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Figure 1: Spatially-varying fiber distribution using our method over a parametrized 3D surface mesh (top left), driven by a density map
applied over the surface (bottom left). 70M grass strand locations are computed in less than 10ms by our new sampling method, enabling
interactive design of their distribution.

Abstract
Non-uniform random point sampling on 3D surfaces offers a powerful framework to capture complex distributions such as fur
seeds, scattered geometric instances or light emitter flux. As most other on-surface signals, practitioners design such distri-
bution by the means of 2D maps, parameterized over the surface, and indicating locally the desired point density that should
be synthesized, along with any primitive-specific attribute such as fiber thickness or instance size. Numerous application sce-
narios imply large such point sets which would ideally be generated in real-time to be consumed immediately by downstream
applications. We propose a method to distribute such white noise point sets under non-uniform densities, designed to cope with
parallel GPU execution and able to produce, in real time, hundreds of millions of density-constrained samples over arbitrary
3D triangle meshes. At the core of our method, we introduce a stratified rejection sampling scheme where triangles act as strata,
greatly improving the locality of the sampling process, and significantly diminishing the probability of rejecting a sample. Our
method relies on a series of simple GPU kernels, introducing a new fast and exact texel-triangle overlap computation method
as well as the notion of unordered cumulative sum. As a result, our approach provides real-time systems with the ability to
tailor, on-the-fly, highly dynamic density distributions in the form of procedural or raster maps. We illustrate its application
with interactive fur design, geometry instancing, and Monte Carlo light sampling.

1. Introduction

Surface sampling serves various purposes in 3D computer graph-
ics, including adaptive surface remeshing, particle systems, point-
based modeling, texturing and importance sampling. One extreme
scenario concerns the design of fur: millions of random fibers need

to be distributed over 3D surfaces to obtain a realistic look, often
with a non-uniform random distribution tailored by an artist. In fact,
their design is often achieved indirectly, where the user works in-
teractively with a small subset of samples, letting an offline process
generate the actual full count set prior to final rendering. This in-
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Table 1: Notations

∗,∗axis Convolution operator (2D, 1D along axis)
Surface
M Triangle Mesh
T ,Tuv Triangle (resp. in world and uv space)
σ Permutation of the triangles order
Density
D Density map (in samples/m2)
Dmax

M Maximum density overM
Dmax

T ,DT Per-triangle (maximum, average) density
Samples
Ntarget Optional user-requested sample count
NT ,N Expected sample count (per-triangle, total)
NT ,N Effective sample count (per-triangle, total)

direction between what is designed and what is obtained induces a
slow try-and-test loop, where the user lacks immediate feedback on
the actual dense fiber distribution. Similarly, emissivity sampling in
Monte Carlo rendering requires non uniform random surface sam-
pling when the emission is modeled through a map: instant feed-
back on the lighting design necessitates an efficient mechanism to
sample the surface emission as its map evolves dynamically. These
two use cases exemplify a broader problem: the real-time genera-
tion of a large number of random surface samples from a 3D trian-
gle mesh, where the sampling distribution is guided by a 2D density
map defined over the surface.

Contributions. We propose a new high-performance algorithm to
sample very dense non-uniform random point sets on a 3D surface
mesh. Our algorithm permits to control locally the density of the
sample set by the mean of a density map which can dynamically
evolve at every frame. Basically, our contribution takes the form
of a stratified rejection sampling scheme designed for fine grain
parallel-scalable GPU execution, where triangles act as strata. In
particular, we introduce (i) a rasterization-based counting method,
(ii) the notion of unordered cumulative sums for fast per-triangle
sample count determination and (iii) a new high-speed method to
compute the area of texel-triangle overlaps. We exemplify our ap-
proach with downstream interactive use cases which need to be fed
with hundreds of millions of dynamic 3D samples per second cap-
turing non uniform on-surface densities, including fiber seeding,
geometric instancing and emissive surface sampling.

Notations. We consider as input a 3D surface mesh M made of
triangles enriched with a target point sample distribution modeled
as a 2D density scalar mapD. This map is expressed in samples per
scene unit square and is mapped onto the surface using standard UV
mapping. The texture coordinates uv are defined onM using linear
interpolation of the triangles vertices uv attributes. Under those no-
tations, we seek to generate N point samples, where each sample is
defined by its supporting triangle index and its barycentric coordi-
nates on the triangle. The number N can be either user-provided, or
emerging from the mesh and its density map, in which case it has
to be computed. We refer to Table 1 for all notations.

2. Previous Work

Our work takes place in the context of point sampling 3D triangle
meshes – the de facto standard shape representation in 3D computer
graphics. Our target sampling process is driven by two constraints:
(i) non-uniform distribution, where the local density of samples is
tailored by a 2D density map parameterized on the surface mesh
and (ii) real-time computational cost for tens of millions of sam-
ples, with a highly efficient GPU execution that enables e.g., fur
design.

Rejection sampling is a general sampling technique that can be
applied to our scenario. As described by Pharr et al. [PJH23], re-
jection sampling draws samples from an arbitrary distribution, as
long as its probability density function (PDF) f can be bounded
by cp, where c > 0 is a constant, and p is another PDF that we
already know how to sample from. In the context of density-based
mesh sampling, p is typically chosen as a uniform sampling of the
surface, and c as the maximum density over the mesh. Uniformly
sampling the mesh requires to sample the discrete probability dis-
tribution given by the triangle areas. Many techniques exist to sam-
ple such distribution, for example by building its cumulative dis-
tribution function (CDF), itself sampled using binary search or an
inverse CDF [CRW09], or using a data structure like an alias ta-
ble [Vos91].

Rejection sampling applied to a density-based mesh sampling
leads to a simple procedure, shown in Algorithm 1, where after a
lightweight CDF preprocess, samples are generated independently,
and for each sample, candidates samples are iteratively tested until
one gets accepted. At first glance, Algorithm 1 seems well suited
for a highly-parallel GPU implementation, since all samples can be
trivially generated in parallel. It however suffers from shortcomings
regarding its runtime efficiency for three main reasons.

First, rejection sampling relies on an unbounded loop whose ef-
fective duration can vary greatly between samples. Given the Single
Instruction Multiple Thread (SIMT) programming model of GPUs,
where bundles of threads called subgroups execute simultaneously
the same instructions, the loop duration for a given thread is always
equal to the worst loop duration over the entire subgroup the thread
belongs to. Moreover, the loop stopping criterion is based on the
maximum density over the mesh, which can be a very inefficient
density bound when the density is sparse.

Secondly, rejection sampling relies on very incoherent memory

Algorithm 1: Plain Rejection Sampling
Input: MeshM, density map D, and sample count N.
Result: Output sample set S with N samples.

1 distribution← TriangleAreaDistribution(M)
2 parallel for sample in S do
3 while true do
4 T ← Sample(distribution)
5 sample← SampleUniform(T )
6 if D(sample)≥Dmax

M ·Rand0to1() then
7 end thread
8 return S
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Figure 2: Overview of our Triangle Rejection Sampling algorithm.

accesses which, given the low computational complexity of Algo-
rithm 1, is the limiting factor for its GPU execution. At each new
sample candidate, triangle and density data have to be loaded from
memory. But since there is no spatial coherency when uniformly
sampling a surface, each new sample candidate is likely to pro-
duce a cache miss for both triangle-related and density-related data.
Since every thread can sample any location on the surface, there is
also no spatial coherency for threads belonging to the same sub-
group.

Third, rejection sampling also suffers from memory inefficiency
when the sample count N emerges from the distribution rather than
being provided upfront, because memory has to be allocated con-
sidering the worst case, where the maximum density is applied
everywhere on the mesh. Related to this problem, approaches us-
ing space-filling curves for high-quality sampling of surfaces and
meshes [QLLM13] were proposed, as well as methods exploiting a
spatial structure guiding the sampling quality [NS04]. Those con-
tributions propose low-discrepancy sampling of meshes, but are
not tailored for real-time scenarios involving millions of samples
to synthesize in a couple of milliseconds as they remain weakly
compatible with fine-grained GPU parallel execution.

Poisson disk samplers [YXSH13, YWW14, Yuk15, WS18,
BJFH19] focus on the sample set spectral properties but lead
to more than 3 orders of magnitude lower throughput than our
method, even on GPU [BWWM10]. Still, an initial random sam-
pling is often expected, a key step for which our method establishes
a new state of the art. We refer to the survey of Yan et al. [YGW∗15]
for a comprehensive overview of blue noise sampling methods. Re-
cently, Abdalla et al. [ASHW23] explored digital dyadic sequences
for high performance sampling but their use for triangle meshes
equipped with density maps and their performance in such a con-
text remains unclear.

To the best of our knowledge, only Fast Random Sampling of Tri-
angular Meshes (FRS), proposed by Šik and Křivánek [ŠK13] fits
our constraints. In their paper, the authors propose an adaptive sub-
division of the triangle mesh to match the density map resolution.
The density is therefore approximately constant over all subdivided
micro-triangles, allowing a straightforward point sampling on any
micro-triangle. However, in the case of a high-resolution density
map, the subdivision depth and thus processing cost, as well as the
memory footprint, grow substantially. Indeed, the massive amount
of generated micro-triangles has to be stored in memory, and a CDF
still has to be built over the micro-triangles areas. The authors re-

main unclear about the scalability of their technique, providing re-
sults only on a 4 cores CPU implementation.

Finally, Portsmouth [Por17] proposed an efficient inversion sam-
pling for the case of a mesh with a per-vertex density field, which
does not cope for the more general case of parameterized density
maps exhibiting arbitrary resolution and sparsity.

Our method takes inspiration from rejection sampling, and ad-
dresses its shortcomings by proposing a stratified version of rejec-
tion sampling where triangles act as strata. This greatly improves
the locality of the sampling process, critical for fast memory ac-
cesses, and improves the probability of sample acceptance, mak-
ing the overall sampling process extremely efficient on modern
highly-parallel SIMT programming model. Complementing the use
of plain rejection sampling, our analysis also incorporates a "naïve"
version of our proposed stratification approach as a comparative
baseline (Section 6), to highlight the critical role of the specific
components we introduce in achieving high performance triangle
stratification.

3. Our Method

3.1. Overview

Our on-surface sampling method is a stratified rejection sampling
method over the mesh triangles (Figure 2), and relies on a series of
simple GPU kernels that we organize in three main passes. First,
we decompose the problem of sampling N points on the surface
into multiple and independent per-triangle sampling problems (Fig-
ure 3). The counting pass (Section 3.2) estimates how many sam-
ples NT should be drawn for each triangle, and also retrieves the
maximum density per triangle. Second, we propose an unordered
cumulative sum pass (Section 3.3) to compute a CDF of these per-
triangle sample counts. Third, the realization pass (Section 3.4) sets
a position for each sample, that can be consumed by the down-
stream application e.g., as locations to instantiate geometric primi-
tives or evaluate light emitted radiance.

3.2. Counting pass

The counting pass, summarized in Algorithm 2, computes the ef-
fective number of samples NT we want to assign to each triangle.
We first have to compute the per-triangle sample counts NT that
emerge from the density map applied to the mesh. To do so, we
integrate the density map over each triangle. Since the uv mapping
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Algorithm 2: Counting pass
Input: MeshM, density map D, and optional

user-provided target sample count Ntarget
Result: Per-triangle effective sample counts NT and max

densities Dmax
T .

1 NT ,Dmax
T ← 0 /* For all triangles */

2 parallel for f ragment ∈ UVRasterization(M) do
3 uv,T ,Tuv← f ragment
4 d←D(uv)
5 w← TexelOverlap(uv,Tuv) /* Section 4 */
6 N f ragment ← d ·w ·Area(T )/Area(Tuv)
7 NT ← NT +N f ragment /* AtomicAdd */
8 Dmax

T ←max(Dmax
T ,d) /* AtomicMax */

9 N← 0
10 parallel for T ∈M do
11 N← N +NT /* AtomicAdd */
12 scaling← if Ntarget then Ntarget/N else 1
13 parallel for T ∈M do
14 NT ← StochasticRounding(scaling ·NT )
15 return NT ,Dmax

T

distortion is constant per triangle, we have:

NT =
∫
T
D(s)dS =

Area(T )
Area(Tuv)

∫
Tuv

D(uv)duv (1)

Assuming a nearest-neighbor filtering of the density map, the in-
tegral above in uv space is accurately computed as a weighted sum
over all texels p of the density texture D that overlap the triangle:∫

Tuv

D(uv)duv = ∑
p∩Tuv ̸=∅

D(p)Area(p∩Tuv) (2)

Evaluating Equation (2) for each triangle in parallel can be done
by assigning one thread to each triangle, each thread iterating over
all the texels that overlap the triangle in uv space and accumulat-
ing the terms using an off-the-shelf texel-triangle intersection rou-
tine [LF15]. This approach, that we will call naive triangle strati-
fication for the rest of the paper would be quite inefficient for two
reasons. First, the number of texels can vary greatly between tri-
angles. So all threads within a subgroup would have to wait for
the thread corresponding to the triangle with the largest amount
of texels covered. We instead rely on the hardware rasterization

Rejection sampling Ours

sequence of samples generated/tested by a thread

Figure 3: Triangles as native strata. Left: rejection sampling on a
surface mesh. Right: our triangle stratification.

pipeline and rasterize the mesh in uv space to compute the sum at
a finer granularity. Each thread, or rather each fragment shader in-
vocation, is responsible for computing a single term of the sum in
Equation (2), rather than computing the full sum. Therefore, every
fragment only has to retrieve a single density value and compute a
single triangle-texel overlap. The max density and expected sample
count (for the triangle that generated this fragment) are then up-
dated using atomic operations. Second, existing texel-triangle in-
tersection methods are not well suited for GPU execution, so we
propose instead a novel method that is described in more details in
Section 4.

After the uv rasterization process, we obtain the per-triangle ex-
pected sample counts that emerge from the mesh and the density.
However, for performance reasons, memory constraints, or user-
defined control, an application may require to set the number of
samples generated to a target count Ntarget . Our technique easily
copes with this constraint by scaling the expected sample counts
by the ratio between the target and expected total sample count.
Finally, since the expected sample counts NT are decimal num-
bers, they are rounded to obtain the effective integer amount of
samples NT assigned to each triangle. The rounding is performed
up or down stochastically based on the fractional part of the sam-
ple counts, to ensure asymptotic convergence of the effective total
sample count towards Ntarget .

Floating-point addition induces that the exact values for NT and
N depend on the parallel execution scheduling order. In practice,
we observed that the value fluctuations only affect digits around
the last floating-point significant digit, so had little impact on the
final integer sample counts.

3.3. Unordered cumulative sum pass

At this point we have computed the number of samples we want to
draw from each triangle. These sample counts, stored in an array,
define a distribution that we wish to sample efficiently using a CDF
to assign a supporting triangle to each sample. This means comput-
ing a prefix sum of the array which, in a highly-parallel setup, either
involves several simple GPU kernel calls [HSJ86,HSO07], or a sin-
gle but complex GPU kernel call [MG16]. However, noticing that

Algorithm 3: Unordered Cumulative Sum
Input: Array A containing 32-bit unsigned integers
Result: Cumulative sum of A as if A has been shuffled by a

permutation σ beforehand, and the inverse
permutation σ

−1.
1 counter← 0 /* 64-bit counter */
2 parallel for input index in range(0, length(A)) do
3 element = A[input index]
4 increment← PackUint2x32(element,1)
5 result← AtomicAdd(counter, increment)
6 sum, processing index← UnpackUint2x32(result)
7 CDF [processing index]← sum+ element
8 σ

−1[processing index]← input index
9 return CDF,σ−1
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Figure 4: Top: given an input array, we compare the standard cu-
mulative sum, with one possible outcome for our unordered cumu-
lative sum. Bottom: bit representation of the atomic counter incre-
ment that simultaneously updates the number of already processed
threads and the partial sum of their corresponding elements (shown
here using 2×4 bits instead of 2×32).

sampling a discrete distribution is invariant under any permutation
of its elements, we propose a novel parallel cumulative sum com-
putation algorithm, which requires a single and simple GPU kernel
call, shown in Algorithm 3, and naturally deals with the unspecified
scheduling order of GPUs.

We now describe our unordered cumulative sum computation,
whose result is highlighted in Figure 4 (top). Launching threads in
parallel, each thread is responsible for reading one element from
the input array, and writing one entry in the output cumulative sum.
This entry is equal to the sum of all the elements already processed
by other threads, incremented by the currently processed element,
and its writing location in the output cumulative sum is equal to the
number of threads already processed. These two quantities, namely
the number of processed threads and the sum of their elements,
should be tracked, but the subtlety here is that these two quantities
must be incremented synchronously with respect to other threads.
While such synchronous update is possible on GPU for a single
variable using atomic operations, the simultaneous update of two
variables in not possible on current shader execution models, nor
efficient in more general GPGPU contexts. We address this limita-
tion with a standard practice, consisting in packing two 32-bit inte-
gers into a single 64-bit integer, effectively combining two atomic
counters into a single one and guaranteeing their synchronous up-
dates, as shown in Figure 4 (bottom).

Since the threads processing order is unspecified in a parallel
execution context, the presented algorithm computes a cumulative
sum, as if the input has been shuffled by some permutation. Con-
sequently, when the distribution is sampled later on using e.g., a
binary search on the unordered cumulative sum, the processing or-
der index is returned instead of the triangle index we seek. This
is why we also output the inverse permutation, which in our case
maps processing indices back to triangle indices.

The implementation shown in Algorithm 3 limits the number of
triangles and the number of samples to be less than 232. However,
if the triangle count is represented using n bits, then our unordered
cumulative sum can actually handle up to 64−n bits samples with
manual packing. Since 128-bit atomics are currently not supported

by any GPU, applications requiring more than 64− n bits would
have to use a standard prefix sum instead of Algorithm 3.

3.4. Realization pass

In this last pass, summarized in Algorithm 4, the samples loca-
tions are finally computed. Similarly to rejection sampling (Algo-
rithm 1), we assign one thread per output sample and, for each,
we iteratively generate sample candidates until one gets accepted.
We used the low distortion map proposed by Heitz [Hei19] to
uniformly sample locations on triangles, ensuring efficient and
arithmetic-only computations. Our method however differs from
plain rejection sampling in two crucial ways.

First, each sample is assigned to a fixed support triangle, whose
index is obtained using a binary search on the previously computed
unordered cumulative sum. Therefore, all candidate samples for a
given thread are located on the same triangle. This greatly improves
the efficiency of the memory reads, as not only the triangle data has
to be fetched only once per thread, but all density texture fetches
will be located on the same triangle in uv space. So for reasonably
sized triangles in uv space, all density fetches after the first one are
likely to be read directly from the texture cache. This reasoning
also extends to the scale of multiple threads. Since the supporting
triangle index only depends on the sample index, samples that are
processed in the same group of threads are likely to share the same
support triangle, and are therefore likely to benefit from memory
caching. Second, we use our precomputed per-triangle maximum
density Dmax

T instead of the less tight mesh global maximum den-
sity, which increases the samples acceptance rate and thus reduces
on average the duration of the sampling loop.

Upon acceptance, a sample can be consumed directly or stored
for future use. We show both use cases in our example applications
(Figure 15). For fur generation, we process samples directly in or-
der to compute the fibers attributes, while for instancing and light
sampling, samples are stored into a buffer that is consumed by a
subsequent rendering pass.

Algorithm 4: Realization pass
Input: MeshM, density map D, per-triangle max

densities Dmax
T , and unordered CDF of the

effective sample count per triangle and its
corresponding inverse permutation σ

−1.
Result: An array S containing N samples.

1 N← last element(CDF) /* Sample count */
2 parallel for sample index in range(0,N) do
3 processing index← BinarySearch(CDF,sample index)
4 triangle index← σ

−1[processing index]
5 T ← triangle index
6 while true do
7 sample← SampleUniform(T )
8 if D(sample)≥Dmax

T ·Rand0to1() then
9 S[sample index]← sample

10 end thread
11 return S
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4. Triangle-texel overlap computation

In this section, we describe our contribution for computing the
triangle-texel overlap. If we consider the general problem of inter-
secting a 2D triangle with a 2D square, the resulting polygon can
have various shapes, from a triangle to a convex heptagon, or can
be empty. Considering Equation (2), we actually only need the area
of that triangle-texel intersection polygon, not its explicit shape. To
the best of our knowledge, existing techniques for computing the
overlap first extract the intersection polygon [YSZ∗06, OCON82],
and then retrieve the area using closed-form formulas such as the
shoelace formula. Although efficient, those techniques present un-
desirable characteristics in our GPU context: memory footprint,
branching, and computation cost. We instead consider the triangle-
texel overlap under a signal processing perspective. The overlap
area then emerges as a 2D convolution, from which we derive a
satisfying analytic closed-form that is well suited for GPU, with
no branching, minimal memory footprint, and lightweight compu-
tational cost.

In the texel space, we define over R2 the indicator function 1T
of a triangle that returns 1 inside Tuv, and 0 otherwise. Similarly, we
define the indicator function for a unit square centered at the origin
1□. Using those functions, the triangle-texel overlap Area(p∩Tuv)
with a texel centered in (x,y) can be naturally expressed as the re-
sult of a convolution (Figure 5f):

Area(p(x,y)∩Tuv) = (1T ∗ 1□)(x,y) (3)

The unit square indicator kernel is separable since 1□(x,y) =
1⊓(x) ·1⊓(y), where 1⊓ = 1[−0.5,0.5] is the centered 1D unit gate
function. Our goal is therefore to find an expression for the trian-
gle indicator function 1T such that its convolution by a unit gate
is tractable. For that purpose, we use for each oriented edge i of
the triangle Tuv the function Ei(x,y) = 1[yi

1,y
i
2]
(y)

(
1Hi(x,y)−

1
2

)
,

where [yi
1,y

i
2] is the y-span of the edge, and Hi its oriented half-

space (Figure 5a)

The edge functions Ei have two important properties. First, we
have ∑Ei = 1T (Figure 5b), so by linearity of convolution, only
Ei ∗ 1□ = Ei ∗x 1⊓ ∗y 1⊓ is needed to compute the overlap area.
Second, Ei is an oriented step function in 2D, so its convolution
along the x-axis with 1⊓ results in a piecewise linear (clamp) 2D
function (Figure 5c), that can be expressed, up to a constant, as the
difference of two functions f±i (Figure 5e):

(Ei ∗x 1⊓)(x,y) = 1[yi
1,y

i
2]
(y)

(
f+i (x,y)− f−i (x,y)

)
(4)

where f±i (x,y) = 1
2nx

i

∣∣∣dot(ni,(x,y)−vi)±
nx

i
2

∣∣∣, ni is the edge

normal (with nx
i its x component), and vi is any point on the edge.

Putting everything together, we have:

1T ∗ 1□ = ∑
1≤i≤3

(
1[yi

1,y
i
2]
(y)

(
f+i (x,y)− f−i (x,y)

))
∗y 1⊓

= ∑
1≤i≤3

∫ min(y+0.5, yi
2)

max(y−0.5, yi
1)

f+i (x, t)− f−i (x, t) dt
(5)

Since f±i is the absolute value of a linear function in x and y,

each of the six integrals in Equation (5) has a simple closed-form
solution. The triangle-texel overlap computation therefore only in-
volves a low amount of GPU-friendly instructions, regardless of the
intersection shape.

Although this contribution was motivated by the triangle-texel
overlap context, Equation (5) can be trivially extended to com-
pute the area of the intersection between any polygon without self-
intersection, and a rectangle. The computational cost is linear with
the number of edges of the polygon, independently from its con-
cavity, and the formula does not suffer from branching.

5. Implementation details

In this section, we describe practical details and considerations that
are relevant for correctness and performance.

Conservative rasterization To enumerate, for each triangle, all
density texels that overlap it, the counting pass described in Sec-
tion 3.2 rasterizes the input mesh in uv space, i.e. using texture
coordinates as output positions in the vertex shader. However, the
native rasterization pipeline only generates fragments whose center
lies inside the triangle. Fortunately, modern graphics APIs propose
a conservative rasterization mode which, for every non-degenerate
triangle, guarantees that all fragments overlapping the triangle will
be generated and will contribute to their respective density integral.

UV extent Another consequence of the uv rasterization is that the
viewport size should be equal to the size of the input density map.
In case the input uv mapping spans multiple uv tiles, the viewport
size should be extended accordingly. Note that since our rasteriza-
tion pass does not use a depth or color attachment, the viewport
size has no impact on memory consumption.

Subgroup-level reduction Most of the kernels from Algorithm 2
and Algorithm 3 perform some kind of parallel reduction using
atomic operations. While atomic operations are quite efficient on
current hardware [ELF11], they remain our performance bottle-
neck. Still, highly efficient data sharing is possible between threads
that belong to the same subgroup, through the usage of dedi-
cated intrinsic functions [MYK23]. Thanks to those functions, each
atomic operation per thread can be replaced with one atomic op-
eration for a group of threads. We refer to the Vulkan Subgroup
Tutorial [Hen23] for implementation examples.

Note that the rasterization kernel requires a bit more care because
reductions outputs are triangle-dependent. So for a given subgroup,
only the subset of fragments that were generated by the same tri-
angle can use intrinsics to accelerate reductions. In practice, we
simply use subgroup-level reduction for a subgroup when all of its
fragments were generated by the same triangle, and fall back to
per-fragment atomic operations otherwise.

Triangle-texel overlap Within the counting pass, we compute the
overlap of a triangle with many different texels (see Algorithm 2).
Therefore some terms from Equation (5) can be precomputed
per triangle to speed-up computations. This property integrates
smoothly with the rasterization pipeline where per-triangle features
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(a) E1 (b) ∑Ei = 1T (c) E1 ∗x 1⊓

(d) 1T ∗x 1⊓ = ∑(Ei ∗x 1⊓) (e) Expression from (c) at arrow (f) Overlaps evaluating 1T ∗ 1□

Figure 5: Breakdown of our triangle-texel overlap computation

Figure 6: Our density benchmark dataset covers distributions
which are diverse in structures and frequencies.

are computed in the vertex and forwarded to fragment shader in-
vocations that compute the actual overlaps. We provide a complete
implementation of our triangle-texel overlap technique as a Shader-
toy demo https://www.shadertoy.com/view/3fV3Wz.

6. Results

One key aspect of our method is it that it efficiently runs on GPU
without preprocessing. Our implementation uses Vulkan shaders
[SK16]. All measurements were done with an RTX 4090 laptop
GPU.

Figure 7: Our mesh benchmark dataset ranges from 5k (Igloo) to
28M (Stanford Lucy) triangles.

6.1. Comparisons

Sampling We compare our method to plain rejection sampling
(RS) and naive triangle stratification as a baselines, and to FRS
[ŠK13] which, to the best of our knowledge, is state-of-the-art. For
fair comparisons, we implemented both methods on the GPU as
well using Vulkan compute shaders. To evaluate performance over
a range of use cases, we built a benchmark consisting of 9 density
maps (Figure 6) and 12 meshes (Figure 7), yielding 108 different
inputs for a benchmark. The Lucy and Statue models come from
the Stanford Scanning Repository [LGCP05], the Rungholt model
comes from the Computer Graphics Archive [McG17], and the
other models come from the Substance 3D Assets library [Sub25].

© 0 Eurographics - The European Association
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In Figure 8, we report timing performances in ms, over the whole
dataset, to generate a target sample count ranging from 1k to 100M
samples. We can observe that at low sample count, i.e. less than
a hundred of thousands, RS remains competitive, while FRS pays
the price of its initial subdivision phase. However, as the sample
count grows, the benefit of our method becomes more and more
visible, and beyond the million of samples, we consistently outper-
form the other methods by at least an order of magnitude. Conse-
quently, our method is the only one that stays within the real-time
regime for a large sample count, taking less than 10ms to generate
100M samples. Figure 8 also shows that the performance of our
method is more predictable than the competition, as its variance
over the dataset is much lower.

In Figure 9, we show our method resilience on very large meshes
containing dozens of millions of triangles and in Figure 10, we
show that ultra-sparsity of the density can make our method slower
than FRS in some cases. Since they do not rely on rejection sam-
pling, finding the few non-zero density pixels is performed at pre-
processing time rather than at sampling time. We present in the
supplementary document a detailed analysis about how the trian-
gle stratification and the per-triangle max densities significantly in-
crease the expectancy of accepting a sample in practice over plain
rejection sampling.

Triangle-texel overlap As reported in Figure 11, we compare our
convolution approach against a standard polygon intersection rou-
tine [LF15], leading to significant performance degradations. We
also compare to an approximate but computationally less expen-
sive formula to compute the overlap, which has a limiting impact
on performances. The formula we used is based on the 2D signed
distance field (SDF) of the triangle:

Area(p∩Tuv)≈ clamp(0.5+SDF(Tuv,center(p)),0.0,1.0) (6)

However, this approximation can lead to visible sampling artifacts
(Figure 12).

Cumulative sum We compare in Figure 13 our unordered cumu-
lative sum to the state of the art parallel cumulative sum method
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Figure 8: Performance timings, averaged over the test dataset (in
milliseconds, logarithmic scale), for a growing requested sample
count, reported with standard deviation, for rejection sampling,
FRS [ŠK13], rejection sampling with naive triangle stratification,
and our method.
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Figure 9: Performance timings, averaged over the densities dataset
(in milliseconds, logarithmic scale), for a fixed mesh (ladybug
from Figure 7) and 10M sample count, with a growing number of
uniform subdivision to increase the triangle count, reported with
standard deviation, for rejection sampling, FRS [ŠK13], and our
method.

Figure 10: Performance timings, averaged over the mesh dataset
(in ms, logarithmic scale), for a fractal density map with differ-
ent thresholding values that increase its sparsity, reported with
standard deviation, for rejection sampling, FRS [ŠK13], and our
method.
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Figure 11: UV rasterization performance, averaged over the test
dataset (in milliseconds, logarithmic scale), for different methods
to compute triangle-texel overlaps.
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[MG16], using a publicly available implementation [Lev21], which
is substantially more complex to implement than ours, and to
a method with a similar implementation complexity as ours
[HSO07]. Our unordered cumulative sum performs significantly
better at low triangle count, and offers similar performances to state
of the art at high triangle count.

6.2. Ablation

We validate the different aspects of our method with an ablation,
summarized in Figure 14. The different versions are either signif-
icantly slower, in particular at low sample count, or require addi-
tional implementation complexity without clear performance gains.
We also add the previously mentioned texel-triangle overlap and
cumulative sum comparisons in this figure to showcase their im-
pact on the overall method.

Rasterization pipeline Replacing the rasterization pipeline with a
compute pipeline parallelized over the triangles degrades perfor-
mances the most ("No Rasterization"). This was expected since
processing one triangle per compute thread leads to stalling threads
waiting for the biggest triangle of the warp to be processed. Using
a mesh shader instead of a vertex shader to reduce the amount of
per-triangle computations has no visible impact on performances,
confirming that fragment shader invocations are the bottleneck of
the pipeline ("Mesh Shader"). Using finer-grained subgroup-level
reductions in the fragment shader shows no clear benefit as well
("Subgroup Partitions", "Subgroup Clusters"), while not using any
Subgroup-level reduction significantly impacts performances ("No
Subgroup Reduction").

Inverse CDF The usage of an inverse CDF to accelerate the binary
search for sampling the CDF degrades the performances at low to
medium sample counts, and has negligible benefits for large sample
counts ("Inverse CDF"). This is different from FSR, for which the
usage of an inverse CDF is critical [ŠK13].

6.3. Applications

We show results in Figure 15, with high resolution density maps,
on various mesh complexities, and across different applications.

Fur placement The fabric fuzz is distributed over a pattern struc-
ture. The distribution is controlled by a density map designed as
a procedural graph which allows to synchronize fuzz density with
material appearance. The sampling distribution is computed at each
frame which allows to vary dynamically both the input mesh and
the procedural material graph.

Polygon SDF Ours

Texel 0 Texel 1

Tri. 0

Tri. 1

Exact
Fast

●
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◎
●
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●

Figure 12: Sampling with 3 different texel-tri. overlap methods.
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Figure 13: Cumulative sum comparison performance, averaged
over the mesh dataset (in milliseconds, logarithmic scale), for the
methods of Harris et al. [HSO07], Merril et al. [MG16], and our
unordered cumulative sum.
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Figure 14: Performance timings, averaged over the test dataset (in
milliseconds, logarithmic scale), for a growing requested sample
count, and different versions of our method. Each version differs
from our final implementation by only one change, described in
details in Section 6.2.

Instancing The generated points serve as seeds for distributing
small geometric instances over a surface. In our example, the in-
stance parameters, such as scale and orientation, were randomised
on-the-fly based on the sample index.

Light sampling By interpreting an the emissive map of a material
as a density of light, our method computes the amount of emissive
light per triangle, and generates a large number of point lights, ap-
proximating very well the emissive light distribution. This is very
useful in a path tracing context, as it allows to finely importance
sample portions of surface that actually emit light, thus greatly re-
ducing the rendering noise variance caused by the light sampling.

7. Discussion, limitations and future work

Our mesh sampling technique exhibits high performances and par-
allel scalability, without requiring memory-expensive data struc-
tures. Its stratification is key for performances but using triangles
as strata can be ineffective when the surface partitioning induced
by triangles is very unbalanced, i.e. when a single triangle covers

© 0 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



10 of 11 Schertzer et al. / Triangle Rejection Sampling for Density-Equipped Meshes on GPU

Figure 15: Experimental downstream applications consuming the samples generated by our method in real time. For each use case, we show
the 2k × 2k density map and the surface mesh. Left: emissive surface Monte Carlo rendering (1M samples, 1M triangles). Top middle: point
set rendered as analytical spheres, with close-up in inset (10M samples, 400k triangles). For this example, the density map is tiled 10 times
over the surface in both dimensions. Top right: geometry instancing seeding (250k samples, 60k triangles). Bottom right: fabric fuzz seeding
(30M samples, 100k triangles). Additional examples provided as supplemental material.

half the mesh area. Such cases may be addressed using an adap-
tive subdivision of the mesh, in the spirit of FRS [ŠK13] but with
a stopping criterion less extreme than requiring a constant density
per triangle.

Our method remains a rejection sampling approach, which does
not cope well with extreme sparsity of the density, i.e. when out
of millions of texels, only a couple of them have non-zero density.
While we still handle those cases better than plain rejection sam-
pling thanks to our stratification, finding those pixels will require
many loop iterations. While this problem is rare in practical sce-
narios, efficient multi-resolution usage of the density map could be
an interesting research direction to address it.

Considering the simplicity of our method, one can see it as drop-
in replacement for any density-based random point sampling sur-
faces meshes. While our target scenarios are focused on consum-
ing processes that request interactive feedback (Figure 15), a much
wider set of 3D computer graphics applications may actually bene-
fit from our sampler. Finally, we think that our texel-triangle over-
lap technique can be extended to 3D for fast intersection area com-
putation between a mesh and a box.
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