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Sketch-Based Image Retrieval: Benchmark
and Bag-of-Features Descriptors

Mathias Eitz, Kristian Hildebrand, Tamy Boubekeur and Marc Alexa

Abstract—We introduce a benchmark for evaluating the performance of large scale sketch-based image retrieval systems. The
necessary data is acquired in a controlled user study where subjects rate how well given sketch/image pairs match. We suggest
how to use the data for evaluating the performance of sketch-based image retrieval systems. The benchmark data as well as the
large image database are made publicly available for further studies of this type. Furthermore, we develop new descriptors based
on the bag-of-features approach and use the benchmark to demonstrate that they significantly outperform other descriptors in
the literature.
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1 INTRODUCTION

FOR most image databases, browsing as a means of
retrieval is impractical, and query based searching

is required. Queries are often expressed as keywords
(or by other means than the images themselves),
requiring the images to be tagged. In view of the ever
increasing size of image databases, the assumption of
an appropriate and complete set of tags might be invalid,
and content based search techniques become vital.

Different types of content based image queries have
been suggested and analyzed: example images; rough,
blurry drawings of the desired colors; simple outline
sketches; and combinations or extensions thereof [1].
We believe that outline sketches are typically easier
and faster to generate than a complete color de-
scription of the scene. And they can be generated
for arbitrary desired images, while example images
may or may not be at hand when searching. In
addition, input devices change in favor of sketching
as touch-enabled devices become more common. In
other words, sketch-based image retrieval (SBIR) is a
relevant means of querying large image databases.

Several approaches for SBIR have been suggested.
However, to achieve interactive query response, it is
impossible to compare the sketch to all images in the
database directly. Instead, descriptors are extracted
in a pre-process and stored in a data structure for
fast access. Very commonly, the descriptors are in-
terpreted as points in a high-dimensional space and
finding close matches means searching for nearest
neighbors in this space. Moreover, image descriptors
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can be roughly classified into global vs. local descrip-
tors: global descriptors encode specific features of the
whole image that suffice to describe the “gist” of
the scene [2], while many local descriptors need to
be extracted for a single image, with each descriptor
describing only a small spatially localized region of
the image [3]. While the use of local descriptors is a
common approach in example based image retrieval
[4], [5], [6], [7], SBIR systems up to now still employ
global descriptors and thus inherit their drawbacks,
mainly being not invariant to affine transformations.

An important design feature for any descriptor
based retrieval system is that the distance metric in
feature space correlates with perceptual similarity.
To gauge this perceptual similarity, ground truth in-
formation from user studies is needed. Interestingly,
Forsyth [8] criticizes the design of many existing
image retrieval systems for not meeting real users’
needs when they are based on image collections that
are comprehensively tagged but are typically unreal-
istically small.

We design a benchmark for SBIR that is based
on a large collection of images, several orders of
magnitude closer in size to real data sets than other
collections. We also design local descriptors for SBIR.
The benchmark allows us to show that they better
model humans’ perceptual metric between outline
sketches and images. More particularly, we report on
the following contributions:

• In a controlled user study we gather a dataset
of more than 30,000 ratings indicating how well
sketch/image pairs match. The analysis of the
ratings shows (probably for the first time) that
human subjects rate the similarity of sketches and
images in a predictable and similar way. Thus,
the data defines a benchmark that can be used
to evaluate how well the results of an arbitrary
SBIR system correspond to human expectation.
Additionally, we define a set of 100,000 Creative
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Fig. 1. A display as presented in the user study.

Commons images that is used along with the
benchmark. We will make the image database
as well as the benchmark freely available for
other researchers to compare image retrieval al-
gorithms and evaluate SBIR systems.

• We adapt existing image features (such as shape
contexts or SIFT) to SBIR and also introduce new
local shape features. These features are used in
a bag-of-features approach for SBIR. Based on
our benchmark we can show that the bag-of-
feature approaches generally outperform existing
global descriptors from the literature – we at-
tribute this mostly to translation invariance. And
among the bag-of-features approaches the new
feature descriptor we designed specifically for
SBIR indeed performs better than other general
image features.

Based on the new descriptors, we introduce proto-
types for several applications that benefit from SBIR.

2 SETUP OF THE EXPERIMENT

We assume that humans generally agree that a simple
sketch may be perceptually closer to some images
than to others. However, we make no assumptions
on the similarity of this behavior across humans or
even if humans would rate the likeness of images
similarly. Given a few examples of similarity ratings,
we ask if humans gauge other pairs of sketches and
images consistently over time and across subjects.
If so, we would like to gather these measurements
for comparison with measurements based on feature
extraction in computer systems.

To answer this question, we conducted an experi-
ment, in which we show pairs of sketches and images
(see Figure 1) under controlled conditions to human
subjects and ask them to rate the similarity of the pair.
We discuss the following design choices for the study:

• Sketches shown in the study

• Images paired with the sketches
• Human-computer-interaction during the experi-

ment to gather the ratings
• Benchmarking SBIR systems using the results of

the study
In the following section, we describe how the experi-
ment was performed and comment on the results.

2.1 Gathering input sketches

The choice of query sketches essentially defines the
difficulty of the resulting benchmark. It is important
to define it in such a way that current systems can be
evaluated. If the sketches would contain too much ab-
straction, current systems would perform very badly
and an evaluation would have to deal with more
noise. Overall, we tried to select the set of sketches
for the study such that a reasonable compromise
between users’ demands towards a query system and
the capabilities of current systems is achieved.

We gathered a large number of sketches drawn by
different subjects that are not biased towards poten-
tially working with a particular SBIR system. In order
to achieve a wide spectrum of drawing styles we
asked a total of 19 subjects to draw sketches using
two different methods: first, 16 individuals (that had
not been exposed to SBIR) generated arbitrary input
sketches depicting arbitrary scenes or objects, drawing
them in a way they would expect to work well for an
imaginary retrieval system. For inspiration we gave
them a list of categories (plants, animals, skylines,
landscapes, machines, humans) but we stressed that
sketches from any other category were also allowed
and actually desired. Second, we asked three sub-
jects to also create sketches by roughly tracing the
objects seen in existing color images. For both types
of sketches, we emphasized that including shading
information and cross-hatching techniques should be
avoided, instead we asked to create rough outlines
that are quick and simple to draw.

This resulted in a total of 164 sketches created for
the purpose of this study. From this set we manually
selected 49 sketches with the aim that they match
reasonably with a sufficient number of images in
the database. We used the following criteria in our
selection: sketches should depict shape rather than
symbols; they should depict non-fictional objects; if
any perspective was used it should be reasonably
realistic. Using this set of sketches, we now describe
how the images for presentation and ranking were
chosen.

2.2 Defining sketch/image pairs

Performing the user study requires us to select a
certain number of images to be presented for rating
along with the sketches. Randomly sampling images
from a large image database turned out to not be
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applicable: the number of non-relevant images in the
database given a certain sketch is large and would
likely cause frustration throughout the experiment
and also create insufficient data for close matches.

Ideally, we would like to gather a set of
sketch/image pairs exhibiting the following proper-
ties:

• Rating the complete set should be possible in
about one hour per participant in order to avoid
fatigue. We settled for 31 sketches (allowing for a
wide variety of scenes and objects depicted) and
40 images associated with each sketch.

• The set should generate roughly the same num-
ber of ratings for each discrete rank on our
ranking scale (i.e. approximately same number of
well matching and poorly matching images asso-
ciated with each sketch). This, however, would
require a-priori knowledge of how subjects rate
the matches. To approximate this property, we
performed a pilot study.

We generated preliminary sketch/image pairs by
using a subset of the best-performing SBIR systems
from Eitz et al. [9].

For each of the 49 sketches selected in Sec. 2.1, we
queried for the top ranking 20 images using three
variants of Tensor descriptor as well as the HoG
descriptor (we discuss this process and its potential
to generate a biased sample later). This resulted in a
collection of 3 · 2 · 20 · 49 = 5880 sketch/image pairs
(including duplicates). Without duplicates, a set of
4532 sketch/image pairs remained.

Using these sketch/image pairs, we performed
a pilot-study with three participants, gathering 3 ·
4532 = 13596 ratings. As expected, the distribution
of ratings was not uniform for most sketches (see
Fig. 7). We now show how to select a subset of these
sketch/image pairs that would likely generate a more
uniform distribution of the ratings in the final study.

Assuming a uniform distribution of the ratings over
the scale 1 to 7, 40 images per sketch would lead to
an average of 40/7 ≈ 5.71 ratings per discrete rank on
the scale. For each sketch we computed the standard
deviation σ of the number of ratings from the desired
mean of 5.71, and discarded the 18 sketches with the
largest σ (exclusively corresponding to sketches asso-
ciated with many poorly matching images). For the
remaining sketches, we randomly sub-sampled the
set of associated images such that exactly 40 images
remained, however, biasing the sub-sample towards a
uniform distribution of ratings. This procedure mostly
eliminated images with poor ratings, as expected.

The result of the pilot study is a set of 31 sketches,
with exactly 40 images associated with each sketch.
This resulting set of 1,240 sketch/image pairs is used
in the final user study and presented to the partici-
pants for rating. The distribution of ratings from the
pilot study and the final study is visualized in Fig. 7
and illustrates clearly, that the proposed subsampling

strategy was successful in selecting sketch/image
pairs that are closer to a uniform distribution of
ratings.

2.3 Interaction for gathering the ratings
We showed each sketch/image pair side by side on a
24 inch LCD monitor under controlled environmental
conditions (i.e. similar lighting conditions, no signif-
icant audible distraction, 80 cm viewing distance).
An example display is shown in Figure 1. Subjects
were exposed to the stimulus for 2 seconds. After the
stimulus the screen turned black for 1 second. Subjects
were asked to rate the similarity on a 7-point Likert
scale [10] from 1 (best) to 7 (worst), by pressing the
corresponding number key on a keyboard. The rating
could be submitted and changed during the total of 2
seconds of stimulus or the 1 second of blank screen,
but not afterwards. After the 3 seconds, the next pair
was automatically displayed.

The first set of pairs was presented with a suggested
scale (see below). After that, the experiment started
and pairs were presented in random order. Partici-
pants were allowed to pause the study at any time.
Apart from the final rating we also recorded the time
until the final rating.

2.3.1 Anchoring
To understand if subjects rate sketch/image pairs
consistently over time and, if so, to get comparable
ratings across subjects it is important to expose sub-
jects to example pairs and a desired rating. Thus,
directly prior to the experiment we display a set of 21
sketch/image pairs (3 sketches, with 7 corresponding
images each, as shown in Figure 2) together with their
corresponding ratings to each participant.

The idea is that human subjects use this information
for anchoring, creating a bias towards these ratings
for similar matches: if human subjects are able to
consistently rank the likeness of sketches and images
then anchoring works. If humans are generally unable
to consistently assess the matches then the effect of
examples would quickly diffuse and subjects would
rate the matches randomly or following some mech-
anism that we are not aware of. We include the set of
sketch/image pairs used for anchoring randomly into
the later part of the experiment.

If consistent similarity rating based on visual per-
ception was impossible, this would now be easy to
detect by analyzing if subjects significantly changed
their rating for the examples or if ratings were incon-
sistent across subjects despite the anchoring.

2.3.2 Choice of stimulus duration
It is clear that the sketch/image pair cannot be shown
too short or too long. Our setup leads to disks with a
radius of roughly 2cm being projected into the foveal
region of the eye. This means a human observer needs
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sketch 1(best) 2 3 4 5 6 7

Fig. 2. Sketch/image pairs used for anchoring. Left:
sketches; right: associated images ordered according
to their rating from 1 (left) to 7 (right).

saccades to compare features in the sketch and the
image. Fixations between saccades are rarely shorter
than 200ms across different visual activities [11]. In a
similar experimental setup and comparable content a
recent study reports a mean time of 250ms between
saccades [12]. Thus, comparing few features in the
pair requires at least a roughly a second, perhaps
more. In a preliminary experiment our participants
found display times less than two seconds exhausting.
On the other hand, more time leads to more high-
level considerations and more noisy data. We there-
fore settled for 2 seconds presentation time. This also
helped to keep the time for rating the set of 1,240
sketch/image displays to roughly an hour, which we
considered tolerable.

3 EVALUATION

Given the experiment we now discuss how to evalu-
ate the results. We propose to base the evaluation on
rank correlation and show how this approach can also
be used to compare automatic SBIR systems against
the human data gathered in the experiment.

3.1 Rank correlation

Let x be a list of n ratings with xi denoting the rating
assigned to the ith element. Kendall’s tau [13], [14] is
a widely used measure of rank correlation, allowing
to assess the degree of correspondence between two
ordered lists of the same elements and determine
the significance of this correspondence. In our setup,
these lists are generated in two areas: first, partici-
pants of the user study rank the benchmark images
with respect to a benchmark sketch (visualized in
Fig. 3). Second, SBIR systems rank the results of a
query with respect to a query sketch. Contrary to
linear correlation, as used in a benchmark related
to ours [15], Kendall’s rank correlation coefficient
is independent of the scale and distribution of the
data to be compared. Therefore, it facilitates a direct
comparison of the experimental data (on a scale from
1-7) with the results of any retrieval system, given the
particular system is able to generate a weak ordering
of the result images when querying with a particular
sketch.

Kendall’s rank correlation coefficient is computed
as the difference between the number of concordant
(similarly ordered) and discordant (reversely ordered)
pairs of ranks (xi, yi) and (xj , yj) in two ordered sets
x and y. A pair is concordant if (xi − xj)(yi − yj) > 0
and discordant if (xi − xj)(yi − yj) < 0. Normaliza-
tion by the total number of pairs is applied to gain
independence of the test set size. Let nc denote the
number of concordant and nd denote the number of
discordant pairs then τ is defined as:

τ =
nc − nd

n(n− 1)/2
(1)

According to this definition, τ can take values in the
range [−1, 1], with −1 indicating a reversed list, 0
indicating that the two lists are independent and 1
indicating that the two lists have the same (weak)
order.

To summarize, we suggest to use Kendall’s tau as
a measure to compare the performance of a SBIR
system against the data gathered in the user study,
thus defining a general benchmark for SBIR systems.

3.1.1 Tied ranks
It is common in our setting that the ranks of pairs
in a list are tied, i.e. have the same rank: subjects
evaluated 40 images on a discrete scale from 1 to 7,
necessarily resulting in a certain number of ties. Also,
a SBIR system may produce exactly the same score for
two images in the collection, thus possibly producing
tied pairs. Our measure of correlation needs to be able
to deal with those cases; the denominator in Equation
1 is too large in the case of ties and thus needs to be
adapted to keep the correlation coefficient in the range
[−1, 1].

Let N = n(n − 1)/2 (number of possible pairs in
a set of n distinct elements), U = 1

2

∑t
i=1 ti(ti − 1)/2

(number of ties in the first list) and V = 1
2

∑u
i=1 ui(ui−

1)/2 (number of ties in the second list). Kendall’s rank
correlation coefficient adapted to the case of ties is
denoted as τb and defined as [14]:

τb =
nc − nd

[(N − U)(N − V )]
1
2

(2)

3.1.2 Measuring statistical significance
Assuming the null hypothesis of no correlation H :
τ = 0 is true, we are interested in the probability of
obtaining a correlation coefficient τ greater or equal
than the actually observed correlation coefficient τo
by chance (p-value). In other words: each observed
rank correlation value τo comes with a corresponding
p-value, with lower p-values indicating that it is less
likely to observe τ ≥ τo in case the two ordered lists
are actually not correlated.

Kendall’s tau allows for a very convenient as-
sessment of the significance of a correlation value,
since the distribution of correlation value frequen-
cies quickly tends to a Gaussian distribution with
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σ2 = (4n + 10)/9n(n − 1) for n > 10. For smaller
sample sizes, the exact distribution can instead be
easily computed. In the case of ties, the distribution
also tends to a Gaussian, however with a different
standard deviation [14].

Throughout the paper we assess significance of
correlation coefficients using a significance threshold
of α = 0.05, i.e. accepting the null-hypothesis of no
correlation for p ≥ α. For p < α we reject the null-
hypothesis and instead accept the hypothesis that the
two ordered lists indeed correlate.

3.2 Benchmarking SBIR systems
We propose to use the 31 ordered lists (one per sketch)
resulting from averaging the ratings over the 28 study
participants as “ground-truth”. Each of these lists can
be seen as a consensus between the participants and
is optimal in the sense that it maximizes the average
Spearman’s rho rank correlation coefficient between
the 28 lists from the data and the estimated one [14].

We use the resulting 31 benchmark lists to evaluate
other SBIR system’s results by determining Kendall’s
rank correlation coefficient τb for each of the corre-
sponding 31 ordered lists generated by the system.
Benchmarking a system thus results in 31 correlation
coefficients that for each sketch indicate how well
the system ranks the benchmark images compared to
human judgement. Throughout this paper, we report
the average of those 31 correlation coefficients as the
performance indicator for a specific system.

The complete set of sketches and images selected
for the benchmark is shown in the additional material.
The images corresponding to the sketches are sorted
according to the order defined by the benchmark, i.e.
a retrieval system achieves high correlation values if
it returns the benchmark images in the same order as
shown in the additional material.

To summarize, benchmarking an arbitrary SBIR is
now straightforward and requires the following steps:

• Place the 1,240 benchmark images in the collec-
tion of 100,000 images (note that this is not strictly
necessary when using global descriptors)

• For each of the 31 benchmark sketches, perform
a query on the resulting collection of 101,240
images and determine the ranking of the corre-
sponding benchmark images in the result set

• For each of the resulting 31 ordered lists, compute
τb against the corresponding “ground-truth” list.

The resulting values can be compared to the rank
correlation coefficient across subjects in the study (see
Figure 5). An ideal system would perform similar to
human subjects.

3.3 Study and analysis
We gathered our data using the experimental setup
described in Sec. 2.3. Our 28 participants had an
average age of 25.5 years (±3.1), 23 were male, 5
female.

3.3.1 Consistency among sketch/image pairs
To understand if the 7 point scale we used in the
experiment is not introducing noise, we analyzed
the distribution of ratings by grouping the ratings
according to the median of the 28 ratings for each
sketch/image pair pi, i ∈ {1, . . . , 1240}. Let ri,j denote
the rating of pi by participant j (j ∈ {1, . . . , 28}). We
first compute the median rating mi for each pi as
mi = medianj(ri,j). We then define the multiset of
ratings that fall into a common bin k when binning
according to their associated median rating mi as

Bk = {ri,j |k ≤ mi < k + 1}, k ∈ {1, . . . , 7}. (3)

For each Bk we show the mean and standard devia-
tion in Figure 8 (left) and the histogram in Figure 8
(right). The analysis shows that the number of ratings
is roughly uniform over all 7 bins with a slight peak
at bin 6. The variance of the ratings is smallest for
the lower and higher bins and peaks at bin 4 with
σ = 1.4692, i.e. participants were quite consistent
for good and poor matching pairs and slightly less
consistent for the average matches.

3.3.2 Correlation analysis
We have performed a correlation analysis of the rating
results of this study. As discussed we use Kendall’s
rank correlation coefficient τb.

First, we analyzed the correlation of ratings
throughout the experiment for the sketch/image pairs
used for anchoring. 77.4% of the resulting correla-
tion coefficients can be accepted as significant, the
resulting distribution of values is shown in Figure 4.
We conclude from this analysis that for most sub-
jects anchoring is significant, i.e. we can accept the
hypothesis that the ratings given by the participants
are correlated with the ratings shown in the anchoring
process.

Second, we compared the ratings across subjects. For
each sketch, we computed τb for all possible pairs of
lists generated by the 28 subjects. This resulted in a
total of 378 correlation values per sketch – the number
of possible pairs for 28 participants. The analysis
reveals that the ratings across subjects are mostly
consistent, 86% of the inter-user correlation values lie
over the significance threshold for α = 0.05.

While τb describes the correlation between two sets,
we are also interested in a measure of agreement
among the 28 participants (per sketch) as a group.
This is known as the problem of m ordered lists and
formalized by Kendall’s W [14]. We have computed
Kendall’s W for all 31 sketches – the results show that
for most sketches, the agreement between the study
participants is strong, with all correlation values being
highly significant.

Altogether, we take this as a strong indication that
humans agree on how well a sketch fits a natural
image – a further indication that sketches can be
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corresponding to the sketch on the left ranked as defined by our benchmark. Second and third row: different
orderings of the same images as in the first row leading to varying τ values.
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Fig. 4. For each subject, the plot shows three correla-
tions. These values denote how well the subject’s rat-
ings correlate with the ratings defined in the anchoring
process for the three sketches shown in Figure 2.

used in image retrieval systems and an additional
motivation to develop systems that match humans’
expectations. This also indicates that a benchmark
created from this data is sound and general enough
to cover the similarity perception of a large body
of different users. For each sketch, we visualize the
distribution of τb and the value of W in Figure 5.

Third, we analyzed how human subjects per-
form against the benchmark. Note that in this case
Kendall’s W is not appropriate since we are indeed
only interested in the correspondence between two
ordered lists: the benchmark’s and a subject’s. For
each subject we therefore computed 31 τb coefficients
(one for each sketch), estimating the correspondence
between the subject’s data and the the benchmark.
The analysis shows that 99% of the correlation coeffi-
cients lie over the significance threshold for α = 0.05.

We take this as a strong indication that the proposed
benchmark adequately reflects human assessment of
shape/image similarity. We plot the resulting distri-
bution of τb coefficients in Fig. 6.

4 DESCRIPTORS & INDEXING

We propose using a bag-of-features approach [5] for
SBIR employing small local descriptors. This allows
basing the search on a standard inverted index datas-
tructure from text-retrieval [16]. We discuss the four
main components of our retrieval system: a) defini-
tion and representation of local features, b) sampling
strategies defining the coordinates in image space
of the features to be extracted, c) codebook defini-
tion and d) the actual search algorithm based on an
inverted index. While we rely on existing methods
proposed in the literature for sampling, learning a
codebook and defining the search algorithm, our work
focuses on feature representation, as this is the part
where SBIR systems differ strongly from classical
example-based retrieval systems. In particular, we
evaluate which feature representations are best suited
for implementing a bag-of-features based SBIR system
by searching the parameter space for well performing
combinations. We base our performance evaluation on
the benchmark defined in Section 3, i.e. on real user’s
preferences.

4.1 Bag-of-features model for image retrieval
Using inverted indices for image retrieval has been in-
spired by techniques from text retrieval [4] and indeed
bears many similarities with text retrieval approaches.
However, there are several main differences:

• Text documents are naturally separated into
atomic, semantically meaningful entities (words),
pixels alone however do not contain sufficient
information. Instead, larger image patches are
considered as a whole and a feature encoding
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Fig. 7. Distribution of ratings gathered in pilot/final
study relative to the desired uniform distribution.

the essential information in this local area is
extracted.

• No natural boundary between image patches typ-
ically exists, instead the locations of patches in
image space need to be sampled.

• Contrary to text retrieval (fixed number of dis-
tinct words) a gigantic number of different fea-
tures could be extracted from images. Therefore
a finite sized visual codebook of visual words
is typically generated which assigns perceptually
similar features to the same visual word.

We next quickly discuss the design choices made
in our system for addressing those issues and then
discuss the proposed feature representations that we
have identified as suitable for sketch-based image re-
trieval in more detail.
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Fig. 9. Best/worst sketches regarding user/user corre-
lation. Best sketches are shown in the top row and cor-
respond to sketches 4, 6, 11 and 19 in Figure 5, worst
sketches are shown in the bottom row and correspond
to sketches 5, 20, 27 and 28.

4.1.1 Sampling strategies

Initial experiments with the SIFT interest point detec-
tor [3] have – as expected – shown that very few to
no interest points are detected on our binary sketches.
Instead we perform random sampling in image space
which has been shown to work well in a bag-of-
features setup for image classification [17]. We employ
two different strategies, tailored to the features to be
extracted from the sample regions: a) generating 500
random samples in image space and b) generating
500 random samples on the sketch lines. In the next
section we describe which strategy is appropriate for
which descriptor.

4.1.2 Codebook generation

We learn codebooks from a set of 20,000 training
images (disjoint from the set of query images). For
each training image we extract 500 features sampled
on random locations and perform k-means clustering
on the resulting set of 10 million feature vectors.
We evaluate the influence of the codebook size on
retrieval performance by testing the following range
of codebook sizes: 250, 500, 750 and 1,000.

4.1.3 Search strategy
We rely on standard methods for creating and query-
ing the inverted index [16], [18]. Creating the index
in our implementation for 1 million images takes
roughly 4 hours, a query for 50 images takes a couple
of seconds, depending on the number of distinct
visual words in the query. Note that those timings
could be easily improved, this however was not the
focus of this work.

4.2 Local features for representing sketches
In this section we describe our approach to identifying
suitable local descriptors for SBIR, capable of captur-
ing essential properties of local sketch areas. We start
with two popular feature representation approaches,
that naturally seem to be suitable for representing
our binary sketches: a) shape contexts [19] and b)
histograms of oriented gradients [3], [20]. We then
explore if and how those descriptors need to be
modified to work well for SBIR and evaluate a large
range of parameter settings against our benchmark to
identify the best performing descriptor. We show the
results of our evaluation in Figure 11.

When extracting descriptors from photographs we
apply the Canny edge detector [21] in a pre-process.
We use a (rather large) σ = 5 in order to supress
small lines that are unlikely to be sketched by users.
We use a low threshold of 0.05 and a high threshold
of 0.2 (both thresholds are taken relative to the min-
imum/maximum magnitude of gradient remaining
after the non-maximum suppression step).

4.2.1 Shape context
Shape context features encode the distribution of
sample point locations on the shape relative to each
of the other sample points (see Figure 10, left). The
distribution is encoded as a log-polar histogram with
5 bins for (logarithmic) distance and 12 bins for
angles. Because each shape context encodes informa-
tion about all the other sample points, it inherently
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Fig. 10. Left: the (localized) shape context descriptor samples random points on the extracted sketch lines and
stores the distribution of the positions of those points relative to its center. Middle: the spark descriptor samples
random points in image space, traces rays within a radius until a sketch line is hit and stores the distribution of
hit-point parameters relative to its center. Right: the SHoG descriptor employs a histogram of dominant gradient
orientation within a local rectangular area around a random sample point in the image.

captures global information about the shape. For our
purposes, we localize shape contexts by computing the
distribution only within local regions of the sample
point with a fixed radius. We sample 500 points on the
feature lines and use several local radii (in percent of
the image diagonal): 5, 10, 15, 20, 25, 30. Additionally,
we test the global variant, encoding for each sample
point the distribution of all other points on the shape.
We sample only on the features lines, corresponding
to sketched lines for queries and Canny lines in the
case of images.

4.2.2 Spark feature
We introduce the Spark feature as an extension of
shape context features, specialized for the needs of
SBIR. While they bear some similarity with shape
contexts regarding the information that is encoded,
both the way that other sample points on the sketch
are generated as well as the local region they describe
are different. First, we generate random sample points
in the image domain. Note that those sample points
must not lie on sketch lines, instead they are generated
to lie in the empty areas between feature lines. For
each sample point we trace rays of random direction
until the first feature line is hit, if any (see Figure 10,
middle). The descriptor then stores the distribution
of several properties of the feature lines at the hit-
points. We have tried several variants, including 2D
histograms storing distance/angle information (as in
the shape context), distance/orientation information
(orientation of the feature line at the hitpoint) and
a 3D histogram variant, storing distance, angle and
orientation information.

4.2.3 Histogram of oriented gradients
Histograms of oriented gradients (HoG) are usually
implemented as 3D histograms encoding the distribu-
tion of gradient orientations in small local areas [3],
[20]. We test the localized variant used in the SIFT
descriptor (4x4 spatial bins and 8 bins for gradient
orientation) extracted from a range of differently sized

local rectangular windows (in percent of the image
diagonal): 5, 10, 15, 20, 25, 30. We determine sampling
locations by random sampling in image space.

4.2.4 SHoG feature
We improve the standard histogram of oriented gra-
dients descriptor by storing only the most dominant
sketched feature lines in the histogram of oriented
gradients. This helps to make descriptors extracted
from user sketches and descriptors extracted from the
database image more similar, improving the probabil-
ity that descriptors that are near in feature space cor-
respond to perceptually good matches. We use Canny
lines as an indicator for important features and store
only orientations that correspond to data lying under
a slightly blurred version of the Canny feature lines.
We test the same variants of rectangular windows
as with the standard histogram of oriented gradients
descriptor. The resulting descriptor is visualized in
Figure 10, right.

4.3 Evaluation of descriptor performance
We evaluate performance of the local SBIR descrip-
tors using the benchmark defined in Section 3. We
are interested in how the following three parame-
ters influence retrieval performance: a) codebook size,
b) local window size for feature extraction and c)
feature representation. For each of the six descrip-
tor variants (histogram of oriented gradients, shape
context, spark (2D, 2D, 3D), and SHoG) we therefore
evaluate all combinations of four different codebook
sizes (250, 500, 750, 1,000) and seven local feature
window sizes (5, 10, 15, 20, 25, 30, in percent of the
image diagonal). We generate the codebooks from a
training set of 20,000 images, randomly sampled from
9 million Flickr images which is disjoint from the
evaluation set. The evaluation set contains 100,000
images (also randomly sampled from the same set
of 9 million Flickr images) plus the additional 1,240
benchmark images. For all combinations, we compute
inverted indices using the corresponding codebooks
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and the descriptors extracted from the evaluation set
of 101,240 images.

We then benchmark all resulting retrieval systems
(defined as a combination of feature type, codebook
size and local radius) with the method proposed in
Section 3, i.e. we perform queries with each of the 31
benchmark sketches and determine the order of the
corresponding 40 benchmark images in the result set.
We show a visualization of the results in Figure 11
and comment on the findings in the next section.

5 RESULTS AND APPLICATIONS

In this section, we comment on which system param-
eters mainly influence performance of the proposed
local SBIR descriptors and show several experimental
applications that benefit from a state-of-the-art SBIR
system. We show a demo of the retrieval system as
well as all experimental applications in the accompa-
nying video.

5.1 Finding optimal local descriptor parameters
We discuss our findings regarding the influence of
codebook size, local feature window radius and fea-
ture representation on retrieval performance. Addi-
tionally, we present the results of the evaluation of
a set of four different global sketch-based descrip-
tors: Angular radial partitioning (ARP) [22], edge
histogram descriptor from the MPEG-7 standard
(EHD) [23] and the Tensor and HoG descriptors [9]
and evaluate, whether a bag-of-features based ap-
proach is superior to a global approach. All perfor-
mance numbers have been determined by evaluating
the corresponding retrieval system with a certain
set of parameters against the benchmark defined in
Section 3. A combined plot summarizing the results
is shown in Figure 11.

5.1.1 Codebook size
We have generated all codebooks from the same train-
ing set of 20,000 images testing a range of different
codebook sizes: 250, 500, 750 and 1,000. Retrieval
results generally are best for a codebook size in the or-
der of 500-1,000 visual words. Note that this number is
significantly smaller than the number of visual words
typically used in example based image retrieval. We
attribute this to the fact that the information encoded
in sketches is much sparser compared to images.
Additionally, no information about the magnitude of
gradients is available.

5.1.2 Feature size
We find that rather large local feature sizes are nec-
essary to achieve good retrieval results, independent
of the feature representation used. If the local win-
dow size is chosen too small, the majority of visual
words would encode small line segments in a variety

of different orientations, which is not discriminative
enough to achieve good retrieval results. Note that
this result depends on the type of sketch used as
input: artists might be able to express fine detail in
their drawings and thus might benefit from smaller
local windows – all participants that have generated
our sketches however have drawn only large scale
features. We thus assume that a large majority of
potential users would not be able to express fine
details in their drawings. This could also explain the
good retrieval results of the existing global descrip-
tors. Summarizing, we find that local feature sizes in
the order of 20-25% of the image’s diagonal perform
best. We discuss the implications of this in Section 6.

5.1.3 Feature representation
We find that unmodified existing shape descriptors
(shape context [19] and histogram of oriented gradi-
ents [3], [20]) are not directly suitable for the task of
SBIR. We report the following maximum correlation
coefficients achieved for the global descriptors (Tensor
and HoG): 0.223. Both the shape context and the
histogram of oriented gradients descriptor achieve
lower maximum correlation values of 0.161 and 0.175
for the range of parameters tested in this evaluation
setup. The proposed spark descriptor attains a max-
imum correlation coefficient of 0.217 for a codebook
size of 1,000 visual words and a local radius of 20.
The histogram of dominant local orientations outper-
forms the other local descriptors with a maximum
correlation coefficient of 0.277 for a codebook size of
1,000 visual words and a radius of 25% of the image
diagonal.

5.2 Experimental applications

We present several experimental applications that
build on the bag-of-features SBIR system proposed in
Sec. 4. Note that in each application users are only
asked to draw or edit simple binary feature lines.

5.2.1 Specialized search: human faces
We performed initial experiments for sketch-based
search on the FERET face database [24], containing
12,000 pictures taken from 1,200 human faces. As
illustrated in Figure 13, our SBIR system provides
acceptable to good results even when applied in
such a specialized search scenario. Controlling the
visual search processes through sketch lines opens the
question of the drawing interface provided to users –
additional computation (i.e. symmetry enforcement,
filtering) could help to improve retrieval results in this
scenario.

5.2.2 2D search from 3D shapes
We propose a simple strategy for 2D search from 3D
objects: the user starts by choosing a 3D object in
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Fig. 11. Evaluation results for global and local descriptors. For all plots we show the evaluation results for varying
codebook sizes (250-1,000) and local feature radii (5-30). For the spark descriptor, the codebook size is set to
1,000, shown are the results of the three different histogram types for varying local window sizes. The results of
the global descriptors are shown for varying descriptor resolutions and masked/unmasked variants.

Fig. 12. Typical query results of the proposed system (top n images when querying with sketch on left).

Fig. 13. A binary sketch capturing main face feature
lines (left) is used to search among thousands of
human face photos. Two samples of corresponding
results are shown on the right of each sketch.

a shape repository and selects an appropriate view-
point. We render the view using recent line drawing
algorithms [25], [26] and forward to resulting 2D
image to our SBIR search engine. While this method
obviously requires access to a browsable database of
3D objects, we believe that it could be particularly
helpful for 3D artists modeling and texturing 3D

shapes: extracting such data from real photos is a
frequent task but the search for adequate images is
tedious. Our SBIR system definitely eases the search
for matching images, by using the information con-
tained in the designed 3D shape to query for matching
pictures. Note that an image-based search would not
work as the main source of information in the 3D
shape is lines and contours. We present an example
of such a 2D search from 3D input in Figure 14.

5.2.3 Basic sketch-based video search
Video collections could also be understood as large
image collections, which again can now be easily
searched using the proposed SBIR system. We per-
formed initial experiments by searching within a col-
lection of 17 feature-length movies. We extracted the
I-frames of all videos, resulting in a set of 78,000
images which again could be searched using the
proposed SBIR system. The result were satisfying for
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1) 3D input 2) 2D line drawings 3) query result

render query

Fig. 14. Image search from 3D input: the image on the right appears among the top 10 results.

simple scenarios but appears that complex animations
will require annotated sketches, containing additional
information on movements [27], [28], [29].

6 DISCUSSION

6.1 User study
There were several design decisions involved in the
creation of the user study, all of which influenced the
outcome to a certain degree. The choice of sketches
and corresponding images certainly has the largest
influence: we tried to generate them in such a way
that current SBIR systems would be able to achieve
reasonable results with the resulting benchmark. Since
the matching images were generated from the output
of a system using global descriptors, this has some
influence on what the benchmark measures: it is not
explicitly designed for evaluation of invariance to
affine transformations. A further study similar to the
one in this paper would be helpful to evaluate those
questions. From our experience and the feedback of
the study participants, we can however report that
users still give good ratings if an object is located at
a slightly different position than in the sketch, strong
offsets, however, typically lead to poor ratings. Also,
slight scale invariance is desirable, rotation invariance
however does not seem to be what the average user
is looking for.

6.1.1 Possible sources of bias
We note that the selection process of images to be
paired with the sketches is potentially biased. A pool
of candidate images has been collected using existing
sketch-based retrieval algorithms and it is hard to
assess what images have been ignored in this process.

Potential bias for the study could only be intro-
duced by systematically ignoring images that would
be considered good matches to a sketch at least by
some human observers. However, the same could be
true for any other automated selection process. And, also
a human-guided selection process would likely be
biased: unless we know that humans rate the likeness
of sketches and images similarly we would have to
involve several subjects in the selection process –
whose selection is a sampling problem in itself. More
severely, the manual inspection of millions of images
will most likely lead to fatigue and frustration, which
would bias the selection. Consequently, we believe it

is impossible to select a set of images for this task that
was arguably unbiased.

We like to explain the consequences of a potentially
biased images sample:

1) Most obviously, the selection based on an ex-
isting SBIR system could favor this system in
the benchmark. We argue that this is very un-
likely, since subjects are not aware of how the
images have been selected and, indeed, for a few
sketches, we noticed negative correlation values
between users’ rankings and the descriptor’s
ranking.

2) Our conclusion that humans rank the likeness
of sketches and images consistently would have
to be limited to the subsample we have actually
analyzed, if a significant part of relevant pairs
was missing. This is a general problem in any
study of this type. However, for the definition
of a benchmark this has little consequences, as
the conclusion is still true for the sample used.

3) Optimizing descriptor parameters based on the
benchmark could overfit to the sample, which
is not fully representative of ground truth. This
is a common problem in any approach that
optimizes an algorithm based on sampled data.
We can however report that algorithms that ap-
pear improved based on the benchmark indeed
behave better in practical applications.

6.1.2 Choice of rating scale
A 5- or 7-point Likert scale is commonly used in
psychological experiments – possibly because humans
are able to discern just around seven values in many
types of experiments [30]. Research on the effect of
scales on the outcome of experiments found no sta-
tistical difference between 5- and 7-point scales [31].
Using a 7-point scale in our study, none of the subjects
reported they disliked the scale or found it more
difficult to choose among the pairs that did not match
well.

6.2 Benchmark
We propose to use the ranking resulting from av-
eraging scores over all 28 study participants as the
benchmark ranking. Our analysis reveals that this
ranking can be reasonably used as a benchmark (see
Figure 5, right). However, certain characteristics of the
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benchmark might need to be adapted depending on
the application and the needs of the specific user [8].
Also, there are certainly other valid ways of analyz-
ing the resulting data besides rank correlation. We
therefore provide the complete dataset gathered from
the user study as an open resource, hoping that this
spawns further research on SBIR evaluation.

6.3 Sketching interface
A search result can only be as good as the input,
and therefore the performance of current SBIR sys-
tems currently largely depends on a user’s ability to
depict the desired sketch in a “realistic” way. Due
to the use of coarse histogram binning, the proposed
local feature descriptors are tolerant against offsets in
position and orientation of the depicted sketch lines
– nevertheless they rely on the fact that the depicted
lines exist in the images to be searched. The proposed
2D search from 3D input could be an initial approach
to overcome those problems, helping users to generate
sketches that are e.g. perspectively correct. Automatic
tools for simplification, smoothing, filtering and en-
forcing symmetry in the sketch could support users
in generating “good” sketches. We can also envision
approaches where a system “teaches” the user how
to draw sketches in order to achieve good retrieval
results. Such a system could e.g. filter or mark lines
in a sketch that would have little influence on the
search results.

6.4 Local features
We found that the local feature size required should
be as large as 25% of the image diagonal in order to
achieve good query results. Note that with such large
window sizes, invariance to translations also suffers
– for the large sketches typically drawn by users
there is simply not much space left for translating
the sketch. This might also explain the good results
achieved with global descriptors, which are mostly
translation variant. An obvious improvement of the
local descriptors – which we left for future work – is
making them fully invariant to affine transformations,
i.e. rotations (if desired) and scaling. Many possible
approaches for this problem have been reported in
the image retrieval literature and it remains to be
evaluated, whether those approaches can be directly
applied to SBIR.

7 CONCLUSIONS

Our main conclusion drawn from the results of the
user study is that humans consistently agree on the
similarity between a simple binary sketch on the one
hand and a color image on the other hand. This result
has allowed us to define a general benchmark for
evaluating the performance of any SBIR system. As
shown in this paper, the benchmark cannot only be

used to evaluate existing systems but can also be
used to optimize new systems by giving a means for
measuring the influence of various retrieval system
parameters on retrieval performance. We believe that
the most important detail concerning our benchmark
is that it is grounded on real users’ input: they need
to be satisfied by the query results of a particular
system and the score of the proposed benchmark is
directly proportional to this property. Interestingly, we
found that the rather small difference in benchmark
correlation values between the best global and the
best local descriptor results in significantly improved
experienced retrieval quality (i.e. one can ”clearly
feel” the difference).

Given the performance of the currently best per-
forming descriptors, we have to admit that those
results are still far from optimal – real humans are
able to achieve substantially higher correlation values
than current systems. We hope that the benchmark
provided in this paper will help to stimulate further
research on sketch-based image retrieval and make
the resulting retrieval systems more comparable.

ACKNOWLEDGMENTS

This work was supported in part by a gift from the
Apple Research & Technology Support program. We
would like to thank Felix Wichmann for insightful
discussions about the user study, Ronald Richter and
Bert Buchholz for helping implementing the retrieval
engine, the reviewers for their constructive feedback
and all Flickr users that provided their images under
the Creative Commons license.

REFERENCES

[1] R. Datta, D. Joshi, J. Li, and J. Wang, “Image retrieval: Ideas,
influences, and trends of the new age,” ACM Computing
Surveys, vol. 40, no. 2, pp. 1–60, 2008.

[2] A. Oliva and A. Torralba, “Modeling the Shape of the Scene: A
Holistic Representation of the Spatial Envelope,” International
Journal of Computer Vision, vol. 42, no. 3, pp. 145–175, 2001.

[3] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60,
no. 2, pp. 91–110, 2004.

[4] D. Squire, W. Mueller, H. Mueller, and J. Raki, “Content-based
query of image databases, inspirations from text retrieval: in-
verted files, frequency-based weights and relevance feedback,”
in Scandinavian Conference on Image Analysis, 1999, pp. 7–11.

[5] J. Sivic and A. Zisserman, “Video google: a text retrieval
approach to object matching in videos,” in IEEE International
Conference on Computer Vision, 2003, pp. 1470–1477.

[6] H. Jégou, M. Douze, and C. Schmid, “Hamming embedding
and weak geometric consistency for large scale image search,”
European Conference on Computer Vision, pp. 304–317, 2008.

[7] Z. Wu, Q. Ke, M. Isard, and J. Sun, “Bundling features for large
scale partial-duplicate web image search,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2009, pp. 25–32.

[8] D. Forsyth, “Benchmarks for storage and retrieval in multime-
dia databases,” Storage and Retrieval for Media Databases, pp.
240–247, 2002.

[9] M. Eitz, K. Hildebrand, T. Boubekeur, and M. Alexa, “An
evaluation of descriptors for large-scale image retrieval from
sketched feature lines,” Computers & Graphics, vol. 34, no. 5,
pp. 482–498, 2010.



14

[10] R. Likert, “A technique for the measurement of attitudes.”
Archives of Psychology, vol. 22, no. 140, pp. 1–55, 1932.

[11] T. J. Andrews and D. M. Coppola, “Idiosyncratic characteris-
tics of saccadic eye movements when viewing different visual
environments,” Vision Research, vol. 30, no. 17, pp. 2947–2953,
1999.

[12] F. A. Wichmann, J. Drewes, P. Rosas, and K. R. Gegenfurtner,
“Animal detection in natural scenes: Critical features revis-
ited,” Journal of Vision, vol. 10, no. 4, pp. 1–27, 2010.

[13] M. G. Kendall, “A new measure of rank correlation,”
Biometrika, vol. 30, no. 1/2, pp. 81–93, June 1938.

[14] M. Kendall and J. Gibbons, Rank correlation methods, 5th ed.
Griffin London, 1990.

[15] N. V. Shirahatti and K. Barnard, “Evaluating image retrieval,”
in IEEE Conference on Computer Vision and Pattern Recognition,
2005, pp. 955–961.

[16] J. Zobel and A. Moffat, “Inverted files for text search engines,”
ACM Computing Surveys, vol. 38, no. 2, 2006.

[17] E. Nowak, F. Jurie, and B. Triggs, “Sampling strategies for
bag-of-features image classification,” European Conference on
Computer Vision, pp. 490–503, 2006.

[18] I. Witten, A. Moffat, and T. Bell, Managing gigabytes: compress-
ing and indexing documents and images. Morgan Kaufmann,
1999.

[19] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and
object recognition using shape contexts,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 24, no. 4, pp. 509–
522, 2002.

[20] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2005, pp. 886–893.

[21] J. Canny, “A computational approach to edge detection,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 8, no. 6, pp. 679–698, 1986.

[22] A. Chalechale, G. Naghdy, and A. Mertins, “Sketch-based
image matching using angular partitioning,” IEEE Transactions
on Systems, Man and Cybernetics, Part A, vol. 35, no. 1, pp. 28–
41, 2005.

[23] B. Manjunath, P. Salembier, and T. Sikora, Introduction to
MPEG-7: multimedia content description interface. John Wiley
& Sons Inc, 2002.

[24] P. Phillips, H. Moon, S. Rizvi, and P. Rauss, “The FERET eval-
uation methodology for face-recognition algorithms,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 10, pp. 1090–1104, 2000.

[25] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella,
“Suggestive contours for conveying shape,” ACM Transactions
on Graphics, vol. 22, no. 3, pp. 848–855, 2003.

[26] T. Judd, F. Durand, and E. H. Adelson, “Apparent ridges for
line drawing,” ACM Transactions on Graphics, vol. 26, no. 3,
2007.

[27] R. Dony, J. Mateer, J. Robinson, and M. Day, “Iconic versus
naturalistic motion cues in automated reverse storyboarding,”
in Visual Media Production, 2005, pp. 17–25.

[28] D. B. Goldman, B. Curless, S. M. Seitz, and D. Salesin,
“Schematic storyboarding for video visualization and editing,”
ACM Transactions on Graphics, vol. 25, no. 3, pp. 862–871, 2006.

[29] J. P. Collomosse, G. McNeill, and Y. Qian, “Storyboard sketches
for content based video retrieval,” in IEEE International Con-
ference on Computer Vision, 2009, pp. 245–252.

[30] G. A. Miller, “The magical number seven, plus or minus
two: Some limits on our capacity for processing information,”
Psychological review, vol. 63, no. 2, pp. 81–97, 1956.

[31] J. Dawes, “Do data characteristics change according to the
number of scale points used?” International Journal of Market
Research, vol. 50, no. 1, pp. 61–77, 2008.


