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Figure 1: Multi-resolution pipeline: a) original bundle tractogram, here the thalamocortical one, b) connections created by the Delaunay
tetrahedralization based on the extremities of the fibers, c) the similarity is computed for each fiber, taking into account only the neighbors
found in step b), d) couples of closest fibers are progressively merged into generalized cylinders, e) the final multi-resolution representation
makes it possible to navigate through the different levels of detail in real-time. The percentage refers to the fraction of employed generalized
cylinders compared to the original number of fibers. Color code depends on the orientation of the fiber: red for left-right, blue for inferior-
superior and green for anteroposterior.

Abstract
Current tractography methods generate tractograms composed of millions of 3D polylines, called fibers, making visualization
and interpretation extremely challenging, thus complexifying the use of this technique in a clinical environment. We propose
to progressively simplify tractograms by grouping similar fibers into generalized cylinders. This produces a fine-grained multi-
resolution model that provides a progressive and real-time navigation through different levels of detail. This model preserves
the overall structure of the tractogram and can be adapted to different measures of similarity. We also provide an efficient
implementation of the method based on a Delaunay tetrahedralization. We illustrate our method using the Human Connectome
Project dataset.

1. Introduction

Tractography from diffusion MRI is currently the only technique
able to non-invasively explore the white matter architecture of the
brain. It results in a tractogram which is a bundle of 3D polylines,

usually called fibers, which are estimates of the trajectories of large
groups of neural tracts. Tractography has been proven to be an in-
valuable tool for clinicians and researchers. It is nowadays used
on a daily basis by neurosurgeons for pre-operating planning and
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during surgical operations [JDML17]. It also offers important in-
formation for studying pathological processes in neurological dis-
eases [CCJB∗08].

Recent tractography methods produce up to one million of fibers
[TML11]. This can complicate the rendering, visualization and in-
terpretation of tractograms, thus limiting the aforementioned clin-
ical applications. Furthermore, the considerable number of fibers
can make computationally intractable processes such as non-linear
registration or atlas construction [GCMK∗16], which are important
for research purposes. Many fibers might have a similar trajectory
and connectivity, making the tractogram redundant. For this rea-
son, several authors have proposed new geometric representations
and visualization techniques to simplify tractograms. One of the
most popular approaches consists in grouping similar fibers into
clusters [GCMK∗16, GBC∗12, GPR∗11, MWW∗07, ZL02] which
are then approximated with one representative fiber usually called
prototype [GBC∗12, GPR∗11]. Other authors have also proposed
to represent the spatial extent of the clusters using an encompass-
ing geometry [MWW∗07]. These methods are usually controlled
by one parameter, e.g. a threshold [ZL02], thus presenting only one
level of resolution at a time. Furthermore, information such as the
number of fibers or the spatial extent (i.e. the volume) of the cluster
might be lost in the process. To improve the visualization quality
and efficiency, the geometric models used to represent the fibers are
often computed directly on the GPU [PFK07, RBE∗06, ESM∗05].
Other methods, such as in [EBB∗15], ease visualization by bring-
ing similar fibers closer to each other. In this paper, we do not focus
on single resolution approximations (i.e. clustering), but propose a
multi-resolution representation based on progressive mergings, that
preserves the overall structure of the tractogram and whose contin-
uous levels of resolution can be traversed in real-time.

Progressive simplification methods, which focus on decimating
complex 3D objects while preserving both important geometric
features and topological relationships, have so far not been ex-
plored to approximate large scale tractograms. In [ZL02], Zhang
and Laidlaw propose to use a hierarchical clustering algorithm to
progressively group together similar fibers. They only applied it on
bundles composed of a small number of fibers. Their goal was to
divide tractograms into clusters and not to propose a new geometric
representation or visualization technique (as it is the case in this pa-
per). Taking inspiration from error-driven surface mesh simplifica-
tion [GH97], we propose a progressive merging strategy for group-
ing fibers into generalized cylinders. The proposed method reduces
the redundancy of the tractogram, producing a multi-resolution
structure, which is organized into a nested hierarchy of levels of de-
tail. Every fusion of fibers (or cylinders) represents a new level of
resolution. Once the entire multi-resolution representation is com-
puted, it is possible for the user to navigate through different levels
of detail in a continuous fashion and in real-time, while maintain-
ing the overall structure of the original tractogram. Furthermore,
we also propose an efficient implementation based on a Delaunay
tetrahedralization which makes it possible to use our method on
large tractograms containing millions of fibers.

2. Method

Fiber Decimation We propose a tractogram simplification method
(see Fig.1) based on the progressive mesh methodology [GH97,

HDD∗93]. Given a tractogram with N fibers, we first look for the
two most similar fibers based on a similarity measure. Once de-
tected, the couple is collapsed into a single generalized cylinder
– all input fibers can be seen as generalized cylinders with a null
radius. The process is then iterated until obtaining a single large
cylinder (i.e. N− 1 iterations) or using a stopping criterion to pre-
vent over-simplification.

The proposed “progressive brain tractograms" algorithm is gen-
eral and can be used with any similarity measure. It is inherently
multi-resolution, where every level of detail corresponds to the fu-
sion of two cylinders. Once the sequence of fusions is computed,
we can visualize the tractogram at any resolution and switch among
levels in real-time.

In the following, we will use three dissimilarity measures: the
Mean of Closest distances (MC) [GPR∗11], the minimum average
direct-flip (MDF) [GBC∗12] and one based on the computational
model of Weighted Currents (WC) [GCMK∗16]. Let X = {xi, i =
1...N} and Y = {y j, j = 1...M} be two fibers composed of N and
M points respectively the MC distance is defined as:

MC(X ,Y ) = mean(dm(X ,Y ),dm(Y,X)) (1)

where dm(X ,Y ) = 1
N ∑

N
i=1 miny j∈Y ||xi− y j||2. The MDF is defined

in a similar way, by assuming point-wise correspondence between
fibers. The similarity measure of WC is instead defined as:

WC(X ,Y ) =
∣∣Ka(‖ f a− ta‖)Kb(‖ f b− tb‖)
N−1

∑
i=1

M−1

∑
j=1

α
T
i Kg(‖ci−d j‖)β j

∣∣ (2)

where ci and αi (respectively d j and β j) are the centers and tangent
vectors of X (respectively Y ), f a, f b and ta, tb are the correspond-
ing endpoints of X and Y respectively, and Ka, Kb and Kg are three
Gaussian kernels parametrized by σa, σb and σg respectively.

Delaunay Tetrahedralization Comparing all fibers to each other
leads to quadratic complexity and intractable computations. Fur-
thermore, most of the computations would be useless since simi-
lar close-by fibers should be merged in priority, thus indicating that
only neighboring fibers need to be compared and considered as can-
didates for merging. We exploit this idea by computing once and for
all an adjacency relationship among fibers, relying on the Delaunay
tetrahedralization of their extremities. This tetrahedralization uses
the Euclidean distance between all the endpoints of the fibers and
is computed using the fast implementation of TetGen [Si15]. The
adjacency links are given by the edges of the tetrahedral mesh. By
exploiting this tetrahedralization, we drastically reduce the amount
of computations since we now compare every fiber with only the
adjacent (linked) ones. When merging two fibers together, the ad-
jacency links are updated accordingly: a neighborhood relationship
is built between the merged fiber and all the neighbors of its two
original fibers, while previous neighborhood relationships involv-
ing these two original fibers are suppressed. Relying on the De-
launay tetrahedralization provides a geometrically well distributed
set of adjacency links, which is beneficial to our simplification.
Furthermore, results obtained with this technique are not biased,
namely equivalent to the ones obtained without using it.
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Figure 2: Scheme of the merging of two fibers/cylinders C1 and C2
into C3.

Geometric Representation In this paper, we consider that every
fiber is described by its geometry and connectivity. The employed
geometric representation should preserve these properties. To this
end, we propose to use generalized cylinders with an elliptical basis
as geometric representations for the merged fibers. We define one
ellipse per vertex of the center-curve such that the resulting cylinder
incorporates the trajectory and endpoints of the fibers (or cylinders)
of the previous level of resolution.

Given two fibers/cylinders C1 and C2, Fig.2 schematically
presents how they are merged into cylinder C3. We use as refer-
ence the center-curve (or fiber) with less points (C1 in Fig.2). For
each point of C1, we look for the closest point in C2. The corre-
sponding point in C3 is computed as their weighted mean, where
the weights W1 and W2 correspond to the number of original fibers
that C1 and C2 represent (and we set W3 = W1 +W2 accordingly).
To avoid flickering, the thickness of rendered cylinders is clamped
to a minimum. Moreover, it is important to notice that we use the
Euclidean distance between the endpoints of C1 and C2 to compute
the extremities of C3. In order to make sure that the extremities of
C3 would actually lie at the border with the gray matter surfaces,
one should use a (computationally expensive) geodesic distance.
This is left as future work.

Implementation We implemented our method in C++ using Qt
for the graphical user interface and OpenGL for the rendering. To
improve efficiency and memory usage, the geometry is computed
on the GPU, using the hardware tessellation unit to synthesize on-
the-fly our visual approximations. We will make the code pub-
licly available at https://perso.telecom-paristech.
fr/comercier/. We provide a video of the proposed interac-
tive system as a complementary material (same url).

3. Results and Discussion

Dataset We conducted our experiments on the HCP dataset
(https://db.humanconnectome.org/). Tractograms are
obtained using the SDSTREAM deterministic tracking algorithm
of MRTrix3 [TCC12]. All tracts employed in the experiments (Un-
cinate Fasciculus, Ifof and Thalamocortical bundle) are extracted
using either WMQL [WMR∗16] or manual segmentation. Please
note that our method is general and could be used with any stream-
line tractography algorithm.

Comparison with QuickBundles In Fig.3, we compare our
method with QuickBundles (QB) [GBC∗12], a well-known ap-
proximation algorithm for brain white matter tractograms based
on prototypes. We first executed QB on a bundle composed of
19,782 fibers. We used different thresholds in the range 5-10mm
as suggested in [GBC∗12]. We chose the middle one (7) for com-
parison. It resulted in 275 prototypes. We then executed our algo-

rithm (once) with the MDF metric, used by QB, and then interac-
tively change the resolution to obtain Fig.3(c,d and e). Our result,
in Fig.3e, has as many cylinders as prototypes in Fig.3b. The pro-
posed method, after a single and fast pre-computation (see Tab.1),
creates an encompassing representation that well approximates the
original bundle at each level of resolution. On the contrary, QB
produces prototypes that, depending on a user-defined threshold,
might not preserve the overall structure and volume of the origi-
nal bundle. Moreover, one might need to execute QB several times
before finding an optimal threshold (for a given clinical/research
application).

Multi-resolution Figure 4 shows results on three different bun-
dles: the Uncinate Fasciculus (a, b), the Ifof (c), and a whole brain
(d). The measures used for the experiments are MC (see (1)) for
(a), WC (see (2)) for (b and d), with σa = 6mm, σb = 6mm and
σg = 8mm, and MDF for (c). Computation times for these experi-
ments are given in Tab.1 and were obtained on an Intel Xeon E5-
1650V4. These results suggest that the overall structure of the bun-
dles is preserved across the multi-resolution representation, even
at low resolutions, e.g. 15%. The graphs on the right of Fig.4, il-
lustrate the mean and max valences across the resolutions. The
valence of a fiber is defined as the number of its neighbors. The
evolution of the valence depends on the order in which the fibers
are merged, and therefore on the employed distance/similarity mea-
sure. A measure that favors geometrically well distributed cylinders
– composed of a similar number of original fibers – preserves a
bounded valence. In this case, the size of the priority list remains
linear in the number of original fibers n, and our strategy exhibits a
total time complexity of O(n log(n)). These complexities were ob-
served in our experiments (see Tab.1). In this table and in Fig. 4,
we notice that the mean valence remains relatively stable using all
distance measures, even with one million of fibers (Fig.4d). This
suggests that our method, with the proposed dissimilarities, should
preserve the overall structure of the brain since fibers are aggre-
gated all around the tractogram and not only in a specific area.

The proposed method results in a multi-resolution representation
which approximates the original tractogram with a decreasing pre-
cision, and is not intended to produce anatomically reproducible
clusters among subjects. Moreover, it is initialized with a Delau-
nay tetrahedralization of the extremities, which means that we in-
herently assume that two fibers are similar if their extremities are
close to each other. The employed metric, as the ones proposed
here, should therefore be consistent with this assumption.

For similarity measures defined on inner product spaces, we
also propose an automatic stopping criterion to prevent over-
simplification (e.g. a single cylinder). Two cylinders are not merged
together if they are orthogonal (or almost) to each other. Further-
more, all fibers not merged at the end of the algorithm (and cylin-
ders representing very few fibers) can be considered as outliers and
thus discarded.

4. Conclusion

We introduced a new multi-resolution representation for brain trac-
tograms that reduces the redundancy, easing the visualization and
interpretation. It supports any similarity measure between fibers.
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Figure 3: a) Thalamocortical bundle with 19,782 fibers, b) reduced to 275 prototypes with QuickBundles (Threshold=7mm), c), d) and e)
reduced to 6925, 1422 and 275 cylinders with our method.

Figure 4: Bundles at different resolutions : a) Uncinate Fasciculus, computed with the mean of closest distances ; b) Uncinate Fasciculus,
computed with the dissimilarity of the weighted currents; c) Ifof bundle, computed with the dissimilarity of the weighted currents; d) whole
brain tractogram, with 1 million fibers, computed with the dissimilarity of the weighted currents. The graphs represent the valence of the
fibers in function of the resolution. The maximum valence is in red, and the average valence is in blue.
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Table 1: Maximum and average valence with computational times for some bundles. The computational time for QuickBundles is presented
on the last line as comparison. The threshold used for obtaining a single simplification was 7mm.

Bundle Metric Number Maximum Average Tetrahedralization Total
of fibers valence valence time (s) time (s)

Uncinate MC 940 85 25.0±3.2 0.01 1.3
Fasciculus WC 940 98 23.8±3.2 0.01 1.9

MC 1,983 217 28.3±4.3 0.02 4.3
Ifof WC 1,983 197 27.7±3.4 0.02 6.9

MDF 1,983 216 29.0±3.8 0.02 1.7
Thalamocortical MC 19,782 760 30.3±3.3 0.28 34.0

bundle WC 19,782 717 29.3±2.5 0.28 55.6
MC 1,000,000 9,392 29.6±2.5 15.42 1,893.7

Whole Brain WC 1,000,000 1,331 27.6±1.8 15.42 3,094.2
Tractogram MDF 1,000,000 373 29.9±2.7 15.42 616.3

QB (MDF) 1,000,000 - - - 4,825.2

We also proposed a method to determine adequate candidates
for efficient merging of groups of fibers. Our progressive method
makes it possible to display the input tractogram at any resolu-
tion in a continuous and real-time way. From a technical point of
view, our two main contributions are a multi-resolution representa-
tion for tractograms based on a progressive decimation algorithm,
and a combinatorial strategy based on a Delaunay tetrahedralization
to make it computationally tractable. Visualizing groups of simi-
lar fibers as single generalized cylinders and being able to easily
change the level of resolution may be very useful for clinicians.
For instance, it can help neurosurgeons identify relevant anatom-
ical tracts which should not be severed during the operation, thus
reducing post-operative complications and improving the clinical
outcome. It is to note that we received very positive feedbacks from
our neurosurgeons colleagues of the Ste Anne hospital in Paris.

Future Work To improve visualization, in particular the 3D per-
ception of the bundles, ambient occlusion could be efficiently im-
plemented, exploiting the hierarchical structure. Furthermore, we
also plan to expand the proposed representation by adding func-
tional information defined, for instance, as a scalar field (e.g. Frac-
tional Anisotropy (FA)) which could be visualized using color or
texture.
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