

D PARIS

Real Time Multi-Scale Sand Rendering

Elie Michel, Tamy Boubekeur

Abstract

« Anatomy of a multi-scale sand rendering sequence. We focus on splitting and transitional impostorbased model.

Overview

Splitting

to build per-scale element buffers

The element buffer dynamically reordered to group grains for subsequent draw calls. This step also performs occlusion culling.

Impostors

to draw mid-scale grains

Precomputing (usually <1s)

Rendering G-buffer maps (albedo, normal, etc.) from many directions.

Runtime

- (a) Find closest directions i, j, k, l
- (b) Sample one texel from each plane
- (c) Blend responses

Occlusion Culling

to discard invisible grains

Inner radius r and outer radius R are used to cull some grains prior to querying their actual shape.

Atlas of G-Buffers

In memory, the impostor is an atlas of per-view g-buffers.

Double Draw to foster early-Z rejection

During the second draw call any fragment in a pixel filled during the first draw is automatically early-Z rejected.

Properties

- Apply to many other granular materials
- Fit in **deferred-shading** pipelines
- ▶ Plays along with procedural attributes (orientation. color, etc.)
- ▶ Millions of grains

Performances

impostors vs. instanced meshes

Mesh-based rendering is vertex bounded and depends of the grain's complexity, so it gets outperformed by instance rendering when the number of visible grains is large.

0.8 Visual Loss comparing impostor sampling strategies 0.7 Our mixed sampling provide a with Planar, 288v comparable visual accuracy at 13MB lower memory requirement. 8мв Planar, 128v Spherical, 128v Planar, 72v weight per channel 0.6 close far

References

- [0] Michel, Élie and Boubekeur, Tamy. Real Time Multiscale Rendering of Dense Dynamic Stackings. (full paper to appear).
- [1] Todt, Severin, Rezk-Salama, Christof, Kolb, Andreas and Kuhnert, KD. Fast (spherical) light field rendering with per-pixel depth. Tech rep. Univ. of Siegen, Germany, 2007.
- [2] Bruneton, Éric and Neyret, Fabrice. Real-time Realistic Rendering and Lighting of Forests. Computer Graphics Forum 31.2pt1 (2012), 373-382.

