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Stéphane Calderon Tamy Boubekeur
Telecom Paristech - CNRS - IMT

Abstract

This document completes the paper “Point Morphology”, by
Stéphane Calderon and Tamy Boubekeur (ACM Transaction on
Graphics, Proc. of SIGGRAPH 2014). In part A, the appendix of
the original paper is provided with extended elements of proof and
discussion. In part B, additional results for the point morphology
operators and example applications are provided.

A Appendix

We derive a variational formulation of Mathematical Morphology
and show that our projective approach is an approximation of this
variational formulation.

In the following an input shape I will be defined as a 3-manifold
compact subset of R3. Moreover we will use this neighbourhood
defintion: N r

x � tu P R3, }u� x}2   ru.

First we recall the classical Mathematical Morphology which is
based on set theory.

A.1 Set Morphology

Set Structuring Element. A Structuring Element B is defined as
follows:

B � R3, 0 P B, B is compact and connected (1)

And B: is defined as the symmetric of B w.r.t 0. The translated SE
Bc with c P R3 is defined as:

Bc � tb� c|b P Bu (2)

Set Morphology. Given an input shape I and a SE B, the set Di-
lation is defined as:

DI,B �
¤
cPI

Bc (3)

The boundary associated with this set Dilation is defined from a
topological point of view as:

BDI,B � tx P R3, @r D ppu, quq P N r
x | pu P DI,B , qu R DI,Bu

(4)

A.2 Set Boundary Equivalence

Equivalence Theorem. Given an input shape I and a SE B we
have:

DI,B �
¤
cPI

Bc �
¤
cPBI

Bc Y I (5)

Proof. We have a second set characterization of DI,B (see [Serra
1983]) as:

DI,B � tx P R3 | B:
x X I � Hu (6)

Thus we have: ¤
cPBI

Bc � tx P R3 | B:
x X BI � Hu (7)

Let us first prove the first inclusion
�
cPI

Bc �
�

cPBI

Bc Y I:

x� P
¤
cPI

Bc ñ x� P tx P R3 | B:
x X I � Hu

ñ Du P B:

x�
, u P I

If x� P I then :
x� P

¤
cPBI

Bc Y I (8)

If x� R I then there exists a continuous path Pu,x� between u P I

and x� R I such as Pu,x� � B:

x�
(since B and B: are con-

nected). As a consequence:

Du� P B:

x�
, u� P BI ñ x� P tx P R3 | B:

x X BI � øu

ñ x� P
¤
cPBI

Bc Y I

Figure 1: A2 Illustration of how Pu,x� crosses I’s boundary

Let us prove the second inclusion
�

cPBI

Bc Y I �
�
cPI

Bc:

x� P
¤
cPBI

Bc Y I

If x� P I then:

0 P B ñ 0 P B: ñ Du P B:

x�
,u P I

ñ x� P
¤
cPI

Bc

If x� P
�

cPBI

Bc owing the fact that BI � I we have:

x� P
¤
cPI

Bc (9)

A.3 Variational Morphology

We define a variational formulation of the set morphology.

Variational Subset of R3. Given a compact subset B of R3 we
define its variational representation as a C0 scalar field B : R3 Ñ
R such as:

Bpxq �

$'&
'%
  0, if x P B̊
0, if x P BB
¡ 0, if x R B

(10)



Variational Structuring Element. Given a SE B we define its
variational SE representation as the variational representation B
of B. We define a translated variational SE Bc as:

Bc : R3 Ñ R,xÑ Bpx� cq (11)

Variational Morphology. Given an input shape I andB a SE with
its variational SE representation B , we define a variational Dila-
tion as:

DI,Bpxq � min
cPI

Bcpxq (12)

The boundary associated with this variational Dilation is defined
as:

BDI,B � tx |DI,Bpxq � 0u (13)

From this variational formulation we can derive DI,B continuity.
Lemma 1. Given an input shape I and B a SE with its variational
SE representation B, we have:

DI,B : R3 Ñ R,xÑ min
cPI

Bcpxq is C0 (14)

Proof. As B is C0 we get the continuity of Bcpxq � Bpx � cq
w.r.t x and c variables by composition. Adding that I is a compact
subset of R3 the lemma is a direct corollary of Berge’s Maximum
Theorem [Berge 1959].

Lemma 2. Given an input shape I , andB a SE with its variational
SE B representation we have:

x P DI,B ô DI,Bpxq ¤ 0

x R DI,B ô DI,Bpxq ¡ 0

Proof. For the first equivalence we have:

x P DI,B ô x P
¤
cPI

Bc

ô D pc P I | x P B
pc

ô D pc P I |B
pcpxq ¤ 0

ô min
cPI

Bcpxq ¤ 0

and the second equivalence:

x R DI,B ô x R
¤
cPI

Bc

ô @ qc P I x R B
qc

ô @ qc P I B
qcpxq ¡ 0

ô min
cPI

Bcpxq ¡ 0

A.4 Set and Variational Formulation Equivalence

Now, we link set and variational morphologies in the form of an
equality between the boundaries produced by both formulations.

Equivalence Theorem. Given an input shape I and B a SE with
its variational SE representation B we have:

BDI,B � BDI,B (15)

Proof. Starting with the topological boundary definition BDI,B of
DI,B :

x P BDI,B ô @r D pu, qu P N r
x | pu P DI,B , qu R DI,B

x P BDI,B ô D pun, qun Ñ
nÑ8

x | pun P DI,B , qun R DI,B
With Lemma 2 we have:

x P BDI,B ô D pun, qun Ñ
nÑ8

x |DI,Bppunq ¤ 0, DI,Bpqunq ¡ 0

By continuity of DI,B (see Lemma 1) we have:

x P BDI,B ô DI,Bpxq � 0

And finally:

x P BDI,B ô x P BDI,B

A.5 Variational Boundary Morphology

Variational Boundary Morphology. Given an input shape I with
its variational representation I and B a SE with its variational
representation B , we define (with ^ as the binary min) a varia-
tional boundary Dilation as:

DI ,Bpxq � min
c P R3

I pcq�0

Bcpxq ^ I pxq (16)

The boundary associated with this variational boundary Dilation is
defined as:

BDI ,B � tx |DI ,Bpxq � 0u (17)

A.6 Set and Variational Boundary Formulation Equiv-
alence

Now, we can show, similarly to variational morphology, but using
the set boundary formulation as a basis, the same equivalence:

Equivalence Theorem. Given an input shape I with its variational
representation I andB a SE with its variational representation B
we have:

BDI,B � BDI ,B (18)

A.7 Projective Morphology

Given an input shape I with its variational representation I and B
a SE with its variational representation B we define a projection
operator to reach BDI ,B

We start with this simple definition:

PBpxq � x�Bc�pxq
∇Bc�pxq

}∇Bc�pxq}
(19)

c� � argmin
c P R3

I pcq�0

Bcpxq (20)

We can show that using the same definitions from Sec. 3.4 for P8
D ,

but using an optimized centroid c� defined as the exact solution of
Eq. 20, we can reach the actual Dilation BDI ,B:

Projection Theorem. For x P R3:

P8
D pxq P BDI ,B (21)



Proof. If the projection procedure converges toward P8
D pxq � x�

we have PDpx�q � x�. This implies: :$'&
'%

I px�q ¡ 0

PBpx
�q � x�

I pc�q � 0

ô

$'&
'%

I px�q ¡ 0

Bc�px
�q � 0

I pc�q � 0

(22)

Which permits to conclude:

min
c P R3

I pcq�0

Bcpx
�q � 0, I px�q ¡ 0

min
c P R3

I pcq�0

Bcpx
�q ^ I px�q � 0

DI ,Bpx
�q � 0

x� P BDI ,B

The same hold for the Erosion operator PE .

A.8 Point Morphology as a Sampled Projective Mor-
phology

We can think of our morphological centroid as a sampled approx-
imation of the projective morphology. We aim at reformulating
Eq. 20 by a kernel density estimation of this global optimization
problem with non linear constraints. We tackle this global optimiza-
tion using the mean shift algorithm [Cheng 1995] on a sampling of
its objective function. Thus, we replace Eq. 20 by:

c� � argmin
c P R3

I ppiq�0

¸
i

pBpipxq � γqωσ
�
}c� pi}2

�
(23)

This equation is a simple reformulation of Eq. 20 where the objec-
tive function Bcpxq and the constraint I pcq � 0 are replaced by
a new objective function based on weighted kernel density estima-
tion. The constraint is replaced by kernel density samples, and the
objective function by weights on theses samples. The global off-
set γ � min

x P R3
Bpxq ensures the positiveness of the weights, and

as such makes the objective a proper density. We found that using
Gaussian kernels also for the weights improves stability. Addition-
ally this also transform the initial minimization equation into the
following maximization problem:

c� � argmax
c P R3

I ppiq�0

¸
i

ωσ pBpipxq � γqωσ
�
}c� pi}2

�
(24)

As a final step we instantiate the surface model I by the implicit
form of a PSS model The new objective function of Eq. 24 can
be maximized through the mean shift procedure [Fukunaga and
Hostetler 1975; Cheng 1995].

ckpxq �
¸
i

ωσp}c
k�1pxq � pi}q ωσpBpipxqqpi (25)

@πi P Π, I ppiq � 0 (26)

A.9 Normals of Point Morphology

The normals of the morphological surfaces are computed by taking
the gradient of their implicit forms:

npxq � ∇Bc�pxqpxq � ∇Bc�pxq∇c�pxq (27)

We compute ∇c�pxq recursively through Eq. 25:

∇ck �
¸
i

ωk�1
i pi∇θk�1

i � ck
¸
i

ωk�1
i ∇θk�1

i (28)

ωk�1
i � ωσp}c

k�1 � pi}q ωσpBpiq (29)

∇θk�1
i � �

2

σ2
ppck�1 � piq

T∇ck�1 �Bpi∇Bpiq(30)

A.10 Empirical Convergence

We finally show an empirical validation of our point sampled ap-
proximation. We computed a reference high density sampling
(1.6M points) of both the input hand (with the APSS surface model)
and its 0.1 spherical dilation (with our Point Morphology). Then,
starting from a low density input hand we compute the RMS error
between its dilation and the reference dilated solution.
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Figure 2: Convergence Rate. We represent the RMS error between
our Point Morphology and a reference solution. Here σp represents
the point spacing of the increasing density input models.
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B Additional Results

In the following pages, we provide additional examples of Point
Morphology samplings and applications.



Figure 3: Point Morphology Operators. From left to right: input, dilation, erosion, closing, opening for the Neptune (1st row, 1.2M input
point), the Buddha (top, 255k input points), the Filigree (middle, 400k input points) and the Oil Pump (bottom, 390k input points).



Figure 4: Hysteresis Shape Filtering (bottom left and bottom middle) performed with Point Morphology on the Chinese Dragon (171k input
points, with CΠ � 0Π and sO � sC � 0.05), the Neptune (1.2M input points,with OΠ �CΠ and sC � sO � 0.008) and the Mammoth model
(1.2M input points, with OΠ � CΠ with sC � 0.1 and sO � 0.01) for which we display the resulting filtered projective medial axis (bottom
right).

Figure 5: Projective Medial Axis (bottom) computed with Point Morphology for the Raptor (880k input points), the Filigree (400k input
points), a performance capture model (79k input points, courtesy Max Planck Institute, Germany) and the Oil Pump (390k input points).



Figure 6: Raw ccan processing for the Bimba model. From left to right: input raw scan (1.8M points), closing, input closeup, closing closeup


