
Proxy Clouds for Live RGB-D Stream
Processing and Consolidation

Adrien Kaiser, Jose Alonso Ybanez Zepeda, Tamy Boubekeur

LTCI, Telecom ParisTech, Paris-Saclay University, Paris, France
{adrien.kaiser,tamy.boubekeur}@telecom-paristech.fr

Ayotle, Le Kremlin Bicetre, France
alonso@hayo.io

Abstract. We propose a new multiplanar superstructure for unified
real-time processing of RGB-D data. Modern RGB-D sensors are widely
used for indoor 3D capture, with applications ranging from modeling to
robotics, through augmented reality. Nevertheless, their use is limited
by their low resolution, with frames often corrupted with noise, missing
data and temporal inconsistencies. Our approach, named Proxy Clouds,
consists in generating and updating through time a single set of com-
pact local statistics parameterized over detected planar proxies, which
are fed from raw RGB-D data. Proxy Clouds provide several processing
primitives, which improve the quality of the RGB-D stream on-the-fly or
lighten further operations. Experimental results confirm that our light
weight analysis framework copes well with embedded execution as well
as moderate memory and computational capabilities compared to state-
of-the-art methods. Processing of RGB-D data with Proxy Clouds in-
cludes noise and temporal flickering removal, hole filling and resampling.
As a substitute of the observed scene, our proxy cloud can additionally
be applied to compression and scene reconstruction. We present experi-
ments performed with our framework in indoor scenes of different natures
within a recent open RGB-D dataset.

Keywords: RGB-D stream, 3D geometric primitives, data reinforce-
ment, depth improvement, online processing, scene reconstruction.

1 Introduction

Context. The real time RGB-D stream output of modern commodity consumer
depth cameras can feed a growing set of end applications, from human computer
interaction and augmented reality to industrial design. Although such devices
are constantly improving, the limited quality of their stream still restraints their
impact spectrum. This mostly originates in the low resolution of the frames and
the inherent noise, incompleteness and temporal inconsistency stemming from
single view capture. With Proxy Clouds, we aim at improving real time RGB-D
streams by analyzing them. A sparse set of detected 3D planes are parameter-
ized to record statistics extracted from the stream and form a structure that we
call proxy. This superstructure substitutes the RGB-D data and approximates
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the geometry of the scene. Using these time-evolving statistics, our plane-based
framework improves the RGB-D stream on the fly by reinforcing features, remov-
ing noise and outliers or filling missing parts, under the memory-limited and real
time embedded constraints of mobile capture in indoor environments (Fig. 1).
We design such a lightweight planar superstructure to be stable through time
and space, which gives priors to apply several signal-inspired processing primi-
tives to the RGB-D frames. They include filtering to remove noise and temporal
flickering, hole filling or resampling (Sec. 4). This allows structuring the data
and simplifying or lightening subsequent operations, e.g. tracking and mapping,
measurements, data transmission, rendering or physical simulations. While our
primary goal is the enhancement of the RGB-D data stream, our framework can
additionally be applied to compression and scene reconstruction (Sec. 6), as the
generated structure is a representation of the observed scene.

Proxies

build & update

real time 
processing

Fig. 1. Proxy Clouds Overview. From a stream of RGB-D frames (left), proxies are
built on-the-fly and updated over time (bottom) and used to apply different real-time
processing primitives to the incoming RGB-D frames (top). The system outputs an
enhanced data stream and a planar model of the observed scene (right). The “build &
update” procedure is detailed in Fig. 4.

Overview. In practice, our system takes a raw RGB-D stream as input to
build and update a set of planar proxies on-the-fly. It outputs an enhanced
stream together with a model of planar areas in the observed scene (see Fig. 2).
On the contrary to previous approaches, which mostly rely on a full volumetric
reconstruction to consolidate data, our approach is light weight, with a moder-
ate memory footprint and a transparent interfacing to any higher-level RGB-D
pipeline. To summarize, our contributions are:

– a stable and lightweight multiplanar superstructure for RGB-D data,
– construction and updating methods which are spatially and temporally con-

sistent,
– a collection of RGB-D enhancement methods based on our structure which

run on-the-fly.
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Fig. 2. Proxy Clouds Workflow. From a stream of 2.5D RGB-D frames, proxies
are built on-the-fly and updated through time (Sec. 3). They are used as priors to
process incoming frames through filtering, resampling or hole filling which allows better
tracking, mapping, automated navigation or measurement. A selection of proxies based
on the current RGB-D frame can be used for lightened transmission of the data. Proxies
can be used as priors for triangulation and fast depth data meshing, with application
to rendering or simulation. Eventually, the consolidation of the depth stream within
the proxies leads to a reconstruction of planar areas in the observed scene. Processing
modules are described in Sec. 4 and the consolidation of data is presented in Sec. 6.

2 Previous Work

Camera Motion Estimation. Endres et al. [1] describe an egomotion esti-
mation method that uses point features detected in the color component of the
RGB-D frame. After detecting and matching SIFT, SURF or ORB features in
subsequent color images, their 3D position in both frames is computed using the
depth component. Using these matching 3D points, a robust RANSAC-based [2]
estimation of the motion matrix allows discarding false positive matches. Sets of
three matching points are randomly picked and the matrix transforming a set in
the first frame into the second set is computed using a Least-Squares method [3].
Inliers of the transformation are estimated using their 3D position and orienta-
tion and the one giving the most inliers is kept. It is important to note that any
existing method or device that localizes an RGB-D camera in its environment
can be used instead. Some of them are presented in Section 2.

Plane Detection in RGB-D Stream. Methods that build high level models
of captured 3D data are mostly based on RANSAC [2], the Hough transform [4]
or Region Growing algorithms. In our embedded, real time, memory-limited con-
text, we take inspiration from the RANSAC-based method of Schnabel et al. [5]
for its time and memory efficiency, by repeating plane detection through time
to acquire a consistent model and cope with the stochastic nature of RANSAC.

Their Efficient RANSAC implementation gives stochastic improvements to
the critical steps of the algorithm in terms of complexity. For a regular RANSAC-
based plane detection, minimal sets of three points would be randomly picked a
fixed and large number of times. Then, the shape parameters are estimated from
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this minimal set and inliers of the estimated plane are computed. The shape with
the highest score is kept, its inliers are removed from the point cloud and the
algorithm is ran again on the remaining data. Schnabel et al. replace the fixed
number of loops with a stochastic condition, based on the number of detected
shapes and number of randomly picked minimal sets, to stop looking for planes
in the dataset. Also, instead of searching the full point cloud for inliers of a
given shape, they estimate this count in a random subset of the dataset and
extrapolate it to the full point cloud. Other modifications allow improving the
quality of detected shapes with a localized sampling and specific post-processing.

Again, our framework is not attached to a particular plane detection method,
and other algorithms such as point clustering [6] or agglomerative hierarchical
clustering [7], could be used. For a complete overview of plane detection methods
in captured 3D data, we refer the reader to our survey [8].

Depth Processing. Depth maps can be denoised using spatial filters [9] e.g.,
Gaussian, median, bilateral [10–12], adaptive or anisotropic [13, 14] filters, of-
ten refined through time, with the resulting enhanced stream potentially used
for a full 3D reconstruction [15]. Other methods include non-local means [16],
bilateral filters with time [12], Kalman filters [17], over-segmentation [18] and
region-growing [19]. Wu et al. [20] present a shape-from-shading method using
the color component to improve the geometry, which allows adding details to
the low quality input depth. They show applications of their method to improve
volumetric reconstruction on multiple small scale and close range scenes. Depth
maps can be upsampled using cross bilateral filters such as joint bilateral upsam-
pling [21] or weighted mode filtering [22]. Such methods are particularly useful to
recover sharp depth regions boundaries and enforce depth-based segmentation.

Hole Filling. Depth sensing range limits and high noise levels often create
holes in RGB-D data. Given the material of observed objects and the type of
technology used, e.g. time of flight, light coding or stereo vision, some surfaces
are harder to detect. The orientation of the surface with regards to the sensor
and the perturbations due to light sources can also lower the quality of certain
areas. In order to fill these holes in the depth component, one can use the same
spatial filters as those used for denoising [16], or morphological filters [13, 14].

Inpainting methods [23], over-segmentation [24] or multiscale [25] processing
are also used to fill holes for e.g., depth image-based rendering (DIBR) under
close viewing conditions.

Plane-based Depth Processing. A set of 3D planes offers a faithful yet
lightweight approximation for many indoor environments. Surprisingly, only a
few methods have used planar proxies as priors to process 2.5D data, with in
particular Schnabel et al. [26] who detect limits of planes to fill in holes in static
3D point clouds. Fast Sampling Plane Filtering [27] detects and merges planar
patches in static indoor scenes. The detected planes allow filtering the planar
surfaces of the input point cloud, however the primitives seem quite sensitive to
the depth sensor noise and lack spatial consistency.
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Dense SLAM. Online dense Simultaneous Localization And Mapping (SLAM)
methods accumulate points within a map of the environment, while continuously
localizing the sensor in this map. Recent dense SLAM systems include RGB-D
SLAM [1], RTAB-Map [28], KDP SLAM [29] or ORB-SLAM2 [30]. Point-based
fusion [31] is also used to accumulate points without the need of a full volumetric
representation. Several methods have been developed to include planar primi-
tives in the SLAM system, either to smooth and improve the reconstruction [32,
33] or improve the localization of the sensor [34–36]. Finally, a recent offline
method [37] makes use of planes to estimate the geometry of a room in order
to remove furnitures and model the lighting of the environment. This allows the
user to re-light and re-furnish the room as desired.

Volumetric Depth Fusion. Online scene reconstruction methods using vol-
umetric fusion were pioneered by KinectFusion [15], then made more efficient
with VoxelHashing [38], and more accurate with BundleFusion [39]. However,
the need for a voxel grid representing the space leads to high requirements of
memory. Recent algorithms make use of planes to smooth and complete the
data within the volume, such as methods by Zhang et al. [40] or Dzitsiuk et
al. [41]. Offline improvement methods have been developed based on the vol-
umetric representation of the scene, such as 3DLite [42] that builds a planar
model of the observed scene and optimizes it to achieve a high quality texturing
of the surfaces.

3 Proxy Clouds

Model. Basically, Proxy Clouds model RGB-D data which is often seen and
consistent through frames and space, hence revealing the dominant structural
elements in the scene. To do so, they take the form of a multiplanar superstruc-
ture, where each proxy is equipped with a local frame, bounds and, within the
bounds, a regular 2D grid of rich statistics, mapped on the plane and gathered
from the RGB-D data.

non activated cell
activated cell

plane inliers

plane

proxy local frame
proxy bounds

{(μ,σ)}

smoothed 
local 
histogram

Fig. 3. Planar Proxy Model. Built upon a plane in 3D space, our proxy model
is made of a local frame, bounds and a grid of cells which contain statistics. These
statistics are the occupancy probability as well as a collection of mean µ and variance
σ values for depth, representing a smoothed local histogram and gathered from the
RGB-D data. Activated cells are the ones containing inliers from many frames.
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Each cell of the grid includes an occupancy probability as well as a statistical
model of the depth values. We choose to represent this local distribution using
smoothed local histograms [43] made of Gaussian kernels. The contribution of an
inlier p of distance d(p) to the proxy is given in Equation 1.

hp(s) =
1

σ
√

2π
e

(s−d(p))2

2σ2 h′p(s) = −s− d(p)

σ2
hp(s) (1)

This compressed model stores the repartition of plane inliers distances to the
proxy and makes possible estimating the diversity of the values within each cell
by counting the number of modes in the distribution. If it has a single mode,
then all values are similar and the surface of the proxy within the cell is most
likely flat. If the distribution has two or more modes, then the values belong to
different groups and the cell likely overlaps a salient area of the surface.

Cells have a fixed size of 5cm x 5cm, which corresponds to about four times
the area of a depth pixel at a typical distance of 8 meters 1. Hence, this size
ensures a minimum sampling of proxy cells by depth points even at far capture
distances.

Cells are activated when their visitation percentage over the recent frames
(the last 100 frames in our experiments) is greater than a threshold (25% in
practice). Once activated, a cell stays so until the end of the processing. We
consider a cell as visited as soon as it admits at least one inlier data point i.e., a
data point located within a threshold distance to the cell under a projection in
the direction from the sensor origin to the point. This activation threshold allows
modeling the actual geometry of the observed scene, while discarding outliers
observations due to the low quality of the sensor. Figure 3 gives visual insight
of a planar proxy.
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Fig. 4. Building Proxies. This procedure is ran for each new RGB-D image Xt at
frame t, made of a color image It and a depth map Dt. D

f
t : low-pass filtered version of

Dt; Mt: camera motion matrix; Nt: normal vectors associated with Dt; Pt−1: proxies
detected at frame t− 1; P c

t : candidate proxies; Pt: proxies at frame t; Df
t |in: low-pass

filtered depth points without inliers from Pt;

1 The area of a pixel at given depth Z is given by a(Z) = tan( fovH
resH

)tan( fovV
resV

)Z2. With

fov = (60°,45°) and res = (320, 240), we have a(8m) ≈ 0.00068539m2 ≈ (2.6cm)2.
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Building Proxies. We build planar proxies on-the-fly and update them through
time using solely incoming raw RGB-D frames from the live stream. More pre-
cisely, for each new RGB-D image Xt = {It, Dt} (color and depth), we run the
procedure described in Algorithm 1 and Figure 4.

Algorithm 1 Building Proxies

Notations: Xt: current RGB-D frame; It: current RGB frame; Dt: current depth
frame; Pt: current proxies;

Pt ← ∅
function BuildProxies(Xt = {It, Dt})

1. filter Dt with a bilateral color/depth convolution;
2. estimate the normal field Nt from Dt;
3. estimate the camera motion Mt from Xt−1 [1];
4. search for previous proxies in Xt:

4.1 register previous frame proxies to Xt using Mt;
4.2 cast votes from samples of Xt to previous proxies;
4.3 given the vote count for each previous proxy:

keep it, update it with Xt and add it to Pt;
discard it and place it in probation state;
purge it if it has been discarded for too long.

5. detect new proxy planes in Xt \ inliers(Pt):

5.1 RANSAC-based plane detection [5];
5.2 post-detection plane fusion;
5.3 compute the local frame;
5.4 initialize the new proxy with Xt.
5.5 register new proxy to global space using Mt.

return Pt

end function

The initial depth filtering (step 1) is based on a bilateral convolution [10] of
the depth map using a Gaussian kernel associated with a range check to discard
points further than a depth threshold from the current point, which could create
artificial depth values if taken into account. In our experiments, we choose to
set this threshold to 20cm, which allows filtering together parts of the same
object, while ignoring the influence of unrelated objects. Due to the embedded
processing constraint, we estimate the normal field (step 2) through the simple
computation of the depth gradient at each pixel, using the sensor topology as
domain. The estimation of the camera motion from the previous frame (step 3)
is inspired from the method introduced by Endres et al. [1], using point features
from It. As previously stated, any egomotion estimation algorithm can be used
at this step, as all we need is the values of the six degrees of freedom modeling
the camera motion. Examples of such algorithms are given in Section 2. In order
to keep or discard previously detected proxies (step 4.2), we define a voting
scheme where samples of Xt which are inliers of a given previous proxy cast their
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vote to this proxy and are marked. Then, the per-proxy vote count indicates
whether the proxy is preserved or discarded (step 4.3). Preserved proxies are
updated with Xt, hence see their parameters refined and occupancy statistics
updated with new inliers. Discarded proxies are placed in probation state for
near-future recheck with new incoming frames, and purged if discarded for too
long. However, in order to avoid losing information on non-observed parts of
the scene, we do not purge proxies that have been seen long enough, which stay
in probation instead. When new proxies have been detected (step 5.1), similar
ones are merged together in order to avoid modeling different parts of planar
surfaces with multiple proxy instances (step 5.2). The proxy is then generated
(step 5.3) with a bounding rectangle and a local frame computed to be aligned
with the scene orientation (more details in the supplemental material). Using
the global scene axes to compute the local frame leads to a fixed resolution
and spatial consistency for the grid of all proxies and allows efficient recovery
and fusion (step 5.2). Finally, occupancy statistics are initialized using Xt (step
5.4). In order to take into account the point of view when modeling the scene,
inlier depth points are projected upon the detected shape following the direction
between the camera and the point. The coordinates of the corresponding cell of
the proxy grid are then recovered to update its statistics. As a last step, proxies
are transformed from local depth frame into global 3D space in order to be
tracked in the next frames (step 5.5).

Figure 5 shows the different steps of the construction of the proxy cloud on
one specific example.

raw point 
cloud

depth 
conversion 

raw RGB-D 
frame

input

smoothed point 
cloud

blur normal 
estimation

normal field 

plane 
detection

plane inliersproxies

proxy 
generation

accumulated proxies

proxy 
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output
generate 
frame

enhanced 
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Fig. 5. Proxy building procedure. The input RGB-D frame is converted into a raw
point cloud on which a low-pass filter is applied, followed by normal estimation (top).
RANSAC-based plane detection [5] is applied and used as a basis for the construction
or the update of our proxies, following the structure shown in Figure 3 (bottom right).
Accumulated proxy cells (bottom) are visualized with colors weighted by their occu-
pancy probabilities: darker cells have a low probability and represent low confidence
areas, whereas brighter cells represent areas with high confidence. Proxies are then
used to generate enhanced RGB-D frames. The whole process runs on-the-fly.
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4 RGB-D Stream Processing

Our Proxy Cloud allows online recovery of the underlying structure of piecewise
planar scenes (e.g., indoor) and is used as a prior to run on-the-fly processing on
the incoming RGB-D frames. The different processing modules applied to the
frames are presented below.

Filtering. While projecting the sensor’s data points onto their associated proxy
would allow removing the acquisition noise and quantization errors due to the
sensor, this would lead to the flattening of all plane inliers. In order to minimize
the loss of details on the planar surfaces while keeping a lightweight data struc-
ture, we instead use the planar proxies as a simple collaborative filter model. To
that end, we designed a custom filter to leverage the smoothed local histograms
stored in each cell of the proxies. As explained in Section 3, the number of de-
tected modes allows distinguishing flat areas of the proxy surface from salient
ones. For flat cells whose distribution has a single mode, we project the depth
points on the plane along the direction between the camera and the point. We
offset the points of the average distance to the plane only if it is above the noise
threshold at the corresponding distance to the camera (see details on the noise
threshold in the supplemental material). This allows smoothing surface areas
that are exactly on the plane while keeping flat areas offset from the plane as
they are in the scene. For flat cells whose distribution has two or more modes,
we do not perform any projection in order to keep the saliency of the surface.

Equation 2 details the smoothed local histograms-based filtering of inlier p to
pf , belonging to cell c with mc modes and an average distance to the proxy of
dc, and a noise threshold of α. The proxy is based on a plane of normal N and
distance to origin l.

pf =


l

p.Np if mc = 1 and dc ≤ α
l

p.Np + dcN if mc = 1 and dc > α

p if mc 6= 1

(2)

The proxy can also be used as a high level range space for cross bilateral
filtering [21], where inliers of different proxies will not be processed together.

Based on time-evolving data points, the proxies consolidate the stable ge-
ometry of the scene by accumulating observations in multiple frames. Averaging
those observations over time removes temporal flickering, after a few frames only.

Hole Filling. Missing data in depth is often due to specular and transparent
surfaces such as glass or screens. With our Proxy Cloud, observed data is rein-
forced over multiple frames from the support of stable proxies, augmenting the
current frame with missing samples from previous ones. In practice, the depth
data that is often seen in incoming frames creates activated cells with sufficient
occupancy probability to survive within the model even when samples for these
cells are missing.
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This hole filling, stemming naturally from the proxy structure, is completed
by two additional steps. First, the extent of the proxies is extrapolated to the
intersection of adjacent proxies - this is particularly useful to complete unseen
areas under furniture for example. Second, we perform a morphological closing
[44] on the grid of cells, with a square structural element having a fixed side of
seven cells. This corresponds to closing holes of maximum 35cm by 35cm, which
allows filling missing data due to small specular surfaces, e.g. computer screens
or glass-door cabinets, while keeping larger openings such as windows or doors.

Resampling. RGB-D streams can be super-sampled on the fly, by enriching
their low definition geometric component using the higher resolution color com-
ponent structured in the proxies to guide the process. This results in high defi-
nition RGB-D data with controllable point density on the surface of the shapes.

Lossy Compression. Compression of the input data is achieved by using di-
rectly the proxy cloud as a compressed, lightweight geometric substitute to the
huge amount of depth data carried in the stream, avoiding storing uncertain
and highly noisy depth regions, while still being able to upsample back to high
resolution depth using a bilateral upsampling. In particular, this is convenient
to broadcast captures of indoor scenes where planar regions are frequent.

5 Experiments

Proxy Clouds are implemented through hardware and software components. The
hardware setup is made of a computer with Intel Core i7 at 3.5GHz and 10GB
memory. No GPU is used. The software setup has a client-server architecture,
where the server runs in a single thread within an embedded environment with
low computational power and limited memory to trigger the sensor and process
the data. The client’s graphical user interface allows controlling the processing
parameters and getting a real time feedback of the stream. A limited range of
intuitive parameters allow the user to control the trade-off between quality of
the output and performance of the processing.

We run all of our experiments on the 3DLite [42] dataset2, containing 10
scenes acquired with a Structure sensor3 under the form of RGB-D image se-
quences. This choice was motivated by the availability of ground truth poses
along with the visual data, as well as result meshes and performance metrics
provided from processing with both BundleFusion [39] and 3DLite [42], with
which we compare our method in Section 6.

Geometric statistics on the generated proxies are available as supplemental
material for all processed scenes (Table 1). We also provide in Fig. 1 of the
supplemental material, a plot of the increment of the average depth over time,
to show the fast convergence of the proxy statistics after about 30 accumulated
samples. The accuracy of the proxy representation can be quantitatively assessed
through the PSNR values in Table 1.

2 3DLite dataset: http://graphics.stanford.edu/projects/3dlite/#data
3 Structure sensor: http://structure.io
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Performance. The current time required to build and update planar proxies
using our (single-threaded) implementation is around 130 ms for an input depth
image of 320x240 pixels. A detailed graph presenting the time needed for all
steps is available as supplemental material (Fig. 2).

Live RGB-D Stream Processing. Figure 6 shows examples of data improve-
ment using the processing modules of our framework. Experiments show that the
Proxy Cloud is particularly efficient to remove noise over walls and floors while
keeping salient parts, and helps reducing holes due to unseen areas, specular
areas, such as lights or glass, and low confidence areas, such as distant points.
Resampling the point cloud allows recovering structure if the sensor did not give
enough data samples, e.g. on lateral planar surfaces. More examples of RGB-D
stream improvement on other scenes are available as supplemental material.

raw RGB-D filtering hole filling resampling

Fig. 6. Data Improvement. Raw RGB-D and Proxy Clouds-improved data showing
results of real time filtering, hole filling and resampling. The texture applied to the
completed data is extracted from the raw color frame, which does not make sense for
all parts of unseen geometry, as we can see on the hole filling and resampling examples.

Compression. Substituting the Proxy Cloud to the RGB-D stream provides a
simple yet effective lossy compression scheme for transmission, with the practical
side effect of removing many outliers. Our efficient data structure leads to good
compression ratios while keeping high Peak Signal-to-Noise Ratio (PSNR) and
being fast for compression and decompression (see Table 1 for evaluation metrics
of the compression using proxies). The proxies are stored as simple grids of statis-
tics with a local frame and bounding rectangle. As such, the compressed structure
itself, i.e. the proxies, can benefit from image-based compression schemes such
as JPEG [45] for offline export and storage, for which we report compression
ratios and PSNR values in Table 1. In addition to the bandwidth saving, the
compressed Proxy Cloud representation enables smooth super-sampling of the
geometric data, where the output point cloud density over proxy surfaces can
be increased as desired. The planar parameterization of each proxy offers a suit-
able domain for point upsampling operators, while a similar approach performed
directly on the RGB-D stream is blind to the scene structure.
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Scene
Proxy Clouds JPEG export H.264 [46] (qp=50)

frame ratio scene ratio PSNR time (ms) ratio PSNR scene ratio PSNR time (s)

apt 5.19 835.7 43.0dB 147/32 7.65 36.7dB 11.1 25.0dB 267/232

offices 3.75 945.5 42.0dB 154/30 11.5 36.0dB 10.5 22.1dB 828/926

office0 8.72 2324.5 42.4dB 122/19 6.75 35.7dB 14.4 30.3dB 692/902

office1 6.61 1944.8 40.8dB 116/27 6.30 34.5dB 10.5 26.9dB 693/692

office3 8.02 1415.8 41.7dB 122/32 7.80 35.9dB 12.3 29.0dB 424/444

scene0220 02 5.26 707.3 39.0dB 127/41 7.25 33.1dB 11.1 18.3dB 165/175

scene0271 01 5.45 942.0 37.5dB 119/39 6.04 33.4dB 10.5 18.8dB 165/162

scene0294 02 3.99 1113.4 41.9dB 133/39 6.69 36.1dB 9.4 17.2dB 238/200

scene0451 05 3.59 674.7 37.1dB 128/41 5.61 32.3dB 7.9 15.5dB 190/138

scene0567 01 6.09 806.5 40.6dB 137/28 8.13 35.5dB 15.6 20.0dB 170/151

Table 1. Compression metrics for all processed scenes. Compression ratios are
based on the raw size of a 320x240 depth map and the size of the proxies without the
outliers. The JPEG export ratio is between the sizes of the raw and exported proxy
clouds. The export and load procedure for all proxies takes an average of about 40 ms.
The Peak Signal-to-Noise Ratio (PSNR) is computed using the average Root Mean
Square Error (RMSE) between raw depth points and proxy-filtered ones. The time
values correspond to the compression and decompression. The former is the building
of proxies averaged over all frames, while the latter is the generation of a depth map
by applying visibility tests to the proxies. We compare our compression performance
to a state-of-the-art method based on H.264 [46] with a quality profile of 50. The
corresponding compression and decompression times are given for the whole frame set.

6 RGB-D Stream Consolidation

While being lightweight and fast to compute, the Proxy Cloud represents a
superstructure modeling the dominant planar elements of an indoor scene. In
addition to being used to filter the input point cloud and generate an enhanced
RGB-D stream as output, proxies themselves are a way to consolidate the input
RGB-D frames. Hence, meshing the proxy cells leads to a lightened organized
structure and aggregating all proxies in the global space allows reconstructing a
higher quality surface model of the observed scene, generated on-the-fly. In this
section, we compare the performance and quality of scene reconstruction using
Proxy Clouds to state-of-the-art methods BundleFusion [39] and 3DLite [42].

Qualitative Results. Figure 7 presents the reconstructed planar models based
on the corresponding Proxy Cloud. More reconstructed scenes are available as
supplemental material. As we can see, most large planar surfaces such as walls
and floors are modeled with a single proxy instance.

Quantitative Results. Tables 2 and 3 present performance and quality met-
rics for the 10 scenes of the dataset. The reconstruction using proxies can be
quantitatively assessed and compared to 3DLite through the values of RMSE
with BundleFusion. These metrics show that the lightweight and simple struc-
ture of the Proxy Cloud leads to better performance both in timing and mem-
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apt office0 scene0220_02

Fig. 7. Scene Reconstruction. Examples of reconstructed scenes of the 3DLite [42]
dataset using Proxy Clouds. The meshes are made of quads when four activated cells
are adjacent, and triangles otherwise.

ory consumption, while keeping a quality comparable to that of state-of-the art
methods.

With its low runtime and memory needs, Proxy Clouds offer a lighter alterna-
tive to most recent reconstruction methods characterized by volumetric or deep
learning approaches, which have high requirements in computation costs and
memory consumption. The generic format and implementation of the proxies
avoid the need for tedious platform-specific tuning and make them well suited
for embedded operation and modern mobile applications. In addition to the fact
that our proxies are built and updated on the fly, the processing runs in a single
thread and requires far less memory than modern embedded devices offer.

Scene #Frames
Processing Time Memory Consumption

BF 3DL PC BF PC

apt 2865 – 5.5h 147ms – 135MB

offices 8518 – 10.8h 154ms – 251MB

office0 6159 26.4ms 3.6h 122ms 21.4GB 136MB

office1 5730 27.7ms 3.1h 116ms 21.1GB 138MB

office3 3820 27.7ms 4.5h 122ms 16.9GB 218MB

scene0220 02 2026 – 2.8h 127ms – 119MB

scene0271 01 1904 – 3.0h 119ms – 105MB

scene0294 02 2369 – 5.0h 133ms – 110MB

scene0451 05 1719 – 5.1h 128ms – 126MB

scene0567 01 2066 – 3.1h 137ms – 206MB

Table 2. Quantitative Comparison of Scene Reconstruction Processing. The
metrics are compared between BundleFusion (BF), 3DLite (3DL) and our Proxy Clouds
(PC). The processing time to process one frame is averaged over all frames in the scene.
The memory consumption is the maximum used memory during processing.



14 A. Kaiser, J. A. Ybanez Zepeda, T. Boubekeur

Scene
Geometry Size (vertices/faces) Model Size RMSE with BF

BF 3DL PC BF 3DL PC 3DL PC

apt 1.7M/3.3M 62K/93K 58K/55K 70MB 9.8MB 4.5MB 3.65m 5.26m

offices 1.4M/2.8M 116K/174K 153K/144K 58MB 19MB 12.7MB 3.81m 4.72m

office0 5.7M/11.3M 42K/63K 45K/42K 238MB 6.3MB 3.6MB 0.10m 0.29m

office1 6.0M/11.8M 46K/69K 50K/46K 251MB 7.2MB 4.5MB 0.19m 0.45m

office3 6.4M/12.6M 42K/64K 46K/43K 266MB 6.2MB 3.9MB 0.30m 0.24m

scene0220 02 0.3M/0.6M 55K/83K 49K/46K 12MB 9.1B 3.7MB 2.84m 3.75m

scene0271 01 0.2M/0.4M 39K/59K 34K/33K 9MB 5.8MB 2.7MB 2.32m 2.31m

scene0294 02 0.3M/0.5M 39K/59K 36K/34K 10MB 6.1MB 3MB 2.75m 2.74m

scene0451 05 0.3M/0.6M 60K/90K 43K/39K 12MB 9.2MB 3.9MB 5.01m 3.84m

scene0567 01 0.3M/0.4M 29K/43K 44K/41K 9MB 4.5MB 3.4MB 2.21m 1.67m

Table 3. Quantitative Comparison of Scene Reconstruction Data. We compare
our Proxy Clouds (PC) to BundleFusion (BF) and 3DLite (3DL). The model size for
BF and 3DL includes texture information, while the PC model only contains geometry.
The Root Mean Square Error (RMSE) is computed using the Metro tool [47] between
the BundleFusion mesh, taken as reference, and the 3DLite and Proxy Clouds meshes.

7 Conclusion & Future Work

We introduced Proxy Clouds, a unified plane-based framework for real-time pro-
cessing of RGB-D streams. It takes the form of stable proxies modeling the
dominant geometric scene structure through a set of rich statistics. Our method
provides a compact, lightweight and consistent spatio-temporal support for the
processing primitives designed to enhance data or lighten subsequent operations.
It runs at interactive rates on mobile platforms and allows fast enhancement and
transmission of the captured data. Our structure can be meshed and used as a
model of the observed scene, generated on-the-fly. Its implementation makes pos-
sible real-time feedback and its control relies on a limited range of parameters.
Compared to BundleFusion and 3DLite, Proxy Clouds provide a good balance
between processing time, memory consumption and approximation quality.

In the future, we plan to develop a parallel implementation using multi-
core CPU and mobile GPUs to achieve a higher processing rate on embedded
platforms. To that end, the primitives we use in our algorithm are naturally
parallel scalable. While our current proxy model stores statistics on a uniform
(yet sparse) grid, it could be improved using a sparse adaptive structure [48].
We also plan to extend the geometry of proxies to other simple shapes, such as
boxes, spheres and cylinders, while still maintaining a unified representation for
all of them, interfacing them seamlessly to the processing primitives. Last, we
plan to use our stable proxies to estimate the position and orientation of the
camera and track it within the scene, in a similar spirit to Raposo et al. [49].
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20. Wu, C., Zollhöfer, M., Nießner, M., Stamminger, M., Izadi, S., Theobalt, C.: Real-
time shading-based refinement for consumer depth cameras. ACM Transactions
on Graphics (TOG) 33(6) (2014) 200

21. Kopf, J., Cohen, M.F., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling.
ACM Transactions on Graphics (ToG) 26(3) (2007) 96

22. Min, D., Lu, J., Do, M.N.: Depth video enhancement based on weighted mode
filtering. IEEE Transactions on Image Processing 21(3) (2012) 1176–1190

23. Liu, R., Deng, Z., Yi, L., Huang, Z., Cao, D., Xu, M., Jia, R.: Hole-filling based
on disparity map and inpainting for depth-image-based rendering. International
Journal of Hybrid Information Technology 9(5) (2016) 145–164

24. Buyssens, P., Daisy, M., Tschumperlé, D., Lézoray, O.: Superpixel-based depth
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