
Tessellation-Free Displacement Mapping for Ray Tracing

THEO THONAT, Adobe, France
FRANCOIS BEAUNE, Adobe, France
XIN SUN, Adobe, USA
NATHAN CARR, Adobe, USA
TAMY BOUBEKEUR, Adobe, France

Fig. 1. Our displacement BVH injects high frequencies onto a 3D surface mesh, here in a GPU path tracer. The whole scene geometry is represented using
only 460 MB in GPU memory, with a superior rendering quality than what could be obtained using all the available memory on tessellation. Our method can
reuse the same acceleration structure when mapping a displacement map onto different base surfaces, even with different displacement parameters, as can be
seen with the two spheres on the right.

Displacement mapping is a powerful mechanism for adding fine to medium
geometric details over a 3D surface using a 2D map encoding them. While
GPU rasterization supports it through the hardware tessellation unit, ray
tracing surface meshes textured with high quality displacement requires a
significant amount of memory. More precisely, the input surface needs to
be pre-tessellated at the displacement map resolution before being enriched
with its mandatory acceleration data structure. Consequently, designing

Authors’ addresses: Theo Thonat, Adobe, France, thonat@adobe.com; Francois Beaune,
Adobe, France, beaune@adobe.com; Xin Sun, Adobe, USA, xinsun@adobe.com; Nathan
Carr, Adobe, USA, ncarr@adobe.com; Tamy Boubekeur, Adobe, France, boubek@adobe.
com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
0730-0301/2021/12-ART282 $15.00
https://doi.org/10.1145/3478513.3480535

displacement maps interactively while enjoying a full physically-based ren-
dering is often impossible, as simply tiling multiple times the map quickly
saturates the graphics memory. In this work we introduce a new tessellation-
free displacement mapping approach for ray tracing. Our key insight is to
decouple the displacement from its base domain by mapping a displacement-
specific acceleration structures directly on the mesh. As a result, our method
shows low memory footprint and fast high resolution displacement render-
ing, making interactive displacement editing possible.

CCSConcepts: •Computingmethodologies→Rendering;Ray tracing;
Texturing; Mesh geometry models.

Additional Key Words and Phrases: Ray tracing, displacement mapping,
affine arithmetic

ACM Reference Format:
Theo Thonat, Francois Beaune, Xin Sun, Nathan Carr, and Tamy Boubekeur.
2021. Tessellation-Free Displacement Mapping for Ray Tracing. ACM Trans.
Graph. 40, 6, Article 282 (December 2021), 16 pages. https://doi.org/10.1145/
3478513.3480535

ACM Trans. Graph., Vol. 40, No. 6, Article 282. Publication date: December 2021.

https://doi.org/10.1145/3478513.3480535
https://doi.org/10.1145/3478513.3480535
https://doi.org/10.1145/3478513.3480535

282:2 • Theo Thonat, Francois Beaune, Xin Sun, Nathan Carr, and Tamy Boubekeur

1 INTRODUCTION
Displacement mapping [Cook 1984] has proven to be an intuitive
approach for artists to add geometric details to 3D surfaces. The
strong correlation between material and shape makes storing and
editing of displacement information in image form alongside tex-
tures quite natural. Both games and film production have leveraged
this representation; however, the use of displacement mapping in
interactive and real-time ray tracing applications remains an open
challenge. Indeed, this often induces an actual tessellation of the
base surface domain, performed at the granularity of the displace-
ment map, prior to the construction of static acceleration structures.
In this work we present a novel algorithm to interactively ray-trace
displacement maps without tessellation. Specifically our approach
retains displacement map information in its native image form dur-
ing ray tracing. By doing so, our method supports instancing and
tiling, resulting in significant memory savings over pre-tessellation.
Furthermore, our method supports continuous level-of-detail which
is critical for reducing geometric aliasing effects encountered during
rendering.
Interactive applications have long leveraged rasterization based

approaches to synthesize images from 3D scenes. GPU hardware
support has added tessellation shaders, enabling techniques to ren-
der efficiently displacement mapping and rich geometric detail in
real-time [Nießner and Loop 2013]. In contrast, handling displace-
ment mapping in the context of interactive (GPU supported) ray
tracing is far more complicated. This is primarily due to the fact that
ray-tracers must efficiently support random access spatial queries
for geometric information. Specifically, large portions of the scene
must be accessible and acceleration structures maintained to sup-
port the fundamental ray query operation. The naïve approach
of pre-tessellating displacement maps into meshes does not scale.
Both the available memory, and computational cost to rebuild finely
tessellated meshes and their related acceleration data-structures
puts a strict cap on the level of fidelity achievable. For this reason
explorations have been made into how to make ray tracing more
streamable using caching or ray reordering to support displacement
mapping [Christensen et al. 2003; Pharr and Hanrahan 1996; Pharr
et al. 1997]. These approaches have mostly been used for offline
rendering tasks due to their overhead.

In our work, we focus on developing a practical algorithm for ray
tracing displacement maps that can be used in interactive global
illumination engines and on arbitrary base surface meshes. We
demonstrate our method running in the unbiased GPU Monte Carlo
path tracer of the Adobe Mercury Rendering Engine. Specifically, our
work focuses on allowing displacement information to be handled
similarly to texture maps; freely allowing tiling, scaling, instancing,
and pre-filtering at interactive rates. We do this while significantly
reducing memory consumption, rendering scenes that would not fit
into memory using pre-tessellation approaches. To achieve this we
propose a novel approach which dynamically constructs accelera-
tion structures tailored for the displacement and "mapped" on the
base surface on the fly during ray tracing without needing to cache
high-resolution geometry. In summary, our contributions include:

• A method to efficiently perform direct ray tracing of displace-
ment maps over general, non flat surface meshes.

• A bounding volume hierarchy defined in texture space, ex-
hibiting minimal coupling with the base mesh onto which it
is mapped.

• A stack-less, pointer-less traversal mechanism running in
UV space which skips empty space and optimizes for the
bounding volume test order.

• A flexible frameworkmaking possible to use customized inter-
section tests over the canonical base trianglemesh/displacement
map input pair, yielding a wide spectrum of geometric fidelity
levels with continuous level-of-details.

• Natural level-of-detail (LoD) support that can reduce geo-
metric aliasing effects during rendering and improve perfor-
mance.

As a consequence, our approach enables interactive rendering of
dynamic displacement maps without resorting to high-resolution
tessellation. The displacement content as well as its mapping/tiling
can be interactively edited, up to very high resolutions, which
makes our method particularly suited for modern parametric, non-
destructive modeling workflows.

2 PREVIOUS WORK

2.1 Ray-traced displacement maps
The search for efficient algorithms for ray-tracing geometrically
complex scenes has been explored in the context of offline ren-
dering, including numerous extensions to the Reyes architecture.
Both caching and ray-reordering have been shown to be effective
algorithms [Christensen et al. 2003]. The idea of doing lazy fast build-
ing of accelerations structures was explored by Hunt et al. [2007].
Hanika et al. [2010] developed a two-level acceleration scheme build-
ing a top level structure over conservative patch bounding volumes.
On-demand tessellation and acceleration structure building is per-
formed for rays that hit leaf nodes of this top level structure, and
ray-reordering is employed to maximize re-use. In contrast, we use
an implicit acceleration structure over the patch, generating the
micro structures only at the scale of the displacement map texels.
Djeu et al. [2011] developed the Razor system which enables

crack-free multiresolution geometry, allowing each ray to indepen-
dently choose its appropriate geometric resolution. They use lazy
evaluation and caching of tessellations at discrete levels of detail,
that are interpolated during intersection to generate fractional LoD.
On the contrary, we intersect the displaced surface directly at the
fractional LoD, with the displaced surface never being generated
explicitly, except during the traversal ultimate step at the scale of
a single texel. Hou et al. [2010] expanded the BVH leaf node w.r.t
micro-polygon’s high dimensional behavior, including motion blur
and depth-of-field. This method does not bound w.r.t. base polygons.
Our work is orthogonal, processing the relationship between a base
polygon and its high-resolution displacement content.

2.2 Real-time displacement mapping
In the context of rasterization, several methods have been proposed
to render surface details in real time without tessellation. Indeed,
the simplest form of displacement mapping is bump mapping [Blinn
1978] which uses a normal map to take in account local surface

ACM Trans. Graph., Vol. 40, No. 6, Article 282. Publication date: December 2021.

Tessellation-Free Displacement Mapping for Ray Tracing • 282:3

variations during shading. However, as the surface is not modified,
self-shadowing and silhouettes cannot be represented.
Parallax mapping [Kaneko et al. 2001; Tatarchuk 2006] uses an

height map to find an approximate intersection with the meso-
surface from the height information at the macro-surface. Iterative
methods have been developed to explore the height field by sampling
the height function along the ray using ray-marching. They often
combine a first search using fixed steps to find a pair of points above
and below the surface, followed by a refinement process such as
the secant method [Yerex and Jägersand 2004] or a binary search
[Policarpo et al. 2005]. In both cases, there is no guarantee that
the returned intersection is the closest one. Lee et al. [2009] further
improved the linear search of relief mapping using a minmax texture.

Height maps can be used to encode empty space near the surface.
This encoding gives a conservative estimation for the next ray-
marching step and is generally a map that stores parameters of a
simple parametric shape, for example a sphere [Donnelly 2005; Hart
1996] or a cone [Dummer 2006]. In the context of ray-marching
against the displacement, empty space encoding can be relaxed to
define regions where it is safe to switch to a fast refinement method,
for example using relaxed cone stepping [Policarpo and Oliveira
2007]. However, computing encoding maps from displacement maps
remains an expensive pre-process, which takes several minutes with
the most recent methods [Baboud et al. 2011].

The method of Wang et al. [2003] pre-computes intersection with
the meso-surface from a dense sampling of query rays and uses
Singular Value Decomposition based compression to deal with the
amount of generated data in real time. While its extension [Wang
et al. 2004] is able to handle a variety of base surfaces and vector
displacement, the memory-quality trade-off makes it impractical
for high quality displacement from arbitrary input viewpoint.
While parallax mapping and relief mapping have been demon-

strated in real-time applications, special handling is required to en-
able additional effects like silhouette edges, shadows, object and in-
terpenetrations [Chen and Chang 2008; Dachsbacher and Tatarchuk
2007; Oliveira and Policarpo 2005]. Our approach ensures a glob-
ally consistent geometry and can be naturally integrated into any
path-tracing supporting the full range of effects (see Figure 14). A
more general overview on methods to render meso-surface in real
time on the GPU can be found in the report of Szirmay-Kalos et al.
[2009].

2.3 Implicit acceleration structures for raytracing
The idea of having an implicit data structure to overcome the mem-
ory burden produced by a very detailed geometry is not new. Simi-
larly as our work, Heidrich and Seidel [1998] use affine arithmetic
to estimate displacement bounds and base surface bounds in 𝑢𝑣
space. Their work is focused on procedural displacement shaders
and contrary to our method, does not take in account the curvature
of the base mesh. The work of Smits et al. [2000] also allows direct
ray tracing of displaced polygonal meshes without tessellation with
a different tradeoff as our method. Their traversal is based on a ray
marching prisms in barycentric space, allowing their method to
cover exactly the base domain. However, their displacement bounds
are constant per triangle, which leads to loose estimations for high

resolution or high amplitude displacement. Carr et al. [2006] showed
how to efficiently ray-trace scenes comprised as geometry images.
They build an implicit quad tree bounding volume hierarchy by
decomposing the model in 𝑢𝑣 space. In contrast, our method de-
couples base level geometry (i.e. triangle mesh information) from
displacement information.
Oh et al. [2006] use a maximum displacement mipmap as a hi-

erarchical data structure to intersect height fields. However, their
traversal suffers from limitations such as missing intersections, as it
is unable to ascend the hierarchy. The work of Tevs et al. [2008] over-
come these limitations by using maximum displacement mipmaps as
an implicit bounding volume hierarchy, in the special case of height
field rendering. Our method is a generalization of their method to
any polygon base mesh.

2.4 Smooth surfaces raytracing
A number of methods have been proposed for ray tracing efficiently
smooth surfaces both without or with displacement data. For in-
stance,Benthin et al. [2015] cache local tessellation for ray tracing
subdivision surfaces. Moreton [2001] presented a hardware algo-
rithm for watertight tessellation of polynomial surfaces. Nießner
et al. [2012] developed a high performance GPU approach for render-
ing Catmull-Clark Subdivision Surfaces. Selgrad et al. [2016] define
a priori BVHs for smooth parametric patches, which avoid pretes-
sellating them. Lier et al. [2018] proposed a compressed scheme,
using localized compact approximation of the displaced geometry
to speed-up rendering.

Regarding data structure, Munkberg et al. [2010] build an efficient
bounding structure of displaced Bézier patches, using a min-max
hierarchy to construct tight oriented bounding volumes. Lu et al.
[2009] propose to decompose a mesh into height fields in a octree,
and ray-trace against the height fields.
Wang et al. [2000] detect and analyze displacement features to

reproduce them faithfully. Moule and McCool [2002] propose an
on-the-fly, crack-free solution to displacement mapping which uses
local triangle information to provide a view-dependent tessellation.

2.5 Shell mapping
Porumbescu et al. [2005] creates a thin intersectable volumetric
region around the surface by extruding the mesh outward in the
normal direction. Intersection with this volume is performed and
in the case of displacement mapping, the ray can be transformed
into the local texture space to find an appropriate intersection using
e.g., local height field ray-tracing. Unfortunately, the mapping from
world to texture space is non-linear, and thus requires tracing curved
ray paths to avoid the height field from buckling [Jeschke et al. 2007].
As with many shell based methods [Hirche et al. 2004], issues can
arise if the mapping is not bijective e.g, when the extruded prisms
invert and self intersect. This limits the maximum displacements
to the local radius of mesh curvature unless care is taken. Our
algorithm is always guaranteed to construct a valid bounding box
hierarchy and is robust to these conditions.

We refer the reader to the survey on displacement mapping pro-
vided by Szirmay-Kalos and Umenhoffer [2008] which covers a
number of high performance methods, including GPU-based bump

ACM Trans. Graph., Vol. 40, No. 6, Article 282. Publication date: December 2021.

282:4 • Theo Thonat, Francois Beaune, Xin Sun, Nathan Carr, and Tamy Boubekeur

Table 1. Terminology

Symbol Type Comments
P vec3 Base surface position
N vec3 Base surface interpolated normal
N̂ vec3 Normalized interpolated normal
ℎ float Sampling of a𝑊 × 𝐻 displacement map
𝑢𝑣 vec2 Texture coordinates 𝑢 and 𝑣
𝑖, 𝑗 ivec2 Texel integer coordinates
𝑘 int Texel mipmap level
Ω𝑘
𝑖,𝑗

vec2[2] 𝑢𝑣 domain corresponding to texel (𝑖, 𝑗, 𝑘)
𝑀 vec2 Minmax mipmap relative to a sampling ℎ
𝑥, 𝑥 Min and max of the quantity 𝑥
[𝑎, 𝑏] Interval, or AABB for vector quantities
[𝑥] Affine form, also written as [𝑥𝑐 , 𝑥𝑢 , 𝑥𝑣, 𝑥𝐾]

mapping, parallax mapping, relief mapping, horizon mapping, cone
stepping, local ray tracing, pyramidal and view-dependent displace-
ment mapping methods, as well as their numerous variations, which
are reviewed extensively, providing also implementation details of
the shader programs.

3 OVERVIEW
Our method provides a direct ray tracing operator with lowmemory
footprint for surfaces enriched with displacement maps. The key
idea is to define a displacement-centric acceleration structure that
can be mapped onto polygon meshes similarly as texture mapping.
The actual bounding volume hierarchy for the displaced surface is
never stored in memory and is generated on the fly on a per-ray
basis. Being free of expensive base domain pre-computation, e.g.
tessellation, our method makes possible interactive editing of the
displacement content.
An overview of our method is given in Figure 2. We show in

section 4 the construction of the displacement acceleration structure
– that we call Displacement Bounding Volume Hierarchy or D-BVH
– and an algorithm to traverse it to compute intersections with
the displaced surface. The D-BVH is quite general and allows to
vary several components that we detail in section 5, such as the
type of displacement or the sampling of the displacement map. We
give in section 6 details about our practical implementation for
interactive GPU ray tracing. Finally, we show in section 7 results in
terms of appearance, memory footprint and performances, as well
as comparisons with previous methods, and an ablation study of the
method optimizations. Table 1 gives the terminology for the main
symbols encountered in the paper.

4 DISPLACEMENT BVH
We present in this section a method to compute and use the D-
BVH. The D-BVH maps pre-computation of displacement bounds in
texture space to compute 3D bounding volumes during ray tracing.
It hybridizes a 2D hierarchical space division structure at the texture
level and an implicit 3D bounding volume hierarchy for the displaced
surface.

4.1 Displaced surface
We define a displaced surface for any texture coordinate (𝑢, 𝑣) as:

S(𝑢, 𝑣) = P(𝑢, 𝑣) + ℎ(𝑢, 𝑣)N̂(𝑢, 𝑣) (1)

where P and N̂ are respectively position and unit normal of the
base surface, and ℎ is a sampling of the displacement map. For base
surfaces we consider, P and N are defined per base primitive using
linear interpolation of the vertices properties, and we define the
complete displaced surface as the union of all displaced surfaces
generated by each base primitive. Therefore, we will always con-
sider ray tracing the displaced surface restricted to a single base
primitive. We show in section 5 an example where the base surface
is a triangle mesh, and detail in section 6 a practical implementa-
tion for a displaced object representing all its displaced triangles.
From Equation 1, we see that estimating a bounding volume of the
displaced surface for a 𝑢𝑣 domain means computing bounds for the
base position, the base normal, and the displacement. Our D-BVH
takes advantage of displacement being independent from the base
surface embedding and store bounds for all 𝑢𝑣 domains considered
during traversal. We first describe the D-BVH construction. We
then describe the D-BVH traversal procedure, and how we use it in
combination with affine arithmetic to estimate 3D bounds for the
displaced surface. Finally we explain how integer and continuous
level-of-detail are supported by the D-BVH.

4.2 Construction
Thework of Tevs et al. [2008] uses amaximummipmap as an implicit
acceleration structure to raymarch displacement maps applied to
planar base surfaces. In their setup, five planes can be computed
on the fly for each maximum mipmap texel to bound the displaced
surface, the base surface acting as an implicit sixth plane to complete
the bounding box. Inspired by this work, we use a minmax mipmap
as an acceleration structure for the displacement, storing both a
conservative minimum and maximum value of displacement over
the 𝑢𝑣-domain corresponding to each texel. More specifically, given
a samplingℎ of a displacement mapwithmaximum resolution𝑊 ×𝐻
and 𝐾 mip levels, we define its minmax mipmap𝑀𝑘

𝑖 𝑗
for 0 ≤ 𝑘 < 𝐾 ,

0 ≤ 𝑖 <𝑊 2−𝑘 , and 0 ≤ 𝑗 < 𝐻2−𝑘 as:

𝑀𝑘
𝑖,𝑗 =

[
𝑀𝑘
𝑖,𝑗 , 𝑀

𝑘
𝑖,𝑗

]
= minmax

(𝑢,𝑣) ∈Ω𝑘
𝑖,𝑗

ℎ(𝑢, 𝑣) (2)

where Ω𝑘
𝑖 𝑗

is the 𝑢𝑣 domain corresponding to a texel, defined by(
𝑖2𝑘 ≤𝑊 · 𝑢 ≤ (𝑖 + 1)2𝑘

)
∧

(
𝑗2𝑘 ≤ 𝐻 · 𝑣 ≤ (𝑗 + 1)2𝑘

)
for any inte-

gers 𝑖, 𝑗, 𝑘 . This minmax mipmap is effectively a 2-channel texture
with the same dimensions and same number of mipmap levels as the
input displacement map, and is independent from the base surface
on which the displacement is mapped on.

In practice, the minmax mipmap is computed starting from level
𝑘 = 0 using sampling-dependant formulas, and with the following
recursive formula for the other levels:

𝑀𝑘
𝑖,𝑗 = minmax

𝑠/2 = 𝑖, 𝑡/2 = 𝑗
𝑀𝑘−1
𝑠,𝑡 (3)

ACM Trans. Graph., Vol. 40, No. 6, Article 282. Publication date: December 2021.

Tessellation-Free Displacement Mapping for Ray Tracing • 282:5

Polygon
meshes

Bounding volume hierarchies

Mapping on any
base mesh

uv

Height

Displacement map
Minmax mipmap

. . .

Displacement BVH

Displacement
parameters

Local intersection tests

Precomputation

Geometric quality

Ray

Displacement BVH
traversal

Box
estimation

Box
estimation

Fig. 2. Method overview: we compute an acceleration structure (D-BVH) at the displacement level using a minmax mipmap. This structure is then mapped,
with low memory overhead, onto any polygon mesh to provide direct ray tracing of surfaces with displacement. The actual displaced surface is never stored in
memory and its bounding volumes are computed on the fly on a per-ray basis. Displacement parameters, such as the 𝑢𝑣 mapping or the displaced surface
geometric quality, can be modified at any time with minor additional computations.

Mip level k+2

Mip level k+1

Mip level k (leafs)

Root
End node

Base triangle

Mipmap traversal Bounding box hierarchy

Fig. 3. D-BVH traversal: The minmax mipmap is traversed (left) to com-
pute a hierarchy of bounding volumes generated on the fly (right). Light
blue arrows represent the down operator and red arrows the next operator
as defined in algorithm 1. A traversal starts from the root and considers
texels until the end texel is reached. Green check-marks and red-crossings
indicate whether the ray has intersected or not the box generated by the
texel. In case of intersection, the traversal goes down to the next mip level,
unless a leaf was reached and a local intersection test with the displaced
surface is performed.

4.3 Traversal
Given a ray and a base triangle, our D-BVH traversal visits all texels,
at the finest mip level, which could generate a displaced surface that
intersects the ray. We use the hierarchical nature of the mipmap
to perform early discard of large 𝑢𝑣 domains and accelerate the
traversal.

The mipmap defines an implicit graph structure, where nodes are
simply texels (2 integer coordinates and 1 integer mip level), and
where children of a node are simply its 4 corresponding texels in
the mip level below. This implicit graph is not restricted to texels
corresponding to actual displacement data, but also contains any
signed integer mip layers and texel coordinates. This extension is

useful to handle texture coordinates outside the unit square, which
often happens when tiling textures.

Starting the traversal from the root and assuming we have a crite-
rion to identify leaf texels, our traversal is simply a depth first search
in a subtree of this infinite implicit graph, as shown in Figure 3. As
the graph is implicit, the traversal is stack-less and pointer-less. We
define leafs as texels whose mip levels are below a given target mip
level and for which the displaced surface has a closed-form that can
be directly intersected. Examples of such closed-forms with different
geometric qualities are given in section 5. At each traversed texel, a
3D axis-aligned bounding box is computed by combining bounds
from the D-BVH and information from the base triangle. The box is
then intersected with the query ray using the slab method [Williams
et al. 2005]. This intersection determines if we either go down in the
hierarchy or just skip the texel. If we are at a leaf, we perform the
actual intersection test with the displaced surface, and update the
intersection information accordingly. Pseuso-code for the traversal
procedure is shown in algorithm 1. Details about the root choice,
the traversal order or texel early discard are given in section 6.

4.4 Level of detail
We discuss in this section how our D-BVH handles different integer
and continuous levels of detail using the same hierarchy.

Integer level-of-detail. As noted by Carr et al. [2006] and Tevs et al.
[2008], minmax mipmap traversals handle integer level-of-detail
(LoD) almost for free by simply skipping texels below the target
level of interest. However, while the kernel support of the minmax-
mipmapping has the same size as standard box-mipmapping, the
height sampling function might fetch data from outside this sup-
port, even with simple bilinear filtering, as seen in Figure 4. As
a consequence, the level 𝑘 of the minmax mipmap as defined in
subsection 4.2 is not always a conservative estimate of the level 𝑘
of the box-mipmapped input displacement. Therefore, in order to
represent all displacement LoDs in the same hierarchy, the recursion
formula from Equation 3 has to be slightly modified to also consider
the height sampling ℎ𝑘 (𝑢, 𝑣) at mipmap level 𝑘 :

ACM Trans. Graph., Vol. 40, No. 6, Article 282. Publication date: December 2021.

282:6 • Theo Thonat, Francois Beaune, Xin Sun, Nathan Carr, and Tamy Boubekeur

Algorithm 1: Mipmap traversal for ray tracing
The down, up, and next functions describe the texels traver-
sal order and modify in place their argument. The box and
local_intersection functions – respectively computing
the bounding box from a texel and performing the actual
intersection with the displaced surface – is detailed in sec-
tion 5. The root function, computing the traversal starting
texel, and the outside function, performing early texel dis-
card, are described in section 6. The miss function is based
on a ray-AABB intersection routine.
Function down(𝑡𝑒𝑥𝑒𝑙):

--𝑡𝑒𝑥𝑒𝑙 .𝐿𝑜𝐷
𝑡𝑒𝑥𝑒𝑙 .𝑖 𝑗 *= 2

Function up(𝑡𝑒𝑥𝑒𝑙):
++𝑡𝑒𝑥𝑒𝑙 .𝐿𝑜𝐷
𝑡𝑒𝑥𝑒𝑙 .𝑖 𝑗 /= 2

Function next(𝑡𝑒𝑥𝑒𝑙):
while true do

switch 2*(𝑡𝑒𝑥𝑒𝑙 .𝑖 % 2) + 𝑡𝑒𝑥𝑒𝑙 . 𝑗 % 2 do
case 1 do

--𝑡𝑒𝑥𝑒𝑙 . 𝑗
++𝑡𝑒𝑥𝑒𝑙
return

case 3 do
up(𝑡𝑒𝑥𝑒𝑙)

continue
else

++𝑡𝑒𝑥𝑒𝑙 . 𝑗
return

Function traversal(ray, triangle, target LoD):
𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = empty
𝑡𝑒𝑥𝑒𝑙 , 𝑒𝑛𝑑𝑡𝑒𝑥𝑒𝑙 = root(𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒)

next(𝑒𝑛𝑑𝑡𝑒𝑥𝑒𝑙)

while 𝑡𝑒𝑥𝑒𝑙 ≠ 𝑒𝑛𝑑𝑡𝑒𝑥𝑒𝑙 do
if outside(𝑡𝑒𝑥𝑒𝑙 , 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒) or miss (ray,
box(𝑡𝑒𝑥𝑒𝑙)) then

next(𝑡𝑒𝑥𝑒𝑙)

else if 𝑡𝑒𝑥𝑒𝑙 .𝐿𝑜𝐷 ≤ 𝑡𝑎𝑟𝑔𝑒𝑡𝐿𝑜𝐷 then
if ℎ𝑖𝑡 = local_intersection(𝑡𝑒𝑥𝑒𝑙 , 𝑟𝑎𝑦) then

update 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 from ℎ𝑖𝑡

next(𝑡𝑒𝑥𝑒𝑙)

else
down(𝑡𝑒𝑥𝑒𝑙)

return 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑀𝑘
𝑖,𝑗 = minmax

(
minmax

𝑠/2 = 𝑖, 𝑡/2 = 𝑗
𝑀𝑘−1
𝑠,𝑡 ,minmax

Ω𝑘
𝑖,𝑗

ℎ𝑘 (𝑢, 𝑣)
)

(4)

Height

uv
level k

level k+1
Height

mipmap

Our adjusted
minmax mipmap

Height interpolation

Basic minmax
mipmap

Non conservative
estimation

Fig. 4. Minmax mipmap LoD capabilities: The linearly interpolated
height at LoD 𝑘 (bold blue line) is conservatively estimated by the minmax
mipmap at level 𝑘 (dark blue boxes). The minmax mipmap at level 𝑘 + 1
(light blue boxes), computed using standard minmax mipmapping from
Equation 3, is indeed a conservative estimation of the interpolated height at
LoD 𝑘 . However, as highlighted in purple, it is not a conservative estimate
of the linearly interpolated height at LoD 𝑘 + 1 (bold red line). By using the
adjusted minmax mipmapping from Equation 4, we obtain correct bounds
for all displacement mip levels (light green box),

Continuous level-of-detail. As seen from Equation 1, the displaced
surface is linear with respect to the height. Therefore, the displaced
surface at a linearly blended height from two consecutive integer
LoDs is exactly the linear blend between the displaced surfaces at
those LoDs. More precisely, given a non-integer LoD 𝑙 such that
𝑘 < 𝑙 ≤ 𝑘 + 1, and a blending parameter 𝜆 = 𝑙 − 𝑘 , we define the
displaced surface at 𝑙 as:

S𝑙 (𝑢, 𝑣) = P(𝑢, 𝑣) + ℎ𝑙 (𝑢, 𝑣)N̂(𝑢, 𝑣)

= P +
(
(1 − 𝜆)ℎ𝑘 + 𝜆ℎ𝑘+1

)
N̂

= (1 − 𝜆)
(
P + ℎ𝑘 N̂

)
+ 𝜆

(
P + ℎ𝑘+1N̂

)
= (1 − 𝜆)S𝑘 (𝑢, 𝑣) + 𝜆S𝑘+1 (𝑢, 𝑣)

(5)

Theminmaxmipmap directly provides bounds for the LoD blended
height. For the upper bound, we have:

max
Ω𝑘
𝑖,𝑗

ℎ𝑙 ≤ max

(
max
Ω𝑘
𝑖,𝑗

ℎ𝑘 ,max
Ω𝑘
𝑖,𝑗

ℎ𝑘+1
)

Convex combination.

≤ max ©­«𝑀𝑘
𝑖,𝑗 , max

Ω𝑘+1
𝑖/2, 𝑗/2

ℎ𝑘+1ª®¬ Since Ω𝑘𝑖,𝑗 ⊂ Ω𝑘+1
𝑖/2, 𝑗/2.

≤ 𝑀
𝑘+1
𝑖/2, 𝑗/2 Using 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.

(6)

And similarly, we have min
Ω𝑘
𝑖,𝑗

ℎ𝑙 ≥ 𝑀𝑘+1
𝑖/2, 𝑗/2 for the lower bound.

Thus, the traversal described in algorithm 1 is able to intersect the
displaced surface at non-integer LoD by simply modifying Equa-
tion 11 so texel𝑀𝑘+1

𝑖/2, 𝑗/2 is fetched instead of texel𝑀𝑘
𝑖,𝑗
.

For local intersections involving continuous height sampling, the
displaced surface is continuous with respect to the LoD, as shown in
Figure 5. For local intersections involving discrete height sampling,
the displaced surface is not continuous with respect to the LoD as
the sampling pattern changes when 𝑙 crosses 𝑘 . In practice however,

ACM Trans. Graph., Vol. 40, No. 6, Article 282. Publication date: December 2021.

Tessellation-Free Displacement Mapping for Ray Tracing • 282:7

Continuous
Level of Detail

30

150

Traversed
texel count(b) (c)(a)

Fig. 5. Continuous geometric LoD: (a) Displaced object rendered at max-
imum LoD. (b) Our D-BVH is able to render different non-integer LoD for
each ray, driven by the screen-space y position of the primary ray. (c) LoD
influence on the number of traversed nodes.

(a) (b) (c) (d)

Fig. 6. D-BVH bounding boxes: By mapping a displaced BVH on a base
mesh (a), our method computes on-the-fly per-ray bounding boxes of the
displaced surface. (b-d) Rendering of the union of those boxes for different
mip levels, here in object space.

the non-integer LoD still provides visually appealing morphing
between integer LoDs.

4.5 Conservative box estimation
During traversal, we compute on the fly, for each traversed mipmap
texel, a conservative 3D axis-aligned bounding box (AABB) of the
displaced surface. As our base surface is not always flat, we need
to also estimate the deviation induced by the base triangle interpo-
lated normal. Similarly to Heidrich and Seidel [1998], we use affine
arithmetic [De Figueiredo and Stolfi 2004] to estimate and combine
positions on the base surface, displacement values and interpolated
unit normals. Affine arithmetic is an improvement over other sim-
pler estimation arithmetic such as interval arithmetic as it allows
to take into account correlation between the estimated variables
meaning that approximations can cancel themselves out instead of
always being accumulated. In affine arithmetic, quantities are affine
forms, which are convex sets with central symmetry, so both the
input texel 𝑢𝑣 and the output bounding box can be represented by a
single affine form.

On the fly computation. The minmax mipmap can be interpreted
as a pre-computation of height intervals for every texel 𝑢𝑣 domain.
Therefore the affine form associated to the height relative to a texel
can be directly retrieved from a single minmaxmipmap fetch. On the
other hand, affine forms for the interpolated base position and unit
normal can be directly computed from the 𝑢𝑣 affine form. Finally,
the affine form for the displaced surface over the 𝑢𝑣 domain can
then be computed using Equation 1, from which we extract an axis
aligned bounding box as shown in Figure 6. More details on affine
arithmetic computations and formula can be found in Appendix A.

Fig. 7. Local intersections: Geometric normal visualization for different
types of local intersection: leaf boxes (top left), local triangulation with
two triangles per texel (top right), bilinear height sampling (bottom left),
and B-spline height sampling (bottom right). The upper-half hemisphere of
directions is shown at the center.

5 RAY TRACING
Our base surface model is a triangle mesh, where position and nor-
mal are obtained by linearly interpolating the vertex attributes and
for which we can explicitly compute Equation 1 for each individual
triangle. Given vertex positions 𝑝𝑖 , normals 𝑛𝑖 and texture coordi-
nates 𝑢𝑖 and 𝑣𝑖 for the triangle three vertices, we have:

T𝑏𝑢𝑣 =
©­«
𝑢1 𝑢2 𝑢3
𝑣1 𝑣2 𝑣3
1 1 1

ª®¬
−1

(7)

P(𝑢, 𝑣) = ©­«
| | |
𝑝1 𝑝2 𝑝3
| | |

ª®¬T𝑏𝑢𝑣 ©­«
𝑢

𝑣

1

ª®¬ (8)

N(𝑢, 𝑣) = ©­«
| | |
𝑛1 𝑛2 𝑛3
| | |

ª®¬T𝑏𝑢𝑣 ©­«
𝑢

𝑣

1

ª®¬ (9)

where T𝑏𝑢𝑣 is a 3 × 3 matrix which computes the barycentric coor-
dinates of a point given its 𝑢𝑣 texture coordinates. We use scalar
displacement maps, equipped with a sampling operator, and over
which we build our D-BVH. During traversal, we compute positions
and normals in the local 𝑢𝑣-aligned tangent space. This local space
coincides with the base triangle when 𝑧 = 0. Its first two axes are
aligned with the 𝑢 and 𝑣 axes and its third axis is the base triangle
geometric normal, as seen in Figure 9. We use this local space in-
stead of object space to minimize bounding boxes’ volumes as they
are likely to be aligned with the displaced surface.

5.1 Local intersection tests
Our method supports a variety of intersection tests which are illus-
trated in Figure 7. The micro-primitives considered during traversal
for each intersection test are illustrated in Figure 8 .

Box. The simplest local intersection test that can be performed is
to just return the intersection with the leaf AABB. As the box and
its intersection with the query ray are already computed as part of

ACM Trans. Graph., Vol. 40, No. 6, Article 282. Publication date: December 2021.

282:8 • Theo Thonat, Francois Beaune, Xin Sun, Nathan Carr, and Tamy Boubekeur

Fig. 8. Leaves domain and base primitives boundary. Top row: A ren-
dering of a displaced mesh (left), made of two base triangles (right). Next
rows focus on the boundary between the two displaced base triangles in
the red rectangle closeup. Middle row: Micro-triangles considered during
traversal for the two-triangles-per-leaf solution (left), and with texel clip-
ping (right). Note that in the two-triangles approach, all micro-triangles
have the same size in 𝑢𝑣 space, but since they overlap at the base triangles
boundary, it appears otherwise in the rendering. Bottom row: For continuous
height sampling, micro-primitives are simply bilinear (left) or bicubic (right)
patches, corresponding to 𝑢𝑣 domains between four texel centers.

the traversal, this leaf-box intersection has no overhead. Since the
resulting displaced surface has piece-wise constant normals, this
intersection is useful in scenario where precision is not critical and
where no shading information is needed, such as shadow rays.

Local triangulation. One way to perform a global pre-tessellation
of a displaced mesh would be to compute one vertex per texel corner
at the lowest mip level, with two triangles per border-aligned texel.
Our local triangulation intersection mode corresponds to on-the-fly,
per-ray alternative to such a pre-tessellation. At the leaf scale, our𝑢𝑣
domain is an center-aligned texel so it overlaps four border-aligned
texel (see Figure 8). Once a leaf is reached, we generate on the fly, for
each of those border-aligned texels, two ephemeral micro triangles
that are analytically intersected with the ray using the the method
of Möller and Trumbore [1997]. The resulting surface is continuous,
except possibly at the base primitive boundaries, and has sufficient
shading quality for a medium range of distances along the ray, or
when the displacement map exhibits a high resolution.

Bilinear and B-spline height sampling. Here we consider the para-
metric displaced surface defined by Equation 1. At the leaf scale, as
the current texel and its neighbors are known, the height sampling
has a closed-form formula for both bilinear and B-spline interpola-
tion schemes. There is unfortunately no analytical formula for the
intersection between the ray and the local surface when the base
mesh is not flat. However, as the surface has an explicit parametric
formula, we can use iterative optimisation methods such as New-
ton’s to find the intersection, as done for example by Martin et al.

[2000]. Implementation details can be found in Appendix B. The
B-spline scheme adds over the base surface a C1 surface everywhere
and provides a high geometric quality. However it has a higher com-
putational cost than previously mentioned local intersections. On
the other hand, the bilinear scheme suffer from C1 discontinuities
at texel borders with similar computational costs as the B-spline
scheme.

5.2 Watertightness considerations.
As seen from Equation 1, the displaced surface is continuous when-
ever the textures coordinates, the base surface, and the displacement
are continuous. The case of surface cracks generated by 𝑢𝑣 seams is
outside of the scope of this work.
We first discuss the scenario where the LoD is constant per dis-

placed surface. For intersection tests based on continuous height
sampling such as B-spline interpolation, the displaced surface is
watertight by definition for any fixed integer of fractional LoD.
Note however that in practice, because of the iterative optimisation
scheme, intersections can be missed. For intersection tests based
on local triangulation, the two triangle per leaf solution is not wa-
tertight as the generated micro triangles from two different base
primitives do not have to match at the edge between the two base
primitives. The possible cracks are only visible when leaves size is
close to the base primitive size in 𝑢𝑣 space, which rarely happens in
our target scenario of high resolution displacement maps mapped
over low poly base surfaces. Still, a practical solution to this issue is
to clip the leaf texel against the base triangle in𝑢𝑣 space, triangulate
the resulting polygon, and generate the associated displaced micro
triangles.
The choice between these two micro-tessellation schemes de-

pends on the desired quality versus speed tradeoff, as the texel
clipping guarantees watertighness at the cost of generating up to
five micro triangles instead of only two.

For ray-dependent LoD, the surface is also ray-dependant so the
definition of water-tightness is unclear. As seen from Figure 5, for
continuous height sampling, the surface appears to be watertight if
the function that maps rays to their LoD is also continuous but we
lack a formal proof.

6 IMPLEMENTATION
We implemented our method on GPU using the Vulkan Ray Tracing
extension [Khronos 2020], but it is applicable to any ray tracing
system supporting custom geometries, which are geometries defined
by their bounding box and an intersection program, such as Embree
[Wald et al. 2014].

6.1 GPU ray tracing pipeline
The ray tracing pipeline described by the Vulkan Ray Tracing ex-
tension is made of three main components. The first one is the
control flow for a ray, using different programmable shaders for
each stage (see Figure 9, left). The second one is the acceleration
structure for a scene. Such a structure has two levels: the Top Level
Acceleration Structure (TLAS) representing all the object instances
in the scene, and the Bottom Level Acceleration Structures (BLAS),
each representing distinct objects. The final component, the shader

ACM Trans. Graph., Vol. 40, No. 6, Article 282. Publication date: December 2021.

Tessellation-Free Displacement Mapping for Ray Tracing • 282:9

Ray Generation

Intersection

Any Hit

Hit?

MissClosest Hit

Acceleration
Structure
Traversal

BLAS box

Ray

u
v

Fig. 9. Ray tracing pipeline: Our pipeline is composed of several pro-
grammable shaders (colored boxes on the left). Any intersection between
the ray and one of the displaced triangle boxes triggers an intersection
shader, where our traversal is implemented. That means that our method is
orthogonal to the shading logic (closest hit shader) and to the transparency
logic (any hit shader). The intersection shader takes as input the base mesh
primitive and the ray, and additional data about the displaced object. In case
of intersection with the displaced surface, it returns the hit distance, and
the intersection point’s barycentric coordinates and displacement normal.
The displacement normal is used during path tracing.

binding table (SBT), is a data structure that links the acceleration
structures with the control flow. It assigns, for each instance, the set
of programmable shaders to use, as well as instance-specific inline
data accessible in the shaders.
Our implementation relies on a custom intersection shader for

objects with displacement. First, we need to compute the BLAS of
each displaced object. Then, for each instance of a displaced object,
we have to declare in the SBT the use of our custom intersection
shader, as well as data such as displacement parameters.

6.2 Displaced object BLAS
As our displaced object is a custom geometry, its BLAS is constructed
using a list of AABBs in object space, where each box bounds the
displaced surface generated by a single triangle of the base surface.
As done in subsection 4.5, we use affine arithmetic to estimate these
boxes, the difference being that the base𝑢𝑣 domain is here a triangle
and not a square.

Paiva et al. [2012] noted that affine arithmetic can be performed
strictly on a triangle domain by considering a triangle as a union
of three overlapping parallelograms. Therefore it is enough to use
affine arithmetic separately for each parallelograms and merge their
estimated boxes.
Retrieving the displacement bounds with respect to a triangle

domain using the D-BVH is possible by adapting the traversal de-
scribed in algorithm 1 to compute a conservative estimate by visiting
all texels overlapping the triangle at the right scale, as detailed in
algorithm 2. The computation of the BLAS’ boxes using a compute
shader takes less than a 0.3 ms for all our test scenes (see Table 3).

6.3 Memory layout and interactive displacement
The different data structure layouts are detailed in algorithm 3. A
D-BVH is composed of two textures: a displacement map and its
minmax mipmap. Mapping a D-BVH onto a base mesh creates a
displaced object, which in addition to references to the base mesh

Algorithm 2: Displacement bounds for BLAS computation.
This traversal is adapted from algorithm 1. outside and
inside functions rely on the 2D square-triangle collision
test from algorithm 4
Function traversal(triangle):

𝑏𝑜𝑢𝑛𝑑𝑠 = ∞ · [1,−1]
𝑡𝑒𝑥𝑒𝑙 , 𝑒𝑛𝑑𝑡𝑒𝑥𝑒𝑙 = root (triangle)
next(𝑒𝑛𝑑𝑡𝑒𝑥𝑒𝑙)

while 𝑡𝑒𝑥𝑒𝑙 ≠ 𝑒𝑛𝑑𝑡𝑒𝑥𝑒𝑙 do
if outside (𝑡𝑒𝑥𝑒𝑙 , 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒) then

next(𝑡𝑒𝑥𝑒𝑙)

else if inside (𝑡𝑒𝑥𝑒𝑙) or 𝑡𝑒𝑥𝑒𝑙 .𝑙𝑜𝑑 == 0 then
𝑏𝑜𝑢𝑛𝑑𝑠 = minmax(𝑏𝑜𝑢𝑛𝑑𝑠 , minmax(𝑡𝑒𝑥𝑒𝑙))
next(𝑡𝑒𝑥𝑒𝑙)

else
down(𝑡𝑒𝑥𝑒𝑙)

return 𝑏𝑜𝑢𝑛𝑑𝑠

Algorithm 3: Displaced object data structures
struct DisplacementBVH {

Texture1f displacement_mipmap;
Texture2f minmax_minmap;

};
struct DisplacementParameters {

mat3 texture_transform;
float offset, bias, scaling;
float target_level_of_detail;
uint intersection_type;

};
struct DisplacedTriangleData {

mat4 object_to_triangle_uv_space;
mat3 uv_to_barycentrics, uv_to_normal;

};
struct DisplacedObject {

Mesh* base_mesh ;
DisplacementBVH* displacement_bvh;
DisplacementParameters parameters;
BLAS blas;
Buffer<DisplacedTriangleData> triangle_buffer;

};

and to the D-BVH, also contains displacement-related parameters,
a BLAS, and a buffer for per-triangle precomputed data. The param-
eters are included as inline data in the SBT and can be modified
interactively. The triangle buffer is in theory optional, as all its data
can be computed on-the-fly in the intersection shader. However,
we found that pre-computing per-triangle data is useful for perfor-
mance and precision reasons. Most notably, the matrix inversion
from Equation 7 requires double precision to prevent artifacts.
The displacement parameters allow to modify interactively the

appearance of the displaced surface, both locally and globally. We

ACM Trans. Graph., Vol. 40, No. 6, Article 282. Publication date: December 2021.

282:10 • Theo Thonat, Francois Beaune, Xin Sun, Nathan Carr, and Tamy Boubekeur

Table 2. Interactive displacement modifications: data structures up-
dates for various displaced surface modifications at runtime. 𝑇 , 𝑃 , and 𝐼 ,
are respectively the number of triangles of the base mesh, the number of
pixels in the displacement map, and the number of instances in the scene.
(1) If changing the type of intersection also modifies the height sampling
bounds, the minmax mipmap has to be recomputed. A simple solution to
avoid re-computations is to pre-compute a minmax mipmap for each type of
sampling, or a single conservative minmax mipmap combining all samplings
that need to be supported.

Minmax
mipmap BLAS

Shader
Binding
Table

Time complexity O(𝑃) O(𝑇) O(𝐼)
Creating a D-BVH X
Mapping a D-BVH X X

Updating

Texture mapping X X
Displacement scaling X X
Type of intersection See (1) X
Target Level of Detail X

Mip level kDisplaced surface Mip level k-1

Fig. 10. Texel skipping: At mip level 𝑘 the green and red texels (and all
their children) are respectively fully inside and fully outside the 𝑢𝑣 triangle
of interest (in violet). The red texel can be skipped even before computing
its 3D bounding box as the displaced surface it generates is fully outside
the displaced surface generated by the base triangle. Moreover, there will
be no need to check for triangle-texel collision for the green node children.
The blue texel is ambiguous and cannot be skipped as its children can be
either inside, outside or overlapping the triangle.

show in Table 2 the performance cost of several changes of pa-
rameters. Modifying the texture transform changes the way the
displacement is mapped onto the base surface. A typical scenario
– intensively used in production – is, for a tile-able displacement
map, to scale the 𝑢𝑣 in order to amplify the high frequencies on
the final surface. The displacement offset, scaling and bias allow a
global linear transformation of the displacement values:

ℎ′(𝑢, 𝑣) = offset + scaling · (ℎ(𝑢, 𝑣) − bias)

As this operation is linear it has a very low impact on the affine
arithmetic computations. While simple, it has several useful sub-
cases such as volume-preserving displacement scaling (using bias =
offset = average displacement), which only increases the displace-
ment contrasts without modifying the overall object volume.

6.4 Traversal implementation details
Texel discard. Since we are considering base surfaces generated

from triangle meshes, texels can be traversed while being completely
outside the uv domain of the base triangle of interest, as seen in
Figure 10. Those texels can be discarded early before computing

a bounding box, as any point on the displaced surface generated
from those texels would fail the barycentric clipping test. In order to
identify these nodes during traversal, we need to determine whether
a node overlaps the triangle. We implemented standard polygon
collision algorithms such as GJK [Gilbert et al. 1988], pairwise edge
intersection, or using separating axis. By considering our special
case, where the triangle is fixed and is tested against many squares,
we also implemented a custom node-triangle collision test, detailed
in Appendix C, providing significant performance improvement
(see Table 4).

Root choice. In order to start our traversal, we need to find a root
texel which contains the base triangle of interest. Assuming the
triangle texture coordinates are all positive, one simple solution is
to take the smallest texel containing the triangle 𝑢𝑣 bounding box.
However, this strategy performs poorly in case the base triangle
overlaps two large texels, as the root would remain the same no
matter how small the triangle would be. A more practical solution
is to find up to 4 neighboring roots so their union contains the base
triangle. This is different from the single root solution as these roots
do not have to be children of the same unique node. The traversal
with multiple roots performs algorithm 1 once for each individual
root.

Traversal order. The pseudo-code from algorithm 1 gives an ex-
ample of procedure to obtain the next texel to traverse thanks to
the 𝑛𝑒𝑥𝑡 and 𝑑𝑜𝑤𝑛 functions. However, such fixed order can be
inefficient for certain rays, as intersection candidates could be con-
sidered in the reverse order of their distance along the ray, thus
possibly making the traversal reach leaves several times unneces-
sarily. We therefore adapt traditional BVH traversals strategy to
sort children according to the ray direction in object space (e.g see
[Mahovsky 2005] sec 4.5.). In our setup, we instead consider the ray
direction in 𝑢𝑣 space to decide the traversal order, which in practice
modifies the down and next from algorithm 1. While it noticeably
decreases the number of traversed nodes, the benefit in terms of
purely performance depends on the ray coherence, as shown in
Table 4.

7 RESULTS
We now present visual results of our method using path tracing,
with relevant metrics and comparisons. We considered the scenes
shown in Figure 11. They all display high resolution displacement
maps with varying tiling factors and non planar base surfaces. All
renderings and timings were performed and recorded on a laptop
using a RTX 2080Max-QGPUwith 8 GB of memory and an i7-9750H
CPU with 6 cores.

Performance. We evaluate our method along four primary axis.
The first one is the amount of GPU memory used to represent
and intersect the geometry. The second is the visual quality of the
rendering. The third is the run-time performance, evaluated by the
number of rays traced per-second. The last axis is the delay when
updating the acceleration data structure upon modification of the
displaced object.
We compare with uniform pre-tessellation in Table 3. We subdi-

vided, in a preprocess step, the base mesh uniformly, before applying

ACM Trans. Graph., Vol. 40, No. 6, Article 282. Publication date: December 2021.

Tessellation-Free Displacement Mapping for Ray Tracing • 282:11

Fig. 11. Path tracing results illustrating various kinds of meso-structures and base surfaces. For each model, we show the base mesh (top left), the
displacement map (bottom left) and the displaced surface using our method (right). From left to right, top to bottom: Ninja (2k texture tiled 5 × 5 times),
Terracotta Roof (2k texture tiled 5× 5 times),Medieval Helmet (2k texture tiled 5× 5 times), Fishing Ropes (2k texture, tiled 4× 4 times), Creature (4k texture, no
tiling), Alien Sphere (2k texture, tiled 4 × 8 times), Diving Helmet (4k texture, no tiling),Wicker Basket (2k texture tiled 5 × 5 times), and Elven Armor (4k texture
tile 2 × 2 times).

Table 3. Comparison with uniform pre-tessellation: Performance comparison for several test scenes between our method and alternatives, with respect to
pre-process computation time, memory usage in GPU memory, update delay upon modification, and total number of rays traced per second (includes camera
rays, secondary rays, and shadow rays). For the pre-tessellation, the update delay is identical to the pre-process, as any modification implies a complete
pre-tellessation computation. (1) For pre-tessellation, we subdivided the base triangles uniformly until reaching the amount of GPU memory available,
therefore not providing an equal-quality comparison. Pre-tessellation and our minmax mipmap preprocess were done on CPU using a single thread.

Tri. count Disp. Tiling Uniform pre-tessellation (1) Ours
Memory Speed Update delay Preprocess Memory Speed Update delay

Alien Sphere 0.9k 2k 4 × 8 0.9 GB 103 Mr/s 1.3 s 88 ms 34 MB 1.8 Mr/s 0.054 ms
Wicker Basket 4.8k 2k 5 × 5 1.1GB 126 Mr/s 1.6 s 91 ms 36 MB 1.5 Mr/s 0.086 ms
Creature 54k 4k 1 × 1 3.1 GB 20 Mr/s 4.6 s 340 ms 164 MB 1.0 Mr/s 0.127 ms
Diving Helmet 2.5k 4k 1 × 1 2.4 GB 124 Mr/s 3.5 s 397 ms 135 MB 2.4 Mr/s 0.265 ms
Elven Armor 768 4k 2 × 2 0.7 GB 133 Mr/s 1.0 s 353 ms 135 MB 1.7 Mr/s 0.18 ms
Medieval Helmet 2.3k 2k 5 × 5 2.1 GB 104 Mr/s 3.0 s 80 ms 35 MB 2.4 Mr/s 0.085 ms
Ninja 8.8k 2k 5 × 5 2.0 GB 25 Mr/s 3.2 s 83 ms 38 MB 0.7 Mr/s 0.082 ms
Terracotta Roof 8.8k 2k 5 × 5 0.5 GB 30 Mr/s 0.6 s 80 ms 34 MB 4.8 Mr/s 0.040 ms

ACM Trans. Graph., Vol. 40, No. 6, Article 282. Publication date: December 2021.

282:12 • Theo Thonat, Francois Beaune, Xin Sun, Nathan Carr, and Tamy Boubekeur

Ours
34 MB

Tessellation
2.0 GB

Tessellation
512 MB

Tessellation
125 MB

Fig. 12. Quality comparison with uniform pre-tessellation: Rendering results for different amounts of uniform pre-tessellation and our method, with the
corresponding GPU memory used for geometry. For tessellation, the geometry consists of the index and vertex buffer. For our method, the geometry combines
the base mesh index and vertex buffer, the displaced BVH, and the displaced triangle buffer.

Table 4. Ablation study: Relative run time performance for different versions of the traversal components with respect to the reference, higher than one
meaning faster than the reference. The quantity compared is the number of rays traced by unit of time. For each scene, the first row only counts primary rays,
while the second row counts primary, secondary, and shadow rays.

Roots (vs 4) Texel discard (vs our custom test) Traversal order (vs 8) Local intersection (vs bicubic)
Single None Clipping Sep. plane GKJ [1988] Fixed Four Leaf box Two tri. Bilinear

Alien sphere ×0.96 ×0.06 ×0.71 ×0.75 ×0.74 ×0.80 ×0.99 ×1.64 ×1.26 ×1.09
×0.97 ×0.17 ×0.87 ×0.90 ×0.92 ×0.96 ×0.98 ×1.57 ×1.27 ×1.13

Creature ×0.97 ×0.23 ×0.85 ×0.81 ×0.89 ×1.01 ×1.02 ×1.56 ×1.16 ×1.08
×0.93 ×0.36 ×0.88 ×0.83 ×0.93 ×1.05 ×0.99 ×1.38 ×1.10 ×1.04

Ninja ×0.92 ×0.24 ×0.76 ×0.76 ×0.78 ×0.96 ×1.00 ×1.29 ×1.10 ×1.05
×0.95 ×0.43 ×0.87 ×0.87 ×0.93 ×1.06 ×1.00 ×1.26 ×1.12 ×1.06

Elven armor ×0.96 ×0.22 ×0.59 ×0.71 ×0.68 ×0.96 ×1.01 ×1.41 ×1.15 ×1.07
×0.99 ×0.42 ×0.71 ×0.89 ×0.84 ×1.07 ×0.97 ×1.38 ×1.16 ×1.09

the displacement per vertex. By pre-computing the displaced surface
and relying on hardware-accelerated data structures, tessellation
achieves very high run time performance, being two orders of mag-
nitude faster on average than our method. However, as shown in
Figure 12, the subdivision scheme consumes large amounts of mem-
ory, and cannot match the visual fidelity of our method even when
using all available 8 GB of GPU memory. Moreover, since the dis-
placement is fully baked into the base surface, any displacement
modification triggers a re-tessellation, which takes typically several
seconds to complete, taking in account both the tessellation process
and the BVH rebuilt. In contrast, our method only needs to update
the mapping between the D-BVH and the base mesh, which takes
less than a 0.3 ms with a base mesh with 50k vertices.

Ablation study. As described in section 4, we made several design
choices for our traversal. We show in Table 4 relative run time
performances for different versions of the traversal. Choosing four
roots instead of one gives a constant, while small, performance gain.
Performing a texel discard gives a very noticeable performance boost.
Its benefit varies depending on which node-triangle collision test is
used. Using a traversal order based on the ray direction decreases
significantly the number of traversed nodes. However, the nature
of the current GPU architecture makes a divergence of traversal
order between rays not always beneficial in terms of performance.

Considering local intersections, the performance is indeed directly
related to the complexity of the intersection test. We note, however,
a relatively small difference between iterative and non-iterative
intersection tests, meaning the cost of traversal has more impact on
the overall performance than time spent intersecting at the leaves.

Additional Comparisons. We compare our method to Relief Map-
ping [Policarpo et al. 2005], which shares with our approach the
negligible update delay (no heavy preprocess of the displacement
map), as typically requested in our target dynamic application us-
ages. As can be seen in Figure 13, Relief Mapping cannot avoid
aliasing artefacts, which even degrade further the rendering qual-
ity with grazing view angle or highly non-flat base domains. On
the contrary, our approach, although more computationally inten-
sive, is free from artifact and reproduces perfectly the underlying
displacement.
Moreover, as shown in Figure 14, our method naturally handles

arbitrary ray-surface interaction, enabling e.g., Monte Carlo Path
Tracing with local inter-reflections within the displaced geometry.

We also compared our approach to an explicit adaptive tessella-
tion performed on a per-frame basis.We choose to exclude the actual
adaptive tessellation step from our performance measure and only
report timings regarding the per-frame BLAS generation requested
by dynamic scenarios (see Figure 15). We use an adaptive tessellation

ACM Trans. Graph., Vol. 40, No. 6, Article 282. Publication date: December 2021.

Tessellation-Free Displacement Mapping for Ray Tracing • 282:13

Fig. 13. Comparison to Relief Mapping. Although faster, relief mapping rendering reveals numerous artifacts, both in steep regions and grazing angles. On
the contrary, our method (right) provide artifact-free images, suitable to assess interactively the quality and precise features of the displacement map.

Fig. 14. Path tracing and local inter-reflections. Our method is com-
patible with full Monte Carlo rendering, with all light transport effects being
reproduced – here showing the Creature from Figure 11 using volumetric
path-traced random-walk subsurface scattering (left), and a translucent
glass material (right).

scheme designed to maximize quality: essentially, we first tessellate
at extremely high resolution, then displace the resulting mesh before
simplifying it using a state-of-the-art feature-preserving simplifica-
tion based on iterative quadric-error-driven edge collapse. In this
example, while our method induces a BLAS update performed in
0.082 ms prior to rendering the frame, the same update takes 35ms
with the explicit adaptive tessellation. This severe degradation in
hardware-supported ray tracing occurs as soon as a component is
not static (base mesh deformation, displacement content, UV mod-
ifications, etc), when the BLAS cannot be factored out over time.
For a fair comparison, we generated an adaptive tessellation which
matches the memory footprint of our method. In spite of the (long)
offline adaptive tessellation, we can easily observe in Figure 15 that
numerous artefacts appear, while our method perfectly reproduces
the displacement content. As future work, in the context of path
tracing, the notion of explicit global adaptive tessellation could be
further developed as the scene’s geometry may undergo more or less
aggressive decimation depending on both visibility and appearance
models [Reich et al. 2015].
To some extent, it is worth noting that our method, when set

up in local triangulation mode (section 5), can be understood as an
implicit, per-ray adaptive tessellation scheme.

Interactivity. In the accompanying supplemental video, we show
examples of interactive displacement authoring scenarios, includ-
ing modification of the 𝑢𝑣 mapping, and change of displacement
parameters.

Fig. 15. Comparison to adaptive tessellation with matching memory
footprint (37MB). From left to right: base mesh, adaptive tessellation (with
close-up) and our method (with close-up).

8 DISCUSSION
We presented a novel approach for efficiently ray-tracing displace-
ment maps. Our method enables tiling and instancing of displace-
ment map information that can be used across multiple base domain
meshes, leading to memory savings. By avoiding pre-tessellation,
we achieve much higher quality rendering with a much lower mem-
ory budget. Our approach is robust, and does not impose conditions
on the displacement magnitude with respect to curvature of the
base domain. We note, however, a few limitations with our current
approach and a number of future directions.

Seams. Our current system does not guarantee a watertight so-
lution and cracks may appear along 𝑢𝑣 chart boundaries. The gen-
eration of seam free 𝑢𝑣 maps is an orthogonal issue to our method
and not unique to our approach. Some solutions exist, for example
a pre-process can be applied to the height field to eliminate seams
[Liu et al. 2017]. Unfortunately this approach does not work with
tiling, or instanced use of the displacement map across multiple
meshes. It is also too slow for interactive displacement map design.
Supporting computationally efficient seam free displacement map-
ping in a more general context remains an open and challenging
problem requiring more exploration.

Fixed Function Hardware Support. Modern GPUs support custom
acceleration for hierarchical bounding volume traversal and ray-
triangle intersection using specific hardware cores [NVIDIA 2020].
Our current method is unable to take full advantage of this hardware
as the D-BVH traversal uses an intersection shader which operates
on generic compute shaders. This partially explains the large per-
formance gap we see relative to pre-tessellation methods. A future
extension would be to extend modern hardware to directly support
displacement mapping. We also think further enhancements can be
made such as computing compressed but conservative min/max hi-
erarchies or applying per-texel affine arithmetic instead of intervals
for tighter bounds, bringing even better performance.

ACM Trans. Graph., Vol. 40, No. 6, Article 282. Publication date: December 2021.

282:14 • Theo Thonat, Francois Beaune, Xin Sun, Nathan Carr, and Tamy Boubekeur

Memory Streaming. Our approach can directly render from dis-
placement information stored in GPU texture mip-maps. Given that
our method supports level-of-detail by stopping at higher levels
of the mip-map, the entire pyramid of displacement information
does not need to be memory resident. This opens up the ability
to stream geometric detail during ray-tracing by leveraging sparse
texture functionality supported in modern GPU hardware [Burgess
2020].

Extensions. We see a number of potential explorations for our
method. We believe our approach can be extended to support vector
displacement, procedural displacement maps, volumetric materi-
als, or more complex base surfaces. This property comes from our
method’s ability to dynamically construct a general acceleration hi-
erarchy that can bound arbitrary intersect-able content. It would be
interesting to explore recursive nesting of our structure to achieve
infinite fractal scale detail.

9 CONCLUSION
Our algorithm trades compute for memory. We believe that this
aligns well with modern hardware advances where bandwidth rel-
ative to compute is growing more slowly. Our approach directly
operates on the displacement map memory without expensive pre-
processing, making displacement maps as natural to create, modify
and render as the other maps modeling modern digital materials.
Efficiently managing geometric complexity in the context of ray-
tracing continues to be challenging, however, we believe our ap-
proach opens up new opportunities for increased visual fidelity as
ray tracing goes real-time.

ACKNOWLEDGMENTS
We thank Luc Chamerlat for helping with the supplemental and
providing the Creature asset and the teaser scene; Peter Kutz for his
significant contribution to the code needed to render Figure 14; and
Krishna Mullia for helping with experiments.

REFERENCES
Lionel Baboud, Elmar Eisemann, and Hans-Peter Seidel. 2011. Precomputed safety

shapes for efficient and accurate height-field rendering. IEEE transactions on visual-
ization and computer graphics 18, 11 (2011), 1811–1823.

Carsten Benthin, Sven Woop, Matthias Nießner, Kai Selgrad, and Ingo Wald. 2015. Effi-
cient Ray Tracing of Subdivision Surfaces Using Tessellation Caching. In Proceedings
of the 7th Conference on High-Performance Graphics. 5–12.

James F Blinn. 1978. Simulation of wrinkled surfaces. ACM SIGGRAPH computer
graphics 12, 3 (1978), 286–292.

J. Burgess. 2020. RTX on—The NVIDIA Turing GPU. IEEE Micro 40, 2 (2020), 36–44.
https://doi.org/10.1109/MM.2020.2971677

Nathan A Carr, Jared Hoberock, Keenan Crane, and John C Hart. 2006. Fast GPU ray
tracing of dynamic meshes using geometry images.. In Graphics Interface, Vol. 2006.
Citeseer, 203–209.

Ying-Chieh Chen and Chun-Fa Chang. 2008. A Prism-Free Method for Silhouette
Rendering in Inverse Displacement Mapping. Comput. Graph. Forum 27 (10 2008),
1929–1936. https://doi.org/10.1111/j.1467-8659.2008.01341.x

Per H. Christensen, David M. Laur, Julia Fong, Wayne L. Wooten, and Dana
Batali. 2003. Ray Differentials and Multiresolution Geometry Caching
for Distribution Ray Tracing in Complex Scenes. Computer Graphics Fo-
rum 22, 3 (2003), 543–552. https://doi.org/10.1111/1467-8659.t01-1-00702
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.t01-1-00702

Robert L Cook. 1984. Shade trees. In Proceedings of the 11th annual conference on
Computer graphics and interactive techniques. 223–231.

C. Dachsbacher and Natalya Tatarchuk. 2007. Prism Parallax Occlusion Mapping with
Accurate Silhouette Generation.

Luiz Henrique De Figueiredo and Jorge Stolfi. 2004. Affine arithmetic: concepts and
applications. Numerical Algorithms 37, 1-4 (2004), 147–158.

Peter Djeu, Warren Hunt, Rui Wang, Ikrima Elhassan, Gordon Stoll, and William R.
Mark. 2011. Razor: An Architecture for Dynamic Multiresolution Ray Tracing.
ACM Trans. Graph. 30, 5, Article 115 (Oct. 2011), 26 pages. https://doi.org/10.1145/
2019627.2019634

William Donnelly. 2005. Per-pixel displacement mapping with distance functions. GPU
gems 2, 22 (2005), 3.

Tom Duff, James Burgess, Per Christensen, Christophe Hery, Andrew Kensler, Max
Liani, and Ryusuke Villemin. 2017. Building an orthonormal basis, revisited. Journal
of Computer Graphics Techniques (JCGT) 6, 1 (2017).

Jonathan Dummer. 2006. Cone step mapping: An iterative ray-heightfield intersection
algorithm. URL: http://www. lonesock. net/files/ConeStepMapping. pdf 2, 3 (2006), 4.

Elmer G Gilbert, Daniel W Johnson, and S Sathiya Keerthi. 1988. A fast procedure for
computing the distance between complex objects in three-dimensional space. IEEE
Journal on Robotics and Automation 4, 2 (1988), 193–203.

Johannes Hanika, Alexander Keller, and Hendrik P. A. Lensch. 2010. Two-Level Ray
Tracing with Reordering for Highly Complex Scenes. In Proceedings of Graphics
Interface 2010 (Ottawa, Ontario, Canada) (GI ’10). Canadian Information Processing
Society, CAN, 145–152.

John C Hart. 1996. Sphere tracing: A geometric method for the antialiased ray tracing
of implicit surfaces. The Visual Computer 12, 10 (1996), 527–545.

W. Heidrich and H. Seidel. 1998. Ray-tracing Procedural Displacement Shaders. In
Graphics Interface.

Johannes Hirche, Alexander Ehlert, Stefan Guthe, and Michael Doggett. 2004. Hardware
Accelerated Per-Pixel Displacement Mapping. In Proceedings of Graphics Interface
2004 (London, Ontario, Canada) (GI ’04). Canadian Human-Computer Communica-
tions Society, Waterloo, CAN, 153–158.

Qiming Hou, Hao Qin, Wenyao Li, Baining Guo, and Kun Zhou. 2010. Micropolygon
Ray Tracing with Defocus and Motion Blur. In ACM SIGGRAPH 2010 Papers (Los
Angeles, California) (SIGGRAPH ’10). Association for Computing Machinery, New
York, NY, USA, Article 64, 10 pages. https://doi.org/10.1145/1833349.1778801

Warren Hunt, William R. Mark, and Don Fussell. 2007. Fast and Lazy Build of Accelera-
tion Structures from Scene Hierarchies. In 2007 IEEE Symposium on Interactive Ray
Tracing. 47–54. https://doi.org/10.1109/RT.2007.4342590

Stefan Jeschke, Stephan Mantler, and Michael Wimmer. 2007. Interactive Smooth
and Curved Shell Mapping. In Proceedings of the 18th Eurographics Conference
on Rendering Techniques (Grenoble, France) (EGSR’07). Eurographics Association,
Goslar, DEU, 351–360.

Tomomichi Kaneko, Toshiyuki Takahei, Masahiko Inami, Naoki Kawakami, Yasuyuki
Yanagida, Taro Maeda, and Susumu Tachi. 2001. Detailed shape representation with
parallax mapping. In Proceedings of ICAT, Vol. 2001. 205–208.

Khronos. 2020. Vulkan Ray Tracing specification. https://www.khronos.org/blog/vulkan-
ray-tracing-final-specification-release

L. Lee, Shih-Wei Tseng, and W. Tai. 2009. Improved Relief Texture Mapping Using
Minmax Texture. 2009 Fifth International Conference on Image and Graphics (2009),
547–552.

Alexander Lier, Magdalena Martinek, Marc Stamminger, and Kai Selgrad. 2018. A
High-Resolution Compression Scheme for Ray Tracing Subdivision Surfaces with
Displacement. Proceedings of the ACM on Computer Graphics and Interactive Tech-
niques 1, 2 (2018), 1–17.

Songrun Liu, Zachary Ferguson, Alec Jacobson, and Yotam Gingold. 2017. Seamless:
Seam erasure and seam-aware decoupling of shape from mesh resolution. ACM
Transactions on Graphics (TOG) 36, 6, Article 216 (Nov. 2017), 15 pages. https:
//doi.org/10.1145/3130800.3130897

The-Kiet Lu, K. Low, and J. Zheng. 2009. Fast visualization of complex 3D models using
displacement mapping. In Graphics Interface.

Jeffrey A. Mahovsky. 2005. Ray Tracing with Reduced-Precision Bounding Volume Hier-
archies. Ph.D. Dissertation. CAN.

WilliamMartin, Elaine Cohen, Russell Fish, and Peter Shirley. 2000. Practical ray tracing
of trimmed NURBS surfaces. Journal of Graphics Tools 5, 1 (2000), 27–52.

TomasMöller and Ben Trumbore. 1997. Fast, minimum storage ray-triangle intersection.
Journal of graphics tools 2, 1 (1997), 21–28.

Henry Moreton. 2001. Watertight Tessellation Using Forward Differencing. In Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware (Los
Angeles, California, USA) (HWWS ’01). Association for Computing Machinery, New
York, NY, USA, 25–32. https://doi.org/10.1145/383507.383520

K.Moule andM.McCool. 2002. Efficient Bounded Adaptive Tessellation of Displacement
Maps. In Graphics Interface.

J. Munkberg, J. Hasselgren, Robert Toth, and T. Akenine-Möller. 2010. Efficient bounding
of displaced Bézier patches. In HPG ’10.

M. Nießner and C. Loop. 2013. Analytic Displacement Mapping using Hardware
Tessellation. ACM Transactions on Graphics (TOG) 32, 3 (2013), 26.

Matthias Nießner, Charles Loop, Mark Meyer, and Tony Derose. 2012. Feature-Adaptive
GPU Rendering of Catmull-Clark Subdivision Surfaces. ACM Trans. Graph. 31, 1,
Article 6 (Feb. 2012), 11 pages. https://doi.org/10.1145/2077341.2077347

ACM Trans. Graph., Vol. 40, No. 6, Article 282. Publication date: December 2021.

https://doi.org/10.1109/MM.2020.2971677
https://doi.org/10.1111/j.1467-8659.2008.01341.x
https://doi.org/10.1111/1467-8659.t01-1-00702
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.t01-1-00702
https://doi.org/10.1145/2019627.2019634
https://doi.org/10.1145/2019627.2019634
https://doi.org/10.1145/1833349.1778801
https://doi.org/10.1109/RT.2007.4342590
https://www.khronos.org/blog/vulkan-ray-tracing-final-specification-release
https://www.khronos.org/blog/vulkan-ray-tracing-final-specification-release
https://doi.org/10.1145/3130800.3130897
https://doi.org/10.1145/3130800.3130897
https://doi.org/10.1145/383507.383520
https://doi.org/10.1145/2077341.2077347

Tessellation-Free Displacement Mapping for Ray Tracing • 282:15

NVIDIA. 2020. RTX Technology - RT Cores. https://developer.nvidia.com/rtx/raytracing#
rtcores

Kyoungsu Oh, Hyunwoo Ki, and Cheol-Hi Lee. 2006. Pyramidal displacement mapping:
a gpu based artifacts-free ray tracing through an image pyramid. In Proceedings of
the ACM symposium on Virtual reality software and technology. 75–82.

Manuel Oliveira and Fabio Policarpo. 2005. An Efficient Representation for Surface
Details. UFRGS Technical Report RP-351 (01 2005).

Afonso Paiva, Filipe de Carvalho Nascimento, Luiz Henrique de Figueiredo, and Jorge
Stolfi. 2012. Approximating implicit curves on triangulations with affine arithmetic.
In 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images. IEEE, 94–101.

Matt Pharr and Pat Hanrahan. 1996. Geometry Caching for Ray-Tracing Displacement
Maps. In Proceedings of the Eurographics Workshop on Rendering Techniques ’96
(Porto, Portugal). Springer-Verlag, Berlin, Heidelberg, 31–ff.

M. Pharr, Craig E. Kolb, Reid Gershbein, and P. Hanrahan. 1997. Rendering complex
scenes with memory-coherent ray tracing. Proceedings of the 24th annual conference
on Computer graphics and interactive techniques (1997).

Fabio Policarpo and Manuel M Oliveira. 2007. Relaxed cone stepping for relief mapping.
GPU gems 3 (2007), 409–428.

Fábio Policarpo, Manuel M Oliveira, and João LD Comba. 2005. Real-time relief mapping
on arbitrary polygonal surfaces. In Proceedings of the 2005 symposium on Interactive
3D graphics and games. 155–162.

Serban D. Porumbescu, Brian Budge, Louis Feng, and Kenneth I. Joy. 2005. Shell Maps.
ACM Trans. Graph. 24, 3 (July 2005), 626–633. https://doi.org/10.1145/1073204.
1073239

Andreas Reich, Tobias Günther, and Thorsten Grosch. 2015. Illumination-driven Mesh
Reduction for Accelerating Light Transport Simulations. Computer Graphics Forum
34, 4 (2015), 165–174.

Siegfried M Rump and Masahide Kashiwagi. 2015. Implementation and improvements
of affine arithmetic. Nonlinear Theory and Its Applications, IEICE 6, 3 (2015), 341–359.

Kai Selgrad, Alexander Lier, Magdalena Martinek, Christoph Buchenau, Michael Guthe,
Franziska Kranz, Henry Schäfer, and Marc Stamminger. 2016. A Compressed Repre-
sentation for Ray Tracing Parametric Surfaces. ACM Trans. Graph. 36, 1, Article 5
(2016), 13 pages.

Christian Sigg and Markus Hadwiger. 2005. Fast third-order texture filtering. GPU
gems 2 (2005), 313–329.

Brian Smits, Peter Shirley, andMichael M Stark. 2000. Direct ray tracing of displacement
mapped triangles. In Eurographics Workshop on Rendering Techniques. Springer, 307–
318.

L. Szirmay-Kalos and Tamás Umenhoffer. 2008. Displacement Mapping on the GPU —
State of the Art. Computer Graphics Forum 27 (2008).

László Szirmay-Kalos, Tamás Umenhoffer, Gustavo Patow, László Szécsi, and Mateu
Sbert. 2009. Specular effects on the gpu: State of the art. In Computer Graphics
Forum, Vol. 28. Wiley Online Library, 1586–1617.

Natalya Tatarchuk. 2006. Dynamic parallax occlusion mapping with approximate soft
shadows. In Proceedings of the 2006 symposium on Interactive 3D graphics and games.
63–69.

Art Tevs, Ivo Ihrke, and Hans-Peter Seidel. 2008. Maximum mipmaps for fast, accurate,
and scalable dynamic height field rendering. In Proceedings of the 2008 symposium
on Interactive 3D graphics and games. 183–190.

Ingo Wald, Sven Woop, Carsten Benthin, Gregory S Johnson, and Manfred Ernst. 2014.
Embree: a kernel framework for efficient CPU ray tracing. ACM Transactions on
Graphics (TOG) 33, 4 (2014), 1–8.

Lifeng Wang, Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Baining Guo, and Heung-
Yeung Shum. 2003. View-dependent displacement mapping. ACM Transactions on
graphics (TOG) 22, 3 (2003), 334–339.

X. Wang, J. Maillot, E. Fiume, V. Ng-Thow-Hing, Andrew Woo, and S. Bakshi. 2000.
Feature-based Displacement Mapping. In Rendering Techniques.

Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Baining Guo, and Heung-Yeung Shum.
2004. Generalized displacement maps. In Proceedings of the Fifteenth Eurographics
conference on Rendering Techniques. 227–233.

Amy Williams, Steve Barrus, R Keith Morley, and Peter Shirley. 2005. An efficient and
robust ray-box intersection algorithm. In ACM SIGGRAPH 2005 Courses. 9–es.

Keith Yerex and Martin Jägersand. 2004. Displacement mapping with ray-casting in
hardware.. In SIGGRAPH sketches. 149.

A AFFINE ARITHMETIC
Affine arithmetic represents quantities as affine combinations of
symbolic variables whose values lie in the range [−1, 1] and which
describe either sources of variation in the data or approximations
made during computations. In our case, for simplicity and efficiency,
we only keep track of the coefficients from two symbolic variables 𝜖𝑢
and 𝜖𝑣 , related to the texture coordinates𝑢 and 𝑣 . All approximations

not related to the two previous symbolic variables encountered
during computations are merged into a single symbolic variable 𝜖𝐾 .
Therefore, any scalar or vector quantity 𝑥 considered can be written
as:

[𝑥] = [𝑥𝑐 + 𝑥𝑢𝜖𝑢 + 𝑥𝑣𝜖𝑣 + 𝑥𝐾𝜖𝐾] (10)
where 𝑥𝑐 , 𝑥𝑢 , 𝑥𝑣, 𝑥𝐾 are constants with the same number of channels
as 𝑥 . For readability purposes, wewill omit the symbolic variables for
the rest of the section and write an affine form 𝑥 as [𝑥𝑐 , 𝑥𝑢 , 𝑥𝑣, 𝑥𝐾].

The affine form associated to the height relative to a texel can be
retrieved from a single minmax mipmap fetch:

[ℎ] = 1
2

[
𝑀
𝑘
𝑖,𝑗 +𝑀𝑘

𝑖,𝑗 , 0, 0, 𝑀
𝑘
𝑖,𝑗 −𝑀𝑘

𝑖,𝑗

]
(11)

Note that since we only retrieve an interval for the height instead of
a complete affine form, any possible correlation between the height
values and the base surface is lost.

As our 𝑢𝑣 domain Ω𝑘
𝑖,𝑗

is simply a 2D axis-aligned box, the 𝑢𝑣
affine form can be easily computed as:

[𝑢𝑣] = 2𝑘
[(
𝑗 + 1/2
𝑊

,
𝑖 + 1/2
𝐻

)
,

(
1
2𝑊

, 0
)
,

(
0,

1
2𝐻

)
, (0, 0)

]
(12)

Combining in Equation 1 the affine forms for displacement, base
interpolated position and unit normal, we obtain an affine form for
the displaced surface relatively to a given texel [S], from which we
recover an AABB for the displaced surface:

S(𝑢, 𝑣) ∈ [S𝑐 − |S𝑢 | − |S𝑣 | − |S𝐾 |, S𝑐 + |S𝑢 | + |S𝑣 | + |S𝐾 |] (13)

where | · | is the per-channel absolute value.
We now detail formulas used for affine arithmetic computations in

the paper. The affine form of a constant quantity is simply [𝑥𝑐 , 0, 0, 0].
As the 𝜖𝐾 term combines all approximations made during compu-
tations, the amplitude of 𝑥𝐾 can only increase after an operation.
Therefore we chose to keep 𝑥𝐾 ≥ 0 (component-wise) in all for-
mulas. Addition is applied component-wise and · denotes the dot
product. Addition between two affine forms:

𝑥𝑐
𝑥𝑢
𝑥𝑣
𝑥𝐾

 +

𝑦𝑐
𝑦𝑢
𝑦𝑣
𝑦𝐾

 =


𝑥𝑐 + 𝑦𝑐
𝑥𝑢 + 𝑦𝑢
𝑥𝑣 + 𝑦𝑣
𝑥𝐾 + 𝑦𝐾


Dot product between two vector affine forms:

𝑥𝑐
𝑥𝑢
𝑥𝑣
𝑥𝐾

 ·

𝑦𝑐
𝑦𝑢
𝑦𝑣
𝑦𝐾

 =


𝑥𝑐 · 𝑦𝑐

𝑥𝑢 · 𝑦𝑐 + 𝑥𝑐 · 𝑦𝑢
𝑥𝑣 · 𝑦𝑐 + 𝑥𝑐 · 𝑦𝑣

|𝑥𝐾 · 𝑦𝑐 | + |𝑥𝑐 · 𝑦𝐾 | +
(|𝑥𝑢 | + |𝑥𝑣 | + 𝑥𝐾) · (|𝑦𝑢 | + |𝑦𝑣 | + 𝑦𝐾)


Scalar multiplication and matrix-vector product can be directly
obtained from the dot product formula.

Squared norm:
𝑥𝑐
𝑥𝑢
𝑥𝑣
𝑥𝐾

 ·

𝑥𝑐
𝑥𝑢
𝑥𝑣
𝑥𝐾

 =


∥𝑥𝑐 ∥2 + 1

2 ∥|𝑥𝑢 | + |𝑥𝑣 | + 𝑥𝐾 ∥2
2𝑥𝑐 · 𝑥𝑢
2𝑥𝑐 · 𝑥𝑣

2|𝑥𝑐 · 𝑥𝐾 | + 1
2 ∥|𝑥𝑢 | + |𝑥𝑣 | + 𝑥𝐾 ∥2


Note that the 𝜖𝐾 term is smaller using the squared norm formula
than using the dot product of a form with itself.

ACM Trans. Graph., Vol. 40, No. 6, Article 282. Publication date: December 2021.

https://developer.nvidia.com/rtx/raytracing#rtcores
https://developer.nvidia.com/rtx/raytracing#rtcores
https://doi.org/10.1145/1073204.1073239
https://doi.org/10.1145/1073204.1073239

282:16 • Theo Thonat, Francois Beaune, Xin Sun, Nathan Carr, and Tamy Boubekeur

To apply a general non-linear unary operator 𝑓 to an affine form
[𝑥], a linear approximation of 𝑓 on the domain of 𝑥 must be derived.
More specifically, one must find constant values 𝛼 , 𝛾 , and 𝛿 such
that |𝑓 (𝑡) − (𝛼 · 𝑡 + 𝛾) | ≤ 𝛿 for all 𝑡 ∈ [𝑥, 𝑥]. An affine form for
𝑓 ([𝑥]) can then be obtained using:

𝑓 ([𝑥]) =


𝛼 · 𝑥𝑐 + 𝛾
𝛼 · 𝑥𝑢
𝛼 · 𝑥𝑣

|𝛼 · 𝑥𝐾 | + 𝛿

 (14)

There are many possibilities for affine approximations, but two
choices are of particular interest. As detailed in De Figueiredo and
Stolfi [2004], the Min-Range approximation minimizes the approxi-
mation bounding volume while the Chebyshev one minimizes 𝛿 . In
case the function is concave or convex, closed-form formulas for
both approximations can be derived [Rump and Kashiwagi 2015].

We approximate 𝑓 (𝑥) = clamp(𝑥, ·, ·) using its Chebyshev approx-
imation, and 𝑔(𝑥) = 1√

𝑥
using its Min-Range approximation:

𝑓 𝑔

𝛼
𝑓 (𝑥)−𝑓 (𝑥)

𝑥−𝑥 − 1
2𝑔(𝑥)

3

𝛾 1
2 (1 − 𝛼)

(
𝑓 (𝑥) + 𝑓 (𝑥)

) 1
2
(
𝑔(𝑥) + 𝑔(𝑥) − 𝛼

(
𝑥 + 𝑥

))
𝛿 (1 − 𝛼) 𝑓 (𝑥) − 𝛾 1

2
��𝑔(𝑥) − 𝑔(𝑥) − 𝛼 (

𝑥 − 𝑥
) ��

(15)

B ITERATIVE INTERSECTION TESTS
In this appendix only, [] simply denotes matrices or column vectors
and not affine forms or bounding boxes. For a given base triangle,
the surface defined in Equation 1 is a parametric surface that can be
intersected using iterative methods. Following the work of Martin
et al. [2000], we consider the following equations for a query ray
with direction 𝑑 and origin 𝑜 :

𝐹 (𝑢, 𝑣) =
[
(𝑆 (𝑢, 𝑣) − 𝑜) · 𝑑1
(𝑆 (𝑢, 𝑣) − 𝑜) · 𝑑2

]
=

[
0
0

]
(16)

where 𝑑, 𝑑1, 𝑑2 forms an orthonormal basis, obtained for example
using the routine of Duff et al. [2017]. Starting from (𝑢0, 𝑣0) at the
leaf center, we solve the previous equation using Newton’s iterative
method, 𝐹 having simple derivatives with respect to 𝑢 and 𝑣 :

𝐽𝐹 =

[
𝜕𝐹

𝜕𝑢
,
𝜕𝐹

𝜕𝑢

]
=

[
𝜕𝑆
𝜕𝑢 · 𝑑1, 𝜕𝑆𝜕𝑣 · 𝑑1
𝜕𝑆
𝜕𝑢 · 𝑑2, 𝜕𝑆𝜕𝑣 · 𝑑2

]
𝐽𝑆 =

[
𝜕𝑆

𝜕𝑢
,
𝜕𝑆

𝜕𝑢

]
= 𝐽𝑃 + 𝑁̂ 𝐽ℎ + ℎ𝐽

𝑁̂

= 𝐽𝑃 + 𝑁̂ 𝐽ℎ + ℎ

∥𝑁 ∥

(
𝐽𝑁 − 𝑁̂

[
𝜕𝑁
𝜕𝑢 · 𝑁̂ , 𝜕𝑁𝜕𝑣 · 𝑁̂

]) (17)

where 𝐽 denotes the Jacobian matrix with respect to 𝑢 and 𝑣 . In
case the base surface is purely a triangle mesh, 𝐽𝑃 and 𝐽𝑁 are 3 × 2
matrices constant per base triangle as seen from Equation 7. 𝐽ℎ can
be computed explicitly using texel values in a neighborhood of the
𝑢𝑣 point of interest, for both bilinear and bicubic sampling [Sigg
and Hadwiger 2005].

p1

p2

p3

n1

n2

n3

p1+ (-w, +w)

n1

n2

p2+ (+w, +w)

n3

p3+ (-w, -w)

Minkowski
di�erence

(-w, +w)

(+w, -w)

(+w, +w)

(-w, -w)

c

u

v

Fig. 16. Triangle-square 2D configuration. The Minkowski difference
between a square and a triangle in 2D is made of at most seven edges.
Testing for a collision means testing on which half plane the origin is for
each of those edges. Four of them are equivalent to check whether the
square and the triangle bounding box intersect (green half-spaces). The
remaining three are equivalent to check if any triangle edge is a separating
axis, which can be done by considering for each triangle edge a carefully
chosen box corner (red half-spaces).

Algorithm 4: Triangle-square 2D collision.
The triangle is defined by its vertices 𝑝1, 𝑝2, 𝑝3 and its
outward-pointing edges normals 𝑛1, 𝑛2, 𝑛3. The square is
defined by its center 𝑐 and its side half-length𝑤 . In practice
we pre-compute 𝑝𝑖 , 𝑛𝑖 , and minmax𝑖 𝑝𝑖 at the beginning of
the intersection shader, as the collision function is always
called with the same triangle. Ternary, comparison, and min-
max operators are applied component-wise, and contains
is a point-in-triangle routine in 2D.
Function collision(𝑝𝑖 , 𝑛𝑖 , 𝑐 ,𝑤):

𝑝𝑖 −= 𝑐 // As if the square is origin-centered
if any min ((𝑤,𝑤),max𝑖 𝑝𝑖) ≤ max(−(𝑤,𝑤),min𝑖 𝑝𝑖)
or any dot (𝑛𝑖 , 𝑝𝑖 + (𝑛𝑖 ≥ 0 ? 𝑤 : −𝑤)) ≤ 0 then

return SquareOutsideTriangle
if (𝑝1, 𝑝2, 𝑝3) contains all (±𝑤,±𝑤) then

return SquareInsideTriangle
return SquareOverlappingTriangle

C TRIANGLE-SQUARE COLLISION
The general version of the GJK algorithm [Gilbert et al. 1988] com-
putes collision between two convex shapes by determining if the
origin is contained in their Minkowski difference in an iterative
fashion. But in our scenario with a triangle and a square in 2D, the
Minkowski difference is made of at most seven edges, and all these
origin-edge tests can be written explicitly as seen in Figure 16. The
final routine is described in algorithm 4.

ACM Trans. Graph., Vol. 40, No. 6, Article 282. Publication date: December 2021.

	Abstract
	1 Introduction
	2 Previous work
	2.1 Ray-traced displacement maps
	2.2 Real-time displacement mapping
	2.3 Implicit acceleration structures for raytracing
	2.4 Smooth surfaces raytracing
	2.5 Shell mapping

	3 Overview
	4 Displacement BVH
	4.1 Displaced surface
	4.2 Construction
	4.3 Traversal
	4.4 Level of detail
	4.5 Conservative box estimation

	5 Ray tracing
	5.1 Local intersection tests
	5.2 Watertightness considerations.

	6 Implementation
	6.1 GPU ray tracing pipeline
	6.2 Displaced object BLAS
	6.3 Memory layout and interactive displacement
	6.4 Traversal implementation details

	7 Results
	8 Discussion
	9 Conclusion
	Acknowledgments
	References
	A Affine arithmetic
	B Iterative intersection tests
	C Triangle-Square collision

