
EUROGRAPHICS 2020 / U. Assarsson and D. Panozzo
(Guest Editors)

Volume 39 (2020), Number 2

Spectral Mesh Simplification

Thibault Lescoat1 Hsueh-Ti Derek Liu2 Jean-Marc Thiery1 Alec Jacobson2 Tamy Boubekeur4,1 Maks Ovsjanikov3

1 LTCI, Télécom Paris, Institut Polytechnique de Paris, France 2 University of Toronto, Canada 3 École Polytechnique, France 4 Adobe

OursUniform Garland & Heckbert 1997Ground truth

|| . ||L = 31.38 × 103

|| . ||D = 15.60 × 100

|| . ||L = 39.35 × 103

|| . ||D = 15.13 × 100

|| . ||L = 3.50 × 103

|| . ||D = 3.76 × 100

Figure 1: We propose to simplify a mesh using edge collapses while aiming to preserve the input eigenvectors and eigenvalues as much

as possible. While different strategies exist to reduce a mesh (here, from 25,727 vertices to 771 vertices, or 3% of its initial size), such as

enforcing uniform edge lengths or using the Quadric Error Metric [GH97], they do not focus on keeping the spectral properties of the mesh.

Reducing a mesh can be spectrally described using functional maps [OBCS∗12], shown here with the output meshes, and which should ideally

be diagonal. We also evaluate functional maps using two norms, the Laplacian commutativity ‖ · ‖L and the orthogonality ‖ · ‖D.

Abstract

The spectrum of the Laplace-Beltrami operator is instrumental for a number of geometric modeling applications, from processing

to analysis. Recently, multiple methods were developed to retrieve an approximation of a shape that preserves its eigenvectors

as much as possible, but these techniques output a subset of input points with no connectivity, which limits their potential

applications. Furthermore, the obtained Laplacian results from an optimization procedure, implying its storage alongside the

selected points. Focusing on keeping a mesh instead of an operator would allow to retrieve the latter using the standard cotangent

formulation, enabling easier processing afterwards. Instead, we propose to simplify the input mesh using a spectrum-preserving

mesh decimation scheme, so that the Laplacian computed on the simplified mesh is spectrally close to the one of the input mesh.

We illustrate the benefit of our approach for quickly approximating spectral distances and functional maps on low resolution

proxies of potentially high resolution input meshes.

1. Introduction

Triangle meshes remain a predominant representation of 3D sur-
faces. When the complexity of a given mesh exceeds computational
resources, we rely on mesh simplification methods to remove ver-
tices, edges, and faces. In rendering, efficient simplification methods
can dramatically reduce the complexity of a mesh without affecting
its appearance. It is tempting to repurpose appearance-preserving
simplification methods for other geometry processing tasks.

Unfortunately, appearance-based methods do not preserve the
spectral properties of the important differential operators upon which
much of modern geometry processing is built (see Figure 1). As a
result, solutions computed on such a coarse mesh can be incorrect
or misleading. Alternatively, previous coarsening methods that do
preserve spectral properties work purely algebraically on the oper-
ator matrices and do not produce a geometric mesh (see Figure 2).

The lack of a mesh limits the use of coarsening in many downstream
geometry processing tasks.

We present the first mesh simplification method intentionally
designed to preserve spectral properties. We propose adapting the
standard greedy edge-collapse mesh-simplification algorithm with a
novel cost function that measures spectral preservation of a given op-
erator (e.g., the cotangent Laplacian). Unlike algebraic methods that
directly output a reduced operator (i.e., matrix), our method outputs
a manifold triangle mesh with 3D vertex positions. Reconstructing
the operator on the output mesh will preserve both the eigenvalues
and eigenvectors of the operator on the input mesh.

Confirmed by a series of experiments, our method preserves spec-
tral properties nearly as well as purely algebraic methods, while
still outputting an embedded mesh like standard simplification algo-
rithms. We demonstrate our approach’s effectiveness for geodesic
distance approximation and functional maps correspondence.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

T. Lescoat, H.-T. Liu, J.-M. Thiery, A. Jacobson, T. Boubekeur, M. Ovsjanikov / Spectral Mesh Simplification

| |: 56,112

OursNasikun et al. 2018 Liu et al. 2019 Garland & Heckbert 1997Ground truth

|| . ||L = 1.66 × 103

|| . ||D = 2.62 × 100

|| . ||L = 8.02 × 103

|| . ||D = 1.86 × 100

|| . ||L = 61.19 × 103

|| . ||D = 42.25 × 100

|| . ||L = 1.71 × 103

|| . ||D = 1.14 × 100

Figure 2: Reduction from 56,112 to 1,122 vertices (2% of input size). Nasikun et al. [NBH18] approximate the original Laplacian on a subset

of vertices obtained via Poisson-disk sampling. Liu et al. [LJO19] optimize the sampling and the operator, that they define on samples’ 3-rings.

Instead, by outputting a mesh, further processing can use a standard cotangent weighting scheme without knowledge of the reduction step.

2. Background

Our method builds on the long history of research in mesh simplifica-
tion and recent developments in spectral coarsening for differential
operators. We focus the attention of this related work section on
methods directly related in methodology or intention.

Classic methods for mesh simplification are based on preserving
the rendered appearance of the geometric surface [SZL∗92, PH97,
GH97, HDD∗93, CSAD04]. These methods were extended to ac-
count for other signals stored on the mesh beyond geometry includ-
ing texture coordinates and colors [CMO97,GH98,Hop99,LFJG17].
Similar to many of these methods, we adapt the per-edge cost
function of the basic greedy edge-collapse approach introduced
by Garland & Heckbert [GH97]. Instead of optimizing perceptual
metrics, we optimize a spectral metric. Spectral preservation re-
lies on maintaining intrinsic properties of the surface (the metric).
Previous methods have focused on maintaining extrinsic proper-
ties, such as keeping the coarse mesh within a small envelope
around the input [CVM∗96, ZG02] or strictly containing the in-
put [SGG∗00, SVJ15]. In a rare previous example of spectral mesh
simplification, Li et al. [LFZ15] append modal displacement vec-
tors for sound simulation as extra dimensions during greedy edge-
collapse. However, this method preserves only the specific modes
chosen and would not scale beyond a small number of frequen-
cies. Our efficient method preserves a large span of low frequency
eigenmodes and corresponding values.

Mesh simplification is closely related to graph reduction. In
this more general and less constrained context, recent works
have investigated spectral preservation with theoretical guaran-
tees [KS16, Lou19, LV18]. Liu et al. [LJO19] recently demonstrated
superiority over [KS16] when applied to mesh Laplacians from
geometry processing. Similarly, coreset selection algorithms aim
to preserve statistics or properties of a larger point set or distribu-
tion [HCB16, CS18].

An alternative approach to preserving properties of the opera-
tor built from the input mesh is to directly simplify it as a matrix.
Recently, Liu et al. [LJO19] present a state-of-the-art method for
spectral preservation during algebraic coarsening of common op-
erators used in geometry processing. We refer the reader to this
recent work for a comprehensive review of previous algebraic and
numerical coarsening methods. Notably, Nasikun et al. [NBH18]
aim at efficiently approximating eigenpairs. Both methods select
a subset of points from the input; along with other recent devel-
opments (e.g., [CBO∗19, OS19]), they share a common limitation
compared to our method: they do not produce a mesh.

We build upon the functional maps [OBCS∗12] machinery used
by Liu et al. to evaluate how well a coarsening preserves spectral
properties. Importantly, unlike their computationally expensive alge-
braic optimization, our efficient edge-collapse algorithm maintains
a manifold triangle mesh.

3. Method

Our spectrum-preserving simplification method is made of two
main building blocks: a simplification algorithm based on edge-
collapses and a simplification metric which drives the algorithm.
The metric associates a cost to any given edge-collapse, ordering
them dynamically during the simplification.

3.1. Input / output

Our method takes as input a manifold triangle meshM= (V,F),
which can optionally contain boundaries, and produces a simplified
mesh M̃= (Ṽ, F̃), with a spectrum as close as possible toM when
evaluating it using the standard Laplacian operator. Optionally, a
coarse-to-fine restriction matrix can be produced and used when
computing e.g., functional maps. We also take a unique parameter
in the form of the number of eigenvectors to preserve.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

T. Lescoat, H.-T. Liu, J.-M. Thiery, A. Jacobson, T. Boubekeur, M. Ovsjanikov / Spectral Mesh Simplification

φ
5

φ
6

φ
35

φ
36. . .

input, | |: 20,212

ours, | |: 808

Garland & Heckbert

1997, | |: 808

|| . ||L = 2.57 × 103

|| . ||D = 2.58 × 100

|| . ||L = 59.12 × 103

|| . ||D = 71.03 × 100

Figure 3: While the very first eigenvectors from both our method (middle row) and QSlim [GH97] (bottom row) are very close to those of the

input (top row), following eigenvectors are more sensitive; badly preserved eigenvectors exhibit patterns dissimilar to their input counterpart.

3.2. Simplification algorithm

Given a cost for each edge ofM, our simplification algorithm (see
Algorithm 1) follows the seminal idea of Garland and Heckbert
[GH97]: each input edge is pushed to a priority-queue, where the
priority is dictated by our specific cost metric. At all time, the edge
located at the head of the queue is the next best edge to collapse
i.e., with minimum cost. Once popped from the queue, the edge
is collapsed, effectively removing one vertex from the mesh and
resulting in a merged vertex positioned to optimize the metric. Last,
the cost of the incident edges are updated, reordering the queue to
respect the priority measure. This atomic mesh reduction step is
iterated until reaching the desired output resolution for M̃, removing
one vertex at a time.

Algorithm 1: Edge-collapse progressive simplification

Input: meshM= (V,F), target size N, metric
m : V ×V 7→ R

Output: simplified mesh M̃= (Ṽ, F̃)

Ṽ ← V ; F̃ ← F ; queue←{} ;
for edge e ∈M do

add (e,m(e)) to queue ;

while |Ṽ|> N and queue not empty do

(e,c)← pop edge e with lowest cost c from queue ;

collapse e (this changes Ṽ and F̃) ;
for n ∈ e’s neighbors do

update n in queue ;

Optionally, we can augment this reduction algorithm to generate
a restriction matrix P to be used for the computation of functional
maps for instance. More precisely, when collapsing the edge (u,v),
we generate the restriction matrix Q such that V a f ter = QV be f ore.
Note that all its coefficients are positive, and its rows sum to 1.
Then, with Qi the restriction matrix of the i-th operation, the global
restriction matrix is formed as follow: P = QnQn−1...Q2Q1.

3.3. Metric

While the Quadric Error Metric, introduced in the original work of
Garland & Heckbert [GH97], maintain the visual appearance of the
original mesh as much as possible, we propose a new alternative
metric focused on spectral preservation.

Let L,M ∈ R
|V|×|V| be the Laplacian and the diagonal mass ma-

trix ofM respectively. Similarly, L̃,M̃ ∈R|Ṽ|×|Ṽ| denote the Lapla-

cian and the diagonal mass matrix of M̃. We note P ∈R
|Ṽ|×|V| the

fine-to-coarse restriction matrix andNi(v) the i-ring of vertex v. We
also use the following weighted norm:

‖X‖2
M̃
= tr(X⊤

M̃X) (1)

We formulate the preservation of the eigenvectors of the Lapla-
cian by the commutativity of the Laplacian and the reduction. More
generally, for a signal f ∈ R

|V|, we aim for M̃−1L̃P f = PM−1L f .
Thus, given K signals to preserve (here, eigenvectors of the Lapla-
cian), represented as a matrix F ∈ R

|V|×K , the reduction metric is:

E = ‖PM
−1

LF︸ ︷︷ ︸
Z

−M̃
−1

L̃PF‖2
M̃

(2)

F and Z are computed only once, at the very beginning. This metric
will also preserve eigenvalues, as shown in Appendix C of [LJO19].

M−1L

f −−−−−−−→ •

P
y y P

• −−−−−−−→ f̃

M̃−1L̃

Since M̃ is a diagonal matrix, the weighted norm of Equation (1)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

T. Lescoat, H.-T. Liu, J.-M. Thiery, A. Jacobson, T. Boubekeur, M. Ovsjanikov / Spectral Mesh Simplification

can be decomposed as follow:

‖X‖2
M̃
= tr(X⊤

M̃X) = diag(M̃)⊤ diag(XX
⊤) =∑

v

M̃v‖ rowv(X)‖2

Thus we can define the metric E in Equation (2) for each vertex v:

E = ∑
v

Ev and Ev = M̃v‖ rowv(PZ− M̃
−1

L̃PF)‖2.

u v

e

Figure 4: When collapsing

e (blue), only the 1-ring en-

tries of Ew (black) change.

We can observe that only the
1-ring of v matters, as the cost
will not change for vertices fur-
ther away from this region (Fig-
ure 4). More precisely, noting
H = {u,v}∪N1(u,v) when col-
lapsing edge e = (u,v), the met-
ric only changes for vertices of
H. Therefore, we only need the 2-
ring of {u,v} to compute the cost
of a given edge collapse:

cost(e) = E
a f ter−E

be f ore

= ∑
w∈H

E
a f ter
w + ∑

w /∈H

E
a f ter
w − ∑

w∈H

E
be f ore
w − ∑

w /∈H

E
be f ore
w

= ∑
w∈H

E
a f ter
w − ∑

w∈H

E
be f ore
w

As a result, we only need to compute Ew for w ∈ H, allowing
to track the global cost via local updates. Note that the signals to
preserve, F , are very important when determining which frequencies
to keep during the decimation process. Consequently, we use the
K first eigenvectors of L, to focus only on the low-frequencies of
interest. Finally, once the edge is collapsed, with Q the restriction
matrix associated to this operation, we update P, F , and Z as follow:
P← QP, F ← QF , Z← QZ.

3.4. Merged vertex optimization

When collapsing an edge, we need to reposition the resulting merged
vertex. This position impacts our metric via P, M̃ and L̃, in a non-
linear fashion. Thus, we use an approximation of the metric to find
its minimizer. Several strategies are possible: (i) always merge at
the edge center, (ii) use a 1D quadratic approximation, restricted on
the edge, or (iii) use a 3D quadratic approximation, unrestricted. Ex-
perimentally, we found that (ii) provides the best trade-off between
accuracy and computational cost (see Appendix A for more details).

More precisely, let e = (u,v) be the edge to collapse, the resulting
position is denoted w(α ∈ [0,1]) = (1−α)u+αv, with cost(e,α)
the collapse cost. We construct the quadratic polynomial p such that
p(α) = cost(e,α) for α ∈ {0,0.5,1}, and optimize α∗ ∈ [0,1] to
minimize p, yielding the optimal merged position (Figure 5).

The restriction matrix associated with the collapse is Q∈Rn−1×n

with n the number of vertices prior to the collapse. Let ŵ be the
index of vertex w post collapse, and v the removed vertex: the only
non-zeros are Qûu = 1−α, Qûv = α, and Qŵw = 1. If needed by the
application, we can force Q to be binary by rounding 1−α and α.

optimal position
u v

costα = 0
α = 1

α*

Figure 5: Our vertex optimization scheme finds α∗ ∈ [0,1] which

minimizes the cost to determine the merged position (green).

4. Evaluation

We evaluated the performance of our simplification method using a
variety of criteria. We implemented our technique in C++ with the
help of Spectra, and tested it on a workstation with an Intel Xeon
3.0 GHz CPU, 32 GB of RAM. We used the same dataset as Liu et
al. [LJO19]. In all figures, functional maps are 100×100, and we
aim to preserve 100 eigenvectors (K = 100).

4.1. Functional maps

First, several quantities used in this evaluation are from the func-
tional maps field; let us briefly introduce the concept of functional
maps [OBCS∗12] here. These are maps between two shapes, but
instead of having a point-to-point map, we use a linear mapping
between function spaces. Given a base of functions on each shape
Φi,Φ̃ j , we can map one base function (say, Φi) on the base functions

of the other shape (here, ∑ j Ci jΦ̃ j). This allows to map any function
that we can decompose on these bases from one shape to the other.
The functional map can be represented by the matrix C = (Ci j).

Here we consider the functional map C ∈ R
K×K between the

input and output shapes, so we don’t take high frequencies into
account. Noting Φ the matrix whose columns are the K first eigen-
vectors of L (and idem for Φ̃), this matrix can be defined as:

C = Φ̃⊤
M̃PΦ

and given a function f onM (f = Φx), its corresponding function
on M̃ is (g = Φ̃Cx). To enable fair comparison with other methods,
we normalize all eigenvectors: ∀i,‖Φi‖M = 1 and ∀ j,‖Φ̃ j‖M̃

= 1.

We also scale the meshes to have a unit area: tr(M) = tr(M̃) = 1.

4.2. Norms

Ideally, the functional map C between input and output should be as
close as possible to the identity. In order not to rely only on visual
inspection, we use two norms on the functional maps to quantify the
result of the simplification:

Laplacian commutativity: ‖C‖2
L =
‖CΛ− Λ̃C‖2

‖C‖2 (3)

Orthonormality: ‖C‖2
D = ‖C⊤

C− Id‖2 (4)

where Λ and Λ̃ are the diagonal matrices of the eigenvalues of the
Laplacian operator on the input and output mesh, respectively. While
the ideal functional map is often the identity, multiplicity of eigen-
values may occur (e.g., in spheres or the bumpy cube in Figure 6).

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

T. Lescoat, H.-T. Liu, J.-M. Thiery, A. Jacobson, T. Boubekeur, M. Ovsjanikov / Spectral Mesh Simplification

Both norms are valid in these cases. While Equations (2) & (4) are
not related, we have that if ‖C‖ 6= 0 then E = 0 ⇐⇒ ‖C‖L = 0
(proof in Appendix B).

Our goal is to show that C is orthonormal and commutes with
the Laplacians in the reduced basis if and only if it preserves corre-
sponding eigenfunctions and eigenvalues exactly. We do not assume
any constraints on C (e.g., association with a pointwise map).

Theorem 1. For a square functional map, the following statements

are equivalent:

(1) C⊤C = Id and CΛ = Λ̃C

(2) the set of functions Y = Φ̃C is orthonormal on M̃ and solves

the eigenvalue problem L̃Y = M̃Y Λ̃ and moreover Λ = Λ̃

(3) the set of functions X = ΦC⊤ is orthonormal onM and satis-

fies LX = MXΛ and moreover Λ = Λ̃

Intuitively condition (2) (respectively (3)) above implies that
C (respectively C⊤) preserves the given set of eigenpairs of the
Laplacian. Then, the theorem can also be stated simply as follows:
C is both orthonormal and commutes with the diagonal matrices of
eigenvalues, if and only if it preserves the eigenfunctions and their
corresponding eigenvalues of the Laplacians. We provide a proof of
this theorem as Appendix C.

4.3. Analysis

Type of operator. The kind of Laplacian operator on the output
shape differs between the compared methods. The operator retrieved
by the method of Nasikun et al. [NBH18] uses geodesic distances
to determine the sparsity of the Laplacian. This could yield a denser
Laplacian compared to the cotangent Laplacian on a triangle mesh.
The method of Liu et al. [LJO19] use the 3-ring of vertices for the
Laplacian. Both methods specifically optimize for the operator.

On the contrary, our method and the method of Garland & Heck-
bert [GH97] output a mesh from which we can compute the Lapla-
cian operator using standard formulations on the 1-ring; we use
the usual cotangent Laplacian for the evaluations. However, this
formulation is more constrained, and while usually the Laplacian
operator is easily derived from the input mesh, our problem is an in-
verse problem: finding the best reduced mesh that respects a specific
Laplacian operator (given by its eigenpairs).

| |: 44,954 | |: 900

|| . ||L = 1.54 × 103

|| . ||D = 1.18 × 100

~

Figure 6: The functional map from the reduction should be block-

diagonal following the multiplicity of the eigenvalues.

Ours

| |: 622

Nasikun et al.

2018

Liu et al.

2019

Garland &

Heckbert 1997

eigenvalues

index

Nasikun et al. 2018

Liu et al. 2019

Ours

Garland & Heckbert 1997

Reference

||
.
 ||L = 4.59 × 103

||
.
 ||D = 7.90 × 100

||
.
 ||L = 5.58 × 103

||
.
 ||D = 1.74 × 100

||
.
 ||L = 92.10 × 103

||
.
 ||D = 18.36 × 100

||
.
 ||L = 23.99 × 103

||
.
 ||D = 10.31 × 100

~

Figure 7: To spectrally preserve the Laplacian, both coarse eigen-

vectors and eigenvalues should be close to their fine equivalent.

Norms. As shown before, the ideal case is when both the Laplacian
commutativity and the orthogonality are zero, as it means the spec-
trum is exactly preserved. We observed that in general, the method
of Nasikun et al. [NBH18] and of Liu et al. [LJO19] outperform our
method for small ratios of output size on input size, and the method
of Nasikun et al. is still at least on par when increasing the ratio. The
operator coarsening of Liu et al., however, becomes less accurate
as the ratio increases, notably because more vertices means more
coefficients in the operator to optimize, making the optimization
more difficult. The method of Garland & Heckbert [GH97] is usu-
ally worse than our method for both metrics, and often create slivers
in the output shape that will heavily impact the Laplacian operator.
We show typical examples of the preservation of eigenvectors in
Figure 3, of eigenvalues in Figure 7, and of the norms in Figure 8.

Storage. The method of Nasikun et al. [NBH18] aims at generating
coarse eigenpairs, which are dense matrices and thus are very costly
to store. Instead, as with the method of Liu et al. [LJO19], one could
store only the resulting sparse operator, along with the selected
vertices. This is still a lot larger than simply storing a coarse mesh.
We measured the storage size as a function of the target size, in
bytes/vertex (B/v), yielding a median of 228 B/v for the method
of Nasikun et al. [NBH18], 262 B/v for the method of Liu et al.
[LJO19], and 48 B/v for our method (more details in Appendix D).
We require the same storage as the method of Garland & Heckbert
[GH97], but with a higher quality Laplacian.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

T. Lescoat, H.-T. Liu, J.-M. Thiery, A. Jacobson, T. Boubekeur, M. Ovsjanikov / Spectral Mesh Simplification

|| . ||L

40000

20000

0

Nasikun et al. 2018
Ours

Garland & Heckbert 1997

Liu et al. 2019

0% 20% 40% 60%

|| . ||D

0% 20% 40% 60%

0

10

20

Nasikun et al. 2018
Liu et al. 2019

Ours

Garland & Heckbert 1997

| | / | |
~

| | / | |
~

Figure 8: One can see from these plots, ‖ · ‖L and ‖ · ‖D over the

output size relative to the input size, that most methods have the sim-

ilar behaviors, except for the method of Liu et al. [LJO19] for which

the optimization becomes harder with more output vertices. The

simplification of Garland & Heckbert [GH97] distort the spectrum

and thus exhibit higher norms.

mean || . ||L =

variance || . ||L =

mean || . ||D =

variance || . ||D =

2.72 × 103

2.99 × 105

3.69 × 10-1

1.32 × 10-2

4.65 × 103

4.76 × 105

3.30 × 100

1.72 × 10-2

Liu et al. 2019 Nasikun et al. 2018

Figure 9: Both [LJO19] and [NBH18] are not deterministic meth-

ods. Although the average of the commutativity and the orthogonal-

ity out of ten runs are small, they still have high variance.

Determinism. Previous methods from Nasikun et al. [NBH18] and
Liu et al. [LJO19] have a vertex selection step, following some regu-
larity metric. For both of these methods, this step is initialized with
a random selection, making these methods non-deterministic (Fig-
ure 9). This alters not only the final result, but also the time needed
to compute the output. Mirroring Garland & Heckbert [GH97], our
method is deterministic as it only depends on the input.

Timings. Similarly to the method of Liu et al. [LJO19], the initial
eigenvectors computation depends heavily on the input size and can
be accelerated via a faster eigen solver. Then the reduction time is
linear in the number of removed vertices, as can be seen in Figure 10.
This behavior is similar for the method of Garland & Heckbert
[GH97], although the latter is much faster as not only the metric is
defined per vertex instead of per edge, but also their setup step is less
intensive. As the operator coarsening method [LJO19] optimizes
for a Laplacian operator whose size depends on the output size, it

Garland & Heckbert 1997

Ours

Nasikun et al. 2018

Liu et al. 2019

0% 20% 40% 60%

0

20

40

seconds

| | / | |
~

Figure 10: Typical reduction time (seconds) in function of the ratio

output size / input size. Here, |V| = 20685, the method of Liu et

al. [LJO19] was run using MATLAB, and the method of Nasikun et

al. [NBH18] ran out of memory past 21% of input size.

Figure 11: By looking at the norms in function of number of eigen-

vectors relative to the output size, we can see that the output size

should be 3 times the number of eigenvectors for a correct spectral

preservation of the Laplacian.

can be quite fast for extreme reductions but timings quickly increase
following the number of vertices. Similarly, the method of Nasikun
et al. [NBH18] can be really fast for small output sizes, notably due
to GPU usage, and is slower when reducing less, while consuming
much more memory. Although Figure 10 show the timings for the
deer head, these behaviors are typical across all of our test dataset,
as can be seen in Figure 20 in the appendix.

Number of eigenvectors. Increasing the number of eigenvectors
in the metric of Equation (2) leads to a better preservation of high
frequencies, up to a certain point. We observed from our test dataset

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

T. Lescoat, H.-T. Liu, J.-M. Thiery, A. Jacobson, T. Boubekeur, M. Ovsjanikov / Spectral Mesh Simplification

Ours
Garland &

Heckbert 1997
Jakob et. al. 2015

||
.
 ||L = 3.49 × 103

||
.
 ||D = 2.01 × 100

||
.
 ||L = 3.20 × 103

||
.
 ||D = 1.88 × 100

||
.
 ||L = 3.07 × 103

||
.
 ||D = 1.23 × 100

Figure 12: Both the shape (by removing small details) and the

discretization (by avoiding slivers) impact the preservation of the

spectrum (here we remove 90% of the vertices).

that the output size should be at least 3x the number of eigenvectors
to preserve (Figure 11), for a correct spectral preservation of the
Laplacian. From Figure 11, we also observe that Laplacian commu-
tativity has less variability than orthogonality for high ratios.

Factors of spectral properties. Both the shape and its discretiza-
tion impact the spectral properties, especially when the number of
vertices is limited. Ideally, faces should be regular, to get a high
quality Laplacian operator [WMKG07]. As the method of Garland &
Heckbert [GH97] focuses on the shape, we also evaluated a remesh-
ing method that focuses on the discretization: Instant Field-aligned
Meshes (IFM) [JTPSH15]. On average, for the same mesh and
target size, functional maps from IFM have better orthogonality
while those from our method show better laplacian commutativ-
ity. However, IFM often produced non-manifold meshes, especially
in presence of thin features. As with the method of Garland &
Heckbert [GH97], we have the guarantee to stay manifold. When
remeshing, and for a given vertex budget, it seems the spectrum
is better preserved when focusing on the discretization [JTPSH15]
than on the shape [GH97] (see Figure 12).

5. Applications

Our simplification method was designed to enable faster computa-
tionally expensive shape analysis tasks, by replacing dense input
meshes with coarser substitutes, yet optimized to carry on as much
as possible the original spectral properties onto which these task
build upon. We illustrate this behavior for two applications: spectral
distance computation and functional map generation.

5.1. Spectral distances

We now show the preservation of spectral distances between vertices,
and evaluated several different distances. Noting φi the i-th eigen-
vector of the Laplacian operator on the mesh and λi its associated

eigenvalue, these distances are detailed in the following:

ddiffusion(u,v, t) = ∑
i

(φi(u)−φi(v))
2
e
−2λit

dbiharmonic(u,v) = ∑
i

(φi(u)−φi(v))
2/λ2

i

dWKS(u,v) =
∫ tmax

tmin

∣∣∣∣
WKS(u, t)−WKS(v, t)
WKS(u, t)+WKS(v, t)

∣∣∣∣dt

dcommute(u,v) = ∑
i

(φi(u)−φi(v))
2/λi

where WKS is the wave kernel signature [ASC11]; we also evaluated
the heat kernel signature (HKS) [SOG09]:

WKS(v, t) = ∑
i

φ2
i (v)e

−
(t−log λi)

2

2σ2 /∑
i

e
−

(t−log λi)
2

2σ2

heat_kernel(u,v, t) = ∑
i

φi(u)φi(v)e
−λit

HKS(v, t) = heat_kernel(v,v, t) = ∑
i

φ2
i (v)e

−λit

While heavily reducing the input mesh will decrease the quality of
these distances and signatures, our method preserves them better
than the method of Garland & Heckbert [GH97]. In particular, dis-
tances on meshes reduced using their method exhibit a lot more
spurious local optimums than on meshes reduced with our method
(see Figure 13). The Heat Kernel Signature tends to be more resis-
tant at small values of t, but is less conserved at large values of t

(see Figure 14).

Garland & Heckbert

1997 (-96%)

d
if

fu
si

o
n

Reference Ours (-96%)

b
ih

a
rn

m
o
n
ic

w
a
v
e
 k

e
rn

e
l

c
o
m

m
u
te

| |: 25,727

| |: 23,570

| |: 10,044

| |: 25,214

Figure 13: Spectral distance comparison: the source point is de-

picted in blue and the iso-lines in black, with t set to 0.01 for the

diffusion distance. With 25x less vertices in these reduced meshes,

computing spectral distances is on average 18x faster.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

T. Lescoat, H.-T. Liu, J.-M. Thiery, A. Jacobson, T. Boubekeur, M. Ovsjanikov / Spectral Mesh Simplification

H
K

S
 (

t
=

 0
.1

)

Reference | |: 38,485 Ours (-96%)
Garland & Heckbert

1997 (-96%)

H
K

S
 (

t
=

 1
0
0
0
0
.0

)

Figure 14: Despite the high reduction, the heat kernel signature is

still similar between coarse and fine mesh when using our method.

5.2. Faster functional maps

As briefly shown before, functional maps are a powerful tool for find-
ing correspondences between shapes, and are complemented with
approaches to retrieve a point-to-point mapping. One can perform
shape matching using Product Manifold Filter (PMF) [VLB∗17] or
Bijective and Continuous ICP (BCICP) [RPWO18], with excellent
results. Both methods are iterative: PMF solves a linear assignment
problem at each iteration to determine a bijection between shapes,
which is has a high algorithmic complexity and also needs the shapes
to have the same number of vertices. BCICP instead does not need
the shapes to have an equal number of vertices, and refines both
the functional map and the point-to-point maps at each iteration.
However these methods do not scale performance-wise when the
number of vertices increases.

This performance problem can be circumvented by simplifying
the meshes prior to the matching, usually using the method of Gar-
land & Heckbert [LRR∗17], yielding a hierarchical scheme (see

Figure 15: One can accelerate the computation of functional maps

between detailed meshes by performing shape matching on simpli-

fied shapes before upscaling the resulting functional maps.

geodesic error

0

50

100

correspondences (%)

Garland &

Heckbert 1997

0

50

100
Ours

TOSCA isometric

(90 pairs)

TOSCA nonisometric

(90 pairs)

correspondences (%)

0 0.4 0.8 1.2 0 0.5 1.0 1.5

Ours

Garland &

Heckbert 1997

geodesic error

Figure 16: Reducing meshes from the TOSCA dataset from around

30K vertices to 600 vertices allowed to use BCICP [RPWO18] as it

would run out of memory on the fine meshes, and our method pro-

vides better correspondences than the simplification of Garland &

Heckbert [GH97]. On the reduced meshes, the BCICP computation

took on average 67s, from 16s to 142s (variance: 802).

Figure 15). This simplification is unaware of the spectrum to pre-
serve and can distort it, limiting the accuracy of the match. We show
that we can use our method to enable robust matching, while still
being faster than without the reduction. This hierarchical scheme
can be written in matrix form:

C
X ,Ỹ

=C
Y ,Ỹ

CX ,Y =C
X̃ ,Ỹ

C
X ,X̃

where CX ,Y is the functional map from shape X to shape Y . We
retrieve C

X ,X̃
and C

Y ,Ỹ
from our mesh simplification method, and

C
X̃ ,Ỹ

from either PMF [VLB∗17] or BCICP [RPWO18]. Then,
CX ,Y can be computed by solving a least squares system. While
the method of Liu et al. [LJO19] is also suitable for PMF but not
for BCICP since the latter require a connectivity, we can use our
method with both PMF and BCICP. We evaluated using BCICP
in the hierarchical functional maps, and compare the results to a
reduction with the method of Garland & Heckbert [GH97]. As can
be observed in Figure 16, our method enable better matching, and is
significantly faster than running BCICP on the fine shape. Indeed,
while running BCICP on meshes with 600 vertices to 1 minute per

shape pair, BCICP on meshes with 1000 vertices took on average 2
minutes, and ran out of memory for mesh around 30K vertices. For
this application, we used binary restriction matrices.

6. Discussion

Figure 17: An edge flip

will not change the Ew

corresponding to the

1-ring vertices (black)

and beyond.

Edge flips. The cost of an edge col-
lapse and the preservation metric are
defined in such a way that we can
easily extend it to edge flips, keeping
only edge flips with a negative cost
in order to avoid cycles (Figure 17).
We tried this during the reduction pro-
cess, but this always overfitted and
generated poor results (Figure 18).
Doing a post-process optimization us-
ing edge flips does indeed lead to a

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

T. Lescoat, H.-T. Liu, J.-M. Thiery, A. Jacobson, T. Boubekeur, M. Ovsjanikov / Spectral Mesh Simplification

result of better quality, but this is quantifiably marginal and is often
not worth the time and complexity.

Figure 18: Allowing edge flips often results in whole parts missing.

Limitations. There are at least two main areas where our approach
can further be developed, both related to time performance. First,
the eigenvectors need to be computed at the beginning of the algo-
rithm, while one may seek computing them at query time, when
needed. Second, our cost evaluation involves fairly large matrices, at
each evaluation which could be optimized using an approximation
scheme.

Scalability. By far, the most limiting factor when scaling to large
meshes is the eigen solver, which can be seamlessly replaced by
a faster one (see Figure 19). Interestingly, one could use a fast
approximation [NBH18] for this step. Lowering the number of
eigenvectors K would help for both the setup and the reduction, as
the matrices to manipulate would be smaller. It is also possible to
partially reduce the input using the QEM [GH97] (e.g., down to
100K or 200K vertices) before using our method: the impact of such
pre-processing on the spectrum would be limited.

7. Conclusion

We have introduced a new mesh simplification algorithm which is
designed to preserve, as much possible, the spectral properties of
the input surface. Our method is built on a standard graph reduction
algorithm for which we introduced a custom metric driving a cost
designed specifically to preserve the spectrum, together with a repo-
sitioning strategy for merged vertices. We illustrated the superior
behavior of our decimation scheme compared to appearance preserv-
ing methods, for spectral distance computation and functional map
generation. Yet, we believe more spectrum-dependent applications
may find immediate benefit from our approach.

Acknowledgments

Parts of this work were supported by the KAUST OSR Award
No. CRG-2017-3426, the ERC Starting Grant No. 758800
(EXPROTEA), NSERC Discovery (RGPIN2017–05235, RG-
PAS–2017–507938), the Ontario Early Research Award program,
the Canada Research Chairs Program, the Fields Centre for Quantita-
tive Analysis and Modelling and gifts by Adobe Systems, Autodesk,
and MESH Inc.

Figure 19: For large meshes, most of the time is spent in the eigen-

solver (left, with |Ṽ|= 10%|V|). After the setup step, the reduction

time (right) is linear in the number of collapsed edges.

References

[ASC11] AUBRY M., SCHLICKEWEI U., CREMERS D.: The wave kernel
signature: A quantum mechanical approach to shape analysis. In Proc.

ICCV (2011). 7

[CBO∗19] CHEN J., BUDNINSKIY M., OWHADI H., BAO H., HUANG

J., DESBRUN M.: Material-adapted refinable basis functions for elasticity
simulation. ACM Trans. on Graphics (2019). 2

[CMO97] COHEN J., MANOCHA D., OLANO M.: Simplifying polygonal
models using successive mappings. In Proc. IEEE Vis (1997). 2

[CS18] CLAICI S., SOLOMON J.: Wasserstein coresets for Lipschitz costs.
arXiv preprint arXiv:1805.07412 (2018). 2

[CSAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN M.: Variational
shape approximation. ACM Trans. on Graphics (2004). 2

[CVM∗96] COHEN J., VARSHNEY A., MANOCHA D., TURK G., WE-
BER H., AGARWAL P., BROOKS F., WRIGHT W.: Simplification en-
velopes. In Proc. SIGGRAPH (1996). 2

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification using
quadric error metrics. In Proc. SIGGRAPH (1997). 1, 2, 3, 5, 6, 7, 8, 9

[GH98] GARLAND M., HECKBERT P. S.: Simplifying surfaces with color
and texture using quadric error metrics. In Proc. IEEE Vis (1998). 2

[HCB16] HUGGINS J., CAMPBELL T., BRODERICK T.: Coresets for
scalable Bayesian logistic regression. In Proc. NeurIPS (2016). 2

[HDD∗93] HOPPE H., DEROSE T., DUCHAMP T., MCDONALD J.,
STUETZLE W.: Mesh optimization. In Proc. SIGGRAPH (1993). 2

[Hop99] HOPPE H.: New quadric metric for simplifying meshes with
appearance attributes. In Proc. IEEE Vis (1999). 2

[JTPSH15] JAKOB W., TARINI M., PANOZZO D., SORKINE-HORNUNG

O.: Instant field-aligned meshes. ACM Trans. on Graphics (2015). 7

[KS16] KYNG R., SACHDEVA S.: Approximate Gaussian elimination for
Laplacians-fast, sparse, and simple. In Proc. FOCS (2016). 2

[LFJG17] LIU S., FERGUSON Z., JACOBSON A., GINGOLD Y. I.: Seam-
less: seam erasure and seam-aware decoupling of shape from mesh reso-
lution. ACM Trans. on Graphics (2017). 2

[LFZ15] LI D., FEI Y., ZHENG C.: Interactive acoustic transfer approxi-
mation for modal sound. ACM Trans. on Graphics (2015). 2

[LJO19] LIU H.-T. D., JACOBSON A., OVSJANIKOV M.: Spectral coars-
ening of geometric operators. ACM Trans. on Graphics (2019). 2, 3, 4, 5,
6, 8, 10

[Lou19] LOUKAS A.: Graph reduction with spectral and cut guarantees.
J. Machine Learning Research (2019). 2

[LRR∗17] LITANY O., REMEZ T., RODOLÀ E., BRONSTEIN A. M.,
BRONSTEIN M. M.: Deep functional maps: Structured prediction for
dense shape correspondence. In Proc. ICCV (2017). 8

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

T. Lescoat, H.-T. Liu, J.-M. Thiery, A. Jacobson, T. Boubekeur, M. Ovsjanikov / Spectral Mesh Simplification

[LV18] LOUKAS A., VANDERGHEYNST P.: Spectrally approximating
large graphs with smaller graphs. In Proc. ICML (2018). 2

[NBH18] NASIKUN A., BRANDT C., HILDEBRANDT K.: Fast approxi-
mation of Laplace-Beltrami eigenproblems. Comp. Graph. Forum (2018).
2, 5, 6, 9

[OBCS∗12] OVSJANIKOV M., BEN-CHEN M., SOLOMON J.,
BUTSCHER A., GUIBAS L.: Functional maps: A flexible repre-
sentation of maps between shapes. ACM Trans. on Graphics (2012). 1, 2,
4

[OS19] OWHADI H., SCOVEL C.: Operator-Adapted Wavelets, Fast

Solvers, and Numerical Homogenization: From a Game Theoretic Ap-

proach to Numerical Approximation and Algorithm Design. 2019. 2

[PH97] POPOVIĆ J., HOPPE H.: Progressive simplicial complexes. In
Proc. SIGGRAPH (1997). 2

[RPWO18] REN J., POULENARD A., WONKA P., OVSJANIKOV M.:
Continuous and orientation-preserving correspondences via functional
maps. ACM Trans. on Graphics (2018). 8

[SGG∗00] SANDER P. V., GU X., GORTLER S. J., HOPPE H., SNYDER

J.: Silhouette clipping. In Proc. SIGGRAPH (2000). 2

[SOG09] SUN J., OVSJANIKOV M., GUIBAS L.: A concise and provably
informative multi-scale signature based on heat diffusion. In Proc. SGP

(2009). 7

[SVJ15] SACHT L., VOUGA E., JACOBSON A.: Nested cages. ACM

Trans. on Graphics (2015). 2

[SZL∗92] SCHROEDER W. J., ZARGE J. A., LORENSEN W. E., ET AL.:
Decimation of triangle meshes. In Proc. SIGGRAPH (1992). 2

[VLB∗17] VESTNER M., LÄHNER Z., BOYARSKI A., LITANY O.,
SLOSSBERG R., REMEZ T., RODOLA E., BRONSTEIN A., BRONSTEIN

M., KIMMEL R., CREMERS D.: Efficient deformable shape correspon-
dence via kernel matching. 8

[WMKG07] WARDETZKY M., MATHUR S., KAELBERER F., GRINSPUN

E.: Discrete Laplace operators: No free lunch. In Proc. SGP (2007). 7

[ZG02] ZELINKA S., GARLAND M.: Permission grids: Practical, error-
bounded simplification. ACM Trans. on Graphics (2002). 2

Appendix

A. Merged position

Strategy ‖ · ‖L ‖ · ‖D Time
(i) middle 1.0 1.0 1.0

(ii) on edge 0.7 0.6 2.1
(iii) unrestricted 0.8 0.9 4.9

Table 1: Median norms and time relative to strategy (i), for the same

mesh and parameters.

Let cost(e,x) be the cost of collapsing e with x the merged posi-
tion. As α is needed for P (and thus impacts the cost), we define it

as (x−u)·(v−u)
‖v−u‖2 and clamp it in [0,1]. For strategy (iii), we sample

cost(e,x) for x in a sphere around e to determine the approximating
quadric (in R

4×4), which we then minimize to get x∗ (and α∗). We
refer to Table 1 for a comparison relative to strategy (i).

B. Relation between Equations (2) & (3)

Proof. Having E = 0 (from Equation (2)) is equivalent to ‖C‖L = 0
(from Equation (3)). Since all coefficients of M̃ are strictly positive,
E = 0 ⇐⇒ PM−1LΦ = M̃−1L̃PΦ. As LΦ = MΦΛ, the left-hand

Figure 20: Timings as a function of |Ṽ| with |V| fixed per curve.

The behavior shown in Figure 10 is also visible here.

side is equal to PΦΛ. We left-multiply both sides by Φ̃⊤M̃, yielding
CΛ = Φ̃⊤L̃PΦ since C = Φ̃⊤M̃PΦ. Recalling that L̃Φ̃ = M̃Φ̃Λ̃, the
right-hand side is equal to (M̃Φ̃Λ̃)⊤PΦ, thus Λ̃C. This means that
CΛ = Λ̃C, proving that E = 0 ⇐⇒ ‖C‖L = 0.

C. Proof of Theorem 1

Proof. We will prove the equivalence between (1) and (2). The
equivalence between (1) and (3) is proved identically. Suppose (2)
holds. To show that (1) must hold, first note that from orthonormality
of Y on M̃ by definition we get Y⊤M̃Y = Id, i.e. C⊤Φ̃⊤M̃Φ̃C = Id,
and since Φ̃ is orthonormal on M̃ this implies C⊤C = Id. Moreover,
by assumption L̃Y = M̃Y Λ̃, and Λ = Λ̃. Thus, L̃Φ̃C = M̃Φ̃CΛ. Since
by definition L̃Φ̃ = M̃Φ̃Λ̃ we get M̃Φ̃Λ̃C = M̃Φ̃CΛ which implies
Λ̃C =CΛ.

Conversely, suppose that (1) holds. If Y = Φ̃C, then C⊤C =
Id implies: Y⊤M̃Y = C⊤Φ̃⊤M̃Φ̃C = Id, since Φ̃ is orthonormal
with respect to M̃. Now, L̃Y = L̃Φ̃C = M̃Φ̃Λ̃C. Since Λ̃C =CΛ by
assumption, we get L̃Y = M̃Φ̃CΛ = M̃Y Λ. Therefore, Y solves the
eigenvalue problem of (L̃,M̃) with the eigenvalues Λ. It remains

to prove that Λ = Λ̃. For this, note that Λ̃C =CΛ implies C2
i j (̃λi−

λ j)
2 = 0 ∀i, j, where λ̃i is the ith eigenvalue of L̃ (idem for L). Using

this and C⊤C = Id implies that C must be block orthonormal with
blocks corresponding to the equal eigenvalues (to see this, note that
for each λ̃i there must be an equal λ j otherwise a row or column of
C would have to be zero). Moreover the blocks must be square by
orthonormality of C, so that Λ = Λ̃.

D. Storage sizes

Let n be the target size and c the number of coefficient per row for
L̃. We only consider 64bit floats here. We can store the selected
subset of vertices via a list of n 32bit indices. M̃, which is diagonal,
requires n floats. L̃ is symmetric so we need to store only n(c+1)/2
coefficients, each one taking one float and two 16bit integers (L̃ never
exceeds 65,535 rows in our tests). Overall, this gives (18+ 6c)n
bytes. Considering the observed median size for the method of Liu
et al. [LJO19] (about 262 B/v), we find c ≈ 41, close to what the
authors report just before their Section 3.2.

For meshes, we need 3n floats for vertices. Assuming an average
valence of 6, there are 2n triangles, needing 3× 2n 32bit integers.
This yields a total of 48n bytes, which we experimentally observe.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

