
Green Coordinates for Triquad Cages in 3D
JEAN-MARC THIERY, Adobe Research, France
TAMY BOUBEKEUR, Adobe Research, France

Fig. 1. Our coordinates encode shapes (left, red) into (tri)quad cages (left, blue), and produce quasi-conformal deformations when manipulating the cage
(middle and right), avoiding cage triangulation — and its many artifacts — while enabling Green coordinates deformation for quad-based design workflows.

We introduce Green coordinates for triquad cages in 3D. Based on Green’s

third identity, Green coordinates allow defining the harmonic deformation

of a 3D point inside a cage as a linear combination of its vertices and face

normals. Using appropriate Neumann boundary conditions, the resulting

deformations are quasi-conformal in 3D, and thus best-preserve the local

deformed geometry, in that volumetric conformal 3D deformations do not

exist unless rigid. Most coordinate systems use cages made of triangles, yet

quads are in general favored by artists as those align naturally onto important

geometric features of the 3D shapes, such as the limbs of a character, without

introducing arbitrary asymmetric deformations and representation. While

triangle cages admit per-face constant normals and result in a single Green

normal-coordinate per triangle, the case of quad cages is at the same time

more involved (as the normal varies along non-planar quads) and more

flexible (as many different mathematical models allow defining the smooth

geometry of a quad interpolating its four edges). We consider bilinear quads,

and we introduce a new Neumann boundary condition resulting in a simple

set of four additional normal-coordinates per quad. Our coordinates remain

quasi-conformal in 3D, and we demonstrate their superior behavior under

non-trivial deformations of realistic triquad cages.

ACM Reference Format:
Jean-Marc Thiery and Tamy Boubekeur. 2022. Green Coordinates for Triquad

Cages in 3D. 1, 1 (September 2022), 7 pages. https://doi.org/10.1145/nnnnnnn.

nnnnnnn

1 INTRODUCTION
Cage coordinates express space as a linear combination of the ele-

ments of a cage. In 3D, this cage takes the form of a manifold surface

mesh, and any modification to its embedding yields a space defor-

mation. A popular use of such coordinates is therefore to encode

the geometry of a high-resolution shape, possibly made of multiple

components and not necessary manifold, in the cage coordinate

Authors’ addresses: Jean-Marc ThieryAdobe Research, France, jthiery@adobe.com;

Tamy BoubekeurAdobe Research, France, boubek@adobe.com.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

XXXX-XXXX/2022/9-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

system defined by a coarse bounding cage mesh, using the latter to

perform high-resolution freeform deformation by simply moving its

vertices. A number of cage coordinate systems have been proposed

in the literature, many of which aiming at generalizing barycentric

coordinates to non-simplicial domains. Among them, and in the

specific application scenario of freeform deformation, Green coordi-

nates [Lipman et al. 2008] stand as a salient example: coordinates

being expressed w.r.t. to both cage vertex positions and cage face

normals, the deformations induced by such a system are locally

quasi-conformal and turn out, in practice, to produce extremely

pleasing deformations. Unfortunately, as with most cage coordi-

nate systems, Green coordinates are defined for triangle meshes

only, while the vast majority of hand-crafted meshes come in either

quad or triquad format, which typically capture the local geometric

anisotropy more efficiently and are more natural to manipulate.

We introduce an evolution of Green coordinates designed for

triquad cages. The main challenge in this context relates to quads,

which cannot be assumed to be planar in practice. We show that

expressing Green coordinates on a per-face-corner basis and com-

puting them through a robust Riemann summation scheme provides

a freeform deformation framework that enjoys all the good proper-

ties of Green coordinates, while being compatible with the de facto

standard of quad-dominant meshes. Our experiments against Quad

Mean Value Coordinates and Triangle Green Coordinates clearly

show the superiority of our approach for a variety of modeling tasks,

at a moderate additional computational cost.

1.1 Related Work
Prior art on cage coordinates and free-form deformation in gen-

eral being extremely vast, we refer the interested reader to recent

surveys [Floater 2015; Hormann and Sukumar 2017; Jacobson et al.

2014] and focus here on the most relevant cage-based 3D deforma-

tion methods.

Barycentric coordinates w.r.t. triangle cages. The vast majority of

existing cage coordinates allow defining barycentric weights {𝑤𝑖 }
for a 3D point [w.r.t. the vertices {𝑣𝑖 } of a cage coming in the form

of a closed manifold triangle mesh i.e., [=
∑
𝑖 𝑤𝑖𝑣𝑖 . Mean-Value

Coordinates [Floater 2003] (MVC) rely on the mean-value theorem

and allow defining weights for points everywhere in 3D [Ju et al.

, Vol. 1, No. 1, Article . Publication date: September 2022.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Jean-Marc Thiery and Tamy Boubekeur

2005] — not just the interior of the cage — which makes them conve-

nient for multiresolution modeling [Borosán et al. 2010; Huang et al.

2006]. Coming with a closed-form expression, these coordinates ad-

mit known formulas for their gradients and Hessians [Thiery et al.

2014], which makes them a good subspace candidate for variational

optimizations. Harmonic coordinates [Joshi et al. 2007] (HC) rely on

a volumetric grid to diffuse the cage vertex basis functions inside the

cage. Contrary to MVC, those are defined inside the cage only and

do not comewith a closed-form expression, but are however positive

by constraint, which is a good property for cage-based deformations

e.g., translating parts of the cage in a given direction does not result

in parts of the model being translated in the opposite direction. An

important drawback of these coordinates is that each coordinate has

to be solved for the entire domain at the same time. In that sense,

they cannot be computed easily on a per-point basis, and inserting a

new mesh vertex requires computing every coordinate from scratch.

Positive Mean-value coordinates [Lipman et al. 2007] address this

issue, and extend MVC by considering the cage visibility function

to ensure positive coordinates. The proposed implementation uses

the GPU to render the cage from the point of view of the evaluation

point, with visibility being simply determined using the z-buffer.

Polygonal cages. As triangles are rather limiting for shape mod-

eling applications, and quads are generally preferred by 3D artists,

a few coordinates were extended to comply with polygonal cages.

Spherical barycentric coordinates [Langer et al. 2006] extend MVC

and allow using cages made of arbitrary planar convex n-gons.

Mean-Value coordinates for Quad cages [Thiery et al. 2018] (QMVC)

extend MVC as well, and cope with cages made of triangles and

non-planar quads — to a certain extent, as some extreme configura-

tions are not handled by this method. As shown in these two papers,

the resulting mesh deformations are then free of the artifacts which

typically arise from arbitrary triangulation of the cage quads.

Green coordinates. Vastly different from all previous coordinate

systems in spirit, Green coordinates [Lipman et al. 2008] do not

target interpolating deformations, and allow expressing a 3D point

as a harmonic linear combination of the cage vertices as well as the

cage triangle normals. This translates into non-trivial deformations

— rotations are inferred by cage vertex translations, thanks to the

use of the cage normals — and quasi-conformal behavior in 3D.

Their good volume deformation properties make Green coordinates

an ideal choice for subspace variational deformations, as demon-

strated by Ben-Chen et al. [Ben-Chen et al. 2009], who use them to

obtain "almost" cage-independent as-rigid-as-possible deformations

by constraining their derivatives. We aim at providing Green coor-

dinates for cages made of triangles and non-planar quads, offering

coordinates that are to GC what QMVC are to MVC.

1.2 Contributions
We propose Green coordinates for triquad cages and make the fol-

lowing technical contributions:

(1) We introduce a formulation of the deformation using ex-

plicitly the on-quad-varying normal, resulting in superior

deformation behavior under non-trivial cage deformations

(large stretch and shear, twist). Our formulation results in

per-quad-corner dedicated coordinates.

(2) We show how to bake the validity conditions (linear preci-

sion) directly in the computations, by introducing tessellation-

independent geometric invariants.

(3) We introduce an efficient tessellation-based adaptive Riemann

summation allowing for fast approximate, linearly-precise,

smooth computations of our coordinates.

2 BACKGROUND: GREEN COORDINATES FOR
TRIANGULAR CAGES IN 3D

Using Green’s third identity, we can express a harmonic function in

a bounded 3D domain Ω from its boundary conditions as

𝑓 ([) =
∫

b ∈𝜕Ω

𝑓 (b) 𝜕𝐺
𝜕𝑛
(b, [)𝑑b −

∫
b ∈𝜕Ω

𝐺 (b, [) 𝜕𝑓
𝜕𝑛
(b)𝑑b, (1)

with 𝐺 (b, [) := −1

4𝜋 ∥b−[∥ solution to △b𝐺 (b, [) = 𝛿0 (∥b − [∥).
We consider here the cage 𝜕Ω as a non-intersecting closed mani-

fold triangle mesh; we note deformed quantities with an apostrophe

and rest-pose quantities without it.

Lipman et al. proposed Green coordinates [Lipman et al. 2008]

for triangle cages, by setting the following Dirichlet and Neumann

conditions on the cage 𝜕Ω:

𝑓 (b) =
∑︁
𝑖

Γ𝑖 (b)𝑣 ′𝑖 (2)

𝜕𝑓

𝜕𝑛
(b) = 𝜎 𝑗𝑛

′
𝑗 ∀b ∈ 𝑡 𝑗 , (3)

Γ𝑖 being the "hat basis function" that takes value 1 on vertex 𝑖 , 0

at the other vertices and is linear on each triangle (in particular,

its support is the set of faces adjacent to vertex 𝑖 , noted 𝐹1 (𝑖)), 𝜎 𝑗
(resp. 𝑛′

𝑗
) being the conformality factor (resp. normal) of linearly-

deformed triangle 𝑡 𝑗 , both quantities being constant across 𝑡 𝑗 as

they depend on the (constant) triangle linear map only.

While the Dirichlet condition is rather natural — the triangles’

geometry is obtained from linear interpolation using {Γ𝑖 }𝑖 — the

Neumann condition is arbitrary and set to obtain empirically ap-

propriate deformations. Noting (𝑒1, 𝑒2) (resp. (𝑒 ′
1
, 𝑒 ′

2
)) two rest pose

(resp. deformed) edges of triangle 𝑡 𝑗 , 𝜎 𝑗 can be computed as

𝜎 𝑗 =

√︄
∥𝑒 ′

1
∥2∥𝑒2∥2 + ∥𝑒1∥2∥𝑒 ′

2
∥2 − 2(𝑒 ′

1
· 𝑒 ′

2
) (𝑒1 · 𝑒2)

2∥𝑒1 × 𝑒2∥2
(4)

Setting these boundary conditions results in the following com-

pact expression for 𝑓 :

𝑓 ([) =
∑︁
𝑖∈V

𝜙𝑖 ([)𝑣 ′𝑖 +
∑︁
𝑗

𝜓 𝑗 ([)𝜎 𝑗𝑛′𝑗 , with (5)

𝜙𝑖 ([) :=

∫
b ∈𝐹1 (𝑖)

Γ𝑖 (b) 𝜕𝐺
𝜕𝑛
(b, [)𝑑b (6)

𝜓 𝑗 ([) :=

∫
b ∈𝑡 𝑗

−𝐺 (b, [)𝑑b (7)

Note that these two conditions are conflicting each other — har-

monic functions are uniquely defined by either condition, and 𝑓

, Vol. 1, No. 1, Article . Publication date: September 2022.

Green Coordinates for Triquad Cages in 3D • 3

does not respect any of the two conditions in the end (if it did, Green

coordinates would then be extremely similar to Harmonic coordi-

nates [Joshi et al. 2007]). As noted in [Lipman et al. 2008], the use

of this Neumann condition ensures scale invariance and results in

practice in quasi-conformal 3D spatial deformations, as observed

experimentally.

Note however that this formulation comes with a baked-in ill

behavior for degenerate faces: while the unit normal is formally

not defined for zero area triangles, 𝜎 𝑗 may be non-zero for those,

resulting in an ill-defined behavior in this (highly unconventional)

case (consider for example 𝑒 ′
1
= 0, 𝑒 ′

2
≠ 0 in Eq. (4)).

3 GREEN COORDINATES FOR QUAD CAGES
Our approach consists in approximating coordinates propagating

in space an ideal quad deformation model. Our approximation is

smooth and robust, inducing 4 extra coordinates per quad — one per

quad corner — while coping naturally with the presence of triangles

in the cage. At the core of our method, a robust Riemann summation

scheme is proposed in the form of an adaptive triangulation of the

quad 𝑢𝑣 domain which we designed in an output-sensitive way i.e.,

depending on the evaluation position. Last, we show how to recover

the coarse deformation behavior induced by the original Neumann

conditions of the triangle GC, resulting in smooth symmetric de-

formations that closely follow the limit case observed under limit

refinement of the bilinear quads.

3.1 Quad deformation model
We consider the case of bilinear quads, which are good candidates

for intuitive cage-based modeling, as supported in [Thiery et al.

2018]. Noting a quad 𝑞 with corners (𝑞0, 𝑞1, 𝑞2, 𝑞3) ∈ R3×4
, its

bilinear sheet is given by

∑
3

𝑘=0
𝑏𝑘𝑢𝑣𝑞𝑘 with (𝑏0

𝑢𝑣, 𝑏
1

𝑢𝑣, 𝑏
2

𝑢𝑣, 𝑏
3

𝑢𝑣) =

((1 − 𝑢) (1 − 𝑣), 𝑢 (1 − 𝑣), 𝑢𝑣, (1 − 𝑢)𝑣) ∈ R4 the bilinear coordinates
at parameter (𝑢, 𝑣) ∈ R2

, and its bilinear quad is its restriction to

(𝑢, 𝑣) ∈ [0, 1]2. Given this parameterization, the tangent vectors

𝜕𝑥𝑞𝑢𝑣 , normal 𝑛𝑢𝑣 and surface element 𝑑𝑞𝑢𝑣 can be obtained as

𝜕𝑢𝑞𝑢𝑣 = (1 − 𝑣) (𝑞1 − 𝑞0) + 𝑣 (𝑞2 − 𝑞3)
𝜕𝑣𝑞𝑢𝑣 = (1 − 𝑢) (𝑞3 − 𝑞0) + 𝑢 (𝑞2 − 𝑞1)
𝑁𝑢𝑣 := 𝜕𝑢𝑞𝑢𝑣 × 𝜕𝑣𝑞𝑢𝑣 =

∑
3

𝑘=0
𝑏𝑘𝑢𝑣𝑁

𝑞

𝑘

𝑛𝑢𝑣 = 𝑁𝑢𝑣/∥𝑁𝑢𝑣 ∥
𝑑𝑞𝑢𝑣 = ∥𝑁𝑢𝑣 ∥𝑑𝑢𝑑𝑣.

(8)

with 𝑁
𝑞

𝑘
:= (𝑞𝑘+1 −𝑞𝑘) × (𝑞𝑘+3 −𝑞𝑘) (indices being

taken as modulo 4) being the unnormalized normal
at corner 𝑘 of the quad 𝑞 (see inset). It is worth in-

sisting on this: while the unit normal 𝑛𝑢𝑣 is not a

bilinear interpolant, the non-normalized normal 𝑁𝑢𝑣 is a simple
bilinear function interpolating {𝑁𝑞

𝑘
} (see 3

𝑟𝑑
line of Eq. (8)).

Neumann conditions and associated coordinates. We use the de-
formed area over rest-pose area ratio as a baseline for our Neumann

conditions. Our (𝑢𝑣-varying) area-based Neumann condition reads

therefore {
𝜕𝑓
𝜕𝑛 (𝑞𝑢𝑣) = 𝜎

𝑞
𝑢𝑣𝑛
′
𝑢𝑣 ∀𝑞𝑢𝑣 ∈ 𝑞

𝜎
𝑞
𝑢𝑣 := ∥𝑁 ′𝑢𝑣 ∥/∥𝑁𝑢𝑣 ∥

(9)

leading to our area-based Green coordinates for triquad cages:

𝑓 ([) =
∑︁
𝑖

𝜙𝑖 ([)𝑣 ′𝑖 +
∑︁
𝑡 ∈T

𝜓𝑡 ([)𝜎𝑡𝑛′𝑡 +
∑︁
𝑞∈Q

3∑︁
𝑘=0

𝜓
𝑞

𝑘
([)𝑁𝑞

𝑘

′
(10)

where a quad’s contribution 𝜙
𝑞

𝑘
([) to the 𝜙 coordinate of its corner

vertices and the per-corner𝜓 coordinates𝜓
𝑞

𝑘
([) can be obtained as

𝜙
𝑞

𝑘
([) =

1∫
𝑢,𝑣=0

𝑏𝑘𝑢𝑣 (𝑞𝑢𝑣 − [) · 𝑁𝑢𝑣

4𝜋 ∥𝑞𝑢𝑣 − [∥3
𝑑𝑢𝑑𝑣 (11)

𝜓
𝑞

𝑘
([) =

1∫
𝑢,𝑣=0

𝑏𝑘𝑢𝑣

4𝜋 ∥𝑞𝑢𝑣 − [∥
𝑑𝑢𝑑𝑣 (12)

In particular, we note that a point [will have in the end |V| +
|T | + 4|Q| coordinates for an input cage made of |V| vertices, |T |
triangles and |Q| quads, and that the quads’ stretching conditions

are directly met through the use of the unnormalized 𝑁
𝑞

𝑘
.

a) b) c)a) b) c)While using this Neumann condition

is key to make appear simple forms for

our𝜓𝑞
coordinates, Lipman’s choice of

stretch factor leads to deformations that

follow the cage more intuitively. This is

illustrated in the inset figure (a: input, b: area-based formulation,

c: Lipman’s formulation). In this example, which is representative

of all our experiments, using the area-based formulation leads to

an exaggerated protuberance outside the deformed cage. We show

in Sec. 3.5 how to retain the simplicity of our coordinates while

inserting back the behavior shown by Lipman et al., by analyzing

the ratio between both stretch factors in average over the quad.

3.2 Smooth approximate coordinates
Unfortunately, to the best of our knowledge, the integrals in Eqs.(11)

and (12) do not admit closed-form expressions. We proceed quad-

per-quad, and derive two integral geometric quantities that are

invariant to the surface interpolating the 4 edges of the quad. This

permits to substitute triangles to the curved quad, and obtain exact

computation of these integral invariants as a result (while integrat-

ing functions on the curved quad remains difficult). We use these

invariants to establish constraints on a per-quad basis, which ensure

the validity of our coordinates i.e., linear precision.

More precisely, we consider a quad 𝑞, and a tessellation of 𝑞 into

triangles 𝑡 𝑗 = (𝑡 𝑗
0
, 𝑡

𝑗

1
, 𝑡

𝑗

2
) ∈ R3×3

(we will discuss later the choice of

the tessellation). Considering their respective contributions in the

discretization of the integrals in Eq. (1), we derive

3∑︁
𝑘=0

𝜙
𝑞

𝑘
([)𝑞𝑘 +𝜓

𝑞

𝑘
([)𝑁𝑞

𝑘
=
∑︁
𝑗

2∑︁
𝑘=0

𝜙𝑡
𝑗

𝑡
𝑗

𝑘

([)𝑡 𝑗
𝑘
+
∑︁
𝑗

𝜓𝑡 𝑗 ([)𝑛𝑡 𝑗 (13)

Noting that

∫
b ∈𝑞

𝜕𝐺
𝜕𝑛 (b, [)𝑑b =: 𝜔𝑞 ([)/(4𝜋), 𝜔𝑞 ([) denoting the

signed solid angle of 𝑞 at point [, we further conclude that

3∑︁
𝑘=0

𝜙
𝑞

𝑘
([) =

∑︁
𝑗

2∑︁
𝑘=0

𝜙𝑡
𝑗

𝑡
𝑗

𝑘

([) (14)

, Vol. 1, No. 1, Article . Publication date: September 2022.

4 • Jean-Marc Thiery and Tamy Boubekeur

0 1 uIt

vIt

N

N

0

1
1

2

3 4

case uIt+vIt even

1

2

3 4

case uIt+vIt odd

Fig. 2. Adaptive 𝑢𝑣-tessellation for the Riemann summation. First : 𝑢𝑣-grid.
Second and third : Triangles covered in order as described in Algo. 1, using
𝑛 = 1. Fourth: Adaptive patterns centered in (0.75, 0.75) , using 𝑛 = 2.

Noting Φ := (𝜙𝑞
0
, 𝜙

𝑞

1
, 𝜙

𝑞

2
, 𝜙

𝑞

3
,𝜓

𝑞

0
,𝜓

𝑞

1
,𝜓

𝑞

2
,𝜓

𝑞

3
) ∈ R8

our unknowns

(omitting [for clarity), Eq. (13) and (14) can be put in matrix form:

𝐴𝑞 · Φ =𝑚𝑞 ([) ∈ R4, (15)

𝐴𝑞 :=

(
𝑞0 𝑞1 𝑞2 𝑞3 𝑁

𝑞

0
𝑁
𝑞

1
𝑁
𝑞

2
𝑁
𝑞

3

1 1 1 1 0 0 0 0

)
∈ R4×8

(16)

Lemma 3.1. 𝐴𝑞 is always of rank 4 for any non-degenerate quad.

Proof. We first show that the first three lines are independent.

If it weren’t true, there would be a linear combination of those lines

resulting in the null 8D line vector. There would exist a non-zero 3D

vector𝑑 , whose dot product with 𝑞𝑘 is zero∀𝑘 , implying that all four

corners belong to the plane passing through the origin with normal

𝑑 . If it were true, all corner normals 𝑁
𝑞

𝑘
would be colinear with 𝑑

and therefore 𝑁
𝑞

𝑘
· 𝑑 ≠ 0 (as 𝑁

𝑞

𝑘
= 0 ∀𝑘 iif the quad is degenerate).

The first three lines span therefore a space of rank 3. We show now

that the last line is independent from the first three. If it were not

the case, there would be a non-zero 3D vector 𝑑 such that all corners

belong to the same plane with normal 𝑑 at distance ∥𝑑 ∥−1
from the

origin (⇔ 𝑑 · 𝑞𝑘 = 1 ∀𝑘), implying once again that 𝑁
𝑞

𝑘
is colinear

with 𝑑 ∀𝑘 and that 𝑁
𝑞

𝑘
· 𝑑 ≠ 0, finishing the proof. □

We note Φ̄ the least-norm solution to Eq. (15), and ^𝑖 ∈ R8, 𝑖 ∈
[0, 3] the four 8D vectors spanning the null space of𝐴𝑞 , all obtained

using the singular value decomposition (SVD) of 𝐴𝑞 .

The solution to our problem takes the form Φ = Φ̄ +∑3

𝑖=0
_𝑖^𝑖 , _𝑖

being the missing components along the null space of𝐴𝑞 . Note that,

^𝑖 being in the null space of the linear precision constraints (Eq. (13)),
any choice of _𝑖 leads to linearly-precise coordinates.

Following [Thiery et al. 2018], we start by computing a smooth

approximation Φ̃ of Φ using a smooth adaptive Riemann summation

approximating Eqs. (11) and (12). We finally set _𝑖 =
Φ̃·^𝑖
∥^𝑖 ∥2

∥Φ̄∥2
Φ̃·Φ̄ .

3.3 Robust Riemann summation
While in [Thiery et al. 2018], three fourth of the solution’s spectrum

was constrained by the validity equations and could serve as a strong

basis to robustly correct the estimate of the component along the null

space, we can only constrain four eighths (half) of the solution, and

we observe that a standard Riemann summation (as in [Thiery et al.

2018]) is not robust enough to estimate the remaining four unknown

components _𝑖 . We cope with that issue by designing a robust and

efficient triangulation-based approximation. We triangulate the 𝑢𝑣

square domain [0, 1]2 =:

⋃{𝑡}, and rewrite Eqs.(11) and (12) as

𝜙
𝑞

𝑘
([) =

∑︁
𝑡

∫
(𝑢,𝑣) ∈𝑡

𝑏𝑘𝑢𝑣 (𝑞𝑢𝑣 − [) · 𝑁𝑢𝑣

4𝜋 ∥𝑞𝑢𝑣 − [∥3
𝑑𝑢𝑑𝑣

≃
∑︁
𝑡

𝑏𝑘𝑢𝑣𝑡

∫
(𝑢,𝑣) ∈𝑡

(𝑞𝑢𝑣 − [) · 𝑁𝑢𝑣

4𝜋 ∥𝑞𝑢𝑣 − [∥3
𝑑𝑢𝑑𝑣

=
∑︁
𝑡

𝑏𝑘𝑢𝑣𝑡

∫
b ∈𝑡 (𝑞)

𝜕𝐺

𝜕𝑛
(b, [)𝑑b =

∑︁
𝑡

𝑏𝑘𝑢𝑣𝑡𝜔𝑡 ([)
4𝜋

(17)

𝜓
𝑞

𝑘
([) =

∑︁
𝑡

∫
(𝑢,𝑣) ∈𝑡

𝑏𝑘𝑢𝑣

4𝜋 ∥𝑞𝑢𝑣 − [∥
𝑑𝑢𝑑𝑣

≃
∑︁
𝑡

𝑏𝑘𝑢𝑣𝑡

∥𝑁𝑢𝑣𝑡 ∥

∫
(𝑢,𝑣) ∈𝑡

∥𝑁𝑢𝑣 ∥
4𝜋 ∥𝑞𝑢𝑣 − [∥

𝑑𝑢𝑑𝑣

=
∑︁
𝑡

𝑏𝑘𝑢𝑣𝑡

∥𝑁𝑢𝑣𝑡 ∥

∫
b ∈𝑡 (𝑞)

−𝐺 (b, [)𝑑b ≃
∑︁
𝑡

𝑏𝑘𝑢𝑣𝑡𝜓
𝑡 ([)

∥𝑁𝑢𝑣𝑡 ∥
, (18)

𝜔𝑡 ([) denoting the signed solid angle of 𝑡 at [, 𝑢𝑣𝑡 denoting the 𝑢𝑣-

location of the center of 𝑡 (obtained by simple averaging in𝑢𝑣-space),

and 𝑡 (𝑞) denoting the 3D embedding of 𝑡 on the (in general, curved)

quad 𝑞. Our final approximation makes therefore the triangular

Green coordinates [Lipman et al. 2008] appear.

Note that these integrals (Eq. (17),(18)) are approximated at two

different levels. First, we assume that 𝑏𝑘𝑢𝑣 and 𝑏
𝑘
𝑢𝑣/∥𝑁𝑢𝑣 ∥ vary rel-

atively slowly on 𝑡 , and we consider them constant and fixed at

its center. Second, we assume that, even if 𝑡 is by definition flat in

the 𝑢𝑣-domain, its 3D embedding 𝑡 (𝑞) on 𝑞 is not, and the last inte-

grals are not strictly equivalent to the expressions given in [Lipman

et al. 2008]. Nevertheless, we found this approximation to be robust

enough to estimate correctly the components along the null space

of Eq. (15). To tile the 𝑢𝑣-domain with triangles, we use a strategy

inspired by the one used in [Thiery et al. 2018]:

(1) We start by computing an appropriate𝑢𝑣-location (𝑢𝑞, 𝑣𝑞) ([)
using the proposed 𝑢𝑣-projection operator P𝑞 : R3 → R2

defined in [Thiery et al. 2018]. P𝑞 is designed to converge to

the orthogonal projection operator near 𝑞, while smoothly

transiting to a simple averaging operator far away from 𝑞.

(2) Given (𝑢𝑞, 𝑣𝑞) ([), we design an adaptive𝑢𝑣-grid-pattern (Eq. (19)),
and we tile the 𝑢𝑣-domain atop this pattern, following Algo. 1

(see Fig. 2, 2
𝑛𝑑

and 3
𝑟𝑑
; 4

𝑡ℎ
image showcases the pattern

obtained for 𝑛 = 2).

In order to concentrate the sampling around (𝑢𝑞, 𝑣𝑞) ([) to better

account for the expected energy concentration resulting from the

use of a 1/∥b−[∥𝑘 averaging kernel, we use the following procedure

to compute the 𝑢𝑣-pattern of size (2𝑛 + 1)2 (for 𝑥 = 𝑢 and 𝑣):

𝑥𝑖 :=

[
1 −

(
𝑛−𝑖
𝑛

)𝑚]
𝑥𝑞 ([) ∀ 𝑖 < 𝑛

𝑥𝑞 ([) 𝑖 == 𝑛(
𝑥𝑞 ([) − 1

) [
1 −

(
𝑖−𝑛
𝑛

)𝑚]
+ 1 ∀ 𝑛 + 1 ≤ 𝑖 ≤ 2𝑛

(19)

In practice, we use𝑚 = 3 in our implementation, which we found

empirically to give good results.

, Vol. 1, No. 1, Article . Publication date: September 2022.

Green Coordinates for Triquad Cages in 3D • 5

ALGORITHM 1: Adaptive Riemann summation

// Input: evaluation point [, quad 𝑞

// Output: estimate of Eqs. (11) and (12)

Φ̃← 0;𝑁 = 2𝑛 + 2;

u, v: arrays of size 𝑁 + 1 = 2𝑛 + 3 centered on (𝑢𝑞, 𝑣𝑞) ([) //Eq. (19)
for 𝑣𝐼𝑡 = 0 to 𝑛 do

for 𝑢𝐼𝑡 = 𝑣𝐼𝑡 to 2𝑛 − 𝑣𝐼𝑡 do
if 𝑢𝐼𝑡 + 𝑣𝐼𝑡 % 2 == 0 then

Proc(𝑢𝐼𝑡,𝑢𝐼𝑡 + 2,𝑢𝐼𝑡 + 1, 𝑣𝐼𝑡, 𝑣𝐼𝑡, 𝑣𝐼𝑡 + 1);

Proc(𝑢𝐼𝑡,𝑢𝐼𝑡 + 1,𝑢𝐼𝑡 + 2, 𝑁 − 𝑣𝐼𝑡, 𝑁 − 𝑣𝐼𝑡 − 1, 𝑁 − 𝑣𝐼𝑡);
Proc(𝑣𝐼𝑡, 𝑣𝐼𝑡 + 1, 𝑣𝐼𝑡,𝑢𝐼𝑡,𝑢𝐼𝑡 + 1,𝑢𝐼𝑡 + 2);

Proc(𝑁 − 𝑣𝐼𝑡, 𝑁 − 𝑣𝐼𝑡, 𝑁 − 𝑣𝐼𝑡 − 1,𝑢𝐼𝑡,𝑢𝐼𝑡 + 2,𝑢𝐼𝑡 + 1);

else
Proc(𝑢𝐼𝑡,𝑢𝐼𝑡 + 1,𝑢𝐼𝑡 + 2, 𝑣𝐼𝑡 + 1, 𝑣𝐼𝑡, 𝑣𝐼𝑡 + 1);

Proc(𝑢𝐼𝑡,𝑢𝐼𝑡 +2,𝑢𝐼𝑡 +1, 𝑁 −𝑣𝐼𝑡−1, 𝑁 −𝑣𝐼𝑡−1, 𝑁 −𝑣𝐼𝑡);
Proc(𝑣𝐼𝑡 + 1, 𝑣𝐼𝑡 + 1, 𝑣𝐼𝑡,𝑢𝐼𝑡,𝑢𝐼𝑡 + 2,𝑢𝐼𝑡 + 1);

Proc(𝑁 −𝑣𝐼𝑡−1, 𝑁 −𝑣𝐼𝑡, 𝑁 −𝑣𝐼𝑡−1,𝑢𝐼𝑡,𝑢𝐼𝑡 +1,𝑢𝐼𝑡 +2);

return Φ̃

Proc(𝑢1,𝑢2,𝑢3, 𝑣1, 𝑣2, 𝑣3) :

ui = u[𝑢𝑖], vi = v[𝑣𝑖], ∀𝑖
𝑢 = (u1 + u2 + u3)/3; 𝑣 = (v1 + v2 + v3)/3;
𝑡 ← {𝑞u1v1 ;𝑞u2v2 ;𝑞u3v3 } // tessellated triangle

Φ̃ = Φ̃ +
(
𝑏�̄�𝑣𝜔𝑡 ([)/(4𝜋) ;𝜓𝑡 ([)𝑏�̄�𝑣/∥𝑁𝑞

�̄�𝑣 ∥
)

3.4 Robust evaluation of the invariants
We discuss here what are the required properties of the tessellation

{𝑡 𝑗 } needed to evaluate robustly the right-hand side of Eqs. (13),(14):
∑

𝑗

∑
2

𝑘=0
𝜙𝑡

𝑗

𝑡
𝑗

𝑘

([)𝑡 𝑗
𝑘
+∑𝑗 𝜓𝑡 𝑗 ([)𝑛𝑡 𝑗∑

𝑗

∑
2

𝑘=0
𝜙𝑡

𝑗

𝑡
𝑗

𝑘

([)

To obtain computations that are equivalent to the smooth inte-

grals on the quad, it is sufficient to ensure that [remains on the
correct side of the tessellated surface (equivalently, [should not be

inside the volume delimited by 𝑞 and its tessellation). This condition

ensures that the notion of interior/exterior remains unchanged from

the point of view of [(in particular, the second invariant is the solid

angle of 𝑞 at [). To obtain valid tessellations for arbitrary [∈ Ω, we
use the adaptive tessellation introduced in the previous paragraph

(we use 4 triangles for this, i.e., 𝑛 = 0), and uses the fact that P𝑞
tends to the orthogonal projection operator around 𝑞.

3.5 Mimicking Lipman et al.’ Neumann conditions
It is possible to "insert back" in some sense the Neumann conditions

presented in [Lipman et al. 2008]. Indeed, while both stretch factors

𝜎𝐿𝑢𝑣 :=

√︄
∥𝜕′𝑢 ∥2∥𝜕𝑣 ∥2 + ∥𝜕𝑢 ∥2∥𝜕′𝑣 ∥2 − 2(𝜕′𝑢 · 𝜕′𝑣) (𝜕𝑢 · 𝜕𝑣)

2∥𝜕𝑢 × 𝜕𝑣 ∥2
(20)

𝜎𝐴𝑢𝑣 :=
∥𝜕′𝑢 × 𝜕′𝑣 ∥
∥𝜕𝑢 × 𝜕𝑣 ∥

=
∥𝑁 ′𝑢𝑣 ∥
∥𝑁𝑢𝑣 ∥

(21)

(where 𝜕𝑢 , 𝜕𝑣, 𝜕
′
𝑢 , 𝜕
′
𝑣 denote the tangent vectors) differ for a given

quad deformation, we observe that their ratio does not vary too

much across the quad. We can therefore factor it outside the in-

tegrant without noticeably deviating from the global deformation

behavior induced by the Green coordinates under limit refinement

of the quads into triangles (see Fig. 3 and next section), as this

pointwise deviation is visibly averaged out once integrated:

1∫
𝑢,𝑣=0

:=𝐺𝑢𝑣︷ ︸︸ ︷
𝐺 (𝑞𝑢𝑣, [) 𝜎𝐿𝑢𝑣𝑛′𝑢𝑣𝑑𝑞𝑢𝑣 = 1

1∫
𝑢,𝑣=0

𝐺𝑢𝑣
𝜎𝐿𝑢𝑣

𝜎𝐴𝑢𝑣
𝑁 ′𝑢𝑣𝑑𝑢𝑑𝑣 = 2

3∑︁
𝑘=0

©«
1∫

𝑢,𝑣=0

𝐺𝑢𝑣
𝜎𝐿𝑢𝑣

𝜎𝐴𝑢𝑣
𝑏𝑘𝑢𝑣𝑑𝑢𝑑𝑣

ª®®¬𝑁
𝑞

𝑘

′ ≃
3∑︁

𝑘=0

𝜎𝑘𝑞

©«
1∫

𝑢,𝑣=0

𝐺𝑢𝑣𝑏
𝑘
𝑢𝑣𝑑𝑢𝑑𝑣

ª®®¬𝑁
𝑞

𝑘

′

Based on this empirical observation, we compute 𝜎𝑘𝑞 , the per-quad

corner’s correction factor, as

𝜎𝑘𝑞 :=

1∫
𝑢,𝑣=0

𝑏𝑘𝑢𝑣𝜎
𝐿
𝑢𝑣𝑑𝑞𝑢𝑣

/ 1∫
𝑢,𝑣=0

𝑏𝑘𝑢𝑣𝜎
𝐴
𝑢𝑣𝑑𝑞𝑢𝑣 (22)

that estimates in average the 𝑢𝑣-varying ratio 𝜎𝐿𝑢𝑣/𝜎𝐴𝑢𝑣 , using 𝑏𝑘𝑢𝑣 as
importance sampler and accounting for varying local area density

(using 𝑑𝑞𝑢𝑣 and not "just" 𝑑𝑢𝑑𝑣 as differential element). We approx-

imate these expressions using a fixed regular 𝑢𝑣-pattern. These can

be slightly simplified, as 𝑑𝑞𝑢𝑣/∥𝜕𝑢 × 𝜕𝑣 ∥ = 𝑑𝑞𝑢𝑣/∥𝑁𝑢𝑣 ∥ = 𝑑𝑢𝑑𝑣 . Us-

ing these correction factors leads to the following final expression

for our Green coordinates for triquad cages:

𝑓 ([) =
∑︁
𝑖∈V

𝜙𝑖 ([)𝑣 ′𝑖 +
∑︁
𝑡 ∈T

𝜓𝑡 ([)𝜎𝑡𝑛′𝑡 +
∑︁
𝑞∈Q

3∑︁
𝑘=0

𝜓
𝑞

𝑘
([)𝜎𝑘𝑞𝑁

𝑞

𝑘

′
(23)

Note that approximating these integrals using a basic fixed pattern

is in this case harmless: i) Since these computations are performed

independently of [, the final correction step results in smooth spatial

deformations for varying[(wemerely multiply smooth functions by

constant scalars in Eq. (23)). ii) Since the various terms in Eq. (22) are

regular w.r.t. {𝑣 ′
𝑖
}, it also leads to smooth deformations as a function

of {𝑣 ′
𝑖
} (ensuring smooth update of the mesh under smooth cage

modification). We use in our implementation a simple 5 × 5 regular

pattern to approximate Eq. (22). Note however that Eq. (22) is still

ill-defined for degenerate quads 𝑞′. In this case, 𝑁 ′𝑢𝑣 is null on the

whole 𝑢𝑣-domain, the denominator in Eq. (22) becomes null, and

multiplying these factors by the four (equal, null) per-corner 𝑁
𝑞

𝑘

′

amounts to normalizing the null 3D vectors 𝑁
𝑞

𝑘

′
. In that sense, our

corrected formula inherits in this (unconventional) situation the

ill-defined behavior of [Lipman et al. 2008], as discussed at the end

of Section 2. Fig. 3 shows the different flavors of deformations that

can be obtained using either the uncorrected (area-based) expression

or the corrected (conformal-factor-based) expression.

4 ANALYSIS AND DISCUSSION
We present our main results in Fig. 4, and we compare our coordi-

nates with QMVC [Thiery et al. 2018] and GC [Lipman et al. 2008].

As one can see, our coordinates avoid strong asymmetric artifacts

resulting from arbitrary triangulations of the quads (similarly to

QMVC) and provide quasi-conformal deformations that avoid loss

of geometric details in highly-stretched regions (similarly to GC).

1
using 𝜎𝐴

𝑢𝑣 = ∥𝑁 ′𝑢𝑣 ∥/∥𝑁𝑢𝑣 ∥, 𝑁 ′𝑢𝑣 = ∥𝑁 ′𝑢𝑣 ∥𝑛′𝑢𝑣 and 𝑑𝑞𝑢𝑣 = ∥𝑁𝑢𝑣 ∥𝑑𝑢𝑑𝑣
2
using 𝑁 ′𝑢𝑣 =

∑
3

𝑘=0
𝑏𝑘𝑢𝑣𝑁

𝑞

𝑘

′

, Vol. 1, No. 1, Article . Publication date: September 2022.

6 • Jean-Marc Thiery and Tamy Boubekeur

a) a) b)

d)

c)

e)

b1) c2)

d1) e2)

b2)

d2)

c1)

e1)

Fig. 3. a) Input. b𝑋) Area-based QGC. c𝑋) Conformal-factor-based QGC obtained using correction factors. d𝑋) Area-based triangular GC. e𝑋) Conformal-
factor-based triangular GC. The triangular GC are obtained by cutting each quad into 16 triangles.

Input

Input Input Input

QMVC QMVC

QMVC QMVC QMVC

GC GC

GC GC

GC

QGC QGC

QGC QGC

QGC

Input QMVC GC QGC Input QMVC GC QGC

Fig. 4. We compare our Green Coordinates for Quad cages (QGC) with Mean-Value Coordinates for Quad cages (QMVC) and Green Coordinates (GC).

Implementation notes. The various 𝐴𝑞 matrices depend on the

rest-pose cage only (neither on the deformed cage, nor on the eval-

uation point [), and the SVD of 𝐴𝑞 as well as the computation of

its null space can be performed in a preprocess, which accelerates

the computation of the coordinates. While performing such compu-

tations on the GPU is a bit difficult, we could imagine performing

this step on the CPU at cage-loading time while performing the

per-mesh-vertex computations of the coordinates on the GPU. Fine-

tuning the computations to obtain the best possible performances

is one of our future work. We also noted that numerical instabili-

ties could happen for extremely large models (probably due to the

many multiplications of very small numbers with very large ones in

the Riemann summation). We recommend scaling down the input

rest-pose cage and mesh in a preprocess, which does not change

anything to the results since our formulation is scale-invariant.

Timings. We detail in Tab.1 the timings for the computations of

our coordinates. As discussed just above, some computations involve

the input rest pose cage only, some require the rest pose cage and the

rest pose mesh, and others involve the rest pose cage and deformed

Mesh #V𝑀 #V #T #Q GC TGC-16 TGC-64 QGC
SpikyBar 60802 8 0 6 30 169 580 382

Head 24658 12 0 10 18 130 395 249

Cactus 98820 36 0 34 174 2053 9202 6311

Bench 65430 24 0 22 91 905 4200 2728

Monkey 126290 38 2 35 232 2703 11925 8919

Car 64962 16 0 14 64 581 2442 1681

Beast 28388 162 44 138 236 2686 10663 7354

Table 1. Timings (in ms). #V𝑀 /: mesh vertices. #V𝑀 /#T/#Q: cage ver-
tices/triangles/quads. GC: Green coordinates (each quad has been subdi-
vided into two triangles). TGC-X: Tesselation-based Green coordinates (each
quad has been subdivided into X triangles).

cage only, as they are factorized for all the mesh vertices: The four

per-quad correction factors (Eq. (22)) depend indeed on the cage

only and not on the evaluation point [, and they are computed and

stored at each frame before the update of the mesh transformation.

This step, as well as the computation of the SVD of the various 4× 8

𝐴𝑞 matrices (for which we use the Eigen library [Guennebaud et al.

2010]), take no more than a few microseconds per quad, and are

omitted here. Our CPU implementation was evaluated on a 12-core

Intel i7-10850H CPU @ 2.70GHz with 32 GB of RAM.

, Vol. 1, No. 1, Article . Publication date: September 2022.

Green Coordinates for Triquad Cages in 3D • 7

Input TGC-16
TGC quad

tess. pattern QGCTGC-64

Fig. 5. One cage quad is stretched in the x-direction. The jaggy deformation
artifact (third) stems from the approximation of the (symmetric) bilinear
quad deformation with the (asymmetric) triangle deformation introduced in
the quad tessellation (each quad was tesselated into X triangles for TGC-X).

Comparison with a dense cage tessellation approach. We compare

our technique with an approach consisting in tessellating each quad

of the cage (both in rest-pose and deformed state similarly).

While formally, our formulation should tend to the tessellation-

based deformations (under infinite refinement) when using the

area-based Neumann condition, our corrected formulation (Eq. (23))

should approximate only the tessellation-based deformation under

infinite refinement when using the conformal-factor Neumann con-

dition, since our ��-varying corrected Neumann condition does not

match exactly the��-varyingNeumann condition of Lipman et al. [Lip-

man et al. 2008]. Nevertheless, as seen in Fig. 3, our coordinates

provides deformations that are overall extremely similar, even at

large scale, for both types of Neumann conditions.

An important point to consider is that, even if a large number of

triangles are used per quad — entailing large memory and computa-

tional workload cost — the tessellation approach always results in

deformations suffering from asymmetric artifacts stemming from

the triangulation. Fig. 5 illustrates such asymmetric deformation

artifacts obtained for a simple sheer of the cage quads (thus with

constant normal across the tessellated quad), when each quad is tes-

sellated into 16 triangles. Note that, while the various � coordinates

w.r.t. the inserted cage vertices can trivially be factored back into the

� coordinates of the original cage vertices, the same can not be done

for the� coordinates: it seems difficult to express the various intro-

duced ������ as a linear combination of per-corner quantities (such

as ��
�) and their contribution cannot be easily factored into a simple

expression making 4 terms appear only. This implies that the naïve

tessellation approach requires significantly more coordinates per

input quad, while we introduce only 4 corner coordinates per input

quad without suffering from asymmetric deformation artifacts.

Limitations. The most notable limitation of our work comes from

our approximation strategy. While it guarantees smooth coordi-

nates, it prevents us from deriving simple closed-form expressions

for those. As a result, it also prevents us from computing deriva-

tives (such as gradients and Hessians) which are useful for some

applications, such as variational shape deformation [Ben-Chen et al.

2009]. Designing such an implicit variational framework using our

coordinates is one future research direction we plan to pursue.

Secondly, since our formulation incorporates directly the stretch

conditions into the product of the coordinates and the non-normalized

corner normals, it might be difficult to play with this parameter in

order to deviate from quasi-conformal deformations if desired by

the artist. One way to address this could be to apply a different per

quad corner’s correction factor (Eq. (22)) to account for per vertex

(or per face corner) scalar functions provided by the artist.

Last, our coordinates are only defined for the quads that pass the

validity test required for the projection operator [Thiery et al. 2018]

to be defined everywhere in space. Designing a projection operator

allowing for a larger family of quads is an interesting direction of

research, keeping in mind however that there is a limit to this quest,

as we know already that some quads (planar non-convex quads for

example, whose spatial bilinear geometry is not injective) can never

be used for cage-based modeling by definition.

Conclusion. Our approach combines the best of both worlds: as

with QMVC, arbitrary triquad meshes, natural to edit interactively,

can be used as the control cage of a high-resolution shape; and

as with GC, local quasi-conformality — which translates into far

better structure and geometric details preservation — is provided.

In the future, exploring how such properties can benefit beyond

deformation would be an interesting venue for research, as cage

coordinates in general allow diffusing any on-surface signal from

the cage to the high resolution shape.

REFERENCES
Mirela Ben-Chen, Ofir Weber, and Craig Gotsman. 2009. Variational harmonic maps

for space deformation. ACM ToG 28, 3 (2009), 1–11.

Péter Borosán, Reid Howard, Shaoting Zhang, and Andrew Nealen. 2010. Hybrid Mesh

Editing.. In Eurographics (short papers). 41–44.
Michael S Floater. 2003. Mean value coordinates. Computer aided geometric design 20, 1

(2003), 19–27.

Michael S Floater. 2015. Generalized barycentric coordinates and applications. Acta
Numerica 24 (2015), 161–214.

Gaël Guennebaud, Benoit Jacob, et al. 2010. Eigen. URl: http://eigen. tuxfamily. org 3

(2010).

Kai Hormann and N Sukumar. 2017. Generalized barycentric coordinates in computer
graphics and computational mechanics. CRC press.

Jin Huang, Xiaohan Shi, Xinguo Liu, Kun Zhou, Li-Yi Wei, Shang-Hua Teng, Hujun

Bao, Baining Guo, and Heung-Yeung Shum. 2006. Subspace gradient domain mesh

deformation. In ACM SIGGRAPH 2006 Papers. 1126–1134.
Alec Jacobson, Zhigang Deng, Ladislav Kavan, and John P Lewis. 2014. Skinning:

Real-time shape deformation. In ACM SIGGRAPH 2014 Courses. 1–1.
Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Har-

monic coordinates for character articulation. ACM TOG 26, 3 (2007), 71–es.

Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean value coordinates for closed

triangular meshes. In ACM Siggraph 2005 Papers. 561–566.
Torsten Langer, Alexander Belyaev, and Hans-Peter Seidel. 2006. Spherical barycentric

coordinates. In Symposium on Geometry Processing. 81–88.
Yaron Lipman, Johannes Kopf, Daniel Cohen-Or, and David Levin. 2007. GPU-assisted

positive mean value coordinates for mesh deformations. In SGP. 117–123.
Yaron Lipman, David Levin, and Daniel Cohen-Or. 2008. Green coordinates. ACM ToG

27, 3 (2008), 1–10.

Jean-Marc Thiery, Pooran Memari, and Tamy Boubekeur. 2018. Mean value coordinates

for quad cages in 3D. ACM ToG 37, 6 (2018), 1–14.

Jean-Marc Thiery, Julien Tierny, and Tamy Boubekeur. 2014. Jacobians and Hessians of

mean value coordinates for closed triangular meshes. The Visual Computer 30, 9
(2014), 981–995.

, Vol. 1, No. 1, Article . Publication date: September 2022.

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Background: Green coordinates for triangular cages in 3D
	3 Green coordinates for quad cages
	3.1 Quad deformation model
	3.2 Smooth approximate coordinates
	3.3 Robust Riemann summation
	3.4 Robust evaluation of the invariants
	3.5 Mimicking Lipman et al.' Neumann conditions

	4 Analysis and Discussion

