
Author’s Draft. Final version published in COMPUTER GRAPHICS Forum (2019) doi:10.1111cgf.13597. COMPUTER GRAPHICS forum

Filtered Quadrics
for High Speed Geometry Smoothing and Clustering

Hélène Legrand Jean-Marc Thiery Tamy Boubekeur

LTCI, Telecom ParisTech, Paris-Saclay University

Input Filtering Clustering
3.83s1.7M tri. 1.11s

Figure 1: Enriching surface meshes with per-vertex filtered quadrics provides a compact local model of the geometry, enabling efficient
feature-preserving smoothing and fast clustering. (σs = 3.0, σr = 1.0, σd = 6.0, σq = 1.0, θ = 0.95. 1119 clusters.)

Abstract

Modern 3D capture pipelines produce dense surface meshes at high speed, which challenge geometric operators to process
such massive data on-the-fly. In particular, aiming at instantaneous feature-preserving smoothing and clustering disqualifies
global variational optimizers and one usually relies on high performance parallel kernels based on simple measures performed
on the positions and normal vectors associated with the surface vertices. Although these operators are effective on small
supports, they fail at properly capturing larger scale surface structures. To cope with this problem, we propose to enrich the
surface representation with filtered quadrics, a compact and discriminating range space to guide processing. Compared to
normal-based approaches, this additional vertex attribute significantly improves feature preservation for fast bilateral filtering
and mode-seeking clustering, while exhibiting a linear memory cost in the number of vertices and retaining the simplicity of
convolutional filters. In particular, the overall performance of our approach stems from its natural compatibility with modern
fine-grained parallel computing architectures such as graphics processor units (GPU). As a result, filtered quadrics offer a
superior ability to handle a broad spectrum of frequencies and preserve large salient structures, delivering meshes on-the-fly
for interactive and streaming applications, as well as quickly processing large data collections, instrumental in learning-based
geometry analysis.

CCS Concepts
•Computing methodologies → Mesh models; Mesh geometry models;

1. Introduction

The fast processing of 3D surface meshes is a growing demand for
large data collection analysis, on-the-fly geometry capture and live
use or interactive shape editing, among other applications. Under
performance constraints, global optimization, numerical solvers
and many of the traditional tools of geometry processing may not

be available and clearly fall out of this application spectrum when
dealing with multi-million triangle meshes.

In particular, most existing filtering and clustering methods re-
port experiments taking seconds to minutes on models made of
a few (sometimes tens of) thousands of polygons. In the current
era of massive geometry generation, both in polygon count and in-
stances, high speed filtering and clustering methods are becoming

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



H. Legrand, J.-M. Thiery & T. Boubekeur / Filtered Quadrics for High Speed Geometry Smoothing and Clustering

highly instrumental to the graphics chain. This is particularly true
in two classes of emerging application scenarios: large collection
processing, for further analysis (e.g., learning) and live 3D capture
and broadcast for which the available processing time is bounded
by the target streaming update delay.

Indeed, for basic processing primitives such as filtering and clus-
tering, the time constraint forces algorithms to rely on weak geo-
metric measures such as euclidean distance between samples and
tangent space similarity. One of the reasons such simple measures
are used in real-time or interactive processing pipelines is related
to the surface mesh format: position and normal vectors are always
maintained in the mesh processing chain, and are almost the only
quantities on which the geometric operators can rely.

We argue that error quadrics, traditionally used as temporary
measures for surface simplification, can act as additional vertex
attributes when they are filtered, to enrich the surface description
with a knowledge of larger scale structures, so that fast process-
ing operators can still behave as usual – gathering and convolv-
ing/averaging/comparing/etc a local set of neighboring samples –
while maintaining high performance and scalability.

We propose a new geometric filter designed to run at high speed
on large input 3D surfaces while being able to preserve from small
to large features (Sec. 3), generating very smooth surface regions
under a user-controlled threshold. Our approach is based on an en-
richment process which establishes error quadrics as a new type of
range attribute, characterizing locally the surface geometry, at each
vertex. This extra attribute (i) has a fixed memory footprint, what-
ever the considered scale, (ii) can be used to guide surface filtering
thanks to its intrinsic optimizer and (iii) copes well with parallel
kernel evaluation on fine-grained architectures such as GPUs. As
a result, we obtain a non-iterative local filter that runs at a sim-
ilar speed to simple bilateral mesh filters, but with results which
are similar to the output of high-quality variational methods that
perform global iterative optimizations and run orders of magnitude
slower.

While, so far, practitioners typically perform geometric filtering
in a preprocess, store the resulting mesh, and eventually load it
later for further use in different applications, our method renders
possible a more flexible workflow, with the parameters of the op-
erator being the only data that need to be stored/loaded/preserved,
since the actual filtered/clustered geometry is generated from the
raw data on demand, in split-seconds. Not only this enables the
aforementioned scenarios, but this also helps delaying the decision
on the filtering scale to the final application, a single model being
subject to various levels of filtering depending on the final applica-
tion constraints, e.g., optimization stability, feature line extraction,
signature computation, etc. This typically avoids maintaining mul-
tiple versions of the model, as only the raw input is then required.

Moreover, the ability of our quadric surface fields to strongly
regularize geometry under a given similarity threshold, while en-
forcing very sharp structures between smooth patches in the fil-
ter output, makes it a good candidate for fast mode seeking. We
explore such an application in a new parallel clustering algo-
rithm (Sec. 4) that extends the quick shift method, and produces
clusters of similar quality than offline methods such as super-
facets [SPDF14].

Both our contributions are designed for efficient fine-grain par-
allel execution on GPU (Sec. 5) and are very simple to imple-
ment. This natural compatibility with modern graphics architec-
tures makes our methods extremely fast to execute, which is their
main appeal. We evaluate our work on scanned meshes exhibiting
several millions of primitives and the typical defects of acquired
models, such as non-manifoldness and holes (Sec. 6). Considering
modern 3D capture pipelines, we observe that their reconstructed
output meshes present an amount of noise which typically corre-
sponds to what our filter can handle, while at the same time, ex-
hibit a polygon count that requires the speed and scalability that
our method provides.

2. Background

Quadric Error Metric The Quadric Error Metric (QEM) was in-
troduced by Garland and Heckbert in their seminal article dealing
with triangle mesh decimation [GH97], to obtain high quality sim-
plification of dense meshes quickly. This metric describes the in-
tegral over a given 2D-domain of the squared distance from a 3D
point p to a set of tangent planes {(q,n)}. Noting that this squared
distance can be expressed as (pT ,1)Q(q,n)(pT ,1)T , with

Q(q,n) =

 nnT −n

−nT (n ·q)2

,
the quadric associated with a given vertex v (its barycentric cell)
can be obtained by averaging quadrics of its adjacent triangles t j ∈
T1(v) with area a j, center c j and normal n j:

Qv := ∑
t j∈T1(v)

at j

3
Q(c j ,n j). (1)

Interestingly, the minimizer p∗ = argminp(pT ,1)Q(pT ,1)T of a
quadric Q is given by p∗ =−A−1b, where

Q =:

 A b

bT c

.
By minimizing the quadric of a given region, we obtain a 3D point
best fitting it in this sense. As the quadric of the union of two
regions is simply given by the sum of their quadrics due to in-
tegrals additivity, Garland and Heckbert devise an efficient mesh
simplification algorithm, where edges of minimal associated error
are greedily decimated. This framework allows obtaining a multi-
resolution description of the input [Hop96] that can be traversed
in real-time, and is general enough to accommodate other kinds of
simple approximating primitives, e.g., such as spheres [TGB13].
It is also generally the first choice for simplifying mesh anima-
tions [DR05, KG05, LS09, ZZW10, TGBE16], as the memory and
time complexities scale linearly in the length of the animation.

Bilateral Filtering The simplest way to denoise an image or a
mesh is to use a low-pass filter, which was introduced for discrete
surfaces by Taubin [Tau95]. Desbrun et al. [DMSB99] observe that
this Laplacian smoothing operator can be seen as an integration
over time of the heat equation, and present a method adapted to

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



H. Legrand, J.-M. Thiery & T. Boubekeur / Filtered Quadrics for High Speed Geometry Smoothing and Clustering

irregular meshes. One drawback of this type of approach is that
they do not distinguish between noise and high-frequency features,
and both are smoothed indiscriminately. Several methods aiming
at preserving these features have been developed, including algo-
rithms based on anisotropic diffusion [DMSB00, CDR00], and a
number of techniques using a normal filtering step before updating
vertex positions accordingly [OBS02, YOB02, YOB03, SRML07,
ZFAT11]. In the following, we focus on approaches related to the
bilateral filter.

The bilateral filter for images was introduced by Tomasi et
al. [TM98]. In this method, samples are filtered by averaging their
neighbors values using two weighting terms: the first uses the spa-
tial information, i.e., the distance between the sample and its neigh-
bors, and the second takes into account the difference in signal, or
range. In other words, each pixel becomes a weighted average of
its similar neighbors. Adapting this technique to 3D surfaces is not
straightforward, since for images, the signal and the position of a
sample are separate, while for meshes the signal itself is part of
the spatial information. Several methods were proposed to apply
a bilateral filter to vertex positions [JD03, FDCO03], and later to
surface normals for denoising [ZFAT11]. We focus here on the for-
mulation of Jones et al. [JD03].

In this work, a local estimation of the shape is used to smooth the
surface. A vertex position is computed by averaging predictions,
obtained from the triangles in the neighborhood. For a vertex v and
a triangle ti of its neighborhood η, this prediction Pi(v) is defined
as the projection of v on the tangent plane of ti. This tangent plane
is defined by a center ci and a smoothed normal ni:

Pi(v) = v+ni((ci− v) ·ni).

The filtered vertex v′ is computed as an average of these predic-
tions, weighted by a spatial term, which is function of the distance
to the neighbor ‖v− ci‖, and a range term, which is function of the
distance to the prediction ‖v−P(v)‖ (figure 2):

v′ =
1

w(v) ∑
ti∈η

Pti(v)ati Gσs(‖v− ci‖)Gσr (‖v−Pti(v)‖),

where at is triangle t’s area, and w(v) is a normalization factor:

w(v) = ∑
ti∈η

ati Gσs(‖v− ci‖)Gσr (‖v−Pti(v)‖).

Gσs and Gσr are the Gaussian kernels used for the spatial term and
the range term respectively. The parameters σs and σr control the
amount of smoothing of the surface. To make the predictions more
robust to noise, the normals are smoothed in a preprocessing step,
with a Gaussian kernel of standard deviation σs

2 .

Its ability to preserve sharp features, its local nature, and its sim-
plicity, make the bilateral filter a reference in terms of smoothing
and denoising. This led to a number of acceleration methods, such
as bilateral grids [CPD07], Gaussian kd-trees [AGDL09], or a sep-
arable approximation of the filter [VB11].

Still inspired by image denoising, the non-local means fil-
ter [BCM05] was the starting point of several adaptations to 3D
surfaces [YBS06, GAB12]. In this family of techniques, the aim is
to use, among all the vertices, those with the neighborhood clos-
est to the vertex to filter, independently of their position. He et

v

t1

t2

Pt1
(v)

Pt2
(v)

Figure 2: Predictions for the bilateral filter (smoothed normals).
The prediction given by the neighbor t2 on the same side of the
sharp feature is closer to v than the prediction given by t1 on the
other side. It will therefore have more weight.

al. [HS13] use a L0 minimization in order to denoise, while favoring
piecewise flat shapes. This technique is therefore well adapted for
CAD models, but may not be suitable for more organic shapes. Fan
et al. [FYP10] locally fit quadric surfaces, and cluster the surface
into piecewise smooth subneighborhoods. The normals and curva-
ture tensors are then filtered within these neighborhoods, before
denoising the vertex positions with a second order bilateral filter.
A mean shift filtering is proposed by Solomon et al. [SCBW14],
as an iterative application of a generalized version of the bilateral
filter on meshes. More recently, Wang et al. [WFL∗15] propose to
filter small scale geometric details by applying iteratively a joint
bilateral filter to the normals [KCLU07], following the idea de-
veloped by Zhang et al. for images with the rolling guidance fil-
ter [ZSXJ14]. In this work the authors do not target denoising but
geometric texture filtering, and sharp features are not recovered
in the case of very noisy models. A bilateral filtering step on the
normals is also used by Zhang et al. [ZDZ∗15] as a first step in
their iterative method. The question is approached from a different
angle by Wang et al. [WLT16], who use neural networks to learn
the relation between noisy geometry and its ground truth version.
Yadav et al. [YRP17] propose an iterative denoising method that
successively processes normals and vertex positions, and introduce
the concept of element-based normal voting tensor for smoothing.
Most of these methods target offline high-quality denoising and are
not usable in practice for interactive application scenarios.

Nociar et al. examined the use of the QEM in the context of
denoising [NF10]. After a first step of bilateral filtering on the nor-
mals, a quadric is associated with each vertex, as the sum of the
quadrics of the incident triangles, computed with the smoothed
normals. Each vertex is then iteratively moved, by minimizing
its quadric, and updating it with the new positions. Vieira et
al. [VNMC10] propose a simple QEM-based algorithm, also rely-
ing on a quadric per vertex. This quadric is computed as the sum of
the fundamental quadrics in a first or second order neighborhood,
weighted by the distance to the neighbor. The filtering is then ap-
plied in a single step, where each vertex is moved to the point min-
imizing its quadric. This simple algorithm preserves sharp features
at the scale of the neighborhood, and enhances them to a certain ex-
tent. It also shows the QEM’s ability to locally describe the surface
in a robust manner, by recovering some details in very noisy inputs.
However, this method is limited to small neighborhoods (second or-
der in practice), and gives no control on the scale of the preserved

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



H. Legrand, J.-M. Thiery & T. Boubekeur / Filtered Quadrics for High Speed Geometry Smoothing and Clustering

features. Moreover, the neighborhood definition makes the results
sensitive to the tessellation and regularity of the input mesh.

Mode seeking and clustering 3D partitioning techniques usually
fall in one of two main categories. One is a more semantic ap-
proach, aiming at segmenting the object into meaningful parts. We
will focus here on the other category, where the goal is to extract
small regions based on geometric criteria.

Garland et al. [GWH01] propose an algorithm producing a hi-
erarchy of regions based on a metric derived from the QEM. The
faces are iteratively contracted pairwise, creating mostly planar re-
gions. Variational Shape Approximation (VSA) [CSAD04] is a k-
means-type algorithm that fits planar proxies to the geometry. Each
iteration consists of a region growing phase based on the L2,1 met-
ric, and the computation of a proxy by region until convergence.

The superpixel concept was introduced by Ren et al. [RM03],
based on the observation that pixels are the consequence of the
discrete representation of images, and are not necessarily a nat-
ural primitive in many cases. Moreover, even at low resolutions,
their number can make them difficult to handle. To reduce the
number of elements to process, the pixels are grouped together
locally, in a way that is consistent with the structures in the im-
age. This pre-processing step should be as simple, fast, and scal-
able as possible. Several techniques were proposed to generate
them, using in particular the Mean Shift algorithm [CM02], k-
means [ASS∗12], or the Quick Shift algorithm [VS08]. Superpix-
els have been used to accelerate and improve the results of many
image processing algorithms, such as object detection or segmen-
tation [HZR06, MPW∗09, ZSL∗13]. Simari et al. [SPDF14] build
upon the SLIC superpixel method [ASS∗12] to compute super-
facets efficiently on large 3D meshes, with a k-means approach.

The Mean Shift algorithm is a general mode seeking and parti-
tioning method handling N-dimensional data. Intuitively, the idea
is to move each sample iteratively to maximize an underlying den-
sity function defined locally, usually as a sum over all the samples
weighted by a kernel centered on the current sample. Every sample
is moved iteratively in the direction of the gradient, towards re-
gions with a higher density until convergence. The resulting points
are the modes, and a partition of the initial data can be obtained
by associating each point with its corresponding mode. Yamauchi
et al. [YLL∗05] use a Mean Shift on 6D points, considering the
triangles centroid and their normals. The normals are then updated
with the normals obtained for the modes. The second phase of the
algorithm alternates between a region growing step based on the
computed normals, and the updating of the centers.

The Medoid Shift [SKK07] is an algorithm similar in concept to
the Mean Shift, where the possible movement of a sample is con-
strained to the position of another sample. This modification has
the advantage of making the Medoid Shift non-iterative: by con-
necting each data point with a "next" point, one obtains the full
paths to the modes. The need to choose a stopping criterion also
disappears. Vedaldi et al. [VS08] observe that using the gradient
is not the only option to converge towards modes. They introduce
the Quick Shift algorithm, that connects every point to its closest
neighbor with a higher density estimate. This method connects the
data points into a single tree, from which a partition can be obtained

input mesh σs = 4, σr = 0.4

Figure 3: Quadric filtering of the Grog model (1M tri.), removing
small and medium details while preserving large features in 0.46s.

by cutting the branches longer than a threshold. The modes are the
roots of the resulting sub-trees. This algorithm was used notably in
the context of superpixels [VS08], for curvature-based mesh seg-
mentation [LKK15], and is very well suited to the GPU [FS10]. We
propose to adapt this algorithm to use filtered quadrics, in order to
produce a superpixel-like clustering of 3D surfaces.

3. Quadric Filter

Given a surface mesh M = {V,T} as input, with V = {vi} a set of
vertices in R3 and T = {ti} a set of triangles indexing V , our ap-
proach is based on two observations. First, error quadrics offer a
natural geometric range space to enrich the surface, as 2 neighbor-
ing vertices of the same geometric nature i.e., surrounded by similar
local structures, are likely to have very close tangent plane distri-
butions and therefore error quadrics. Second, such an additional
attribute not only helps measuring similarity between surface ver-
tices, but also guiding their specific smoothing process. This second
observation is key in the general design of our filtering algorithm
while the first one dictates how we enrich the input. In a nutshell,
our algorithm first tailors a target quadric field on the input sur-
face before conforming the actual geometry to it (see Fig. 3 for an
example) and works as follow:

1. generate a quadric field, by computing a local error quadric for
each vertex at a prescribed scale;

2. perform an anisotropic diffusion on this field on the surface
to obtain an enriched guiding field that keeps important salient
structures while strongly filtering any detail smaller than a pre-
scribed threshold;

3. use the field as a guide for updating each input surface vertex,
accounting for both its associated filtered quadric and the sur-
face structure.

Each step of this algorithm takes the form of a small set of parallel
kernels, designed for efficient GPU execution. The whole filter is
controlled by three parameters:

• σb, which specifies the finest level of detail that each quadric
should capture,

• σs, which specifies the ”smoothness” of the filter i.e., the spatial
support of the quadric diffusion process,

• σr, which specifies the ”featureness” of the filter i.e., the range
support of the quadric diffusion process.

Quadric field. Similarly to Vieira et al. [VNMC10], we start by
computing one base quadric Qv per input vertex v, as the area

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



H. Legrand, J.-M. Thiery & T. Boubekeur / Filtered Quadrics for High Speed Geometry Smoothing and Clustering

weighted sum of the incident triangles quadrics. We then estimate
a per-vertex quadric Q′v which accounts for the local neighborhood
of each vertex v:

Q′v =
1

w(v) ∑
p∈ησb

QpapGσb(‖v− p‖)

with ap the area associated with p, computed as the sum of the
areas of the incident triangles, ησb the spatial neighborhood with a
radius depending on σb (we use 2σb) and w(v) the normalization
term i.e., sum of the weights:

w(v) = ∑
p∈ησb

apGσb(‖v− p‖)

This per-vertex quadric provides a good characterization of the
shape at the scale of ησb , in the form of an optimization space in
which lies a good "average" geometric sample, which differs from
their use as scalar field approximations of the shape, such as done
by Fan et al. [FYP10] for instance. The key idea of the second step
of our filter is to modulate this optimization space to later better
search for a surface embedding that is both smoother and (large)
feature-preserving.

Quadric diffusion. The key concept in our approach is to guide
the surface filtering process using the quadric field as a control
mechanism. Consequently, we aim at modifying this field in a way
that later reflects in a feature-preserving surface smoothing, while
still coping with high performance and natural parallel execution.
To do so, we propose to compute an anisotropic diffusion of the
quadrics in the form of a bilateral filter applied on them. On the
contrary to bilateral mesh filtering which relies on a geometric pre-
diction (tangent projection), our filter acts on an object where spa-
tial (surface) and range (quadrics) domains are clearly separated.
We account for both spatial proximity between the quadrics host
vertices and range similarity of the quadric geometry. More pre-
cisely, for each vertex v, we compute its filtered quadric Qbl

v as:

Qbl
v =

1
w(v) ∑

p∈ηv

apGσs(‖v− p‖)Gσr (
√

Q′p(v))Q
′
p

The range extent σr acts on the similarity measure that we model
with our error quadrics. We propose to estimate whether v is close
to the optimizer associated to a neighbor p by simply evaluating the
quadric of p at location v i.e.,

Q′p(v) := (vT |1)Q′p
(

v
1

)
.

Fig. 4 illustrates how quadrics act as range terms for bilateral fil-
tering: points located on the same side of a sharp feature account
more in the averaging than points located across the feature, thus
better preserving it in the filtering.

Guided surface motion. So far, the actual surface geometry has
not been modified and only the quadric field has been processed.
With our per-vertex bilateral quadrics in hand, we can now guide
the filtering process and optimize for each vertex in parallel. More
precisely, our filter can run in two modes. In constrained mode, for
each vertex v we search for the filtered position v′, which minimizes
the filtered quadric Qbl

v along a filtered normal direction n, which is

v

p1

Qp2(v)

p2

Qp1(v)

Figure 4: 2D representation of quadrics isocontours. The quadric
error modeled by Qp1 at v is stronger than Qp2 . The neighbor p1,
which is on the other side of the sharp edge w.r.t. v, has therefore
less influence than p2, which is on the same side.

the result of normal smoothing process based on a Gaussian kernel
of standard deviation σn. This boils down to computing:

v′ = v+λn , with

λ =
−(vT An+bT n)

nT An
and Qbl

v =:

 A b

bT c

.
On the contrary to the actual minimizer of the quadric, this normal-
constrained strategy preserves better the triangles shape and avoids
artifacts such as pinching and triangle flips that may come from
distant vertices having similar quadrics. In unconstrained mode, the
vertex is simply put at the location of the filtered quadric minimizer
as described previously. This mode enhances better strong features
at the cost of triangle shape regularity (see Fig. 5). This is the main
mode we use in the experiments reported in this paper.

input mesh global opt. constrained opt.

Figure 5: Optimal versus normal-constrained vertex placement
(same parameters σs = 3 and σr = 1). The global minimizer makes
the geometry move towards the features, while the constrained min-
imizer better preserves triangle shapes.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



H. Legrand, J.-M. Thiery & T. Boubekeur / Filtered Quadrics for High Speed Geometry Smoothing and Clustering

score modes and regions final partition

Figure 6: Representativity score, from blue for a high score to red
for a low score. Middle : clusters frontiers (in black) and modes
(white dots). Right : resulting partition. σs = 2.0, σr = 1.0, σd =
6.0, σq = 1.0 and θ = 0.87. 156 clusters.

4. Quadric Clusters

Beyond geometric filtering, our bilateral quadric field can be instru-
mental for several applications that both require ignoring features
that are smaller than a prescribed scale and preserving large ones.
In particular, instantaneous surface clustering into regions of simi-
lar shape share similar objectives with feature-preserving filtering.
Inspired by super-pixels in image/video processing, such methods
aim at decomposing dense meshes into small clusters at which level
various computations can be factorized, with large salient struc-
tures delimiting cluster boundaries. For instance, the superfacets
of Simari et al. [SPDF14] provide such a decomposition and we
propose to address this problem under high-speed constraints. Our
key idea is to exploit our quadric field to group together vertices of
similar geometric signature, forming what we call quadric modes.
To achieve such a clustering in a fine-grained parallel fashion, we
reformulate a fast error-driven mode extraction algorithm with our
enriched surface attribute in a 2-step clustering where we:

1. compute a representativity score for each vertex, capturing how
well its filtered quadric is in accordance with the neighboring
geometry,

2. search modes based on this score using an evolution of the Quick
Shift partitioning method.

Representativity score. Most mode seeking algorithms start by
computing a Parzen density estimation P at each point x:

P(x) =
1
N

N

∑
i=1

K(x− xi),

where K is typically a Gaussian kernel. All data points are then pro-
gressively moved toward the maxima of this density and modes are
extracted at convergence locii. Considering our enriched 3D sur-
faces, we ideally seek for a small subset of V , whose associated
quadrics properly capture the entire surface. The Quick Shift al-
gorithm [VS08] then appears as an adequate partitioning strategy
since, given a vertex v, it only requires finding the closest vertex
vi s.t. P(vi) > P(v). We base our clustering on this algorithm but
substitute the Parzen density with a representativity score Sv that

estimates how well Qbl
v captures v’s spatial neighborhood ησd1

:

Sv =
1

∑ai
∑

vi∈ησd

aiGσd (‖v− vi‖)Gσq

(√
Qbl

v (vi)

)
,

where ai is the area of the neighborhood of vi, Qbl
v (vi) is the evalu-

ation of the filtered quadric at vi, Gσs is a Gaussian kernel of stan-
dard deviation σs, and σd (resp. σq) modulates the importance of
the spatial (resp. range) proximity. The value Sv is high when the
strongest error caused by neighboring vertices w.r.t. the quadric of
v is low i.e., when the quadric fits well the neighborhood of v. We
illustrate in Fig. 6 an example of this score.

Mode extraction. With our per-vertex representativity score in
hand, we now seek for modes by adapting the Quick Shift algo-
rithm. In particular, to obtain a clustering which reflects the simi-
larity measure we designed through our filtered quadrics, we define
the proximity measure p in the bilateral space of the quadric field:

p(v,vi) := Gσd (‖v− vi‖)Gσq

(√
Qbl

vi (v)
)
.

Given this proximity measure, we can now link each vertex v to
the neighbor vi that (i) satisfies Svi > Sv and (ii) maximizes p(v,vi).
This linking process forms a tree structure on the surface (see Fig. 7
for a visualization of this structure), where only the vertices with
the higher values S are not linked to other ones. We label each
branch {vi,v j} with the proximity p(vi,v j) that generated it. To ex-
tract a partition from the so-defined modes, we cut all tree branches
with proximity label smaller than a threshold θ, which leads to for-
est of trees, where each root is a mode (see Alg. 1). Each vertex of
V can finally be associated to the cluster of its mode by traversing
its chains of links until finding its root (see Alg. 2).

5. GPU Implementation

Each stage of our approach has been designed to maximize fine-
grain parallelism and scalability. In this section, we detail the key

input mesh partition trees

Figure 7: Links established by the Quick Shift procedure. Each
tree corresponds to a region. The nodes luminances (right) indicate
their number of descendants (lighter node have more descendants).
σs = 2.0, σr = 1.0, σd = 5.0, σq = 1.0 and θ = 0.75. 142 clusters.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



H. Legrand, J.-M. Thiery & T. Boubekeur / Filtered Quadrics for High Speed Geometry Smoothing and Clustering

Algorithm 1: Parallel Quick Shift tree construction.

forall vertex v ∈V in parallel do
pmax← 0
next[v]← v
// tree creation
forall neighbors vi of v do

if p(v,vi)> pmax and Svi > Sv then
pmax← p(v,vi)
next[v]← vi

end
end
// branch cutting
if p(v,next[v])< θ then

next[v]← v
end

end

Algorithm 2: Parallel per-vertex mode search.

forall vertex v ∈V in parallel do
current← v
parent← next[v]
while current 6= parent do

current← parent
parent← next[current]

end
mode[v]← current

end

components of our GPU implementation. We implemented our ap-
proach in C++ using the Nvidia CUDA SDK for GPU execution,
together with the Thrust library for basic GPU algorithms. Re-
ported experiments were conducted on an Intel Xeon E5-1620 CPU
at 3.9Ghz, and a NVidia Geforce GTX 980 Ti GPU.

In a nutshell, our filtering algorithm consists of 3 GPU passes,
each of them taking the form of a CUDA kernel:

1. base quadric computation (Qv), with one thread per triangle;
2. neighborhood quadric computation (Q′v), with one thread per

vertex;
3. quadric diffusion and vertex position update, with one thread

per vertex.

The clustering algorithm starts with the same filtering steps, with-
out updating the vertex positions. Additionally, 3 passes are per-
formed to generate the partition:

1. representativity score computation, with one thread per vertex;
2. linking, with one thread per vertex;
3. mode finding, with one thread per vertex.

Error quadrics are particularly convenient to manipulate on the
GPU, as they locally summarize the geometry in a compact way
and can be combined easily by summing them up. We store each
quadric as an array of 10 floating point values (4x4 symmetric ma-
trix). In the first step of our algorithm, the base vertex quadrics
Qv associated with each vertex v are computed in a single kernel.

Model Method Parameters RMSE MFNE
[JD03] (σs=2.0, σr =1.5) 0.002206 0.148220

Fandisk [SRML07] (T =0.5, n1=30, n2=20) 0.001466 0.046387
(12.9K tri.) [ZFAT11] (σs=0.35, λ=0.0001, v=20) 0.001022 0.037008

[HS13] (default) 0.005094 0.195904
[ZDZ∗15] (r=2x, σr =0.35, kiter =20, viter =15) 0.000818 0.039276

Ours (σs=2.0, σr =1.0) 0.001536 0.120709
[JD03] (σs=2.0, σr =2.0) 0.000869 0.103577

Bunny [SRML07] (T =0.5, n1=5, n2=20) 0.000654 0.102727
(69.6K tri.) [ZFAT11] (σs=0.3, λ=0.001, v=15) 0.000743 0.117505

[HS13] (default) 0.000771 0.131686
[ZDZ∗15] (r=2x, σr =0.55, kiter =5, viter =15) 0.000458 0.091487

Ours (σs=2.0, σr =0.7) 0.000725 0.099304
[JD03] (σs=3.5, σr =3.0) 0.000314 0.121606

Caesar [SRML07] (T =0.6, n1=12, n2=12) 0.000165 0.117080
(772K tri.) [ZFAT11] (σs=0.45, λ=0.0001, v=10) 0.000161 0.116400

[HS13] (default) 0.000205 0.121308
[ZDZ∗15] (r=2x, σr =0.35, kiter =20, viter =20) 0.000170 0.119206

Ours (σs=4.0, σr =1.0) 0.000185 0.117429
[JD03] (σs=4.0, σr =3.0) 0.000417 0.242417

Gargoyle [SRML07] (T =0.4, n1=15, n2=15) 0.000188 0.227175
(1.72M tri.) [ZFAT11] (σs=0.35, λ=0.001, v=10) 0.000159 0.195790

[HS13] (default) 0.000208 0.149341
[ZDZ∗15] (r=2x, σr =0.35, kiter =15, viter =15) 0.000150 0.135382

Ours (σs=4.0, σr =1.0) 0.000226 0.172294

Table 1: Parameters, RMSE and Mean Face Normal Error (or
MFNE, reported in radians) measured for models from Fig. 8.

For every triangle in parallel, the (planar) quadric of the triangle,
weighted by its area, is accumulated on its incident vertices. We
achieve this summation in a single pass using atomic operations,
which are well supported on modern GPU architectures.

To obtain the quadric Q′v accounting for the local neighboring
geometry, the parallel computation is not as straightforward, as we
need to collect quadrics for all vertices in the neighborhood. We
address this problem first by considering a purely spatial neigh-
borhood over a topological one. This makes possible to use an ef-
ficient fixed-radius nearest neighbor search algorithm, based on a
uniform grid partition, as described by Hoetzlein [Hoe14]. Addi-
tionally, this allows to handle non-manifold meshes. In this method,
Hoetzlein improves upon the work of Green [Gre10] by observing
that, with recent GPU architectures, a parallel counting sort based
on atomic operations is more efficient than a radix sort to affect
points to grid cells, and allows for efficient access to them. We use
this approach several times throughout our algorithm, to compute
the initial quadric field, the bilateral filtering, the representativity
score and the linking step of our Quick Shift clustering (Alg. 1).
The tree structure resulting from this process can then be traversed
in parallel, using a single kernel on every vertex (Alg. 2).

The reported performance and scalability of our method rely on
this algorithmic layout only, and does not require any low-level op-
timization, which makes our approach easy to reproduce. Further
speed-up may however be achieved with additional architecture-
dependent engineering.

6. Results

Filtering experiments. We compare our filtering results with
several state-of-the-art methods [JD03, SRML07, ZFAT11, HS13,
ZDZ∗15] in Fig. 8, and present quantitative comparisons in
Tab. 1. We used the CPU implementation provided by Zhang et
al. [ZDZ∗15] to generate the results for [SRML07, ZFAT11, HS13,

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



H. Legrand, J.-M. Thiery & T. Boubekeur / Filtered Quadrics for High Speed Geometry Smoothing and Clustering

σnoise = 0.2 15 ms 134 ms 696 ms 7.1 s 2.0 s 16 ms

σnoise = 0.2 21 ms 483 ms 3.4 s 77.3 s 4.2 s 37 ms

σnoise = 0.2 250 ms 4.2 s 37.9 s 1480 s 211 s 382 ms

σnoise = 0.3 771 ms 8.9 s 87.8 s 4995 s 904 s 1.0 s

noisy scan 76 ms 1.4 s 48.3 s 149 s 35.3 s 90 ms

Noisy input [JD03] [SRML07] [ZFAT11] [HS13] [ZDZ∗15] Our method

Figure 8: Comparisons for models with synthetic Gaussian noise of standard deviation σnoise, and a real noisy scanned model. σnoise given
in terms of mean edge length.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



H. Legrand, J.-M. Thiery & T. Boubekeur / Filtered Quadrics for High Speed Geometry Smoothing and Clustering

input mesh σs = 5, σr = 2 input mesh σs = 6, σr = 2

Figure 9: Stylization by filtering. The main structures are empha-
sized while the rest of the shape is completely smoothed.

σb = 1 σb = 2

Figure 10: Influence of scale threshold σb. (σs = 4, σr = 0.7)

ZDZ∗15], and we implemented a GPU accelerated version of the
bilateral filter [JD03]. For each method, we kept the best results
obtained after fine tuning the parameters.

In terms of performance, the main competitor of our quadric
filter (or QF) is a GPU implementation of the original bilateral
mesh filter [JD03] (or BF), as it shares similar properties (local,
non iterative, solver-free, parallel scalable, real-time on medium
size models). Fig. 8 – in particular the Gargoyle model – illustrates
the benefit brought by our quadric-based approach. On this manu-
factured example, we introduced a significant amount of artificial
noise so that we could measure the RMSE (Tab. 1) for both filters.
While both methods succeed at removing most of the noise, our
approach better recovers important salient structures. The smooth
geometry we obtain shows the higher ability of the diffused quadric
field to distinguish noise from structure, compared to the normal
field used by the classical bilateral filter. The approach by Sun et
al. [SRML07] is also quite fast, as it is simple and requires only
a few iterations. A GPU implementation would most likely give
timings close to our GPU bilateral filter. However, we observe in
Fig. 8, on the Gargoyle and the Iron closeups, that our method pro-
duces visually smoother surfaces, with sharper features.

The last three methods [ZFAT11,HS13,ZDZ∗15] are much more
computationally expensive. They offer different trade-offs between
quality and time, with [ZDZ∗15] giving overall the best denoising
results in terms of RMSE as shown in Tab. 1. We measured these
RMSE values against the original noiseless models in order to eval-

uate numerically how close the denoised results are to the ground
truth. Our method tends to enhance and sharpen features, which is
particularly beneficial for CAD-like models, such as the fandisk.
However, the RMSE is blind to this perceptual notion and does not
show significant improvement over the recent fast algorithms con-
sidered in these experiments. Therefore, we also report the mean
face normal error [ZDZ∗15] (or MFNE), which is more sensitive
to feature preservation. From a visual assessment, one can easily
see the combination of large smooth areas delimited by sharper
features obtained with our method. Indeed, from a pure sharpness
reproduction perspective, our approach appears as superior to all
the other ones, including the (slower) high quality alternatives.

Our filter is not limited to pure denoising scenarios, as one of
its main characteristics is its ability to strongly enhance features.
We show in Fig. 9 that pushing the spatial support σs to high values
creates stylized shapes, where only the main structure remains, with
large smooth regions delimited by prominent lines. This behavior
is also instrumental with non-organic shapes, such as the Fandisk
and the Iron models processed in Fig. 8, where our filter recovers
smooth regions while enhancing sharp edges. As such, our filter ap-
pears as a useful quick preprocessing for shape analysis algorithms
which need to extract high level structures in 3D objects, such as
shape approximation for instance.

Fig. 10 illustrates the influence of the parameter σb on a larger
mesh. This parameter determines the size of the smallest feature
that can be preserved by the filter. Our experiments show that set-
ting σb = σs/2 usually gives good results but in some cases, such
as to preserve the teeth for the raptor model, a lower value can be
preferred. In any case, the performance of our filter allows the user
to easily adjust this parameter and interactively explore the space
of possible filtered shapes, as the entire process takes less than a
second for this 2M triangles model. Ultimately, in the absence of a
formal noise model derived from a particular 3D capture modality,
any mesh filter requires adjusting its parameters depending on the
intended effect and target application. Consequently, the speed of
our filter significantly enhances the try-and-test workflow operated
by the user.

Our approach builds entirely upon spatial queries and does not
depend on the manifoldness of the input nor on the presence of
holes, which makes it particularly adapted to the preprocessing of
scans, as shown in Fig.11.

Fig. 12 illustrates how our filter behaves in the presence of vari-
ous amounts of noise, at different scales and using alternative ver-
tex placement strategies. We can observe how the unconstrained
minimizer retains sharp structures up to high filtering levels.

As shown in Fig. 13, the quadric diffusion step is key to retain
features while smoothing large areas at the same time: consider-
ing local quadrics without this diffusion i.e., similarly to the ap-
proach by Vieira et al. [VNMC10] (middle left, in the figure), can-
not achieve both effects. In fact, the methods of Jones et al. [JD03]
and Viera et al. [VNMC10] address the problem with orthogonal
approaches: while the former designs a custom, bilateral-guided
support to account for features, the later retains the traditional low-
pass principle, but uses a better geometric optimization, beyond av-
eraging. We remark that the range function used in standard bilat-
eral filtering [JD03] is a quadric in terms of the vertex positions.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



H. Legrand, J.-M. Thiery & T. Boubekeur / Filtered Quadrics for High Speed Geometry Smoothing and Clustering

(a) input scan (b) unconstrained opt. (c) constrained opt.

Figure 11: Geometric filtering of a partial scan (σs = 3.0, σr = 1.0),
using unconstrained (b) and normal-constrained (c) optimizations.

Figure 12: Filtered results for different levels of noise. Parameters
given in terms of mean edge length.

Input mesh Simple σb = 3 With diffusion,
σs = 6, σr = 0.8

Simple σb = 6

Figure 13: Diffusion impact. The quadric diffusion (middle right)
better preserves the features around the eyes, mouth and nose, while
smoothing more the rest of the shape. Without diffusion (middle
left and right), both effects cannot be achieved at the same time.

Model #Tri. σs σr QF (ours) BF
Fandisk (fig. 8) 20K 3 0.4 15 13
Bunny (fig. 9) 70K 5 2.0 68 51
Igea 200K 3 0.4 81 56
Max Planck 400K 6 0.8 332 266
Grog (fig. 3) 1M 4 0.4 459 347
Gargoyle (fig. 1) 1.7M 5 1.5 1106 855
Raptor (fig. 10) 2M 4 0.7 849 649
Dragon (fig. 14) 7M 5.5 1.0 6330 4756

Table 2: Filtering timings in milliseconds, without CPU-GPU
memory transfer. Our method (QF) is compared with our GPU im-
plementation of [JD03] (BF).

Input:
7M tris

filtered in
6.3 seconds

Figure 14: Our scalable filter processes meshes with several mil-
lions of polygons in a few seconds.

While Jones et al. [JD03] suggest to pre-filter the normal field, we
propose to aggregate and filter the quadric range functions them-
selves instead. Consequently, while BF works fine in regions that
are almost planar, we capture more complex curved regions (e.g.,
ears of the bunny, Fig. 8). So, overall, our filter retains the best of
both concepts, revealing large curved regions and preserving sharp
features at multiple scales, something not achievable with former
high-speed approaches.

Finally, we report performances for all models illustrating this
paper in Tab. 2. We see that our method achieves real-time perfor-
mances up to 200k input polygons, without any preprocessing, and
remains close to interactive for two million polygons and a fairly
large spatial support. The only model for which the filtering time
was much larger than 1s is the 7M triangle Dragon model, which
is displayed in Fig. 14, and took up to 6.3s to denoise with our
approach. Compared to our filter, the classical bilateral filter turns
out to be 23% faster on average, for a significant loss in feature
preservation and large scale behavior. Overall, thanks to the high
performance GPU implementation one can easily achieve using
on approach, our filter appears to be fast enough for several time-
sensitive applications, such as interactive filtering design, on-the-
fly preprocessing for the many geometric algorithms which work
better on filtered shapes and shape repository batch processing for
machine learning, as it can process several thousands of objects
(e.g., scans) per hour on a single computer. The recent introduc-
tion of a new mesh-based graphics pipeline [Kub18] based on the
concept of mesh shaders acting on meshlets makes also our clus-
tering method an interesting candidate to generate efficiently such
meshlets from a raw polygon mesh and feed mesh shaders.

Clustering results. Fig. 15 reports results of our quadric-guided
clustering at different resolutions on a 1M triangle input. This clus-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



H. Legrand, J.-M. Thiery & T. Boubekeur / Filtered Quadrics for High Speed Geometry Smoothing and Clustering

θ = 0.5, 2035 clusters θ = 0.75, 1120 clusters θ = 0.99, 449 clusters

Figure 15: Different partitions of a model, with θ varying. The other
parameters are fixed : σs = 2.0, σr = 1.0, σd = 6.0, σq = 1.0

σq = 3.5 σq = 1.0

Figure 16: Influence of the quadric weight parameter σq with 600
clusters in both partitions (σs = 2.0, σr = 1.0, σd = 7.0).

tering if performed in 1.7 sec. to 2.9 sec., depending on the num-
ber of output clusters, a smaller cluster count requiring to gather
larger regions. We can observe that salient features of the input
carry many of the cluster boundaries, which is a desirable behavior
in super-pixel-like applications.

Fig. 16 illustrates the influence of the quadric weight parame-
ter σq. This parameter controls the importance of the quadric error
evaluation in the score and the proximity values. When this value is
too high, the frontiers of the regions do not adhere properly to fea-
tures, for example on the eye or the mouth. Once again, the speed
of our clustering method makes possible for users to investigate in-
teractively the parameters influence, and select the result that best
serves their needs.

Quick Shift (euclid dist): 1877ms Our method: 3928ms

Figure 17: Comparison with a Quick Shift on the euclidean distance
only (same parameters as for figure 1, 1119 clusters in both cases).

Superfacets: 248s Ours: 419ms Superfacets: 87s Ours: 174ms

Figure 18: Comparison of our method with the superfacets of
Simari et al. [SPDF14]. Our method gives comparable results, in
interactive time. The parameters used for our method are the same
as is figure 6 and 7. For the superfacets, we selected the same
number of regions, and α = 200 (as recommended by the au-
thors [SPDF14]).

Model #Tri. σs σr σd σq θ #Clusters Time
Bunny (fig. 20) 70K 3.0 1.0 5.0 0.8 0.9 89 161
Hand (fig. 7) 100K 2.0 1.0 5.0 1.0 0.75 142 174
Igea (fig. 6) 200K 2.0 1.0 6.0 1.0 0.87 156 419
Caesar (fig. 16) 750K 2.0 1.0 7.0 1.0 0.75 600 1691
Grog (fig. 15) 1M 2.0 1.0 6.0 1.0 0.5 2035 1676

2.0 1.0 6.0 1.0 0.75 1120 1883
2.0 1.0 6.0 1.0 0.99 449 2864

Gargoyle (fig. 1) 1.7M 3.0 1.0 6.0 1.0 0.95 1119 3928
Raptor (fig. 19) 2M 3.0 1.0 4.0 1.0 0.95 1389 2287
Dragon (fig. 19) 7M 4.0 1.0 3.0 1.0 0.999 2701 10557

Table 3: Clustering timings in milliseconds. σs and σr are the fil-
tering parameters. σd , σq and θ are the Quick Shift parameters. σs,
σr, σd and σq are given in terms of mean edge length.

We further evaluate the influence of our quadric field on the
quick shift clustering by comparing it to a quick shift accounting
only for the euclidean distance between vertices in Fig. 17. We can
observe that our approach provides a significant quality improve-
ment, with clusters fitting the geometric structures of the surface
naturally, for about twice the amount of time. This lets us think that
most applications, which can afford a basic quick shift clustering
can therefore afford ours, for a much better feature sensitivity.

Fig. 18 compares our approach to the superfacets algorithm of
Simari et al. [SPDF14], which shares the objective of reproducing
the super-pixel concept on surfaces.

We use the reference CPU implementation provided by the au-
thors. The two techniques give regions with comparable adherence
to features. As our method is a Quick Shift variant, we trade off
some compactness for performance. The superfacets produce more
compact and regularly shaped regions, while our GPU approach
is 2 to 3 orders of magnitude faster, hence suitable for interactive
scenarios.

Tab. 3 reports clustering performance. We can observe that the
clustering can be achieved at interactive framerate up to 200k input
triangles and is scalable, with about 10 sec. to cluster a 7M triangle
mesh into about 2700 clusters, which we showcase in Fig. 19.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



H. Legrand, J.-M. Thiery & T. Boubekeur / Filtered Quadrics for High Speed Geometry Smoothing and Clustering

Raptor (2M tri)
1389 clusters, 2.3s

Dragon (7M tri)
2701 clusters, 10.6s

Figure 19: Our method is scalable and capable of clustering meshes
with several millions of polygons in a few seconds. Raptor : σs =
3.0, σr = 1.0, σd = 4.0, σq = 1.0, θ = 0.95. Dragon : σs = 4.0,
σr = 1.0, σd = 3.0, σq = 1.0, θ = 0.999.

input mesh regions disconnected regions

Figure 20: The region connectivity is not controlled, vertices can
sometimes be disconnected from the region containing their mode.
A post-processing step may be necessary if this is mandatory. σs =
3.0, σr = 1.0, σd = 5.0, σq = 0.8, θ = 0.9. 89 clusters.

Limitations and future work. Our method has three main limi-
tations that motivate future research. First, our aim at high-speed
processing prevents us from accounting for geodesic approxima-
tion when gathering neighborhoods. While exact geodesic may not
be desired – to still cope with non-manifold surfaces having holes
– a parallel scalable neighborhood query mechanism that accounts
for on-surface proximity would be an interesting improvement of
our approach. Regarding filtering, the most advanced high quality
filters account for non-local self-similarity and collaboratively fil-
ter surface samples independently from their actual 3D location.
While being orders of magnitude slower than our approach, we
think that our quadric field may be instrumental to better charac-
terize long range relationships between distant surface structures.
Finally, regarding clustering, our approach sometimes requires sev-
eral try-and-test parameter adjustments to achieve the desired par-
tition. Having an automatic adjustment mechanism that dynami-
cally adjusts the cluster based on a-posteriori cluster shape analysis
would be useful for several applications, in particular in compres-
sion and recognition. The topology of each cluster is also not guar-
anteed to be a single component (see Fig. 20), which may require
an additional post-processing for applications requiring so.

7. Conclusion

We have introduced the anisotropic diffusion of error quadrics as
a new mechanism to enrich surface meshes with a discriminative
per-vertex attribute that has a fixed size, is easy to compute, can
model large regions and be used as the basis to guide a new feature-
preserving geometric filter or seek geometry-aware modes in a new
fast clustering method. Our approach is well adapted to high-speed
processing on GPU and is able to capture large salient structures,
both in filtering and clustering, while providing a strong regular-
ization effect anywhere else. So far, such a behavior was achiev-
able only with offline methods, up to several orders of magnitude
slower. We believe that the speed of our method can make it a seri-
ous candidate for a number of geometry processing primitives that
require prefiltering their input or estimating large scale geometric
structures. Its simplicity should also ease its integration into high-
speed processing pipelines based, for instance, on mesh shaders.

Acknowledgments We thank Wangyu Zhang and Bailin Deng for
providing implementations of various mesh denoisers. We also
thank the reviewers for their helpful insights. This work has been
partially funded by the French National Research Agency under
grant ANR 16-LCV2-0009-01 ALLEGORI and by BPI France, un-
der grant PAPAYA.

References
[AGDL09] ADAMS A., GELFAND N., DOLSON J., LEVOY M.: Gaus-

sian kd-trees for fast high-dimensional filtering. In Proc. SIGGRAPH
(2009), pp. 21:1–21:12. 3

[ASS∗12] ACHANTA R., SHAJI A., SMITH K., LUCCHI A., FUA P.,
SÜSSTRUNK S.: Slic superpixels compared to state-of-the-art superpixel
methods. IEEE PAMI 34, 11 (2012), 2274–2282. 4

[BCM05] BUADES A., COLL B., MOREL J.-M.: A non-local algorithm
for image denoising. In Proc. CVPR (2005), vol. 2, pp. 60 – 65. 3

[CDR00] CLARENZ U., DIEWALD U., RUMPF M.: Anisotropic geo-
metric diffusion in surface processing. In Proc. Visualization (2000),
pp. 397–405. 3

[CM02] COMANICIU D., MEER P.: Mean shift: A robust approach to-
ward feature space analysis. IEEE PAMI 24, 5 (2002), 603–619. 4

[CPD07] CHEN J., PARIS S., DURAND F.: Real-time edge-aware image
processing with the bilateral grid. In Proc. SIGGRAPH (2007). 3

[CSAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN M.: Variational
shape approximation. In ACM Trans. Graph. (2004), vol. 23, ACM,
pp. 905–914. 4

[DMSB99] DESBRUN M., MEYER M., SCHRÖDER P., BARR A. H.:
Implicit fairing of irregular meshes using diffusion and curvature flow.
In Proc. SIGGRAPH (1999), pp. 317–324. 2

[DMSB00] DESBRUN M., MEYER M., SCHRÖDER P., BARR A. H.:
Anisotropic feature-preserving denoising of height fields and bivariate
data. In Proc. Graphics interface (2000), vol. 11. 3

[DR05] DECORO C., RUSINKIEWICZ S.: Pose-independent simplifica-
tion of articulated meshes. In Proc. I3D (2005), pp. 17–24. 2

[FDCO03] FLEISHMAN S., DRORI I., COHEN-OR D.: Bilateral mesh
denoising. In Proc. SIGGRAPH (2003), pp. 950–953. 3

[FS10] FULKERSON B., SOATTO S.: Really quick shift: image segmen-
tation on a gpu. In Proc. 11th European conference on Trends and Topics
in Computer Vision (2010), pp. 350–358. 4

[FYP10] FAN H., YU Y., PENG Q.: Robust feature-preserving mesh
denoising based on consistent subneighborhoods. IEEE TVCG 16, 2
(2010), 312–324. 3, 5

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



H. Legrand, J.-M. Thiery & T. Boubekeur / Filtered Quadrics for High Speed Geometry Smoothing and Clustering

[GAB12] GUILLEMOT T., ALMANSA A., BOUBEKEUR T.: Non local
point set surfaces. In Proc. 3DIMPVT (2012), pp. 324–331. 3

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification using
quadric error metrics. In Proc. SIGGRAPH (1997), pp. 209–216. 2

[Gre10] GREEN S.: Particle simulation using cuda. NVIDIA whitepaper
6 (2010), 121–128. 7

[GWH01] GARLAND M., WILLMOTT A., HECKBERT P. S.: Hierarchi-
cal face clustering on polygonal surfaces. In Proc. I3D (2001), pp. 49–
58. 4

[Hoe14] HOETZLEIN R.: Fast fixed-radius nearest neighbors: interactive
million-particle fluids. In GPU Technology Conference (2014), p. 18. 7

[Hop96] HOPPE H.: Progressive meshes. In Proc. SIGGRAPH (1996),
pp. 99–108. 2

[HS13] HE L., SCHAEFER S.: Mesh denoising via l0 minimization. ACM
Trans. Graph. 32, 4 (2013), 64:1–64:8. 3, 7, 8, 9

[HZR06] HE X., ZEMEL R., RAY D.: Learning and incorporating top-
down cues in image segmentation. Proc. ECCV (2006), 338–351. 4

[JD03] JONES T. R., DURAND F.: Non-iterative, feature-preserving
mesh smoothing. ACM Trans. Graph. 22 (2003), 943–949. 3, 7, 8, 9,
10

[KCLU07] KOPF J., COHEN M. F., LISCHINSKI D., UYTTENDAELE
M.: Joint bilateral upsampling. In ACM Trans. Graph. (2007), vol. 26,
p. 96. 3

[KG05] KIRCHER S., GARLAND M.: Progressive multiresolution
meshes for deforming surfaces. In Proc. SCA (2005), pp. 191–200. 2

[Kub18] KUBISCH C.: Turing mesh shaders. SIGGRAPH 2018
Exhibitor Talk, 2018. https://devblogs.nvidia.com/introduction-turing-
mesh-shaders. 10

[LKK15] LEE J., KIM S., KIM S.-J.: Mesh segmentation based on cur-
vatures using the gpu. Multimedia Tools and Applications 74, 10 (2015),
3401. 4

[LS09] LANDRENEAU E., SCHAEFER S.: Simplification of articulated
meshes. In Computer Graphics Forum (2009), vol. 28, pp. 347–353. 2

[MPW∗09] MOORE A. P., PRINCE S. J., WARRELL J., MOHAMMED
U., JONES G.: Scene shape priors for superpixel segmentation. In Proc.
ICCV (2009), pp. 771–778. 4

[NF10] NOCIAR M., FERKO A.: Feature-preserving mesh denoising via
attenuated bilateral normal filtering and quadrics. In Proc. SCCG (2010),
pp. 149–156. 3

[OBS02] OHTAKE Y., BELYAEV A., SEIDEL H.-P.: Mesh smoothing
by adaptive and anisotropic gaussian filter applied to mesh normals. In
Proc. VMV (2002), pp. 203–2010. 3

[RM03] REN X., MALIK J.: Learning a classification model for segmen-
tation. In Proc. ICCV (2003), pp. 10–17. 4

[SCBW14] SOLOMON J., CRANE K., BUTSCHER A., WOJTAN C.: A
general framework for bilateral and mean shift filtering. arXiv preprint
arXiv:1405.4734 (2014). 3

[SKK07] SHEIKH Y. A., KHAN E. A., KANADE T.: Mode-seeking by
medoidshifts. In Proc. ICCV (2007), pp. 1–8. 4

[SPDF14] SIMARI P., PICCIAU G., DE FLORIANI L.: Fast and scal-
able mesh superfacets. In Computer Graphics Forum (2014), vol. 33,
pp. 181–190. 2, 4, 6, 11

[SRML07] SUN X., ROSIN P., MARTIN R., LANGBEIN F.: Fast and
effective feature-preserving mesh denoising. IEEE TVCG 13, 5 (2007),
925–938. 3, 7, 8, 9

[Tau95] TAUBIN G.: A signal processing approach to fair surface design.
In Proc. SIGGRAPH (1995), pp. 351–358. 2

[TGB13] THIERY J.-M., GUY E., BOUBEKEUR T.: Sphere-meshes:
Shape approximation using spherical quadric error metrics. ACM Trans.
Graph. 32, 6 (2013), Art. No. 178. 2

[TGBE16] THIERY J.-M., GUY E., BOUBEKEUR T., EISEMANN E.:
Animated mesh approximation with sphere-meshes. ACM Trans. Graph.
35, 3 (2016), 30:1–30:13. 2

[TM98] TOMASI C., MANDUCHI R.: Bilateral filtering for gray and
color images. In Proc. ICCV (1998), pp. 839–. 3

[VB11] VIALANEIX G., BOUBEKEUR T.: SBL Mesh Filter: A Fast Sep-
arable Approximation of Bilateral Mesh Filtering. In Vision, Modeling,
and Visualization (2011) (2011), Eisert P., Hornegger J., Polthier K.,
(Eds.), pp. 97–103. 3

[VNMC10] VIEIRA A. W., NETO A. A., MACHARET D. G., CAMPOS
M. F.: Mesh denoising using quadric error metric. In Proc. SIBGRAPI
(2010), pp. 247–254. 3, 4, 9

[VS08] VEDALDI A., SOATTO S.: Quick shift and kernel methods for
mode seeking. Proc. ECCV (2008), 705–718. 4, 6

[WFL∗15] WANG P.-S., FU X.-M., LIU Y., TONG X., LIU S.-L., GUO
B.: Rolling guidance normal filter for geometric processing. ACM Trans.
Graph. 34, 6 (2015), 173:1–173:9. 3

[WLT16] WANG P.-S., LIU Y., TONG X.: Mesh denoising via cascaded
normal regression. ACM Trans. Graph. 35, 6 (2016), 232. 3

[YBS06] YOSHIZAWA S., BELYAEV A., SEIDEL H.-P.: Smoothing by
example: Mesh denoising by averaging with similarity-based weights. In
Proc. SMI (2006), pp. 9–. 3

[YLL∗05] YAMAUCHI H., LEE S., LEE Y., OHTAKE Y., BELYAEV A.,
SEIDEL H.-P.: Feature sensitive mesh segmentation with mean shift. In
Proc. SMI (2005), pp. 236–243. 4

[YOB02] YAGOU H., OHTAKE Y., BELYAEV A.: Mesh smoothing via
mean and median filtering applied to face normals. In Proc. GMP (2002),
pp. 124–. 3

[YOB03] YAGOU H., OHTAKE Y., BELYAEV A.: Mesh denoising via
iterative alpha-trimming and nonlinear diffusion of normals with auto-
matic thresholding. In Proc. CGI (2003), pp. 28–33. 3

[YRP17] YADAV S. K., REITEBUCH U., POLTHIER K.: Mesh denoising
based on normal voting tensor and binary optimization. IEEE TVCG 24,
8 (2017), 2366–2379. 3

[ZDZ∗15] ZHANG W., DENG B., ZHANG J., BOUAZIZ S., LIU L.:
Guided mesh normal filtering. In Computer Graphics Forum (2015),
vol. 34, pp. 23–34. 3, 7, 8, 9

[ZFAT11] ZHENG Y., FU H., AU O. K.-C., TAI C.-L.: Bilateral normal
filtering for mesh denoising. IEEE TVCG 17, 10 (2011), 1521–1530. 3,
7, 8, 9

[ZSL∗13] ZHANG L., SONG M., LIU Z., LIU X., BU J., CHEN C.:
Probabilistic graphlet cut: Exploiting spatial structure cue for weakly su-
pervised image segmentation. In Proc. CVPR (2013), pp. 1908–1915.
4

[ZSXJ14] ZHANG Q., SHEN X., XU L., JIA J.: Rolling Guidance Filter.
2014, pp. 815–830. 3

[ZZW10] ZHANG S., ZHAO J., WANG B.: A local feature based simpli-
fication method for animated mesh sequence. In Proc. ICCET (2010),
vol. 1, pp. V1–681. 2

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.


