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Abstract

We introduce TOPSTOC, a fast mesh simplification algorithm. The two main components are stochastic vertex selection and
re-indexing of triangles. The probability for vertex selection depends on a local feature estimator, which prefers areas of high
curvatures but still ensures sufficient sampling in flat parts. Re-indexing the triangles is done by breadth-first traversal starting from
the selected vertices and then identifying triangles incident upon three regions. Both steps are linear in the number of triangles,
require minimal data, and are very fast, while still preserving geometrical and topological features. Additional optional processing
steps improve sampling properties and/or guarantee homotopy equivalence with the input. These properties provide an alternative
to vertex clustering especially for CAD/CAM models in in the areas of previewing or network graphics.
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1. Introduction

Mesh simplification is a fundamental tool in geometry pro-
cessing. One may distinguish two different application scenar-
ios:

• Constructing the best possible approximation of a given
discrete surface, where the resulting mesh will be stored
and reused, and the time spent on the simplification is of
minor concern [1, 2, 3].

• Down-sampling a mesh instantly for preview on or trans-
mission over limited devices, where the approximation is
usually discarded after the task is performed, and it is crit-
ical that the mesh is provided instantly [4, 5].

We are tackling the latter problem and provide TOPSTOC, a
solution that focuses on preserving topological and geometrical
features better than similarly fast techniques (see Fig. 1). A
more detailed view on related techniques and their relation to
our approach is given in Section 2.

TOPSTOC is designed for cases in which simplification is not
performed in a preprocess, but as part of a loop combined with
other processing steps on data that is large and contains geo-
metrical and topological features that would ideally be retained.
Our approach is composed of two steps, which are each inter-
esting in their own right as a tool in digital geometry processing:

1. The set of vertices for the simplified model is computed
by sweeping over the input and selecting vertices proba-
bilistically (see Section 3.1). The number of vertices can
be prescribed and the selected vertices concentrate around
features.

Figure 1: The carter model (1M triangles) is simplified in less than a second
with grid vertex clustering (middle image) and our new simplification algorithm
(on the right).

2. The triangles connecting the selected vertices are com-
puted by first assigning all vertices in the original mesh to
the topologically closest selected vertex and then identi-
fying triangles in the original mesh that are incident upon
vertices assigned to three different selected vertices (see
Section 3.2).

This algorithm, in its basic setting, is linear in time and memory
with respect to the number of input primitives. However, it still
succeeds to provide an adaptive sampling of the mesh, result-
ing in large polygons in flat areas and smallest around features.
Adaptivity is a major property in several of the typical scenarios
we have designed TOPSTOC for, such as instant network graph-
ics, where the input mesh is instantly simplified after process-
ing or editing, to be broadcasted toward heterogeneous devices,
with limited network bandwidth, memory and computational
power. Additionally, we propose extensions of the basic algo-
rithm that help achieving guarantees on the vertex distribution
as well as on the topology of the simplified mesh but make the
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algorithm super-linear (see Section 4) – these extensions can be
used when necessary for the application.

We have implemented this approach and analyzed the dis-
tribution of resulting meshes (see Section 5). It turns out
that the method is generally very fast, and that the feature-
driven stochastic vertex selection provides significant improve-
ments in visual quality over similarly fast techniques. We sub-
stantiate this claim by measuring errors in differentials of the
mesh, rather than only Hausdorff distance. Generally, stochas-
tic selection and topological clustering are interesting linear ap-
proaches with good global properties. We provide more de-
tailed conclusions in Section 6.

2. Previous Work

Quality-oriented simplification was initiated by the semi-
nal work of Hoppe [1], introducing an optimization approach
with a set of local mesh operators, among which the edge-
collapse/vertex-split pair also proved instrumental for multires-
olution mesh representations [6]. Garland and Heckbert [7] in-
troduced the Quadric Error Metric (or QEM) for driving the
simplification process. This metric computes and stores the er-
ror/importance of a vertex as the sum of its squared distances to
the supporting planes of its incident triangles. QEM can be en-
hanced to consider the color information on surfaces [2], sped-
up using random multiple choices [8] or GPUs [9], adapted to
point sampled surfaces [10] and has been proved to be geomet-
rically optimal in certain cases [11]. It still represents state-
of-the-art quality-oriented simplification methods. However,
as keeping a priority queue can be prohibitive for very large
models, Wu and Kobbelt [12] used a random selection of ver-
tices to be removed in the context of streaming to simplify large
meshes.

Alternatively, iterative relaxation methods, such as Turk’s
mesh re-tiling technique [13] or Cohen-Steiner’s variational
surface approximation [3], rely on a global non-linear optimiza-
tion process to find the best mesh with N polygons subsampling
the input shape. The function to optimize may vary according
to the application. For instance, Cohen-Steiner et al.introduced
the L2,1 error metric which is based on normal vectors of primi-
tives – for identifying and preserving anisotropic features. Con-
sidering normals has now been understood to be more important
for the visual quality than geometric errors, raising the general
question of perceptual considerations in simplification. One at-
tempt of addressing this is related to mesh saliency [14].

The most prominent and to our knowledge first example of
almost instant simplification is spatial vertex clustering pro-
posed by Rossignac and Borrel [4]: 3D space is partitioned into
cells and each non-empty cell is represented by a single vertex.
Triangles belonging to three non-empty cells are re-indexed to
the representative vertices, while the rest of the triangles are
discarded. The original technique used a grid as spatial parti-
tioning structure and the centroid of vertices contained in the
cell as representative vertex. Lindstrom [5] used the optimal
vertex defined by the QEM [2] inside the grid cell. The spatial
partitioning has been improved to adapt to surface geometry,
using either BSP [15], Octree [16], or VS-Tree [17]. The mesh

can also be constructed progressively, by adding representative
vertices until an error bound is satisfied [18].

One of the main features of vertex clustering is its speed,
with the complexity usually being linear in the number of in-
put primitives (every primitive has to be touched at least once)
and potentially super-linear only in its output size. The sim-
ple process on the input allows performing most computations
out-of-core so that models of several hundreds of millions of
primitives could be handled [16]. Note that we have not yet
implemented an out-of-core version of TOPSTOC, however, our
algorithm builds on principles (e.g. local selection, breadth-first
traversing) which can be adapted to out-of-core and streaming
methods [19] [20] [21].

It seems despite the improvements to the original vertex clus-
tering approach, when it comes to the application of instant sim-
plification to large meshes, a regular grid for partitioning is the
preferred choice because it avoids costly adaptive data struc-
tures. This, however, has consequences for the output:

• the size of the output depends on the number of occupied
cells, which is not known in advance.

• a regular grid is insensitive to the salient features of the
geometry and results in almost uniform triangle sizes.

• the topology depends on the triangles intersecting edges of
the regular grid; different components might be connected
or the genus be changed.

Depending on the application, these properties can be good or
bad. In the context of interactively processing a large mesh,
we feel it would be desirable to control the number of vertices,
and be faithful to the geometric and topological features of the
mesh.

TOPSTOC provides control over the size of the mesh, and re-
tains features of the input at almost the same speed as clustering
in a regular grid. One key idea is that stochastic sampling al-
lows touching each vertex only once (and avoiding to partially
order the vertex set) while introducing a feature sensitive vertex
selector. The other observation is that clustering the topologi-
cal (i.e. the surface) rather than the ambient space makes pre-
serving topological features easier, while (perhaps surprisingly)
being similarly fast in practice (see Section 3.2). Following
Wu and Kobbelt [8], one can classify simplification methods
roughly as follows:

Clustering Incremental
Deterministic Spatial Clustering Priority queue
Stochastic TOPSTOC Multiple-Choice

3. The Algorithm

The TOPSTOC algorithm is designed to operate on a sim-
ple triangle mesh M = {V,T} with V the list of vertices and
T the list of triangles indexed over V (standard representation
in rendering engines of modeling tools). The main steps are
selecting a subset V ′ ⊂ V of size k, then partitioning V into k
connected components covering the mesh, and identifying tri-
angles T ′ ⊂ T that belong to three different components in the
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(a) Feature Estimator based on Normals (b) Uniform to Adaptive Sampling Modulation

Figure 2: Geometry-Aware Stochastic Sampling.

Figure 3: Stochastic vertex sampling. Uniform distributions (left) ignore geometric features. Purely adaptive (middle) ones miss slowly varying curved areas. Our
choice offers a good trade-off in the vertex selection.

partition of V . The mesh M′= {V ′,T ′} is the output of the algo-
rithm. Note that, in contrast to some variants of clustering, V ′ is
a subset of V so one may view T ′ as an alternative triangulation
of V , only with fewer triangles.

3.1. Stochastic Vertex Selection

Selecting the k “best” vertices to represent a mesh can be
performed by attaching a “geometric importance” value to each
vertex of V , and then ordering the vertices according to this
value. We want to avoid this global approach, which inevitably
results in super-linear asymptotic complexity and/or larger con-
stants. Our idea is to approximate a global solution using tools
from probability theory: stochastic sampling based on a proba-
bility distribution function.

Let P : [0,1]→ [0,1] be this probability distribution func-
tion. It defines the probability of the value x to appear in the
stochastic sampling. In our application, we first assign a char-
acteristic value xv ∈ [0,1] to each vertex v. Then we iterate over
the vertices, generate a uniform continuous random variable r
supported on the bounded interval [0,1] for each vertex v ∈ V ,
and select the vertex if (and only if) r < P(xv).

Obviously, the geometric distribution of the selection de-
pends on two factors: the shape of P and how the charac-
teristic value xv of v is computed for each vertex. Note that
a constant function P provides a purely random sampling of
V (see Fig. 2(b) and Fig. 3), because each vertex would be se-
lected independently of the value of xv. We would like to adapt
the sampling to the local features of the mesh, however, without
imposing additional complex data structures or processing. A

single iteration over T allows assigning any quantity available
in the one-ring to a vertex. Also, indexed meshes in geometric
modeling package often maintain per-vertex normal informa-
tion for visualization purposes. This “one-ring of vertex nor-
mals” is the maximum local support we can expect in a stan-
dard mesh format to analyze a given vertex. We make use of
this normal information because it describes the visual features
better than geometric errors [18, 3]:

xv =
∑u∈Nv σ(nT

v nu)
|Nv|

where Nv is the set of neighboring vertices, nv the normal vector
of vertex v, and σ : [−1,1]→ [0,1] a monotonically decreasing
function for weighting the difference of two normal vectors.
This estimator has a higher value in high curvature regions and
can be modulated using the σ function. In most of our experi-
ments we simply use:

σ(d) = (1−d)/2

which leads to good results. Fig. 2(a) shows color code visual-
izations of xv. Note that alternative feature estimators may be
used.

While xv does capture local features, it cannot adequately re-
flect variations on a larger scale. Using only xv for the selec-
tion of vertices would result in an undersampling of areas with
only small curvature variation, with the effect of flattening large
curved regions. Our main idea for coping with this problem
without increasing the support of xv (and in this way requiring
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more costly preprocessing steps) is to exploit the influence on
the selection process by modifying P: while the selection of
vertices with high values xv has to be very likely, also selecting
vertices with values xv close to zero should be probable. In this
spirit we define:

P(x) = k̃

(
1+α

(
x

{xv}
−1

))

with α ∈ [0,1] the adaptivity coefficient (see Fig. 2(b) —
we empirically observed good behavior on standard scanned
meshes with α ∈ [2/3,3/4]), k̃ the target size of the sub-
sampling, and {xv} the arithmetic mean of xv over V , acting
as a global normalization.

Fig. 3 shows the influence of P on the subset of vertices
being selected. The result of selecting vertices for which a
random variable is smaller than P(xv) yields the set V ′ with
k = |V ′| ≈ k̃ elements. Note that enforcing k = k̃ would re-
quire the analysis of the distribution of xv, which would sig-
nificantly impact the performance. Similarly, alternative distri-
bution functions may improve the adaptivity of the selection,
taking into account multiscale features [14] for instance, but at
the cost of much more expensive computations.

3.2. Topological vertex clustering

We partition M in k connected sub-meshes, by assigning each
vertex of V to one of the vertices of V ′. This is done by breadth-
first traversing the vertices starting in all vertices of V ′ simulta-
neously. The procedure is described in detail in the algorithm 1.

Algorithm 1 breadth-first flood-filling from selection.
Require: V the set of selected vertices
Require: NV an unordered vertex neighborhood structure
Require: Q a queue of vertex references

for each vertex v in V do
mark v with v
append reference of v to Q

end for
while Q is not empty do

v := head of Q
for each vertex u in NV [v] do

if u is not marked then
mark u with mark of v
append u to Q

end if
end for
pop head of Q

end while

Fig. 4 illustrates this flood-filling process. Breadth-first
traversal of the edge graph means topological distances of the
vertices rather than Euclidean or geodesic measures are consid-
ered. This avoids the need for a priority queue with (squared)
distance values, which would make the process of inserting ver-
tices at the traversal front logarithmic in time – while we pro-
cess vertices in constant time during the traversal. We will later

(a) Input (b) Selection (c) Regions (d) Close-up

Figure 4: Topological vertex clustering. Observe the close-up: the triangles
are drawn in green when belonging to a single region, in blue for two regions
and in red for three.

discuss a variant that trades part of this efficiency for better ver-
tex distribution (see Section 4.1).

After traversal, each vertex belongs to exactly one connected
subset of the mesh. These sets induce an equivalence relation
∼ on the vertices, i.e. two vertices are equivalent if they belong
to the same set. Following the idea of vertex clustering [4], we
re-index a subset of T to form the remeshed simplified connec-
tivity T ′. However, in contrast to spatial clustering, where ver-
tices are equivalent if they are in the same grid cell, we use an
equivalence relation generated by the traversal (see Fig. 5). A
triangle t ∈ T is classified according to the equivalence classes
of its three vertices si,s j,sk:

i si ∼ s j ∼ sk: t is contained in a sub-mesh and degenerates to
a point in the simplification; t is discarded

ii si ∼ s j � sk (or similarly with the indices permuted): t inter-
sects two sub-meshes and degenerates to a segment; t is
discarded

iii si � s j � sk � si: t covers the intersection of three sub-
meshes and is re-indexed to the vertices vi,v j,vk ∈V ′ with
vi ∼ si,v j ∼ s j,vk ∼ sk; t is appended to T ′.

We call this part of TOPSTOC topological clustering because
the partitioning is performed in the topological space of the
mesh (rather than the ambient space). This has immediate con-
sequences for the topology of {V ′,T ′} relative to the original
mesh: connected components are preserved, i.e. disconnected
components (such as several close layers of different material
in a CAD model) are not connected such as in spatial clustering

Figure 5: Triangle re-indexing. After selecting 3 seed vertices (red, blue and
green), the breadth-first flood-filling process grows regions around them and
triangles incident upon three regions are re-indexed to the seeds to form the
simplified mesh.
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approaches. In addition, the topology of the sub-meshes gener-
ated in the traversal implies the topology of the surface – this
allows controlling the topology locally, which we discuss and
exploit in the next section.

4. Establishing guarantees

TOPSTOC is based purely on local stochastic selection. This
makes the algorithm very fast, but also means the placement of
vertices as well as the topology of the resulting surface might
sometimes turn out to be inadequate. We offer a modification of
the sampling so that selected vertices have specified minimum
distances; and we introduce resampling of sub-meshes that vi-
olate the closed-ball property [22] so that M′ can be enforced
to be homotopy equivalent to M or to specifically remove topo-
logical features that fit into a small ball of specified size. Note
that both parts are extensions slowing down the basic algorithm
(topology control breaks the linear time complexity), and that
all results in the paper are generated with the basic algorithm
unless explicitly noted.

4.1. Density control

Bounding the sampling density allows to better control the
shape of resulting triangles, improving isotropic distribution
and preventing highly varying local edge length. We propose
a strategy inspired by Poisson disk rejection sampling meth-
ods [23, 24]. We perform an early breadth-first traversal bound
to a given euclidean distance to the seed vertices already during
the selection process: once a vertex has been selected, we tra-
verse the neighborhood until a maximum distance ε has been
reached, and discard all encountered vertices from the upcom-
ing selection. In the subsequent topological clustering step the
traversal is continued from the already traversed vertices, i.e.
the vertices are still only visited once during the traversal.

We have found this procedure adds roughly 40% processing
time on average (mostly due to computing euclidean distances)
but preserves linear time and memory complexity. Note that
geodesic distances would be required for a more accurate den-
sity control, but this is computationally prohibitive in our appli-
cation scenario. Fig. 6 shows the improvement in the density
control provided by early flood-filling (all other pictures in this

Figure 6: Density control by early flood-filling. Left: input model with 260k
triangles. Middle: TOPSTOC simplification to 5% (166ms). Right: TOP-
STOC with optional density control by early-flooding (228ms).

Figure 7: Topological defects. Multiply connected components are shown in
red on a 0.5% (left) and a 2% (right) TOPSTOCsimplification of the Oil Pump.

paper are generated without density control). Note also that
a too large value for ε may conflict with the target resolution
of M′ and lead to a coarser simplification than expected. Nev-
ertheless, our density control mechanism succeeds to rule the
distribution of V ′ efficiently.

4.2. Topology control

If it is important to guarantee the homotopy between M and
M′, we can perform an optional topological recovery process,
performed between clustering and triangle reindexing. For sim-
plicity, we assume M is a globally orientable manifold mesh
with or without boundaries; generalizations to non-orientable
meshes follow the same ideas but require more elaborate tests.

Denote the k connected subsets in the dual of the edge graph
as Ci, i ∈ {1, . . . ,k}. As dual vertices are faces, the {Ci} cover
the mesh surface (see Fig. 8). The nerve is the simplicial
complex formed from the non-empty intersections of the sub-
sets, i.e. edges for each non-empty intersection of two sets
/0 , Ci ∩C j, i , j, and triangles for each non-empty intersec-
tion of three sets /0 , Ci ∩C j ∩Cl , i , j , l. By construction,
T ′ consists of the triangles in the nerve. The nerve lemma ap-
plied to triangulations of closed surfaces [22] tells us that the
triangulation T ′ is homotopy equivalent to M iff:

i Ci is a closed 2-ball, i.e. simply connected, or homotopy
equivalent to a manifold disk.

ii the (non-empty) intersection between Ci∩C j, i, j is a closed
1-ball, i.e. a single curve.

iii the (non-empty) intersection between Ci ∩C j ∩Cl , i , j , l
is a closed 0-ball, i.e. a single point.

This property has been termed the closed-ball property. Dyer
et al. [25] recently showed that condition (ii) implies (iii) for
connected components consisting of at least four subsets. We
assume from now on that at least four sub-meshes have been
generated and show how to check conditions (i) and (ii) for
each of them. Note that the checks may appear to miss if two
(or more) triangles are incident on the same three vertices – a
non-manifold case that requires special attention if the mesh is
simplified based on edge contractions [26]. This case is cov-
ered by condition (iii), as three sub-meshes (which degenerate
to vertices) would intersect in more than a single point (each
intersection of three sub-meshes induces a triangle). As ex-
plained, we don’t need to explicitly check condition (iii) as it is
implied in our setting.
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Figure 8: Dual graph and violation of the second condition. The character-
istic of a sub-mesh can be computed from the elements incident on its primal
vertices. Both illustrations show violations of the second condition: in the first
example more than two triangles are induced between the red and yellow re-
gion; in the second example no triangles are induced.

First condition of the closed-ball property. We first note
that it is sufficient to check the Euler characteristic of a sub-
mesh: there are only two types of surface patches with Euler
characteristic 1, a topological disk and a crosscap. Because we
have assumed M to be globally orientable no connected sub-
set of the mesh can be unorientable and have the topology of a
crosscap. Thus, Euler characteristic of 1 is identifying topolog-
ical disks in our setting.

Rather than actually considering Ci as comprised of dual
primitives, we make use of the following observations (see also
Fig. 8): the number of dual faces is equal to the number of
(primal) vertices; the number of dual edges, respectively dual
vertices is equal to the number of primal edges / primal faces
connecting to only vertices within the sub-mesh (interior edges
and vertices) plus those incident upon at least one vertex in the
sub-mesh (boundary edges and vertices). Because the number
of vertices and edges on the boundary (or boundaries) of the
sub-mesh is equal, it suffices to count the number of vertices
vCi , edges eCi , and faces fCi that are contained in the sub-mesh
and check that

vCi − eCi + fCi = 1.

Second condition of the closed-ball property. Note that
each open intersection curve between two components Ci and
C j induces two triangles: each dual edge separating the sub-
meshes corresponds to a primal edge with vertices from dif-
ferent sub-meshes. At each end of the edge-path the triangle
incident on the primal edge must be incident on a vertex from
another sub-mesh, as otherwise the edge would also induce a
dual edge separating Ci and C j. These triangles are incident on
vertices from three different sub-meshes and induce triangles in
the coarse triangulation.

So, checking that the intersection of Ci with C j is a single
open curve means that Ci and C j induce exactly two triangles.
If the curve was open it would induce no triangles, and if there
was more than one intersection curve it would induce more than
two triangles (see Fig. 8). Thus, we count the number of oc-
currences of neighboring sub-meshes in the triangles induced
around Ci and reject the component if any number is not equal
to two.

Meshes with boundaries. If the surface has boundaries ad-
ditional tests are necessary to ensure that their topology is pre-

served:

• the intersection between a sub-mesh and the boundary of
M is empty or a single closed curve

• the intersection between two sub-meshes and the boundary
of M is empty or a single point.

We assume boundary vertices in the original mesh are tagged.
For testing we only consider Ci if it contains boundary vertices.
The first condition means that the boundary vertices are con-
nected by boundary edges and exactly two boundary vertices
are endpoints of this vertex-edge path. We identify these end-
points as boundary vertices connected to another boundary ver-
tex that is assigned to another sub-mesh C j. The first test is
satisfied if exactly two such vertices exist in Ci. The second test
boils down to checking that these two vertices are connected to
boundary vertices in C j ,Ck.

It turns out that in most cases very few sub-meshes have to be
rejected, meaning most parts of the mesh are homotopy equiv-
alent to the original one (see Fig. 10 and Fig. 7). Note that this
is usually not the case in spatial clustering.

Topology correction. When a sub-mesh fails one or both of
the two tests, we add it to a queue. Then, for each element of the
queue, we perform a local (and slightly simplified) version of
TOPSTOC: acting on the sub-mesh only, two vertices are ran-
domly selected, generating two sub-meshes. Their topology is
checked (as before) and they might be inserted to the queue for
further subsampling. By construction, this process is guaran-
teed to converge, because components contain fewer and fewer
vertices, and in the worst case, this will lead to the selection of
all vertices in a sub-mesh, reproducing the input mesh locally.
In the (usual) case of orientable surfaces, this process makes M′

homeomorphic to M. Results are shown in Fig. 9(a).

(a) (b)

Figure 9: Topology recovery. (a) Happy Buddha with a close-up on a strong
simplification with TOPSTOC, a hole disappears. With optional topology re-
covery, the genus of the original surface is preserved in its simplification. (b)
Small topological events, such as this tunnel, can be ignored in the topological
recovery process.

Enabling topology simplification. It is easy to limit topo-
logical recovery to geometrically large components. This can
be useful if the input mesh is expected to have small, unwanted
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Figure 10: Statistics for each parameter value (Oil Pump model). Left: Influence of α on the curvature defect (over 1000 simplifications). Middle: Hausdorff error
with original surface (over 1000 simplifications). Right: number of topological errors without topological recovery.

topological features, e.g. resulting from triangulating scanned
data (see Fig. 9(b)). We only apply topological recovery to sub-
meshes that either fail the second test or fail the first test while
being larger than a given threshold.

Obviously, these extra steps decrease the overall perfor-
mance. In our experiments, we observed an extra computa-
tion time ranging from 50 to 150% compared to the simplifica-
tion without topological correction. As this part of our imple-
mentation is not optimized we see potential for improvement.
For instance, the simplification showed in Fig. 9(a) requires
571ms for standard TOPSTOC simplification, and 898ms when
enabling the topological recovery.

5. Implementation and results

TOPSTOC has been designed for aggressive in-core simpli-
fication, providing an alternative to grid clustering [4, 5], yet
adapting to the topology and features of models in a CAD or ge-
ometry processing environment. Despite of its adaptivity, TOP-
STOC is linear, both in time and memory. It only requires a
fixed and small amount of memory for a given object, stored in
a standard indexed mesh format, with unordered one-ring ver-
tex references – in particular, no higher order mesh or hierarchi-
cal data structures are necessary. Consequently, TOPSTOC is
very easy to implement (about 100 lines of code for the core
algorithm).

For the very common task of down-sampling meshes of a few
million primitives to several thousands, TOPSTOC needs less
than a second on standard hardware. Table 1 summarizes tim-
ing and Hausdorff errors (measured with Metro [27] on an IN-
TEL Q6600, 4GB, single thread) for different simplification ra-
tios on various models. In Fig. 13, we compare TOPSTOC with
two different algorithms (QSlim and Spatial Clustering), resid-
ing at each extremum of the speed-vs-quality spectrum. De-
spite the speed, visually important features are well preserved,
as can be seen in Fig. 11 and Fig. 12. To substantiate this claim
we have measured an error inspired by the definition of mesh
saliency [14]. We compute a visual error as the mean curvature
defect of samples between original and simplified triangulation.
For each value of the adaptivity parameter α (ranging from
0 to 1), we perform a thousand of TOPSTOC simplifications
and measure the maximum curvature defect observed. Fig. 10

Models Input Output Time Hausdorff
triangles triangles Error

Rocker 80354 2991 30ms 2.39%
Arm 11913 45ms 0.65%

Chinese 305608 12083 134ms 2.96%
Dragon 45815 142ms 0.40%
Julius 774164 11721 268ms 2.04%
Caesar 115004 209ms 0.78%
Carter 1069048 27203 504ms 1.73%

161869 410ms 0.24%
Grog 1752348 39239 545ms 2.23%

263411 452ms 0.17%
David 7227031 131815 2.433s 1.54%
2mm 1082707 1.799s 0.11%

Table 1: TOPSTOC performance measure. Hausdorff errors expressed relatively
to the bounding box diagonal.

shows averaged measures for 3 typical simplification ratio. We
observe how α improves the situation compared to a uniform
selection. For the sake of completeness, we also measured the
evolution of Hausdorff error w.r.t. the sampling ratio.

Fig. 14 illustrates how sharp geometric structures, important
in CAD, are preserved in the output. Note that spatial cluster-
ing, either uniform or adaptive, produces hundreds of very visi-
ble topological errors on these examples, while TOPSTOC gen-
erates less than ten in its basic form, which can be fixed with
the topology recovery. It is difficult to control the size of the
output mesh in grid clustering, and often important features in
CAD or scanned models are missed. In contrast, our approach
adapts its sampling density to features, preserves topology, and
is able to output large polygons in flat areas. Fig. 12 shows a
set of levels of details from the Digital Michelangelo’s David
data [28]. The number of vertices in the output is within 1% of
the target number for small input and output number of vertices,
and naturally better for larger settings. For all applications we
are aware of this is sufficient and significantly easier to control
than uniform spatial clustering methods and more efficient than
adaptive ones.

Limitations. A limitation stemming from how features are
detected is resilience to noise: the purely local nature of feature
estimation cannot distinguish noise from features and, conse-
quently, meshes with geometric noise will be subsampled uni-

7



Figure 11: Chinese Dragon, simplified from 307k (top) to 7k triangles (bottom)
in 0.3s with TOPSTOC.

formly. This might not be ideal but still results in a reasonable
approximation of the mesh. Note that recent advances in sur-
face reconstruction methods include noise filtering in the mesh
generation process. Similarly, if the mesh has already under-
gone a curvature-based adaptive resampling method, the influ-
ence of our feature estimation is less critical and uniform selec-
tion might be enough. Another limitation comes from the selec-
tion principle: TOPSTOC provides only an alternative, coarser
triangulation of the original vertex set and it may be “biased”
by a very non-uniform vertex distribution in the input. Note that
the use of topological distances is usually not a problem for the
typical dense meshes provided as input, in particular meshes
generated using Marching Cubes. However, anisotropy could
be improved by taking curvature into account during the (early)
flood-filling process. Last, our topological recovery is unlikely
to lead to an optimal homotopy equivalent triangulation, in the
sense of satisfying both the sampling density required from a
geometric point of view and the necessary number of triangles
for homotopy equivalence.

6. Conclusion and Future Work

TOPSTOC is a simple but nevertheless very useful mesh sim-
plification algorithm. By combining simple statistic and prob-
abilistic tools, we design a geometry aware stochastic sam-
pling that preserves important geometric features without re-
quiring global sorting of the surface elements (spatial, error-
driven, etc). With topological clustering, TOPSTOC preserves
the topology of its input 3D surfaces, and in contrast to space
partitioning approaches, avoids the collapsing of multiple sur-
face layers. Moreover, it provides control over the preservation
of topological features, with possibility of enforcing homotopy
equivalence or simplification of geometrically small topological

Figure 12: Multi-triangulation with TOPSTOC for generating a LOD over the
David Model (7.2M tri.). The close-up compares the 1% TOPSTOC simplifica-
tion with spatial clustering.

features. Although not optimal from a geometric point of view
(i.e. the case of extreme simplification), TOPSTOC fits prac-
tical simplification scenarios, reducing multi-millions polygon
models by 2 or 3 orders of magnitude in less than a second.

Both parts of the algorithm are interesting in their own right
and could be used in different settings. Quite generally, stochas-
tic sampling may be useful to produce globally reasonable ver-
tex distributions without the need of non-linear computational
complexity and it has already proven its effectiveness in other
graphics areas [29, 30]. Topological clustering could be used
with more elaborate distance metrics to generate better triangu-
lations, with the benefit of having control over the topology of
the resulting surface.

Ackowledgements: We thank Nina Amenta for early discus-
sion on the Nerve lemma. We also thank reviewers for helping
improving this paper. Models are courtesy Aim@Shape Net-
work and Stanford University.

(a) QSlim:11.85s (b) Clustering:0.21s (c) TOPSTOC:0.36s

Figure 13: The Oil Pump model with originally 1.14M triangles simplified to
10K triangles.
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Figure 14: Simplification of a scanned chair (435k triangles, top) at 1% with
uniform spatial clustering (135 ms, middle-left), adaptive spatial clustering
(683 ms, middle-right) and TOPSTOC (186 ms, right). Note how sharp features
and topology are preserved with TOPSTOC, while the other fast simplification
methods produce strong topological and geometrical artifacts. We have added
a synthetic example on the bottom line to illustrate the nature of visual artifacts
of each method.
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