUCTION
Over the last decade, Monte Carlo rendering has become the de facto
standard in high quality visual special e�ects and computer anima-
tion productions [Christensen and Jarosz 2016]. This is mostly due
to its physical basis, its robustness and the large number of e�ects
accounted for by the single primitive encompassed in such meth-
ods: path tracing. In the mean time, the resolution of the generated
images and the typical complexity of the input 3D scene – including
geometry, materials and lighting conditions – have continuously
increased. To address this ever-growing demand on computational
horsepower, distributed Monte Carlo rendering engines appear as
a promising solution, in particular when, beyond tile-rendering
on the �nal image sensor, the 3D scene itself is distributed among
the nodes of a computing cluster. To do so, at rendering time, the
collection of rays that compose the sensor-scene-light paths are
sent to each compute node to determine whether intersections oc-
cur with each node-speci�c region of the scene [Kato and Saito
2002; Northam et al. 2013]. As Monte Carlo path tracing provides
a reasonable approximation of the rendering equation only at the
price of a high amount of such rays, data i.e., ray sets exchange
quickly becomes the main bottleneck of the entire image synthesis
process, even with high bandwidth. Similarly, others methods such
as distributed Photon mapping need to send a high amount of rays
(photons) between nodes and are penalized by available bandwidth
[Günther and Grosch 2014].

To solve this problem, one can use on-the-�y compression algo-
rithms such as LZ4 [Collet 2011], a popular on-the-�y compression
method for general data. This algorithm is lossless and extremely
fast, but provides only a low compression ratio (up to 2). More-
over, this dictionary-based algorithm does not work with �oating
point data e.g., ray position and direction in our scenario. To cope
with this problem, Lindstrom [2014] introduced a speci�c compres-
sion scheme for general �oating point data, which turns out to be
e�cient to compress the origins of the rays, but whose general-
ity prevents high compression ratios on the ray directions, with
their particular unit nature. Indeed, several quantization methods
have been developed to e�ciently compress such data. Cigolle et
al. [2014] provide a complete review of these methods. Since the



SA ’17 Technical Briefs, November 27–30, 2017, Bangkok, Thailand Sylvain Rousseau and Tamy Boubekeur

Figure 2: Unit vectors are grouped according to the most sig-
ni�cant bits of their discretization in spherical coordinates.

publication of this survey, Keinert et al. [2015] proposed an inverse
mapping for the spherical Fibonacci point set which has been used
in quasi-Monte Carlo rendering algorithms [Marques et al. 2013] for
the uniformity of their distribution over the surface of the sphere.

As introduced in their article, it is possible to exploit this inverse
mapping to quantize ray directions in a constant time. In particular,
our algorithm uses the coherence between groups of unit vectors to
improve the precision of all unit vectors quantization techniques.

2 ALGORITHM
2.1 Overview
The input for our algorithm is a set of unit vectors i.e., the directions
of a set of rays. In the �rst step (Sec. 2.2), we start by reordering
them based on their Gauss sphere parametrization to form win-
dows (groups) of spatially coherent vectors. These windows delimit
subparts of the unit sphere and are mapped to the whole surface of
the unit sphere using the mapping introduced in Sec. 2.3, which pre-
serves a uniform distribution to minimize the maximal error. Then,
we encode the unit vectors of each window by quantization, storing
the windows with the pattern de�ned in Sec. 2.5. The output of the
algorithm is made of both the array of compressed windows and
the array containing position indices of the vectors in the original
unit vector array. Since, in our target application, the order of rays
is not relevant during the interactions with the scene, this second
array will be kept by the master node of the cluster and used to
register the returned data in the correct path.

2.2 Grouping
Our compression algorithm for unit vector sets draws inspiration
from methods exploiting small windows (groups) of data to encode
samples as o�sets w.r.t. the window average. In the context of ren-
dering, the order in which rays are sent is not relevant, which o�ers
us an opportunity to reorganize them in a spatially coherent way to
maximize window sizes. Note that some rendering engines already
sort the rays during rendering [Eisenacher et al. 2013], which can
be partially exploited for our grouping step. Therefore, the �rst step
of our algorithm reorders the vector set by grouping them based on
their Gauss sphere parametrization. More precisely, the grouping
is done by building windows of vectors sharing the same N most
signi�cant bits in the Morton code of their discretized spherical
coordinates. Figure 2 shows a color coded representation of this
grouping. Here, the induced linear complexity in the number of

θ2 Θ

θ1dθ2

dθ1

Figure 3: Notations used in Sec.2.3

vectors motivates our choice against alternatives. In particular,
the clustering quality could be improved using spherical Fibonacci
point sets. However, this would signi�cantly increase compression
time, while we aim at providing on-the-�y data compaction. More-
over, this grouping gives us an easy way to compute the average
vector from any vector contained inside of the window. All vectors
in a window share the same N most signi�cant bits that we call
the key of the window. The Morton code of the average value of
the window is equal to key + ((∼ mask)/4) with mask being the
value with its N most signi�cant bits set to 1 and the others set to
0. With this grouping strategy, odd values of N give more uniform
windows and should be favored because of step e�ect.

2.3 Uniform Mapping
Our on-the-�y compression scheme is entirely based on a speci�c
quantization process. The best quantization to minimize the max-
imal error in the case of an unknown distribution is a uniformly
distributed point set over the space in which the data is de�ned. The
error is de�ned by the angle between the original and the decom-
pressed unit vector. However, in practice, the range of directions
associated with a local set of rays spans only a region of the Gauss
sphere. Therefore, we propose to use a uniform mapping, from a
region of the surface to the whole surface of the unit sphere.

In Fig. 3, we de�ne the notations that we use. We also de�ne in
Eq. 1 dS1 (resp. dS2) the red (resp. green) surfaces in Fig. 3. In Eq. 2,
we de�ne Scap , the surface of the spherical cap i.e., the region of
the sphere de�ned by all the points that form an angle with a given
vector which is smaller than a given threshold Θ. In the following,
we refer to the average unit vector as the vector at the center of the
surface of the window.

dS1 = 2πr2 sin(θ1)dθ1
dS2 = 2πr2 sin(θ2)dθ2

(1)

Scap = 2
∫
θ ∈[0,Θ]

πr2 sinθdθ

= 2πr2(1 − cosΘ)
(2)

We want to �nd a mapping such as:
dS1

Ssphere
=

dS2
Scap

(3)

The density can be rewritten as:

dS1
Ssphere

=
2πr2 sinθ1dθ1

4πr2
=

sinθ1dθ1
2

(4)
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dS2
Scap

=
2πr2 sinθ2dθ2
2πr2(1 − cosΘ)

=
sinθ2dθ2
1 − cosΘ (5)

We seek h : θ1 → θ2, a mapping function. Using Eq. 3:

sinθ2dθ2 =
1 − cosΘ

2
sinθ1dθ1 (6)

− d(cosθ2) =
1 − cosΘ

2
(−d(cosθ1)) (7)

cosθ2 =
1 − cosΘ

2
cosθ1 + c (8)

We de�ne h(0) = 0, a unit vector equal to the average that will be
mapped to itself. We obtain:

c = 1 − 1 − cosΘ
2

(9)

Then, we can compute θ2 with θ1:

cosθ2 = 1 +
1 − cosΘ

2
(cosθ1 − 1) (10)

θ2 = acos
(
1 − 1 − cosΘ

2
(1 − cosθ1)

)
(11)

Eq. 11 gives us the mapping from θ1 to θ2 as illustrated in Fig. 3.
This can be written as:

h(θ1) = acos
(
1 − 1 − cosθ1

k

)
with k =

2
1 − cosΘ (12)

The inverse function for decompression has the following form:

h−1(θ2) = acos(1 − k(1 − cosθ2)) (13)

Interestingly, as we can see in Eq. 13, the exact same mapping
function is used for compression and decompression, using k for
compression and 1

k for decompression.
With h providing a mapping from an angle to another angle,

we can apply this mapping to the unit vector directly. Let x be
the original unit vector, x′ the mapped one and P0 the normalized
average vector. Let’s de�ne:

l0 = acos < P0, x > (14)
l1 = h(l0) (15)

= acos
(
1 − 1− < P0, x >

k

)
(16)

We de�ne P1, a vector orthogonal to P0 in the same plane as x.

P1 =
x− < x, P0 > P0
| |x− < x, P0 > P0 | |

(17)

Using P0 and P1 as axes, x′ is de�ned as :

x′ = cos(l1)P0 + sin(l1)P1 (18)

which gives us the mapping from a point x to a point x′:

x′ = cP0 +
√
1 − c2P1 with c = 1 − 1− < P0, x >

k
(19)

This mapping can be easily implemented (List. 1). Its use on hemi-
spherical Fibonacci point set is shown in Fig. 4

Listing 1: C++ code for the uniform mapping
vec3 mapping ( vec3 & x , vec3 & p0 , doub le r a t i o )
{

doub le k = r a t i o ;
doub le d = dot ( x , p0 ) ;
vec3 p1 = n o r m a l i z e ( x − d ∗ p0 ) ;
doub le c = ( 1 − ( ( 1 − d ) / k ) ) ;
r e t u r n p1 ∗ s q r t ( 1 − ( c ∗ c ) ) + ( c ∗ p0 ) ;

Figure 4: Mapping applied to hemispherical Fibonacci point
sets. From left to right: original point set, mapping with k =
0.75, 0.5 and 0.25.

Window 1 ... Window n
N1 C1 1 ... C1 N1 ... Nn Cn 1 ... Cn Nn

Figure 5: Windows compression pattern. Ni (resp. Ci ) is the
number of compressed unit vectors (resp. the compressed
vectors) in the ith window.

}

2.4 Ratio
For a group (window) of points contained in a spherical cap S, the
parameter k in the uniform mapping (Eq. 19) must be set to the
value of the ratio between the length of the projection of S on the
−−→
OP0 axis (with O the center of the sphere) and the diameter of the
sphere. As our grouping is not uniform i.e., the shape and the area
of each group are not the same, the value of the ratio is variable. For
a given group with average vector P0 and vertices of the spherical
quadrilateral of the representing area Bi with i ∈ 1, 2, 3, 4, the ratio
is: 1−(min(A ·Bi ))

2 . This value may be under evaluated because of
numerical issues, as we do not have the exact value of the average
and the vertices, using a safety threshold ϵ in the implementation.

2.5 Unit vector quantization
The previous step maps a region of the unit sphere to the entire
sphere. At this point, any quantization de�ned on the surface of
the sphere can be used with an improved precision thanks to our
mapping. If a minimal error is required, the state-of-the-art in
uniform distribution over the surface of the sphere is the spherical
Fibonacci point set. Exploiting this mapping as a quantization
method can be done by using Keinert et al.’s algorithm [2015].
Because of numerical instabilities in the inverse mapping, doing
computation with double precision, this approach is limited to about
8 millions of spherical Fibonacci points. If speed is the main concern,
the octahedral quantization [Meyer et al. 2010] is a good tradeo�
between error and performance. Using any quantization of unit
vectors, we store, for each window, the number of compressed unit
vectors and the quantizations associated to the mapped unit vectors.
The id of the window (position in the �nal array) corresponds to the
key of the group. As the average vector can be retrieved from this
id (see Sec. 2.2), as well as the ratio, we do not need to store them
in the window. The complete algorithm can be summarized as: (i)
building windows of vectors sharing the same N most signi�cant
bits of the Morton code of their discretized spherical coordinates;
(ii) for each window, storing the amount of unit vectors in the
corresponding compressed window and applying the mapping from
a subpart to the whole surface of the sphere to each vector; (iii)
storing the quantization of the mapped vectors in the compressed
windows. The compressed pattern is shown in Figure 5.
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Table 1: The grouping is done using 13 bits. Lin, oct and sf are respectively the method of Lindstrom [2014], the octahedral
quantization [Meyer et al. 2010] and the Spherical Fibonacci point set quantization. The number after the name of themethod
corresponds to the number of bits used for quantization. With Lin, the per-scalar rate was set to 10 and the vectors were sorted
according to the Morton code of their discretized spherical coordinates prior to compression.
Method Compression

with mapping (sec)
Decompression

with mapping (sec)
Mean error (°) Max error (°) Mean error

with mapping (°)
Max error

with mapping (°)
Compression Ratio with

mapping (except for Lin30)
oct16 0.42 0.26 0.3370 0.9510 0.0256 0.1066 5.99019
sf16 1.39 0.48 0.3030 0.5895 0.0229 0.0696 5.99019
oct22 0.42 0.26 0.0418 0.1180 0.0031 0.0112 4.35893
sf22 1.39 0.48 0.0378 0.0700 0.0028 0.0074 4.35893
Lin30 5.249 4.483 0.0575 1.04 - - 2.4

3 IMPLEMENTATION AND RESULTS
3.1 Implementation
We implemented our scheme in C++ using GLM and OpenMP. We
benchmark it using an intel i5 6300HQ (quad core, 2.3 GHz). We
use LibMorton for fast Morton code computation with the BMI2
instruction set. The option /fp:precise was activated in Microsoft
Visual Studio for compilation. Due to numerical imprecision, the
mapping should be done in double precision. Each test has been
realized using the same 10 million uniformly distributed random
unit vectors. The implementation provided by Cigolle et al. [2014]
was used for the quantization methods. ZFP library was used to
compare to Lindstrom’s algorithm [2014]. LZ4 was compared using
the o�cial library [Collet 2011].

3.2 Speed and Error
Our error measure is the angle, in degrees, between the original
vector and the compressed vector once decompressed. We evaluate
the precision with the maximal and the mean error where the
maximal is the largest error of the 10 million compressed vectors
and the mean error is the average of these errors. As shown in
Tab. 1, the method proposed by Lindstrom [2014] does not perform
as well as classical quantization methods on unit vectors. This
can be explained by the fact that this method was designed to
handle a wide variety of �oating point data, and does not use the
properties of unit vectors. The lossless compression LZ4 applied
to our data fails to compress as it was not designed to compress
�oating point data. In terms of performance, our uniform mapping
(without quantization) can process 995 MB/s, and the grouping
of the vectors takes 1.3 seconds. A smaller amount of windows
reduces the grouping timing. Many di�erent quantization methods
exist and we choose to show the result of our mapping applied to
two popular ones. The spherical Fibonacci point sets o�er the best
quantization with both the minimal mean and max error, while the
octahedral quantization o�ers a good tradeo� between precision
and encoding/decoding time. In terms of memory, the overhead for
encoding a compressed window is 32 bits. Using a 13 bits grouping
with 10 million vectors implies an overhead of 0.03 bits per encoded
unit vector. If fewer vectors need to be compressed, the amount
of bits used for division should be decreased. More results are
provided as supplemental materials.

On shown results, our mapping reduce the mean error by a
factor around 13 and the maximal error by a factor between 8.5
and 10.5. The highlighted cells show that using both Spherical
Fibonacci point set or Octahedral quantization on 16 bits combined
with our mapping function gives better mean and max error than
the quantization without mapping using 22 bits. In this example,

the use of our method increases the compression ratio from 4.36 to
5.99 with an improved accuracy.

4 CONCLUSION AND FUTUREWORK
We have presented a technique for on-the-�y compression of a set
of unorganized unit vectors which, combined with state-of-the-art
positional compression, can be used to compress rays in the pipeline
of a distributed Monte Carlo renderer with lower compression error.
The computational cost of the improved compression ratio is small
in addition to classical quantization techniques and can be even
reduced when used in a rendering engine that already sorts rays
such as Hyperion [Eisenacher et al. 2013]. In the future, a better
grouping could be designed to provide groups which shapes are
close to spherical caps on the Gauss Sphere. Our algorithm could
also be adapted to other kinds of data using unit vectors. e.g.,
compression of surfels or normal maps. We also plan to evaluate it
in the context of a production renderer.
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