
Mean value coordinates for quad cages in 3D

JEAN-MARC THIERY, LTCI, Télécom ParisTech, Paris-Saclay University
POORAN MEMARI, LIX, Ecole Polytechnique, CNRS, Paris-Saclay University
TAMY BOUBEKEUR, LTCI, Télécom ParisTech, Paris-Saclay University

Fig. 1. We propose a generalized coordinate system for tri-quad cages. Left: embedding a high-resolution mesh (red) within the volume of a coarse cage (blue).
Middle: propagating the cage deformation using Mean Value Coordinates (MVC) after cage triangulation. Right: using our newQuad MVC with the quad cage.
Suppressing cage triangulation and directly using quads to construct a coordinate system provides higher quality cage edits propagation, less unpredictable
distortions and reproduces the natural symmetries present in the coarse quad layout – the standard polygon mesh format in the modeling industry.

Space coordinates offer an elegant, scalable and versatile framework to prop-

agate (multi-)scalar functions from the boundary vertices of a 3-manifold,

often called a cage, within its volume. These generalizations of the barycen-

tric coordinate system have progressively expanded the range of eligible

cages to triangle and planar polygon surface meshes with arbitrary topology,

concave regions and a spatially-varying sampling ratio, while preserving

a smooth diffusion of the prescribed on-surface functions. In spite of their

potential for major computer graphics applications such as freeform deforma-

tion or volume texturing, current space coordinate systems have only found

a moderate impact in applications. This follows from the constraint of having

only triangles in the cage most of the time, while many application scenar-

ios favor arbitrary (non-planar) quad meshes for their ability to align the

surface structure with features and to naturally cope with anisotropic sam-

pling. In order to use space coordinates with arbitrary quad cages currently,

one must triangulate them, which results in large propagation distortion.

Instead, we propose a generalization of a popular coordinate system – Mean

Value Coordinates – to quad and tri-quad cages, bridging the gap between

high-quality coarse meshing and volume diffusion through space coordi-

nates. Our method can process non-planar quads, comes with a closed-form

This work is partially supported by the French National Research Agengy (ANR) under

grant ANR 16-LCV2-0009-01 ALLEGORI and by BPI France, under grant PAPAYA.

Authors’ addresses: Jean-Marc Thiery, LTCI, Télécom ParisTech, Paris-Saclay Univer-

sity, Paris, France, jthiery@telecom-paristech.fr; Pooran Memari, LIX, Ecole Polytech-

nique, CNRS, Paris-Saclay University, Palaiseau, France, memari@lix.polytechnique.fr;

Tamy Boubekeur, LTCI, Télécom ParisTech, Paris-Saclay University, Paris, France,

tamy.boubekeur@telecom-paristech.fr.

ACM acknowledges that this contribution was authored or co-authored by an employee,

contractor or affiliate of a national government. As such, the Government retains a

nonexclusive, royalty-free right to publish or reproduce this article, or to allow others

to do so, for Government purposes only.

© 2018 Association for Computing Machinery.

0730-0301/2018/11-ART229 $15.00

https://doi.org/10.1145/3272127.3275063

solution free from global optimization and reproduces the expected behavior

of Mean Value Coordinates, namely smoothness within the cage volume

and continuity everywhere. As a result, we show how these coordinates

compare favorably to classical space coordinates on triangulated quad cages,

in particular for freeform deformation.

CCS Concepts: • Computing methodologies → Mesh geometry mod-
els; Volumetric models;

Additional Key Words and Phrases: Space coordinates, mean value coordi-

nates, tri-quad cages, quad cages, free-form modeling

ACM Reference Format:
Jean-Marc Thiery, Pooran Memari, and Tamy Boubekeur. 2018. Mean value

coordinates for quad cages in 3D. ACM Trans. Graph. 37, 6, Article 229

(November 2018), 14 pages. https://doi.org/10.1145/3272127.3275063

1 INTRODUCTION
A number of computer graphics problems are addressed by extrap-

olating in the 3D space a solution prescribed on a lower dimen-

sional one, such as skeletons (1D) or cages (2D). This allows for

simple control with few degrees of freedom, and finds applications

in freeform deformation, texturing and animation for instance. In

particular, space coordinates [Joshi et al. 2007; Ju et al. 2005a; Lip-

man et al. 2008] express each point of the inner volume of the closed

2-manifold triangle mesh – referred to as a cage – as a linear com-

bination of the cage vertices, which allows to smoothly propagate

functions modeled on the cage to the inner volume. Depending on

the application, the particular nature of the function may range

from color (texturing) to scalar weights (rigging), through 3D dis-

placement (freeform deformation) functions. This last modeling

2018-10-05 12:05. Page 1 of 1–14. ACM Transactions on Graphics, Vol. 37, No. 6, Article 229. Publication date: November 2018.

https://doi.org/10.1145/3272127.3275063
https://doi.org/10.1145/3272127.3275063

229:2 • J.-M. Thiery, P. Memari, T. Boubekeur

application is often available in 3D modeling packages: in this sce-

nario, a low-resolution cage is used as a coarse, high-level control

structure for interactive deformation of complex objects. Compared

to other control structures such as surface handles or skeletons,

cages have strengths and weaknesses. On one hand they offer a

global shape control, where each vertex of the cage has an impact

on the whole volume and the cage resolution shall remain low to

preserve a reasonable amount of coordinates to manipulate. On the

other hand, cages offer a smooth volumetric control over the entire

shape, allowing for quick, high-quality large deformations with no

constraints on the target shape topology, geometry nor manifold-

ness – cages can help deforming dense point clouds and polygon

soups. This makes cages complementary to deformation skeletons,

variational surface deformation and displacement painting.

When modeling with cages, the user’s prime focus is typically on

creating an initial cage that properly reflects the intended editing,

contains the high-resolution target shape, is tight, captures the main

topological and geometrical structures of this shape and remains as

coarse as possible [Jacobson et al. 2014]. To that end, the user can use

either semi-interactive specialized modeling systems [Cadleron and

Boubekeur 2017; Le and Deng 2017] or state-of-the-art polygonal

(re)meshing tools. Usually, at such coarse levels, the ideal cage takes

the form of a quadmesh, for the ability of such polygons to alignwith

anistropic features and reflect symmetries. As in numerous computer

graphics scenarios, e.g., animation or subdivision modeling, coarse

quad layouts are the de facto standard in the industry.

Unfortunately, space coordinate systems are defined for trian-

gle meshes. This implies that the cage must be triangulated before

embedding the target shape and starting editing, which introduces

significant artifacts as can be seen in Fig. 1. In particular, the result-

ing cage-to-volume function propagation is highly biased by the

artificial edge introduced to split each quad, breaking up symme-

tries and introducing unpredictable distortions in the deformation

or volume texture mapping for example.

We address this problem with a new kind of cage coordinates,

designed for quad cages instead of triangle ones, and help to bridge

the gap between industry standards, where quads heavily dominate,

and space coordinates, which have a potentially high impact for

any surface-based volumetric control. We base our work on the

Mean Value coordinates (MVC) introduced by Ju. et al. [2005a], as

they offer a closed-form solution which, to date, remains the most

convenient generalization of barycentric coordinateto 3D surface

meshes (Sec. 2). At the core of our method (Sec. 3), we propose (i) a

new geometric characterization of valid quads to assess the quality
of the input cage automatically, (ii) a new smooth projection op-
erator that robustly project a 3D point onto quad (u,v)−domains,

even for highly non-planar ones, together with (iii) a new adaptive
integration scheme which takes the form of a spatially-varying

Riemann summation where samples of the (u,v)−domain are denser

next to the evaluation point. Our new coordinate system provides

smooth cage-to-surface diffusion within the cage volume, is contin-

uous everywhere, interpolates the functions prescribed on the cage

and comes with a closed-form solution which is easy to implement

(Sec. 4). As a result, one can freely use quad and tri-quad cages –

folding back to traditional MVC in the presence of triangles – to

smoothly propagate high-level cage edits toward higher resolution

surfaces (Sec. 5). Compared to space coordinates for triangle meshes

such as classical MVC and Green Coordinates (GC) [Lipman et al.

2008], our experiments on deformations show that the distortion in-

troduced by the mandatory cage triangulation completely vanishes

when using our Quad MVC (QMVC). To our knowledge, QMVC is

the first space coordinate system for (non-planar) quad cages in 3D,

which opens a collection of interesting research directions (Sec. 6).

Related work
Classical coordinates. Barycentric coordinates, introduced by Mo-

bius in 1827 [Möbius 1827], are still widely used for data inter-

polation in any d-dimensional simplices. Since then, motivated by

numerous applications, they have been generalized in different ways

to cover arbitrary polygons or polytopes [Hormann and Sukumar

2017]. In computer graphics, 3D generalized barycentric coordinates

provide a simple and efficient way to extrapolate functions defined

on a 2-manifold surface (the cage), within its volume. The extrap-

olated value at an arbitrary point η is then defined as a weighted

combination of values associated with the cage vertices, the weights

being referred to as coordinates of η.
Generalized barycentric coordinates for 3D shape deformation

being too large to be covered in detail here, we briefly review closely

related previous approaches only. Interested readers are referred

to recent surveys [Floater 2015; Hormann and Sukumar 2017] for

more details on generalized coordinates.

3D extensions of classical coordinates, such as Wachspress [Ju

et al. 2005b; Warren et al. 2007] and harmonic coordinates [Ju et al.

2007], are well-defined within a convex polyhedron with triangu-

lar faces. Recently, Budninskiy et al. [Budninskiy et al. 2016] pre-

sented a full geometric parametrization of generalized barycentric

coordinates on convex polytopes through a power diagram i.e., a

generalized Voronoi diagram. For the case of non-convex polytopes,

unfortunately, most of classical generalized barycentric coordinates

often lose smoothness or are ill-defined.

Mean value coordinates. Represented as simple closed forms in

arbitrary convex or non-convex polyhedra with triangular faces

[Floater 2003; Ju et al. 2005a], 3Dmean value coordinates are particu-

larly popular, and have the practical advantage of being defined even

outside the cage – property that makes them an ideal solution for,

e.g., low-resolution to high-resolution solution propagation in opti-

mization frameworks [Borosán et al. 2010; Huang et al. 2006]. They

also come with closed-form expressions for their derivatives [Thiery

et al. 2014] and, as such, are a viable candidate system for e.g., vari-

ational deformation or spatial function design. While they fail to

guarantee positivity, they are still widely used for applications, such

as cage-based freeform deformation.

Green coordinates. 3D Green coordinates [Lipman et al. 2008]

use Green’s third identity to express everywhere inside the cage a

harmonic deformation from combined Dirichlet (function) and Neu-

mann (normal derivative) boundary conditions, defining coordinates

with respect to the cage vertex positions and triangle normals. By

setting the normal derivative on each cage triangle as a function of

its stretch, they enforce as-similar-as-possible Neumann conditions,

and obtain experimentally quasi-conformal shape deformations.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 229. Publication date: November 2018. 2018-10-05 12:05. Page 2 of 1–14.

Mean value coordinates for quad cages in 3D • 229:3

Their derivatives have been used in variational frameworks [Ben-

Chen et al. 2009] to provide as-rigid-as-possible deformations.

Polyhedra with arbitrary faces. We refer to [Floater 2015] for a

generalization of MVC to polyhedra with arbitrary faces, in which

Inverse bilinear coordinates within planar quads are introduced. Lan-

gen et al. [2006] proposed Spherical Mean Value Coordinates (SMVC),

which derive MVC on the Gauss sphere. They also show how to

extend their formulation to compute MVC for planar polygons, and

illustrate the benefits of using, e.g., quads instead of triangles in

cages. Our contribution is complementary to theirs, in that they

consider arbitrary n-gons (and not just quads) while we focus on

arbitrary quads including non-planar ones, which is highly relevant

in practical shape modeling, as cages designed by artists contain

mostly non-planar quads. We note that the 2D case of a curved

cage network, whose boundaries are piecewise cubic Bezier curves,

has been addressed by Li et al. [2013], in order to offer, like us,

smoother boundary control. Last, Schaefer et al. [2017] used multi-

sided patches as a generalization of Bezier basis functions and ex-

ploited them for cage-based deformations.

Non-analytical coordinates. Several coordinate systems have been

introduced to address specific scenarios, such as PositiveMean Value

Coordinates (PMVC) [Lipman et al. 2007] on non-convex polyhedra

or Harmonic Coordinates (HC) on multigrids [Joshi et al. 2007],

which both ensure positivity and favor locality of the cage’s influ-

ence, as well as Maximum Entropy Coordinates (MEC) [Hormann

and Sukumar 2008] which project input vertex masses to the set of

valid coordinates, i.e., verifying linear reproduction and partition

of unity (see Sec. 2). Although HC and PMVC are of interest for

quad-based deformation in terms of computation efficiency, they

do not admit a closed-form expression and require the numerical

approximation of complicated integrals, without any guarantees

on linear reproduction. In practice, their computation involves the

rasterization of the vertex basis functions, which make them com-

patible with quad cages but also lead to discretization artifacts (see

Fig. 2), that can be resolved only by manually fine-tuning both mod-

els and cages before editing. Last, HC are computed on an explicit

volumetric structure (voxel grid, octree, tetrahedral mesh), one-by-
one, due to heavy memory consumption; adding new evaluation

points or changing their binding positions requires each time to re-

compute the whole grid from scratch, unless a weight sparsification

procedure is done in a post process (see [Joshi et al. 2007], section

4), which results in additional approximation in the computations.

These various shortcomings motivate the pursue of discretization-

free coordinates such as mean-value or Green coordinates.

Cage generation. Before using space coordinates, one must create

a cage around the target model. While this can be done using any

polygon modeler, it turns out to be a tedious task, in particular

when seeking for both coarse and tight cages. Several automatic and

semi-automatic methods have been proposed, ranging from volume

primitive stitching [Xian et al. 2012] to constrained simplified mesh

optimization [Sacht et al. 2015]. A recent survey on such methods

can be found in [Cadleron and Boubekeur 2017]. Often, the user may

eventually fine tune the output of such systems on a per-primitive

basis, which favors quad layouts over triangle ones.

d) rounding artifact
(side view)

b) tri-cage

c) quad-cage

a) input e) discretization artifact
(side view)

Fig. 2. Results were generated using the implementation of the harmonic co-
ordinates (HC) provided in Blender, which is widely used in the CGmodeling
community. a) Input mesh and cage for deformations with HC. b) Deforma-
tion based on HC using the triangulated cage. c) Similar deformation based
on HC using the quad cage. d) Grid rounding artifact (convergence issues).
e) Grid discretization artifact for a triquad cage (approximate rasterization
of the basis functions on the grid, also visible in b).

2 BACKGROUND AND NOTATIONS
Thoughout the paper , we will note C the cage, V = {vi } its ver-
tices, F its faces which include its triangles T and quads Q. We

will denote vectorial quantities with bold fonts. In particular, we

will often notev the 3D position of a vertex and v its index. Furthe-

more, vectorial quantities will be column vectors, and |a;b;c | will
denote the determinant of the 3D vectors a, b, and c . We note {Φi }
a partition of unity on C associated with vertices {i} in C, verifying

• Φi (vj) = δ
j
i (interpolation),

• 1 =
∑
i Φi (ξ) ∀ξ (partition of unity),

• ξ =
∑
i Φi (ξ)vi (linear reproduction of the geometry), and

• ξ < F1(i) ⇒ Φi (ξ) = 0 (local support on the cage: the support
of a vertex’ basis function is confined to its adjacent faces F1).

On a triangle, the so-called "hat" function, Φi (ξ), is the piecewise-
linear function that takes value 1 at vertex i and 0 at the others.

For a quad, various geometric representations and associated basis

functions exist. In particular, for a planar quad, an infinity of basis

functions exist, which reproduce the exact same geometry: consider

for example the two sets of basis functions corresponding to cutting

the quad into two triangles along both diagonals, and any linear

combination of these. In our work, we will consider {Φi (ξ)} to be

the bilinear interpolation coordinates on the quads. These basis

functions are widely used in Computer Graphics, and inverse bilin-

ear coordinates for 2D points within a 2D quad were for example

presented by Floater et al. in [Floater 2015].

Further,dσ (ξ) denotes the surfacic element on

C around point ξ , Bη (S) denotes the projection
of a surface S onto the unit sphere centered in

η ∈ R3
, and dBη (ξ) the surfacic element on this

sphere, around the projection of point ξ ∈ S .
Note that these two quantities are related by

dBη (ξ) =
(ξ − η) · n(ξ)

∥ξ − η∥3
dσ (ξ) (1)

2.1 Bilinear interpolation on quads
We refer to the C∞

3D surface interpolating the four 3D positions

(q0,q1,q2,q3) as the bilinear sheet of the quad, defined as

ξ (u,v) :=

3∑
i=0

Φi (u,v)qi , (u,v) ∈ R
2
, with (2)

2018-10-05 12:05. Page 3 of 1–14. ACM Transactions on Graphics, Vol. 37, No. 6, Article 229. Publication date: November 2018.

229:4 • J.-M. Thiery, P. Memari, T. Boubekeur

0
0

1

1
a) b)

Fig. 3. Bilinear quad parameterization in [0,1]2 (a) and 3D geometry (b).

(Φ0,Φ1,Φ2,Φ3) (u,v) := ((1−u)(1−v),u(1−v),uv, (1−u)v) (3)

We refer to its restriction to [0,1]2 as the bilinear quad (see Fig. 3).

For convenience, we note buv := (Φ0(u,v), · · · ,Φ3(u,v))
T
the 4D

vector stacking the bilinear coordinates at (u,v).
It is worth mentioning that the normal and the surfacic elements

on the bilinear quads can be derived from simple formulae as:

Qi := (qi+1 − qi) × (qi−1 − qi)

N (u,v) =
∑
i Φi (u,v)Qi

n(u,v) = N (u,v)/∥N (u,v)∥

dσ (u,v) = ∥N (u,v)∥dudv

dBη (u,v) =
(ξ (u,v)−η)·N (u,v)

∥ξ (u,v)−η ∥3
dudv .

(4)

2.2 Mean value coordinates in 3D
Given a vector function fC defined on the cage, one can extend it

toR3
through the mean value interpolant, as:

fMV(η) =

∫
Bη (C)

fC(ξ)dBη (ξ)

∥ξ − η∥
/

∫
Bη (C)

dBη (ξ)

∥ξ − η∥
(5)

Please forgive the slight abuse of notations in this integral, and note

that

∫
Bη (S)

· dBη (ξ) denotes the integral on the unit sphere centered in

η, when going over the surface S (ξ ∈ S). Formally, one can interpret

this type of integral as∫
Bη (C)

fC(ξ)dBη (ξ) =

∫
C

fC(ξ)
(ξ − η) · n(ξ)

∥ξ − η∥3
dσ (ξ) (6)

Linear precision: Eq. 5 implies directly linear precision, i.e., an

input point is not moved by a cage that has not moved:

fC = Id ⇒ fMV = Id (7)

Indeed, the integral of the unit normal on any closed surface (as is

Bη (C)) is null, and therefore:

0 =
∫

Bη (C)

ξ − η

∥ξ − η∥
dBη (ξ) ⇔ η =

∫
Bη (C)

ξdBη (ξ)

∥ξ − η∥
/

∫
Bη (C)

dBη (ξ)

∥ξ − η∥

Interpolation: Although the integrals in Eq. 5 are ill-defined for

η ∈ C, one can check by taking the limit that fMV is indeed an

interpolant on the cage, as it is defined through the averaging of a

singular kernel (1/∥ξ − η∥ = ∞ for ξ = η), i. e.,

η ∈ C ⇒ fMV(η) = fC(η) (8)

MVC for polygonal cages: On polygonal cages, we consider

that both the geometry of the cage and the functions defined on the

cage are linearly interpolated on the cage faces with the same basis

functions. Noting fi the value prescribed at vertexvi , this reads:{
fC(ξ) =

∑
i ∈V Φi (ξ)fi

ξ =
∑
i ∈V Φi (ξ)vi

It follows that the MVC interpolant fMV takes the following form:

fMV(η) =
∑
i ∈V

ϕMVi (η)fi , with (9)


wi (η) :=

∫
Bη (C)

Φi (ξ)
∥ξ−η ∥dBη (ξ)

ϕMVi (η) := wi (η)/
∑
j w j (η)

Noting that the support of Φi is restricted to the faces F1(i), which
are adjacent to vertex i , we obtain further that

wi (η) =
∑

f ∈F1(i)

w
f
i (η) , with (10)

w
f
i (η) :=

∫
Bη (f)

Φi (ξ)

∥ξ − η∥
dBη (ξ) (11)

Smoothness: For any point η inside the cage (η < C), the MVC

(and fMV) areC
∞
, since 1/∥ξ − η∥ isC∞

and bounded for any ξ ∈ C

(similarly for its derivatives w.r.t. η), and C is compact.

For any point on the edges of the cage, the fMV is C0
only, since

it is an interpolant of fC , which is continuous only across the edges

of the cage C.

On positivity: MVC can be negative for non-convex cages, when

the signed solid angle dBη (ξ) is negative for triangles that are fac-
ing the evaluation point η. This does not necessarily translate into

negative coordinates w.r.t. these faces: only the unnormalized coor-

dinatesw f (η) are negative, but they might dominate in magnitude

the other unnormalized coordinates in the final set of coordinates,

and the MVC w.r.t. the corresponding vertices might end up being

positive after normalization.

The non-positivity of the MVC is a well-documented problem

and can result in non intuitive deformations e.g., a translation of a

cage vertex in one direction results in translations in the opposite

direction in the mesh. We show this behavior in the results section,

as well as the behavior of our coordinates, once rendered positive

using the MEC approach.

2.3 Computation of mean value coordinates

At this point, assuming we can compute {w
f
i (η)}, the mean value

coordinates of η can be computed using the following recipe:

(1) If η lies on the cage, then ϕMVi (η) = Φi (η),∀i .
(2) Otherwise:

• computew
f
i (η) ∀i,∀f ∈ F1(i)

• computewi (η) =
∑
f ∈F1(i)w

f
i (η) ∀i

• compute ϕMVi (η) = wi (η)/
∑
j w j (η) ∀i

ACM Transactions on Graphics, Vol. 37, No. 6, Article 229. Publication date: November 2018. 2018-10-05 12:05. Page 4 of 1–14.

Mean value coordinates for quad cages in 3D • 229:5

tess = 5
6 seconds

tess = 40
387 seconds

tess = 80
1605 seconds

tess = 120
3577 seconds

ours
5.3 seconds

ours tess=4 ours tess=4

Fig. 4. Top: Approximating the integrals with a tessellation approach might require extreme tessellation levels before rendering artifacts (here, reflection lines
obtained with a cube-map) become invisible. Ultimately, it might even be necessary to tessellate the quads enough to match the local mesh vertex density. In
the figure, tess indicates that each quad of the cage has been subdivided into tess × tess quads further subdivided into two triangles each. At equal timings
(tess = 5, left), discretization artifacts are visible on the position function itself (C0 continuity). Only for an extreme tessellation level (tess = 120, 4

th image),
which required 1h of computations, visible artifacts in the higher continuity orders disappear and match the quality obtained with our scheme (right). Bottom:
The tessellation artifacts are less visible when the model is further away from the cage model, as the basis functions are then further blended. Nevertheless,
twisting the cage model reveals these artifacts, even on the geometry itself (C0 continuity), taking the form of undesired wavy deformations. This illustrates
once again how difficult it is to obtain satisfactory weights with a fixed approximation pattern, since artifacts might become visible depending on (i) the input
cage geometry, (ii) the input mesh geometry i.e., location of the mesh w.r.t. the cage and mesh density, and (iii) the performed cage deformation.

Computation of w
f
i (η) on a triangle.

We present here the derivation of these co-

ordinates for triangle meshes, as introduced

in [Ju et al. 2005a]. For a triangle t =
(t0, t1, t2), we note

θ ti := ∠(ti+1ηti+2)

N t
i := (ti+2−η) × (ti+1−η),

all indices being modulo 3.

Ju et al. [Ju et al. 2005a] remarked that

2∑
i=0

wt
ti (η)(ti − η) =

2∑
i=0

∫
Bη (t)

Φi (ξ)

∥ξ − η∥
dBη (ξ)(ti − η)

=

∫
Bη (t)

ξ − η

∥ξ − η∥
dBη (ξ).

This last integral is the integral of the unit normal over the spher-

ical triangle Bη (t) (see inset, in red), and is commonly referred to as

the mean vector of t at η, which we denote heremt . Noting, once

again, that the integral of the unit normal over a closed surface is

null, one can computemt as (minus) the integral of the unit normal

over the three spherical triangles (see inset, in orange), and derive

2∑
i=0

wt
ti (η)(ti − η) =mt , with (12)

mt := −

2∑
i=0

θ ti N
t
i

2∥N t
i ∥
. (13)

Inverting this system leads to

wt
ti (η) =

mt · N t
i

(ti − η) · N t
i

. (14)

Note that, whenη lies on the support plane of t , the system cannot

be inverted ((ti −η) ·N t
i = 0). However, in this situation, when η is

inside the triangle t , the MVC are simply set to the basis functions

at η (as MVC are an interpolant on the cage), whereas when η is

outside t the three coordinates wt
ti (η) are simply null, since the

projection of t on the sphere centered in η has a null area.

Approximate computation ofw f
i (η) on a quad. Integrals over

bilinear quads are difficult to compute, as the integration domain is

curved. One simple strategy to approximatew
q
i (η) on a quad q is to

tessellate q into triangles {tk = (tk0
tk1

tk2
)}, compute q’s bilinear

basis functions on {tk }’s corners, and rely on linear interpolation

over {tk } so that usual triangle-based MVC can be used:

Φ
q
i (ξ) ≃

∑
tk

2∑
c=0

Φ
q
i (tkc)Φ

tk
tkc (ξ) ⇒ w

q
i (η) ≃

∑
tk

2∑
c=0

Φ
q
i (tkc)w

tk
tkc (η)

As the tessellation level increases, the MVC for the bilinear quad

can be obtained at the limit. Unfortunately, with this simple ap-

proach, deformation artifacts quickly appear in the results due to

the continuous-only approximation of the quad (combined with the

interpolation property of the MVC). When the local mesh geometry

is close to the cage quads, it might even be necessary to tessellate

the quads enough to match the local mesh vertex density (see Fig. 4,

top) before visual artifacts disappear, which reflects unfavorably

on the computation timings. We address this problem by making

the domain sampling (and therefore the integrals) dependent on the
evaluation point (see Section 3.4).

2018-10-05 12:05. Page 5 of 1–14. ACM Transactions on Graphics, Vol. 37, No. 6, Article 229. Publication date: November 2018.

229:6 • J.-M. Thiery, P. Memari, T. Boubekeur

non-planarplanarplanarnon-planar

valid invalid

valid
invalid

Fig. 5. A quad is valid (in blue) if its projection is convex in every four planes
supporting the triangles at its corners. This condition extends naturally the
notion of convexity in 2D (see invalid planar quad in red), and is a natural
condition on the faces of cages used for interactive modeling.

3 MEAN-VALUE COORDINATES FOR QUADS

3.1 Overview
In order to design a generalized coordinate system in the spirit of

the original MVC but for quad cages, we first characterize the set

of valid quads, for which our QMVC can be defined (Sec. 3.2). As

we show, this validity condition for each quad face of a candidate

cage model is quite natural and prevents for example fold-overs

for planar faces. Moreover the computation of QMVC for points

which lie on such a quad is straightforward and we provide a closed

form formula (Sec. 3.3) for points on planar and non-planar quads.

However, the computation of QMVC coordinates for points which do

not lie on the quad is harder, involving a numerical approximation

of integrals on quads (Sec. 3.4). More precisely, we first explain how

to derive the weights with respect to a quad, up to a translation in a

4D space, as they are solution of a linear equation of rank 3 inR4
.

In order to obtain this translation, we introduce a robust estimation

of mean value integrals over the quad via an adaptive integration

scheme which takes the form of a discrete Riemann summation, and

observe the component of this estimate along the corresponding

axis. Given any bilinear quad q, we ensure that this sum tends

to a Dirac distribution around q (thus ensuring interpolation), by
introducing a smooth projection operator on q that quickly tends

to the orthogonal projection around the quad.

As a result, our coordinates approximate well the ground truth

QMVC, retaining the three properties that are most important for

shape deformations, namely (i) smoothness, (ii) interpolation and

(iii) natural deformation behavior.

In the following, we give a detailed description of the mathemati-

cal motivation and derivation that leads to QMVC, while the reader

may jump to Sec. 4 for a compact implementation recipe.

3.2 Valid quads for modeling
Non-convex planar polygons are degenerate configurations for in-

terpolation; in particular the interpolation given by the bilinear

interpolant introduces fold-overs. In this type of configuration, sev-

eral points of the bilinear quad i.e., with different (u,v) coordinates,
are located at the same 3D position (see Fig. 5, invalid planar quads).

These quads are therefore not suitable for spatial interpolation.

We provide a geometric characterization of quads which are com-

patible with our approach (see Fig. 5, blue), as follows:

Definition 1. A quad with successive corners (q0,q1,q2,q3) is
valid if its orthogonal projection on the four supporting planes of the
triangles (qi−1,qi ,qi+1), (indices mod 4) for 0 ≤ i ≤ 3, is convex.

This characterization will be essential to establish the validity

of our coordinates, and extends naturally the notion of convexity

in two dimensions: a planar quad will be convex if and only if it is

valid, according to Def. 1.

Note that this condition is sufficient, yet not necessary, and that

the characterization of the complete family of quads compatible

with our approach (in particular, with the projection operator we

design in the next sections) is a challenging avenue for future work

(see limitations in section 6).

In the following, we will assume cages made of valid quads only.

Algebraic characterization of MVC. For a
quad q = (q0,q1,q2,q3), we note

Ni := (qi+1 − η) × (qi − η)

θi := ∠(qiηqi+1)

As noticed by Ju et al. [2005a], we remark that

3∑
i=0

w
q
qi (η)(qi − η) =mq , with (15)

mq := −

3∑
i=0

θiNi

2∥Ni ∥
(16)

which we write using the following matrix expression inR4
:

Aq ·wq =mq , (17)

with colj (Aq) := (qj − η) andwq
:= (w

q
q0
,w

q
q1
,w

q
q2
,w

q
q3
)
T

.

For the sake of simplicity, we do not index Aq over η, but please
keep in mind that it depends on both the quad geometry and η,
similarly tomq . Unfortunately, Eq. 17 is underdetermined, and does

not allow us to compute the unnormalized weightswq
.

Note on the rank of Aq . The rank of Aq is directly given by the

dimension of the space that is spanned by the vectors {qi − η}i :

• For a planar quad q, Aq is of rank 3 everywhere in space but

on the support plane of q where it is of rank 2.

• For a non-planar quad q, Aq is of rank 3 everywhere in space.

When Aq is of rank 3, we note κA = (k0,k1,k2,k3) ∈ R4
the

unique (up to scaling) vector spanning its kernel i.e., A · κA = 0.

This vector can be obtained with the singular value decomposition

(or SVD) of Aq := U · Σ ·V T
, as the 4

th
column of V , assuming the

singular values are ordered by decreasing magnitude:

κA := col3(V), with (18)

Aq := U · Σ ·V T
(SVD)

Interestingly, κA can be alternatively expressed in simple geometric

terms (see Appendix A).

3.3 When η lies on the bilinear quad: Inverse bilinear
weights computation

As recalled in Sec. 2.3, if η lies on the cage, the mean values coordi-

nates at η are simply given by the vertex basis functions {Φi (η)},
since mean-value coordinates interpolate these on the cage.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 229. Publication date: November 2018. 2018-10-05 12:05. Page 6 of 1–14.

Mean value coordinates for quad cages in 3D • 229:7

Fig. 6. Notations introduced by Floater et al. [2015] for their computation
of inverse bilinear coordinates in planar quads.

If q is planar, and η lies on its support plane: Checking then if

η is located inside or outside q is straightforward. If η is outside

the quad, the coordinatesw
q
qi (η) are null since q projects on a null

area on the sphere centered in η. Otherwise we need to detect the

bilinear coordinatesbuv , which reproduceη, and set the mean-value

coordinates to those. We use the derivation proposed by Floater et

al. in [2015] for that purpose, which we recall here for completeness.

Using the notations of Fig. 6, they derived{
u = 2A3/E3

v = 2A0/E0

(19)

If q is non-planar: In this case, η might still be lying on the bilinear

(non-planar) quad. To detect if this is the case, we look for (u,v) ∈
[0, 1]2, whose associated bilinear coordinates buv ∈ R4

reproduce

η, or equivalently: (q0−η, · · · ,q3−η) · buv = 0, i.e., buv belongs to

the null space ofAq . Since κA spans aloneAq ’s kernel, we only need

to check whether κA is of the form κA := αbuv , with (u,v) ∈ [0, 1]2.

This can be tested by computing candidate parameters (α ,u,v) as
α =

∑
i ki , u = (k1 + k2)/α and v = (k2 + k3)/α , and checking that

the corresponding buv verifies κA = αbuv , with (u,v) ∈ [0, 1]2. If

so, the mean-value coordinates equal buv . Otherwise, η does not

belong to the quad.

3.4 General case: when η does not lie on the quad
When η does not belong to the quad, the rank of Aq equals 3. The

"minimal-norm solution" is then given by

w̄q
:= Aq

† ·mq , (20)

whereAq
†
denotes the pseudo-inverse of Aq computed using its

SVD. Note that one can express w̄q
in simple geometric terms, as

explained in appendix A.

The full solution is given bywq = w̄q +λκA, λ : R3 → R a scalar

field depending on η that remains to be found.

Valid λ fields. We make the following key observations:

(1) Eq.17 is independent from the choice of basis functions de-

fined on the quad, and a particular choice of basis functions

leads to a specific corresponding scalar field λ.
(2) λ : R3 → R should be C∞

everywhere but on the quad, to

match the expected regularity of the MVC.

(3) Any choice of λ field leads to linear reproduction: the weights

verify Eq. 16 regardless of the value of λ, which, once summed

over the faces of the cage provide linear reproduction.

(4) Valid λ fields should lead to interpolation on the cage.

Without norm correction With norm correction

3
x
3

2
1

x
2

1
1

2
1

x
1

2
1

Fig. 7. The encoding cage is a straight bar, which we twist by 90 degrees to
illustrate the impact of our norm correction: It provides results close to the
ground truth and qualitatively similar, even on extremely coarse sampling
grids (compare the norm-corrected 3×3 and 121×121 grids).

3.4.1 Robust estimate of λ. Unfortunately, the integrals over the
bilinear quads, which are required for the closed-form computations

of the MVC, do not admit closed-form expressions.

We provide in this section a geometric construction of λ, which
retains the three properties that are most important for shape defor-

mations, which are i) smoothness, ii) interpolation and iii) natural
deformation behavior. Additionally, our construction is independent

of a particular choice of basis functions and could be used for others

than bilinear interpolants.

We approximate these coordinates by the means of a spatially-

varying Riemann summation. We consider samples {uk ,vl }kl equip-
ped with areas {akl }kl and distributed on a (2n + 1)×(2n + 1)-grid

{uk }k×{vl }l , whose values vary smoothly with η. This sampling is

key to fulfilling our desiderata, and we will detail its construction

in the next paragraph.

The exact (ground truth) value of the λ coordinate is given by

λ
gd

:=
wq · κA
∥κA∥2

, (21)

which, unfortunately, requires the exact value of the coordinates

w
q
qi :=

∫
Bη (q)

Φqi (ξ)
∥ξ−η ∥dBη (ξ). We compute {Ω

q
qi } ∈ R4

, which esti-

mate {wq
qi } using a spatially-varying Riemann summation as

Ω
q
qi :=

∑
k,l

Φqi (uk ,vl)

∥ξ (uk ,vl) − η∥
dBkl , with (22)

dBkl :=
N (uk ,vl) · (ξ (uk ,vl) − η)

∥ξ (uk ,vl) − η∥3
akl (23)

Finally, our λ estimate is given by

λest :=
Ωq · κA
∥κA∥2

∥w̄q ∥2

Ωq · w̄q . (24)

ignored directionsWe introduced ∥w̄q ∥2/(Ωq · w̄q) in

Eq.24 (compare with Eq. 21) to account

for a norm correction. Indeed, while we
cannot bound a priori the error that is
made in the λ coordinate, we can safely

2018-10-05 12:05. Page 7 of 1–14. ACM Transactions on Graphics, Vol. 37, No. 6, Article 229. Publication date: November 2018.

229:8 • J.-M. Thiery, P. Memari, T. Boubekeur

Fig. 8. Smooth (u, v) sampling. A 5×5-grid sampling (black circles) of the
(u, v)-domain of a quad built to contain a sample (blue circle) at position η
when η (blue point) lies on the quad.

outside H(q) -> two-step projection inside H(q) -> one-step projection

Fig. 9. Projection operator.We projectη onq in two steps: first we project
on the convex hull H (q) of q if η is outside H (q), then project on q.

assume that the scaling error is distributed approximately similarly

in every direction (all singular vectors of Aq), and we can measure
this distortion on the axes that are orthogonal to κA, as we know
exactly the value ofwq ·w̄q

, which is given by ∥w̄q ∥2
. Note that it is

not equivalent to simply rescaling Ωq
, as two directions orthogonal

to κA and w̄q
are ignored in this process: we cannot simply rescale

Ωq
because it does not respect linear reproduction, i.e., Aq · Ωq

is not colinear withmq . We show in Fig. 7 the effect of this norm

correction, which illustrates the validity of our assumption.

3.4.2 Smooth projection operator on quads. We make the simple

following observation: in order to obtain interpolation (η → ξ ∈

C ⇒ {ϕMVi (η)} → {Φi (ξ)}), we must be sure to have ξ as a sample

whenη converges towards ξ , so that the Riemman summation tends

to a Dirac distribution (as the normalization of a singular kernel).

Because we need this property for all points on the quad, and we can

have in practice a finite number of samples only, the only remaining
option is to make the sampling dependent to the evaluation point η. As
we further need the result to be smooth, we also need to make this

sampling smooth. Therefore, our strategy is to (i) design a smooth

projection for point η ∈ R3
on the (u,v)−domain of q, and further

(ii) center the sampling distribution around this point (see Fig. 8).

One simple option could be to take the point on q that is clos-

est to η, which is the simple orthogonal projection operator on

convex sets. However, since q is in general not a convex geom-

etry (as soon as q is non-planar), there are points η for which

several points on q are closest and for which this operator is not

well defined, and there are also points at which this operator is

discontinuous. Another option would be to integrate the (u,v)-
parameterization of the quad against a singular kernel ((ū, v̄)(η) =∫
[0,1]2

(u,v)k(ξ (u,v),η)dσ (u,v) /
∫
[0,1]2

k(ξ (u,v),η)dσ (u,v), with
k(ξ , ξ) = ∞ to ensure interpolation), but once again the integrals

over the curved bilinear quad are difficult to compute. It turns out

that obtaining a smooth projection operator on an arbitrary bilinear

quad is quite challenging, and we detail our two-step construction

in the following (see Fig. 9).

Computation: Noting H (q) the convex hull of q, with oriented

boundary ∂H (q) := {(q0,q1,q3);(q1,q2,q3);(q0,q2,q1);(q0,q3,q2)},
we construct a projection operator Pq : η ∈ R3 → (uq ,vq)(η) ∈

[0, 1]2 mapping the 3D space to the (u,v)−domain of q in the fol-

lowing manner:

Ifη is located outsideH (q), we first project it on it. This projection,
denoted by PH (q)(η), is obtained by averaging the position function

using a positive singular kernel (thus ensuring interpolation on the

convex hull’s boundary), in a spirit similar to MVC:

PH (q)(η) =

∫
ξ ∈∂H (q)

ξk(ξ ,η)dσ (ξ) /

∫
ξ ∈∂H (q)

k(ξ ,η)dσ (ξ) , with (25)

k(ξ ,η) :=
|(ξ−η)·n(ξ) |

∥ξ−η ∥3
. This amounts to computing the standard

unnormalized MVC w.r.t. ∂H (q), and taking their absolute value as

unnormalized weights for the averaging of the 4 corners. As a result,

this operator projects any point insideH (q), and is an interpolant on
∂H (q), which ensures that this operator is continuous everywhere.

We follow by computing the mean vectormq (η′) at this location
η′ = PH (q)(η), and intersecting the line D(η′,mq (η′)) with q (see

appendix B), which results in the projection ofη on q Pq (η) through
its associated (u,v) coordinates.

We report in Alg. 1 the pseudo-code of our projection operator.

Algorithm 1 Calculate (uq ,vq)(η) = Pq (η) // projection of η on

the bilinear quad q

1: if η is inside the tetrahedron (q0,q1,q2,q3) then
2: η′ = η
3: else
4: T(q) = {(q0,q1,q3); (q1,q2,q3); (q0,q2,q1); (q0,q3,q2)}
5: η′ = 0

6: for all t ∈ T (q) do
7: Compute unnormalized MVC weightswt

ti (η) ∀i < 3.

8: η′+ =
∑

2

i=0
|wt

ti (η)|ti
9: end for
10: end if
11: Compute mean vectormq (η′) at η′.
12: Compute η′′ as the intersection of q and the lineD(η′,mq (η′))

in the (u,v)-domain (see appendix B).

13: Set (uq ,vq) to the parameters associated with η′′.

Analysis: We derive here the properties of the projection operator,

which inherits smoothness from the MVC used for its computation.

Lemma 3.1. Pq is a mapping of the Euclidean space to the bilinear
quad q (i.e., Pq (η) ∈ [0, 1]2 ∀η ∈ R3) if q is valid, according to Def. 1.

Proof. The proof of this lemma is given in appendix C. �

Lemma 3.2. Pq is a projection operator (i.e., Pq ◦ Pq = Pq).

ACM Transactions on Graphics, Vol. 37, No. 6, Article 229. Publication date: November 2018. 2018-10-05 12:05. Page 8 of 1–14.

Mean value coordinates for quad cages in 3D • 229:9

MVC QMVC

bar's bottom is twisted by 90 degrees

Input

Fig. 10. The input cage is a twisted box, composed of highly distorted quads.
We compare our quad-based QMVC with standard MVC, which required a
triangulation of the cage. Our formulation exhibits smooth transformations,
even for highly distorted quads, which furthermore intersect the input
geometry (a large part of it is therefore located outside the cage model).

Proof. When η lies on q (i.e., η = ξ (u,v) with (u,v) ∈ [0, 1]2),

mq (η) · nq (η) , 0 as dBη (ξ) is singular and thus the intersection

between q and D(η,mq (η)) is well defined and equals η. �

Lemma 3.3. For any planar quad q, Pq is C∞ everywhere except
on the support plane of q.

Proof. In this configuration, the first step is sufficient as it maps

any point that is not on the support plane on the quad directly, and

the second step is then the identity. The regularity of the projection

operator is then directly implied by the properties of the MVC. �

Note that we do not need smoothness on the support plane of q
if it is planar, as this special case is handled differently.

Lemma 3.4. For any non-planar quad q, Pq is C∞ everywhere
except on the tetrahedron ∂H (q), where it is only continuous.

Proof. The first step of the projection relies on the MVC, and is

thereforeC∞
everywhere but on the tetrahedron’s boundary ∂H (q),

where it is only continuous. The second step relies on the unique

intersection between twoC∞
geometries, as the quad’s mean vector

is C∞
inside the convex hull, and thus this step is C∞

. �

On ∂H (q), the first step of our projection transitions continu-

ously only from the C∞
averaging we defined in Eq. 25 to the

identity operator. Note however, that we report experiments on

highly-challenging quad geometries and models intersecting those,

which tend to empirically illustrate that no non-smooth signal re-

sults from this in practice (see Fig. 10 and Fig. 14 for real-life models).

An explanation of this phenomenon is that the non-smooth signal on

∂H (q) resulting from the first projection is mostly orthogonal to the

quad and not tangential: it is therefore almost aligned withmq (η′)
and thus factored out after the projection along that direction in the

second step.

3.4.3 Smooth (u,v) sampling. With the projection operator Pq :

η ∈ R3 → (uq ,vq)(η) ∈ [0, 1]2 in hand, we can finally perform an

adaptive integration by constructing the sample distribution on a

(2n + 1) × (2n + 1)-grid {ui }i × {vj }j as follows (see Fig. 8):

u[n] = uq (η)

u[k] = k
nuq (η) ∀0 ≤ k < n

u[k] = uq (η) +
k−n
n (1 − uq (η)) ∀n < k ≤ 2n

v[n] = vq (η)

v[k] = k
nvq (η) ∀0 ≤ k < n

v[k] = vq (η) +
k−n
n (1 −vq (η)) ∀n < k ≤ 2n ,

which inherits its smoothness from the projection operator Pq :

η → (uq ,vq)(η), and we equip each sample at position (i, j) with
its (u,v)-Voronoï area ai j := δui .δvj (used in Eq. 23), with{

δui = (u[min(i + 1, 2n)] − u[max(i − 1, 0)])/2

δvj = (v[min(j + 1, 2n)] −v[max(j − 1, 0)])/2

Algorithm 2 Calculate {ϕMVi (η)}i // QMVC/MVC of η

1: for all i ∈ V do
2: wi (η) = 0 //initialization

3: end for
4: for all t ∈ T do
5: if η on the support plane of t then
6: if η is inside t then
7: {ϕMVi (η)}i = {Φi (η)}i return
8: end if
9: else
10: computewt

ti (η) ∀i < 3 //Eq. 14

11: wti (η)+ = w
t
ti (η) ∀i < 3

12: end if
13: end for
14: for all q ∈ Q do
15: if q planar and η on its support plane then
16: if η is inside q then //Sec. 3.3

17: compute buv s.t. (q0,q1,q2,q3)buv == η //Eq. 19

18: basis functions {Φqk (η)}k at η equal buv
19: {ϕMVi (η)}i = {Φi (η)}i return
20: end if
21: else//then rank (Aq) == 3

22: compute κA = (k0,k1,k2,k3) //kernel of Aq , Eq. 18 or 26
23: if κA = αbuv with (u,v) ∈ [0, 1]2 //Sec. 3.3 then
24: basis functions {Φqk (η)}k at η equal buv
25: {ϕMVi (η)}i = {Φi (η)}i return
26: else //see Sec. 3.4

27: computemq //mean vector, Eq. 16

28: compute minimal-norm solution w̄q (η) //Eq. 20 or 28
29: compute Ωq (η) //estimate, Eq. 22
30: compute λ //estimate, Eq. 24
31: wqi (η)+ = w̄

q
qi (η) + λki ∀i < 4 //full solution

32: end if
33: end if
34: end for
35: for all i ∈ V do
36: ϕMVi (η) = wi (η)/

∑
j w j (η)

37: end for

2018-10-05 12:05. Page 9 of 1–14. ACM Transactions on Graphics, Vol. 37, No. 6, Article 229. Publication date: November 2018.

229:10 • J.-M. Thiery, P. Memari, T. Boubekeur

(a) Input (b) MVC (c) GC (d) QMVC (e) MVC (f) GC (g) QMVC

Fig. 11. Cage-based deformation comparison between Mean Value Coordinate (MVC), Green Coordinates (GC) and our quad scheme (QMVC).

(a) Input (b) MVC (c) QMVC

Fig. 12. Symmetry preservation: on the contrary to triangle coordinates
(middle), symmetric editing of the cage quads reflect in the deformation
without distorsion with our approach (right).

4 ALGORITHM AND IMPLEMENTATION
We report in Alg. 2 the pseudo-code of our algorithm. Given a evalu-

ation point η, this algorithm computes our generalized coordinates

{ϕMVi (η)}i for triangle, quad and tri-quad cages as follow. First we

initialize a null weight for each cage vertices. Second, we iterate

over the cage triangle and accumulate per-triangle weights similar

to standard MVC for each so-indexed vertices. Third, we iterate over

each quad and detect whether we are in a special case (η belonging

to the quad) or in a general one, where in this case we accumulate

the per-quad weight on each indexed vertex as described in Sec. 3.4).

Last, we compute the coordinate set through the normalization of

the weights by their total sum. Note that the complexity of the pro-

jection of a point in the quad cage coordinate system is O(N) with

N the number of cage vertices.

While Ju et al. [2005a] used a hard threshold to numerically detect

whether η lies on a triangle, we use a similar test for detecting if

a quad is planar (line 15 of Alg. 2), and if η lies on a (planar and

non-planar, lines 15 and 23 of Alg. 2) quad
1
.

5 RESULTS
We evaluate our coordinates on a collection of shapes and (tri-)quad

cages used to propagate deformation from the cage to the inner vol-

ume, hence the embedded high resolution target shape. We use sim-

ple cages to better underline the behavior of our scheme compared to

1
To further facilitate the use of our new coordinates system, we join a C++ reference

implementation as a supplemental material to this paper, under an open source license.

Fig. 13. Additional comparisons. From left to right: input, MVC and
QMVC deformation.

triangle ones. In particular, we compare to MVC and Green Coordi-

nates (GC). Figure 11 shows two major benefits of our method when

using quad cages: first, the induced deformation is more regular and

avoids the large artifacts introduced by the artificial triangulation

of the cage for triangle schemes. Second, the inherent symmetry

of the cage deformation affects the high resolution target shape

similarly, on the contrary to triangle schemes, for which achieving

a symmetric morphing is almost impossible in these cases.

Figure 12 illustrates how symmetries in the cage deformation are

reproduced on the target shape when using QMVC for freeform

deformation, while the artificial edges (added by triangulating the

cages to make them compatible with triangle MVC) introduce a sig-

nificant amount of distortion. Figure 13 shows additional examples.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 229. Publication date: November 2018. 2018-10-05 12:05. Page 10 of 1–14.

Mean value coordinates for quad cages in 3D • 229:11

Fig. 14. Triquad cages on larger models. From left to right: input, MVC (with triangulated cages) and QMVC deformation (with triquad cages).

Figure 14 shows cage-based freeform deformations on larger mod-

els using tri-quad cages. Beyond the reduced distortion compared

to MVC, we can observe that the induced space deformation ac-

counts seamlessly for both triangles and quads with no artifacts.

This makes it possible to use the right polygon type for the right

shape component: quads for null curvature/tubular regions and

triangles around isotropic high curvature/conic regions.

Comparisonwith SphericalMean Value Coordinates (SMVC). Fig. 15
shows a comparison with SMVC [Langer et al. 2006]. While the

method handles gracefully planar polygons with an arbitrary num-

ber of vertices, using the SMVC on non-planar quad cages leads to

artifacts, as the method was not intended to be used with such input

in the first place. We can observe in regions that are free of artifacts

a similar behavior with QMVC. While our method uses a smooth

quad geometry defined through 2D bilinear coordinates, SMVC lead

to 2D mean value coordinates interpolation for points lying on the

polygons and thus result in a slightly different but similar deforma-

tion behavior around these. Regions exhibitting artifacts correspond

to evaluation points η where the mean vector of a quad has small

(or zero) magnitude. For planar quads, a zero-norm mean vector

corresponds to an evaluation point η lying on the quad’s support

plane and a zero area of its projection on the sphere centered in η,
leading – as it should, to null unnormalized weights with respect

to the quad’s corners. For a non-planar quad however, there are

regions in space where the mean vector is null but the unnormalized

QMVC SMVC SMVCQMVC

Fig. 15. Comparison with Spherical Mean Value Coordinates [Langer et al.
2006]. The input model is the Beast model used in Fig. 14 (bottom) along
with its cage. The model was subdivided 2 times to emphasize the regions
where non-planar quads result in unstable coordinates.

weights should not be null: consider an evaluation point from which

the quad exhibits an "8" shape (see Fig. 5, second left for example).

Around these regions, the mean vector – and all angle quantities

that are derived from it in [Langer et al. 2006], are unstable and

subject to strong bias. This explains why the artifacts are distributed

so unevenly and localized around these regions (see Fig. 15, insets).

2018-10-05 12:05. Page 11 of 1–14. ACM Transactions on Graphics, Vol. 37, No. 6, Article 229. Publication date: November 2018.

229:12 • J.-M. Thiery, P. Memari, T. Boubekeur

Note that the input shape and cage are displayed in Fig. 14 (bottom),

and that the input cage features quads that are moderately non-

planar for the most part. Note also that the instability of the mean

vector around these regions is the main reason why our projection

procedure was designed in a two-step manner, and we had to resort

for the first step to projecting on the convex hull of the quad.

Comparison with Harmonic Coordinates. Contrary to HC [Joshi

et al. 2007], our coordinates may be not positive for non-convex

cages, and can result in counter-intuitive deformations for badly-

posed input configurations e.g., where limbs are too close to each

other. This problem is well documented and inherent to MVC. Being

positive everywhere, HC naturally avoid this problem.We provide in

Fig. 16 a side-by-side comparison with HC on several models. While

HC are strictly positive everywhere, they can only be evaluated on

points that are strictly inside the cage only, which can produce large

artifacts if the cage is not adequately constructed.

This non-positivity issue can be tackled using various methods,

such as Maximum Entropy Coordinates (MEC) [Hormann and Suku-

mar 2008], that can make an existing set of barycentric coordinates

positive. In Fig. 17, we illustrate the impact of using MEC as a

post-process to our coordinates, after having clamped the nega-

tive QMVC to 0 (no other result than the ones showcased in this

figure were processed with MEC). MEC are obtained through the

numerical optimization of a functional, but contrary to HC which

require a global optimization solver (one cage vertex at a time, for

all mesh vertices altogether), the MEC optimization is performed for

each mesh vertex independently (one mesh vertex at a time, for all

cage vertices altogether) and constructing these coordinates remains

linear in both cage vertices and mesh vertices. Smoothness of the

output MEC is ensured if the input masses prescribed to the solver

are smooth, because the MEC function is regular, as demonstrated

by Hormann and Sukumar [2008]. Note that we cannot claim C∞

regularity everywhere for the resulting coordinates (QMVC+MEC)

due to the clamping to 0, which is non-differentiable. In that sense,

these coordinates are similar to PMVC [Lipman et al. 2007], which

are computed using a non-differentiable visibility function. Note

that the same visibility prior could be used as well, instead of the

much simpler prior we used to create the results in Fig. 17. Note

also that this strategy works only for points that are located inside
the cage, similarly to HC.

Finally, a practical advantage of HC compared to our coordinates

is that cages can feature inside non-manifold faces and wire-edges

(see [Joshi et al. 2007], Section 3), as long as the cage is closed, in

order to be able to define without ambiguity the inside and out-
side voxels. MVC cannot be generalized to support such control

structures, because MVC rely on the fact that the cage is a closed

manifold, and that the integral of its geometry after projection on

the sphere centered in the evaluation point is always 0 in order to

obtain linear precision.

Timings. We report in Tab. 1 the timings for the computations

of the QMVC (for several values of the grid sampling parameter

n), as well as timings for the computations of MVC and MEC. As

expected, our method scales quadratically with n, and results for

n = 4 (resp. n = 10) in computation timings that are roughly 10

(resp. 40) times higher than for computing the triangle-based MVC

Input HC QMVC

HC QMVCHC QMVC

Fig. 16. Side-by-side comparison with Harmonic Coordinates [Joshi et al.
2007]. Red circles (Cactus and Lego): artifacts resulting from QMVC weight
negativity. Grey circle (Beast): HC artifacts for parts located outside the cage.
Blue circle (Lego): HC grid rounding artifact (probably early termination
of computation). Green circle (Lego): HC grid bleeding artifact (the cage is
glued because the limbs are too close to each other). Yellow circle (Lego):
HC grid discretization artifact.

QMVC QMVC + MEC QMVC QMVC + MEC

Fig. 17. Rendering positive our coordinates with MEC [Hormann and
Sukumar 2008]. We display one basis function in the first example (Cactus),
with purple colors indicating negative values. The negative values of this
basis function explain why the cactus is crushed on the left, as a result of
a translation of the branch to the right. The coordinates, once rendered
positive with MEC, retain the overall behavior of the QMVC but do not
exhibit negativity artifacts anymore.

with a cage, where each quad has been subdivided into two triangles.

All results showcased in this paper were obtained with n = 4 which,

based on our experiments, is sufficient in practice. All measures

were performed on a laptop computer equipped with an Intel Core

i7-8750H at 2.2 GHz.

6 DISCUSSION
Limitations & Future Work. The first limitation of our work is

that our final coordinates are only an approximation of the ground

truth QMVC, as integrals over curved bilinear quads rely on a sam-

pling scheme.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 229. Publication date: November 2018. 2018-10-05 12:05. Page 12 of 1–14.

Mean value coordinates for quad cages in 3D • 229:13

Table 1. Detailed timings in ms. #M/#C: number of mesh/cage vertices.
For completeness, we report timings for MVC (for which the quads have
been subdivided into two triangles) and our implementation of Maximum
Entropy Coordinates (MEC) [Hormann and Sukumar 2008], which we use
as a post-process to render our coordinates positive. We used n=4 for the
results illustrated in the paper.

Model MVC QMVC QMVC QMVC MEC

(#M / #C) n = 4 n = 7 n = 10

Hydrant (39k / 48) 86 1045 2133 4052 291

Bar (406k / 8) 185 2247 4738 8370 1666

SpikyBox (60.8k / 8) 44 337 705 1241 8

Head (24.6k / 12) 26 246 480 842 4

WireSphere (48.9k / 8) 29 273 556 1006 5

Bench (65.4k / 24) 101 1321 2780 4884 245

Cactus (98.8k / 36) 146 1960 3897 6988 607

Ogre (26.2k / 118) 120 1565 3270 5882 424

Beast (28.4k / 152) 164 2261 4574 8260 577

Lego (8.9k / 85) 40 395 800 1483 130

Then, our approach comes with guarantees only for quads which

pass our validity predicate (see Def. 3.2). However, considering the

strategy we promote in this work, our predicate is conservative
and we suspect that it is sufficient but not necessary. It would be

interesting to find the exact (larger) family of valid quads compatible

with our approach, in particular since we believe that the design of

a projection operator on any curved non-convex quad would find

additional applications in modeling.

Moreover, our approach requires significantly more computations

than usual triangle-based MVC (using a 9 × 9-grid, computing our

QMVC for a quad takes roughly 10 times longer than computing the

MVC over the two triangles obtained by cutting the quad in two).

Enabling quad meshes to act as cages opens several research di-

rections. Our projection operator provides the coefficients of the

basis functions of the projected point, interpolates the quad’s geom-

etry and is used as a sampling for a Riemann summation leading

to surface interpolation. All these properties could make it instru-

mental in some fields of geometric modeling, in particular surface

reconstruction and shape refinement.

Last, taking inspiration from other coordinate systems defined for

triangle cages, new quad coordinate schemes could be defined us-

ing a similar strategy to ours; in particular, locally quasi-conformal

deformations for quad cages could be designed taking Green coordi-

nates as a basis. Our approach could also be extended to other kinds

of polygons, or n-gons, with the benefit of employing coarser cages

and avoiding superficial edges.

Conclusion. To the best of our knowledge, we have proposed

the first space coordinate system for 3D surface cages made of arbi-

trary i.e., non-planar, quads. Our solution retains the simplicity of

traditional space coordinate systems, with no global optimization,

parallel scalability and linear precision. Our quad validity predicate

allows automatically checking whether a cage can be used, with

guarantees, for coordinate projection or not. Most importantly, the

combination of our new quad projection operatorwith our new adap-

tive integration scheme provides high-quality surface-to-volume

propagation even on challenging cases. Avoiding triangulating quad

cages provides a significant boost in the propagation regularity,

which translates immediately to smoother deformations and better

preservation of symmetries. Additionally, our approach remains

compatible with triangles and makes possible using tri-quad cages

seamlessly.

Cage design is a critical step when using space coordinates for

freeform deformation; with the user often ending up hand-crafting

the cage vertices, edges and faces to obtain the ideal control rig. As

such, our method widens the tool set to create such cages and, in

particular, opens cage design to the dominant polygonal modelers:

quad mesh ones.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive com-

ments and remarks that helped improving our submission, in par-

ticular regarding MEC and SMVC. We also thank hjmediastudios

(Blendswap.com) for sharing his Lego model.

REFERENCES
Mirela Ben-Chen, Ofir Weber, and Craig Gotsman. 2009. Variational harmonic maps

for space deformation. In ACM Transactions on Graphics (TOG), Vol. 28. ACM, 34.

Péter Borosán, Reid Howard, Shaoting Zhang, and Andrew Nealen. 2010. Hybrid Mesh

Editing.. In Eurographics (short papers). 41–44.
Max Budninskiy, Beibei Liu, Yiying Tong, and Mathieu Desbrun. 2016. Power coor-

dinates: a geometric construction of barycentric coordinates on convex polytopes.

ACM Transactions on Graphics (TOG) 35, 6 (2016), 241.
Stéphane Cadleron and Tamy Boubekeur. 2017. Bounding Proxies for Shape Approxi-

mation. ACM Trans. Graph. 36, 5, Article 57 (2017), 57:1–57:13 pages.
Michael S Floater. 2003. Mean value coordinates. Computer aided geometric design 20, 1

(2003), 19–27.

Michael S Floater. 2015. Generalized barycentric coordinates and applications. Acta
Numerica 24 (2015), 161–214.

Kai Hormann andNatarajan Sukumar. 2008. Maximum entropy coordinates for arbitrary

polytopes. In Computer Graphics Forum, Vol. 27. Wiley Online Library, 1513–1520.

Kai Hormann and N. Sukumar (Eds.). 2017. Generalized Barycentric Coordinates in
Computer Graphics and Computational Mechanics. Taylor & Francis, CRC Press,

Boca Raton.

Jin Huang, Xiaohan Shi, Xinguo Liu, Kun Zhou, Li-Yi Wei, Shang-Hua Teng, Hujun

Bao, Baining Guo, and Heung-Yeung Shum. 2006. Subspace Gradient Domain Mesh

Deformation. ACM Trans. Graph. 25, 3 (2006), 1126–1134.
Alec Jacobson, Zhigang Deng, Ladislav Kavan, and JP Lewis. 2014. Skinning: Real-time

Shape Deformation. In ACM SIGGRAPH Courses.
Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Har-

monic coordinates for character articulation. InACMTransactions on Graphics (TOG),
Vol. 26. ACM, 71.

Tao Ju, Peter Liepa, and Joe Warren. 2007. A general geometric construction of coordi-

nates in a convex simplicial polytope. Computer Aided Geometric Design 24, 3 (2007),

161–178.

Tao Ju, Scott Schaefer, and Joe Warren. 2005a. Mean value coordinates for closed

triangular meshes. In ACM SIGGRAPH 2005 Papers. ACM, 561–566.

Tao Ju, Scott Schaefer, Joe Warren, and Mathieu Desbrun. 2005b. A Geometric Con-

struction of Coordinates for Convex Polyhedra Using Polar Duals. In Proceed-
ings of the Third Eurographics Symposium on Geometry Processing (SGP ’05). Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland, Article 181. http:

//dl.acm.org/citation.cfm?id=1281920.1281950

Torsten Langer, Alexander Belyaev, and Hans-Peter Seidel. 2006. Spherical barycentric

coordinates. In Symposium on Geometry Processing. 81–88.
Binh Huy Le and Zhigang Deng. 2017. Interactive Cage Generation for Mesh Deforma-

tion. In Proc. of ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games
(SI3D). 3:1–3:9.

Xian-Ying Li, Tao Ju, and Shi-Min Hu. 2013. Cubic Mean Value Coordinates. ACM
Transactions on Graphics 32, 4 (2013), 126:1–10.

Yaron Lipman, Johannes Kopf, Daniel Cohen-Or, and David Levin. 2007. GPU-assisted

positive mean value coordinates for mesh deformations. In Symposium on geometry
processing.

Yaron Lipman, David Levin, and Daniel Cohen-Or. 2008. Green Coordinates. ACM
Transactions on Graphics (TOG) 27, 3 (2008), 78:1–78:10.

August Ferdinand Möbius. 1827. Der barycentrische calcul.

2018-10-05 12:05. Page 13 of 1–14. ACM Transactions on Graphics, Vol. 37, No. 6, Article 229. Publication date: November 2018.

https://www.blendswap.com/blends/view/12662
http://dl.acm.org/citation.cfm?id=1281920.1281950
http://dl.acm.org/citation.cfm?id=1281920.1281950

229:14 • J.-M. Thiery, P. Memari, T. Boubekeur

Leonardo Sacht, Etienne Vouga, and Alec Jacobson. 2015. Nested Cages. ACM Trans.
Graph. 34, 6, Article 170 (2015), 170:1–170:14 pages.

Scott Schaefer. 2017. Multi-Sided Patches via Barycentric Coordinates. In Generalized
Barycentric Coordinates in Computer Graphics and Computational Mechanics, Kai
Hormann andN. Sukumar (Eds.). Taylor & Francis, CRC Press, Boca Raton, Chapter 8,

135–146.

Jean-Marc Thiery, Julien Tierny, and Tamy Boubekeur. 2014. Jacobians and Hessians of

mean value coordinates for closed triangular meshes. The Visual Computer 30, 9
(2014), 981–995.

Joe Warren, Scott Schaefer, Anil N Hirani, and Mathieu Desbrun. 2007. Barycentric

coordinates for convex sets. Advances in computational mathematics 27, 3 (2007),
319–338.

Chuhua Xian, Hongwei Lin, and Shuming Gao. 2012. Automatic cage generation by

improved OBBs for mesh deformation. The Visual Computer 28, 1 (2012), 21–33.

A CLOSED-FORM GEOMETRIC EXPRESSION OF THE
KERNEL AND MINIMAL-NORM SOLUTION

When Aq is of rank 3, we recall that κA = (k0,k1,k2,k3) ∈ R4

is the unique (up to scaling) vector spanning its kernel (i.e., A ·

κA = 0). Since

∑
i ki (qi − η) = 0, {ki }i are simply the barycentric

coordinates of η in the tetrahedron (q0q1q2q3), and therefore:

κA := (k0,k1,k2,k3),

ki := (−1)i |qi+1 − η;qi+2 − η;qi+3 − η | (26)

One can check that this formula is true, even if q is planar, as∑
i kiqi = 0 and

∑
i ki = 0 in this case.

Noting w̄q
the "minimal-norm solution" to Eq. 17, w̄q

is the unique

solution to the linear system(
Aq
κTA

)
· w̄q =

(
mq

0

)
, (27)

which, noting pi := qi − η, leads to the following closed-form

expression (by using Cramer’s rule, and developing all determinants

along the last row using Laplace’s formula):

w̄q =
©­­­«
k1 |p2;p3;mq | + k2 |p3;p1;mq | + k3 |p1;p2;mq |

k0 |p3;p2;mq | + k2 |p0;p3;mq | + k3 |p2;p0;mq |

k0 |p1;p3;mq | + k1 |p3;p0;mq | + k3 |p0;p1;mq |

k0 |p2;p1;mq | + k1 |p0;p2;mq | + k2 |p1;p0;mq |

ª®®®¬ /D

D :=k2

0
+ k2

1
+ k2

2
+ k2

3
= ∥κA∥

2. (28)

B INTERSECTION BETWEEN A LINE AND A QUAD
To intersect a line with q, we look for (u,v) ∈ [0, 1]2, such that

η′ = (q0,q1,q2,q3) · buv

= (1 − u) [(1 −v)q0 +vq3]︸ ︷︷ ︸
:=a(v)

+u [(1 −v)q1 +vq2]︸ ︷︷ ︸
:=b (v)

,

and that η′ belongs to the line D(η,d).
In this case, d should belong to the plane

supported by the three points η, a(v) and
b(v), which is equivalent to solving for

[(a(v) − η) × (b(v) − η)] · d = 0, which is a

simple second order polynomial in v .
Once v is found, u can be computed similarly, or by finding η′ as

the intersection of the two lines D(η,d) and D(a(v),b(v) − a(v)),
and computing u as

u = (η′ − a(v)) · (b(v) − a(v)) (29)

X

Y

Z

X

Z

Y

Fig. 18. For the proof of Lemma 3.1. Left: side view. Right: top view.

C PROOF OF LEMMA 3.1
Lemma C.1. Pq is a mapping of the Euclidean space to the bilinear

quad q (i.e., Pq (η) ∈ [0, 1]2 ∀η ∈ R3) if q is valid, according to Def. 1.

Proof. The first projection maps trivially any point to a point

on the convex hull of q. What remains to prove is that the line

D(η,mq (η)) intersects the bilinear quad, for any point η in the

convex hull.

For clarity, we align the quad’s geometry in a coordinate system

(X ,Y ,Z) such that Z is aligned with
−−−→q1q3, and that (q0,q1,q3)

is contained in the XZ plane (see Fig. 18, left). For a valid quad,

according to the convexity of the projected quad, q2 is guaranteed
to lie on the right of q1 and q3.
Any line going through η (which is located inside the convex

hull) will intersect the convex hull exactly twice, on two differ-

ent triangles. To ensure that D(η,mq (η)) intersects the bilinear

quad, it is enough to check that the line cannot intersect both

triangles T = (q0,q1,q3) and T2 = (q1,q2,q3), which is true if

siдn(mq · nT) = siдn(mq · nT2) (see Fig. 18, left: the green zone de-

scribes acceptable directions for the mean vector). If that is the

case, then the line will have intersected two triangles of the convex

hull, which are separated by the bilinear quad. It will have thus

intersected the bilinear quad.

We note η′ and q′
2 the projections of η and q2 in the XZ plane.

Using once again that the integral of the unit normal is null on any

closed surface, we write the mean vectormq as

mq = (θ0n0 + θ1n1 + θ2n2 + θ3n3)/2 , with

Ni := (qi+1 − η) × (qi − η)

θi := ∠(qiηqi+1)

ni = Ni/∥Ni ∥ ∀i
We need to prove thatmq · nT ≤ 0 necessarily (by a symmetry

argument we will have to prove thatmq · nT2 ≤ 0). This is true

since, according to the validity condition, the projection of the quad

on the XZ plane is convex. Therefore, we have (see Fig. 18, right)

Ni · nT = −Ni · Y = −2area(qiqi+1η
′) ≤ 0 ∀i .

�

ACM Transactions on Graphics, Vol. 37, No. 6, Article 229. Publication date: November 2018. 2018-10-05 12:05. Page 14 of 1–14.

	Abstract
	1 Introduction
	2 Background and notations
	2.1 Bilinear interpolation on quads
	2.2 Mean value coordinates in 3D
	2.3 Computation of mean value coordinates

	3 Mean-value coordinates for quads
	3.1 Overview
	3.2 Valid quads for modeling
	3.3 When lies on the bilinear quad: Inverse bilinear weights computation
	3.4 General case: when does not lie on the quad

	4 Algorithm and Implementation
	5 Results
	6 Discussion
	Acknowledgments
	References
	A Closed-form geometric expression of the kernel and minimal-norm solution
	B Intersection between a line and a quad
	C Proof of Lemma 3.1

