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Figure 1: Starting from an unstructured 3D point cloud, we define morphological operators based on a single projection procedure and
propose advanced shape analysis applications in the form of simple sequences of these operators.

Abstract

We introduce a complete morphological analysis framework for 3D
point clouds. Starting from an unorganized point set sampling a
surface, we propose morphological operators in the form of pro-
jections, allowing to sample erosions, dilations, closings and open-
ings of an object without any explicit mesh structure. Our frame-
work supports structuring elements with arbitrary shape, accounts
robustly for geometric and morphological sharp features, remains
efficient at large scales and comes together with a specific adap-
tive sampler. Based on this meshless framework, we propose appli-
cations which benefit from the non-linear nature of morphological
analysis and can be expressed as simple sequences of our opera-
tors, including medial axis sampling, hysteresis shape filtering and
geometry-preserving topological simplification.
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1 Introduction

Point-based modeling aims at processing, analyzing and interact-
ing with digital shapes which are represented by unorganized point
samplings without any explicit connectivity. The related set of
meshless operators are particularly attractive in the context of 3D
and 4D capture but can also benefit any computer graphics appli-
cation as long as they can provide a point sampling of their surface
models. For instance multiple registered range maps coming from

laser scanners, dense point sets generated using multiview stereo-
vision or large polygon soups designed in CAD software can all be
expressed as a list of point samples with attributes and consequently
be processed within the same point-based pipeline.

Standard point-based methods take place at the earliest stages of
the processing pipeline, prior to mesh reconstruction and are often
based on operators which alter the point sampling and embedding.
The majority of these operators mimic the classical signal process-
ing primitives, namely filtering, sampling and reconstruction. They
commonly allow to remove noise, increase/decrease the point den-
sity or improve its distribution. Although these local geometric
computations significantly enhance data quality for the upcoming
processing steps, the global analysis of the shape is usually delayed
until post-meshing stages, where the mesh connectivity makes it
possible explore its components, medial structures and topology.

This typical pipeline has two major drawbacks: first, the shape anal-
ysis is performed too late to avoid dealing with topology changes
and large geometric alterations on a mesh structure, which is often
unstable and prone to artifacts, in particular when the manifold-
ness of the mesh is not guaranteed; second, the meshing process
itself would benefit from this analysis if performed at the earliest
stages. Actually, it would be preferable to define shape analysis
methods which can act directly on the point set and influence the
global geometry and (implicit) topology of the shape prior to the
reconstruction of a mesh, if ever required.

Among the various shape analysis frameworks that exist for struc-
tured 2D and 3D data, mathematical morphology appears as one
of the most powerful and versatile, with the advantage of provid-
ing a large number of high level shape transformations employing
a restricted set of operators. Image filtering, segmentation, skele-
tonization, recognition and many other processes have successfully
benefited from discrete mathematical morphology, in the context of
medical imaging, metrology and robotics.

In this paper, we propose point morphology (see Fig. 1), a complete
morphological framework for analyzing and processing 3D point
sets (Sec 3). Using a new model for the underlying structuring
element (Sec. 3.2), we reformulate the basic morphological oper-
ators, namely erosion and dilation, as projections (Sec 3.3). Used
with a new feature-aware point sampler (Sec 3.5), we define closing
and opening accounting robustly for the sharp morphological struc-
tures which appear even on simple shapes, keeping computations
tractable.



Our operators are simple to implement, scalable and robust: we
evaluate them on a wide range of inputs (see Sec. 4). Based on this
framework, we perform non-trivial shape transformations directly
on point-based models using simple sequences of point morpho-
logical operators. We illustrate this property by proposing several
applications (Sec. 5), including projective medial axis modeling,
hysteresis shape filtering and geometry-preserving topological sim-
plification.

2 Background

Our approach is based on two distinct fields: point set surfaces and
mathematical morphology. In the following, we recall their basic
principles before discussing recent related work. For both, we con-
sider a shape as a compact subset B of R3 and its variational repre-
sentation as a scalar field B : R3 Ñ R:

Bpxq �

$'&
'%
  0, if x P B̊

0, if x P BB

¡ 0, if x R B

(1)

2.1 Point Set Surfaces

A Point Set Surface [Alexa et al. 2001; Amenta and Kil 2004]
(PSS) models a smooth manifold from an unorganized 3D point
cloud based on a projection operator. This representation has been
successfully used for the complete point-based modeling chain, in-
cluding resampling, reconstruction, analysis, editing, compression
and visualization.

PSS Definition Let us consider Π � tπi � ppi,niqu a set of
surface samples, with pi P R3 (resp. ni P R3 ) the sample’s
position (resp. normal), and x P R3. The Moving Least Square
(MLS) projection [Levin 1998; Levin 2003; Alexa et al. 2004] is
defined as:

MLSΠ : R3 Ñ R3,x ÞÑ Ppxq (2)

The operator Ppxq embeds two fundamentals procedures:

1. fitting: optimizes a weighted least squares primitive B that
approximates Π around x.,

2. projection: projects x onto B.

A PSS is defined in its projective form as the stationary set of R3

under this MLS projection (see Fig. 2):

PSS � tx P R3|Ppxq � xu (3)

To reach the PSS from any x P R3 we simply iterate MLSΠ until
convergence (for any x P R3, P8pxq � P � .. � Ppxq P PSS).

Shape Fitting The fitted shape B is parameterized by a vector
field q� : R3 Ñ Rd,x Ñ q�pxq so that B :� Bq� . This vector
field defines a set of parameters modeling the fitted primitive (e.g.,
position and radius if B is a sphere, position and orientation if B is
a plane, etc.) at each point in space, approximating Π around x:

q�pxq � argmin
q

¸
i

ωσ p}x� pi}q d pq,πiq
2 (4)

where ωσ is a smoothly decaying weighting kernel ensuring par-
tition of unity in the sum. The scale at which B is fitted to Π is
typically controlled by a parameter σ which relates to the support
size (or influence radius) of ωσ . We consider d pq,πiq2 the dis-
tance between the primitive defined by q and an input sample.

Figure 2: PSS principle in 2D. The input point set is represented
with grey dots and black normals. In green a point x candidate
for a projection; in gradient color circles |Bq� | (here the signed
distance field’s absolute value) of the fitted primitive (a circle) at x
and its parameters q�; in red the projection Ppxq onto Bq� . The
point set “curve” (resp. the absolute value of its implicit form) are
represented in grey (resp. gradient color) in the background.

Shape Projection Given the locally fitted primitive Bq� we
project onto it through:

Ppxq � x�Bq�pxq
∇Bq�pxq��∇Bq�pxq

�� (5)

where Bq�pxq is the variational shape representation of Bq� . Be-
yond this projective form, the PSS has also an implicit form defined
as the zero set of a scalar field IΠpxq � Bq�pxqpxq, both being
related by:

Ppxq � x ô IΠpxq � 0.

PSS Models Popular instances of this general PSS definition in-
clude the Simple PSS (SPSS) model [Adamson and Alexa 2004]
which uses an implicit plane representation for B — q � pc,nq,
Bqpxq � px�cq�n, and d pq,πiq2 � }c� pi}

2�}n� ni}
2 with

c (resp. n) the center (resp. normal) of the plane — and the Alge-
braic PSS (APSS) model [Guennebaud and Gross 2007] which uses
an algebraic sphere representation forB — Bqpxq � r1,x,xTxs �

q and d pq,πiq
2 � β }∇Bqppiq � ni}

2 � }Bqppiq}
2 with β

weighting the derivative constraints.

A number of PSS variations have been proposed, including hermi-
tian interpolation [Alexa and Adamson 2009], scale-space repre-
sentation [Pauly et al. 2006; Mellado et al. 2012], point cell com-
plex definition [Adamson and Alexa 2006] and feature preserva-
tion [Fleishman et al. 2005; Reuter et al. 2005; Öztireli et al. 2009].
Essentially, PSS models allow to process and analyze point clouds
by varying the support of the kernel (e.g., large supports act as low-
pass filters), mimicking the Gaussian analysis of signals.

2.2 Mathematical Morphology

Every signal analysis theory uses a set of transformation opera-
tors revealing its structure. For instance, linear analysis is based
on convolutions since constraining the operators to be linear and
translation invariant naturally gives rise to a convolution [Babaud
et al. 1986]. Giving up the linear constraint widens the signal ex-
ploration.

Mathematical Morphology [Serra 1983] (or morphology) is a shape
analysis theory exploiting non-linear operators which intuitively al-
ter the object at every point with a particular shape B called in this
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Figure 3: Continuous Morphology. (a) A circular SE (light blue)
sweeping a binary input (orange) with resulting Dilation (light
blue), Erosion (blue), Closing (green) and an Opening (light green).
(b) The shape of the SE influences strongly morphological transfor-
mations (blue) for the same input (orange).

context the structuring element (or SE). Given the shape I of an
object, the two basic operators are the dilation DI,B � I ` B and
the erosion EI,B � I a B where ` and a are Minkowski sum
and subtraction i.e., I ` B �

�
yPI

By and I a B � sI `B: where

By � tb� y|b P Bu is the translated SE, � is the complementary
operator and B: is the symmetric of B w.r.t to 0. These opera-
tors are combined to define a Closing CI,B � ErDI,Bs,B and an
Opening OI,B � DrEI,Bs,B (see Fig. 3). As we shall see later, the
choice ofB strongly influences the resulting transformation as well
as the performed analysis of I . Unlike raster images, the case of 3D
surfaces is usually addressed using continuous morphology through
a binary function classifying the ambient space as either inside or
outside the object.

Mathematical morphology has a large spectrum of applications, in-
cluding scale-space analysis, skeletonization, segmentation, com-
pression and micro-structure modeling. We refer to the book of
Najam and Talbot [2010] for a recent survey.

2.3 Related Work

Mathematical morphology has been so far mostly used in its dis-
crete form, for 2D and 3D images. However, Minkowski sums have
been studied for polyhedral meshes and point sets in several works.

Meshes Barki et al. [2011] introduced a method to compute
Minkowski sums of fold-free polyhedron with a convex polyhedral
SE. They propose the notion of contributing vertices to build a tight
superset of geometric primitives. Then the exact Minkowski sum
is extracted from this superset. Another approach by Campen et
al. [2010] permits exact Minkowski sum computation with an arbi-
trary SE and an efficient computational framework. However, con-
trary to Barki et al., only the outer boundary of the sum is extracted,
leaving the inner boundary to a grid structure and a prior knowledge
of its location. In both cases, a clean mesh input is required, which
is typically not available at the early stage of the modeling pipeline.

Points Sets Observing that the signed distance function (SDF)
of a surface encompasses dilations by a spherical SE, Molchanov
et al. [2010] use directly the SDF of an algebraic point set sur-
face [Guennebaud and Gross 2007] to define a Minkowski sum.
This formulation provides a smooth output but is restricted to spher-
ical SEs and presents defects in the vicinity of singular points of the
SDF (medial axis). In practice, hard thresholding on the neighbor-
hood selection is used to decide which part of the point set surface
is taken into account in the SDF evaluation. Indeed a proper me-
dial axis model (i.e., smoothness) is not guaranteed, which becomes
problematic around the many sharp edges appearing when dilating.

Lien et al. [2007] define purely point-based Minkowski sums and
do not aim at representing the morphological transformation as a
continuous surface, modeling the SE itself as a point set. First, at

each point of the input point set, all SE points are added to the out-
put. Second, this superset is decimated to remove all the points
that do not belong to the dilation. The result is a point sampling
of the dilation. Although very simple, this approach has several
drawbacks. First, smooth reconstructions of the resulting point set
often gives rise to strong artifacts, in particular for non spherical
SEs. Second, the sharp features emerging from the sums and sub-
tractions, which are critical in morphological analysis, are not cap-
tured. Third, the computational cost, with an intermediate sampling
having the complexity of the model times the SE, is prohibitive for
dense input (millions of points) and/or complex SEs (thousands of
points).

Peternell et al. [2007] and Nelaturi et al. [2009] use a similar ap-
proach but then proceed with either a grid based decimation [Peter-
nell and Steiner 2007] or a flood filling [Nelaturi and Shapiro 2009]
of the resulting sum to extract the outer boundary of the dense re-
sult, producing similar caveats. Chen et al. [2005] compute off-
sets (dilation with a spherical SE) in a similar fashion as Lien et
al. [2007] and Peternell et al. [2007]. However, the SE’s sampling
for the sum is sensitive to the input surface’s curvature, reducing
the magnitude of the decimation stage.

Most of these methods rely on the construction of a superset of
points and extract the Minkowski sum by decimating it. Such solu-
tions are perfectly valid for the computation of a single sum. Un-
fortunately, morphological algorithms require sequences of sums
and subtraction, which has at least three consequences: (i) the in-
termediate shape produced at a given step of the sequence should
be properly resampled for the next step; (ii) the sharp features ap-
pearing during the sequence should be preserved, independently of
the input density, as they typically capture the structure revealed
by morphology; (iii) an end-to-end local computation avoiding the
generation of supersets is required in practice to process real data in
a reasonable amount of time. Our framework addresses these three
issues.

3 Method

3.1 Overview

Our goal is to compute erosions, dilations, openings and closings of
a surface point cloud Π. To do so, we adopt a projective approach
where these morphologies are seen through the projection of the
surrounding space. This allows us to compute them without explicit
connectivity in the input, using any structuring element, scaling to
large data by bypassing intermediate supersets and preserving the
rising sharp structures robustly.

In practice, our framework (summarized in Fig. 4) is composed
of three main components: (i) a point structuring element model
which can have any shape and size, (ii) a projection procedure sub-
stituting the explicit Minkowski sum and (iii) a feature-aware sam-
pler distributing points on the transformed shape.

In the following, we start by explaining how to project a single point
x P R3 onto the dilation (resp. erosion) of the point cloud. This
operation requires the optimization of the SE for x w.r.t. the point
cloud before projecting x onto it (see Sec. 3.3) to reach the dilated
(resp. eroded) shape (see Sec. 3.4). Then, we explain how to sam-
ple these morphologies properly to supply forthcoming alterations
(see Sec. 3.5). Last, we describe the computation of closings and
openings (see Sec. 3.6).
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Figure 4: Overview: our framework samples dilation, erosion, closing and opening of a point cloud.

Figure 5: Point structuring element: three PSEs with their dis-
tance field iso-contours in gradient color.

3.2 Point Structuring Element

Analyzing a point cloud is challenging as no explicit topological
space is available. However, we observe that, starting from x, fitting
a single SE to Π is sufficient to reach the dilation or erosion of Π as
long as we can express a signed distance from x to the SE boundary.
Therefore, we propose to model the SE itself as a signed scalar field
and use an MLS-inspired optimization procedure to locate it w.r.t.
x. More formally, given a shape B, its signed distance field B, a
scale s and a center c, we define a Point Structuring Element (or
PSE, see Fig. 5) Bc as:

Bcpxq � sBp
x� c

s
q (6)

Simple PSEs, from spherical to cubic-like shape, are modeled ana-
lytically using the Lp norm:

Bcpxq � }x� c}p � s (7)

For more complex PSEs, such simple analytical forms are usually
not available and we rely on the IMLS field [Kolluri 2008] of a
point sampling ΠB of B as it is close enough to a distance one:

Bcpxq � s IΠB p
x� c

s
q (8)

3.3 Morphological Projection

We recall from classical set morphology that DI,B �
�
cPI

Bc. With

our PSE model in hand, we can translate the set operator
�

into
a variational form. Using I the variational representation of the
shape I sampled by Π, we define a variational dilation DI ,B as:

DI ,B : R3 Ñ R
x ÞÑ minpBc�pxq,I pxqq

with c� the optimized center of the PSE:

c� � argmin
c P R3

I pcq�0

Bcpxq (9)

We use the optimized structuring element Bc� within a an MLS-
inspired projection procedure (see Appendix for a derivation from
set morphology) which is composed of two steps:

1. fitting: optimizes a primitive Bc� that approximates the mor-
phological alteration of Π around x,

2. projection: project x onto Bc� .

PSE Fitting Intuitively, fitting the PSE corresponds to moving
its center c on the surface of the shape sampled by Π so that the
distance between x and the PSE is minimized. This boils down
to the optimization of c through Eq. 9 in which we choose I
as the implicit form of a PSS of Π (see Sec. 2.1). We approx-
imate a solution to this problem by running a mean shift proce-
dure [Fukunaga and Hostetler 1975] on a point sampling Π of I
(i.e., @πi P Π,I ppiq � 0). Note that if Π is dense and we chose
an interpolating PSS model for I , we can safely set Π :� Π.
We initialize the mean shift with several meaningful (usually 2)
points of Π to find different local candidate minimizers of Eq. 9
i.e., tc0

ju :� {closest points in Π under PSE distance}:

ckj pxq �
¸
i

ωσp}c
k�1
j pxq � pi}q ωσpBpipxq � sqpi (10)

After convergence (ckj pxq Ñ c�j for k Ñ 8) we choose a global
minimizer as:

c�pxq � argmin
c�j

Bc�j
pxq (11)

Projection Once the PSE is fitted, we can compute the morpho-
logical projection of x (see Fig. 6, left):

PBpxq � x�Bc�pxq
∇Bc�pxq

}∇Bc�pxq}
(12)

At this stage, the stationary set of R3 under PB is made of two
crusts and we cannot distinguish dilation from erosion yet. How-
ever, we can already observe that Eq. 10 and 11 give the basis
of a continuous robust classification of our piecewise smooth mor-
phologies: as for each point x we consider a surface with (poten-
tially) several components (modes), the projection using Eq. 11 is
equivalent to a projection on the union of the PSE optimizers (see
Fig. 7).
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Figure 6: Morphological projection with x the green point, its morphological projection the red point and Π the grey dots with black
normals. Left: dilation projection with the mean shift objective function depicted in gradient color. Middle: erosion projection reached
through the shifting procedure (εEpxq). Right: two local minimizer configuration giving raises to sharp features.

With this formulation, two pronounced modes (or local optimiz-
ers) can continuously merge into a single one, leading to a continu-
ous transition from a sharp crease to a regular smooth surface (see
Sec. 4 for examples).

3.4 Dilation and Erosion

Our morphological projection PBpxq models both the dilation and
the erosion of Π. To enforce the projection to reach the dilation
(resp. erosion) only, we introduce a shifting procedures εD (resp.
εE) which sends x outside (resp. inside) the shape to find the dila-
tion (resp. erosion):

εDpxq � x� p1 �Ihq δpxq, εEpxq � x�Ih δpxq,

with δpxq � em
c�pxq�x
}c�pxq�x}

, em the maximal distance from x to
the bounding sphere ofB in the direction δpxq and Ih an indicator
function (i.e., 0 inside, 1 outside the shape of Π) evaluated using
the sign of I (see Fig. 6).

Based on this shifting procedure, we define a dilation (resp. ero-
sion) projection PD (resp. PE):

PDpxq � PB � εDpxq (13)
PEpxq � PB: � εEpxq (14)

with B:pxq � Bp�xq. See Alg. 1 for a pseudo-code.

Consequently, the dilation and the erosion of Π are modeled as the
stationary set of the following applications:

DΠ : R3 Ñ R3,x ÞÑ PDpxq (15)

EΠ : R3 Ñ R3,x ÞÑ PEpxq (16)

It follows that we can define two converged projection operators
P8
D � PD � ... � PD (resp. P8

E ) that directly project onto the

Erosion
Erosion Erosion

Figure 7: Feature modeling. Eq. 11 is equivalent to a local union
of primitives and captures sharp features better than running a sin-
gle local optimizer (or mode).

dilation (resp. erosion). Last, we can derive implicit forms from
these projective ones, similarly to PSS (see Sec 2.1).

Algorithm 1 Dilation projection.

Input: x P R3, B : x ÞÑ Bpxq, Π
Output: PDpxq P R3

tc0
ju :� closest points P Π from x under Bcpxq distance

for all j do
c�j :�MeanShiftpx, c0

j ,Πq
end for
c� :� closest point P tc�j u from x under Bcpxq distance
if Ihpxq � 0 then

x :� x� δpxq
end if
PDpxq :� x projected ontoBc�

3.5 Morphological Point Sampler

So far, we have explained how to project any point in space on
the dilation or the erosion of a point cloud. Combined operators,
such as openings and closings – indeed most morphological algo-
rithms – are defined through sequences of these basic transforma-
tions. This translates to two specific constraints: the sampling of a
dilation (or an erosion) should carefully capture the geometric fea-
tures that emerged, as this is often the critical information raised by
morphological analysis; second, this sampling should have a dis-
tribution which is suitable for the computation of a new dilation or
erosion.

We tackle both issues by introducing a morphological sampler Σ.
Basically, we observe that a sampling of the input surface with the
blue noise property is the best condition to minimize the error be-
tween the solution of Eq. 9 and both Eq. 10 and Eq. 11. As this
error typically increases around sharp features and thin parts, we
adopt a two-stages sampling strategy. Starting from an initial dense
sampling Π2D (e.g., grid based or random based) of the dilation of
Π and given σp the target point spacing, our sampler operates as
follows:

1. we compute a feature sampling Π�
1D by detecting and blue

noise sampling the sharp edges of Π2D ,

2. we compute a morpho-adaptive blue noise sampling Π�
2D

from Π2D , preserving Π�
1D fixed.

The final sampling is the union of the two sets:

ΣpΠq � Π�
2D

¤
Π�

1D.
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Figure 8: Morphological sampling influence of feature preservation and morpho-adaptivity on the blue noise distribution.

It preserves sharp features (Π�
1D is not altered by the construction

of Π�
2D) and is properly conditioned for any potential following

operation (blue noise distribution, with increased density on thin
components). See Fig. 8 for an illustration of our sampling strategy.

For a dilation/erosion by a PSE of minimum local feature size l
(e.g., radius for a spherical PSE), we choose a conservative point
spacing σp for both Π�

1D and Π�
2D as σp � minpσ, lq{2 where

σ is set as the PSS kernel support size of the initial input surface.
All subsequent transformations with Point Morphology inherit the
same σp constraint to avoid any low pass filtering along the suc-
cessive treatments. Using the same point spacing for the Π�

1D and
Π�

2D improves stability by avoiding abrupt sampling variations.

Feature detection and distribution For each sample of Π2D ,
we compute an optimal location pqem as the minimizer of the
quadric error metric [Garland and Heckbert 1997] in its vicinity
and an optimal direction dqem as the weakest singular vector of
the QEM matrix Aqem [Kobbelt et al. 2001; Ohtake and Belyaev
2002]. We estimate the presence of a feature line with the ratio
between the smallest singular value of Aqem and the two others:
if it is large enough (greater than 103 in our implementation), we
project the sample onto the line rpqem,dqems and add it to Π1D .
From this first set Π1D we obtain a blue noise distributed set Π�

1D

using the method from Öztireli et al. [2010].

Morpho-adaptive distribution Dilations and erosions often cre-
ate thin components (e.g., sheets, holes, branches) which require
more samples to be properly modeled. To do so, we take inspiration
from the sampler proposed by Öztireli et al. [2010]. This sampler
adapts a blue noise distribution to the surface curvature by mea-
suring distances between samples in 6D (positions and normals),
locating more samples in highly curved regions. We adopt a similar
strategy but use a 6D space which accounts for our morphological
transformation: instead of using normals, we use the PSE centroids
to distinguish samples that may be close in R3 but belong to differ-
ent surface regions (e.g., two sides of a thin sheet). More precisely,
we define the positional distance between two samples πi and πj
as:

dpπi,πjq
2 �

||pi � pj ||
2
2

σ2
p

(17)

and their the morphological distance as:

dmpπi,πjq
2 �

||c�ppiq � c�ppjq||
2
2

σ2
c

(18)

with σc a scaling parameter (typically set to s).

As in [Öztireli et al. 2010], the optimal blue noise sampling is
driven by a scalar value that measures the importance of a given

sample π:

mpπq � 1 �
¸
i,j

w̃ijpπqkpπ,πiqk
�1
i,j kpπj ,πq (19)

with kpu,vq � e�dpu,vq
2

, k�1
i,j the elements of the inverse matrix

formed by kpπi,πjq, wijpπq � e�pdmpπ,πiq
2�dmpπ,πjq

2q and
w̃ij its normalized version.

The morphological blue noise sampling Π�
2D is taken as the maxi-

mizer of
°
i mpπiq which is computed using a randomized linear

scan subsampling followed by local gradient ascents [Öztireli et al.
2010] accounting for both Π2D and Π�

1D .

3.6 Closing and Opening

Finally, we have all the ingredients to compute closings and open-
ings. As recalled in Sec. 2, to compute a closing CΠ (resp. an
opening OΠ) of Π, we simply erode (resp. dilate) a morphologi-
cal sampling of the dilation (resp. erosion) of Π. Thus we have :
CΠ � EΣ�DΠ , OΠ � DΣ�EΠ .

4 Results

Simple experiments Fig. 9 show five examples of PSEs dilating
the same model. Fig. 10 shows the complete set of our operators
applied on a model coming from a performance capture sequence.
More examples are provided as additional material.

Implementation We implemented a CPU (C++) and a GPU
(CUDA) version of our framework. In Tab. 1 we report timings,
measured on an Intel Core2Quad (single thread) at 2.7GHz with 8
Gb of memory and an nVidia GTX680 GPU, including measures
for our four operators, diverse PSEs and several input point sets.
We used a two-scale grid as the basic acceleration structure. Fol-
lowing Bowers et al. [2010], we only store a poisson disk subsam-

Input Dilations

Figure 9: Varying the PSE shape: a dilation performed with our
framework for five different PSEs. The last three do not have a
simple analytical form and are modeled using a PSS.



Input Dilations Erosion Opening Closing

Figure 10: Point morphology of a performance capture model (model courtesy Max Planck Institute).
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Figure 11: Sparse noisy input. Starting from a sparse noisy point
cloud, we compute closings by a spherical PSE, using different un-
derlying PSS with two different support size.

pling of the initial point set at the first scale, the radius of this sub-
sampling being set to 1{5 of the SE scale. The cell size of this
coarse grid structure is the scale of the SE. Once the first centroids
on this coarse structure are found, we run the mean shift procedure
at the second level of the grid which stores the full point set. As
reported in Tab. 1, about 800k morphological projections can be
computed every second for an input point cloud composed itself of
a million samples. It takes typically ten iterations of this projec-
tion to reach the dilation or the erosion which means that we can
sample about 100k points on them every second. This makes the
design of morphological algorithms chaining multiple instances of
these operators on real world data tractable (see Sec. 5). Overall,
the computation of dense erosions, dilations, openings or closings
never took more than a few minutes for all models presented in this
paper (sampling included).

Noisy data We evaluated the behavior of our framework with
noisy input. We start with a sparse noisy point set of the fandisk (see
Fig. 11) which shows the influence of the underlying PSS model I
on the resulting morphological analysis. For denser noisy input,
such as the blade model (see Fig. 12), the influence of the PSS
model is less critical. In both cases, we compute closings using ei-
ther APSS [Guennebaud and Gross 2007] or RiMLS [Öztireli et al.
2009] as the underlying PSS model. Note that Fig. 12 exhibits a lot
of fine scale Gaussian noise but also larger scale topological noise.

PSE projections/sec
Model Nb. Pts PSE CPU GPU
Hand 75k Sphere 104 1.5x106

Cube 1.5x103 0.8x106

Cross 103 0.5x106

Man 79k Sphere 8.5x103 1.5x106

79k Cube 0.8x103 0.8x106

79k Cross 0.6x103 0.5x106

Buddha 255k Sphere 8x103 1.2x106

Filgree 400k 6x103 1.0x106

Raptor 880k 6x103 1.0x106

Mammoth 1.1M 5x103 0.9x106

Neptune 1.2M 5x103 0.8x106

Table 1: Performance measures for our morphological projection
on different models illustrating this paper.

While most of the fine scale high frequency noise is removed by
both PSS models within our framework, the topological noise re-
mains, even at large scale. We address this issue in our topological
simplification application (Sec. 5.3).

Sampling Large sharp features play a major role in a shape anal-
ysis (see the sparse set of strong singular features in the closing
of Fig. 10). In our morphological context, they may appear either
after a single projection or progressively emerge from sequences
of transformations. We address this geometric preservation prob-
lem at two stages. First, our morphological projections operators
robustly model continuous transitions from smooth areas to sharp
edges (see the erosion on Fig. 10). Second, our morphological
sampler is instrumental here to preserve a good enough sampling
all along the sequence and captures these structures without oscil-
lations (see Fig. 13). Explicit discrete sums fail at distinguishing
them from artifacts after a single iteration (see Fig. 15).

Comparisons First, we compare our approach to discrete (set)
morphology on a manufactured solution: although the two kinds of
input are drastically different (e.g., an unorganized point set and a
voxel grid), this comparison is instructive. Given an implicit surface
of a hand model, we compute a high resolution binary voxel grid
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Figure 12: Influence of the underlying PSS model. Although a
geometric variation can be percieved, the impact of the underlying
PSS model progressively vanishes with growing PSE and/or denser
input.

Blue Noise
Sampling

Dilation

Morphological
Sampling

Closing

Figure 13: Feature-aware morphological sampling. A blue noise
sampling of the dilation of the FanDisk model (top left) exhibits
oscilliations which are avoided using our 2-stage strategy (bottom
left). The improvement becomes even stronger for chained opera-
tors, such as closings (right), where a small oscilliation during the
first step (dilation) is amplified by the second one (erosion).

Figure 14: Comparison to discrete morphology. Result of a dila-
tion using discrete (set) morphology (left) and our new point (pro-
jective) morphology (right), using either a voxelization (left) or a
point sampling (right) of the same shape.

Input Our projective dilationPoint-based Minkowski sum Mesh-based Minkowski sum

Figure 15: Comparison to point-based and mesh-based
Minkowski sums: our projective approach properly captures fea-
tures and avoids surface oscilliations stemming from discrete
schemes, even for simple shapes.

Method #pts SE #pts Output #pts/d-cover time
Point-based 13k 13k 1.9M/0.002 300s
(Lien et al.) 13k 669 54k/0.02 8s
Mesh-based 13k 15k 121k/0.004 85s
(Campen et al.) 13k 1620 36k/0.01 26s
Ours 13k - 2.5M/0.002 2.5s

13k - 515k/0.004 1s
13k - 87k/0.01 470ms
13k - 35k/0.02 350ms

Table 2: Performance comparison. Timings for the FanDisk model
of Fig. 15.

(2563) representing its interior and a point sampling of its bound-
ary. Then, we perform two dilations: a discrete one on the grid and
our projective one on the point set. Results are shown in Fig. 14.
The Hausdorff distance between both dilations is smaller than the
size of a voxel, which gives a practical validation of our projective
scheme. See the Appendix for more formal elements. Note that
voxelizing an implicit representation of the input induces a number
of drawbacks: even using a high-resolution sparse data structure
to store a rasterized implicit surface, the ability to represent accu-
rately sharp features requires prohibitive computational costs and
memory overhead. This is problematic not only for the initial in-
side/outside discretization, but also when chaining morphological
transformations which typically give rise to key features that need
to be preserved along the sequence.

Then, we compare our projective dilation to an explicit (point-
based) Minkowski sum [Lien 2007]. In Fig. 15, we can observe
that, with the FanDisk model for instance, our approach prop-
erly captures sharp features without introducing oscillations on the
smooth regions, which allows sequencing the operators for higher
level analysis (see Sec. 5). We reports timings in Tab. 2.

An alternative to our point-based framework would be to compute
a (e.g., Poisson [Kazhdan et al. 2006]) mesh reconstruction of the
point cloud before using mesh-based Minkowski sums [Campen
and Kobbelt 2010] to perform morphological analysis. Although
mesh-based Minkowski sums clearly target different application
scenarios, it is interesting to see that our approach is almost 2 or-
ders of magnitude faster for better visual quality compared to the
method from Campen et al. [2010] (see Fig. 15 and Tab. 2).

5 Applications

Our framework allows to design a variety of shape analysis methods
directly on point sets. As shown below, in spite of their high-level
impact on the shape geometry or topology, these applications are
very simple to implement once our operators in hand.

5.1 Projective Medial Axis

The medial axis [Amenta et al. 2001], an important tool in geom-
etry modeling, is used to characterized both the geometry and the
topology of a shape. When this shape is modeled with a point set,
the computation of the medial axis usually relies, in one way or
another, on the meshing of the set followed by a medial-axis trans-
form. Our framework allows to sample it directly from the input
point cloud. Indeed, by definition, all the singularities emerging
from an erosion with a spherical PSE at scale t are located on the
medial axis. Our erosion operator reaches these singularities as the
local intersection of several PSEs. Consequently, when growing the
scale of the PSE, the locii of theses singularities sweep a piecewise
smooth surface which approximates the medial axis accurately.



Input Projective MA Input Projective MA Input Projective MA

Filtered

Figure 16: Projective medial axis sampling. For the Neptune model, we present both the full res. medial axis and a filtering based on a
preliminary hysteresis shape filtering (see Sec. 5.2).

PowerCrust Ours
Models Time Mem. Time Mem. RMS
Neptune 840s 21Gb 92s 1.5Gb 3.3x1e-4
Filigree 196 7.6Gb 69s 1.2Gb 2.5x1e-4
Oil Pump 162s 6.7Gb 66s 1.2Gb 1.2x1e-3

Table 3: Medial Axis : comparison with powercrust. The RMS
error is expressed w.r.t. to the input model bouding box diagonal.

Algorithm We sample the medial axis of Π using a set of points
M on IΠ and projecting each point πj P M in three steps. First,
we compute tj the local feature size as the radius of the minimal
sphere tangent to πj and touching a point of Π:

tj � min
πiPΠ

1

2

}pj � pi}
2

ppj � piq � nj
(20)

Secondly, we perform a rough medial axis projection by pushing πj
along its normal such that mj � pj�tj �nj . Third, we project mj

onto the singularities of PE with a spherical PSE of scale tj . To
do so, we analyze the mean shift’s modes distribution used to fit the
PSE (see Sec 3 and Eq. 10). If we detect a single mode, the sample
is discarded. Otherwise, we iteratively project it on the intersection
of the local PSE modes and output the resulting location.

This projective approach to the computation of the medial axis does
not require any intermediate mesh and allows to densely sample the
medial axis directly from the input cloud (see Fig. 16). However,
if a meshed medial axis is required in the application scenario, we
generate M as the vertex set of a polygonization of Π and keep the
so-defined connectivity during the projection. In practice, we use a
marching cube meshing a PSS defined from Π.

Comparison We compare our projective medial axis sampling to
the PowerCrust algorithm [Amenta et al. 2001], which is a popu-
lar method to compute a medial axis from a point set. It is based
on the 3D Voronoı̈ tessellation of the input set and outputs a mesh
representing the medial axis.

In terms of quality, the PowerCrust generates a noisier medial axis
compared to ours, even on nearly perfect input (see on Fig. 17, top)
and is less robust to incomplete point clouds with large missing re-
gions (see on Fig. 17, bottom). Concerning performance, we report
time and memory measures in Tab. 3: our projective approach is
about one order of magnitude faster, requiring up to one order of
magnitude less memory. The distance between both medial axes is

Input Projective MAPowercrust MA

Figure 17: Medial axis comparison to Powercrust, with a high
quality input point cloud (top) and an incomplete one coming from
a range scan (partial input, bottom).

also negligible (excluding the case of incomplete point clouds). We
observed a similarly good approximation (RMS error below 1e-4
of the bounding box diagonal) when comparing to a union-of-balls
medial axis such as used as input by Miklos et al. [2010].

5.2 Hysteresis Shape Filtering

Linear filters are efficient at removing small scale geometric fea-
tures from surfaces. However, for larger structures, they often
fail at doing so without severely damaging the rest of the object.
With point morphology, we can selectively remove structures of a
given size while preserving a rich signal everywhere else by simply
stringing together (i) a closing by a PSE of size sC and (ii) an open-
ing by a PSE of size sO: OΠ � CΠ. Intuitively, this corresponds to
an hysteresis process which “carves” convex parts smaller than sO
and “fills” concave ones smaller than sC .
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Figure 18: Hysteresis shape filtering. At small scale (middle left, sC � 0 and sO � 0.004) only the teeth are removed. Increasing sO to
0.006 (middle right), claws are removed. The APSS filtering (right) is performed with the smallest support removing the raptor’s teeth.

We show in Fig. 18, that this filtering method removes the teeth of
the Raptor when using a small value of sO while preserving the
rest of the shape. Increasing the hysteresis threshold (sO � 0.006),
the claws of its forelegs disappear. When applied prior to our pro-
jective medial axis sampling (see Sec. 5.1), such as with the Nep-
tune model (see Fig. 16 right, computed with sC � sO � 0.008),
this hysteresis process acts as a medial axis filtering [Miklos et al.
2010]. Another example is shown with the Mammoth model (see
Fig. 1) where we used a closing of size sC � 0.1 and an opening
size sO � 0.01. As a result, almost all its ribs are removed, pre-
serving all the rest of its bone structure (4 legs, a head, a tail and
horns).

5.3 Geometry Preserving Topological Simplification

Finally, beyond geometric structure removal, point clouds may im-
plicitly contain a number of topological defects, with numerous un-
wanted tunnels and handles revealed in the forthcoming stages of
the pipeline (e.g., meshing, rendering). Usually this issue is solved
by either strongly low-pass filtering the point set before reconstruc-
tion or by manually editing it. Our framework provides a direct
solution to this problem. Indeed, a closing by a small spherical
PSE naturally fills these tunnels and handles while preserving the
fine details in the other regions of the surface. We illustrate this ef-
fect on the Filigree model (see Fig. 19, top): this model has a high
genus and applying a PSS interpolation with large support to reach
a simpler topology loses most of the on-surface signal. On the con-
trary, closing it with our framework, even with a large PSE, retains
a significant part of this signal, all the way down to genus 0. In
Fig. 19 (bottom), we process a CT scan model of a skull with a high
genus. Using a small PSE (0.01), we reduce the genus from 520
to 47: this removes small tunnels but preserves larger topological
structures as well as the geometric texture of the input. In compar-
ison, an APSS interpolation – even with a much bigger support –
only simplifies to genus 68 and again over smooths the entire shape.
Lastly, a feature-preserving RiMLS interpolation is stuck to genus
78 at similar scale, and still loses much more information than our
morphological approach.

6 Discussion

Limitations and Future Work. There are several limitations with
our current pipeline which open potential research directions. First,
we use a PSS as the underlying surface model of our framework.
Although efficient to compute, PSS remain local solutions and are
sensitive to structured outliers and poor input sampling conditions.
An interesting direction for future work would be to use a better

Input APSS Interpolation Projective Closing

Genus 52

Input APSS Interpolation Projective ClosingRiMLS Interpolation

Genus 0 Genus 0

Genus 520 Genus 68 Genus 78 Genus 47

Support = 0.02 Support = 0.03 PSE scale = 0.01

Figure 19: Geometry-preserving topological simplification. Top:
an extreme simplification to sphere topology. For both APSS and
closing we used the miminal radius to reach genus 0. Bottom:
topology cleaning of a skull scan.

inside/outside classification technique [Jacobson et al. 2013] and
account robustly for outliers [Lipman et al. 2007]. Second, if a
connectivity is provided with the input point set, our projective ap-
proach is currently blind to it. Accounting for this information, even
partially, would be useful for some applications scenarios. Third,
although our framework supports a great variety of structuring el-
ements, the applications we proposed are focused on the spherical
case. Alternative PSEs, such as the cubic one for instance, could
be instrumental for tight bounding volume computation, polycube
generation or volume meshing. Interestingly, the form of our struc-
turing element allows for spatial variability (see Fig. 20 for such an
experiment), opening a potential direction toward spatially-varying
morphological analysis. Last, analyzing the optimal sampling con-
ditions at this stage is an interesting direction for future work and
defining these transformations without any intermediate sampling
step an even more exciting problem.

Conclusion. We have proposed a complete framework for the
morphological analysis on point clouds. By introducing a new
model for the structuring element and substituting the Minkowski
sum with a new projection procedure, we can robustly explore the
dilation and erosion of the input sampled shape in a completely
meshless context. Using our morpho-adaptive sampler then al-
lows to compute sequences of morphological alterations, in partic-
ular openings and closings, revealing the singular structures of the
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Figure 20: Spatially Varying PSE. The variational nature of our
structuring element allows to continuously morph its shape and
open the way for spatially varying morphological analysis.

point set. Based on this framework, we have proposed three new
applications: a projective approach to the direct sampling of the
medial axis, a controllable mechanism for selective shape filtering
by hysteresis and a geometry-preserving topological simplification
method. Although clearly non trivial, these applications boil down
to simple sequences of our operators.
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A Appendix

We derive a variational formulation of Mathematical Morphology
and show that our projective approach (Sec 3) is an approxima-
tion of this variational formulation. Note that all the proofs in
Sec. A.2, A.4, A.6, A.7 are provided as additional materials. In
the following an input shape I is defined as a 3-manifold compact
subset of R3. First we recall the classical Mathematical Morphol-
ogy which is based on set theory.

A.1 Set Morphology

Set Structuring Element. A structuring element B is defined as
follows:

B � R3, 0 P B, B is compact and connected (21)

And B: is defined as the symmetric of B w.r.t 0. The translated SE
Bc with c P R3 is defined as:

Bc � tb� c|b P Bu (22)

Set Morphology. Given an input shape I and a SE B, the set Di-
lation is defined as:

DI,B �
¤
cPI

Bc (23)

The boundary associated with this set Dilation is defined from a
topological point of view as:

BDI,B � tx P R3, @r D ppu, quq P N r
x | pu P DI,B , qu R DI,Bu

(24)

A.2 Set Boundary Equivalence

Equivalence Theorem. Given an input shape I and a SE B we
have:

DI,B �
¤
cPI

Bc �
¤
cPBI

Bc Y I (25)

A.3 Variational Morphology

We define a variational formulation of the set morphology.

Variational Subset of R3. Given a compact subset B of R3, we
define its variational representation as a (at least) C0 scalar field
B : R3 Ñ R such as:

Bpxq �

$'&
'%
  0, if x P B̊

0, if x P BB

¡ 0, if x R B

(26)

Variational Structuring Element. Given a SE B we define its
variational SE representation as the variational representation B
of B. We define a translated variational SE Bc as:

Bc : R3 Ñ R,x Ñ Bpx� cq (27)

Variational Morphology. Given an input shape I andB a SE with
its variational SE representation B , we define a variational Dila-
tion as:

DI,Bpxq � min
cPI

Bcpxq (28)

The boundary associated with this variational Dilation is defined
as:

BDI,B � tx |DI,Bpxq � 0u (29)

A.4 Set and Variational Formulation Equivalence

Now, we link set and variational morphologies in the form of an
equality between the boundaries produced by both formulations.

Equivalence Theorem. Given an input shape I and B, a SE with
its variational SE representation B, we have:

BDI,B � BDI,B (30)



A.5 Variational Boundary Morphology

Variational Boundary Morphology. Given an input shape I with
its variational representation I and B a SE with its variational
representation B , we define (with ^ as the binary min) a varia-
tional boundary Dilation as:

DI ,Bpxq � min
c P R3

I pcq�0

Bcpxq ^ I pxq (31)

The boundary associated with this variational boundary Dilation is
defined as:

BDI ,B � tx |DI ,Bpxq � 0u (32)

A.6 Set and Variational Boundary Formulation Equiv-
alence

Now, we can show, similarly to variational morphology, but using
the set boundary formulation as a basis, the same equivalence:

Equivalence Theorem. Given an input shape I with its variational
representation I andB a SE with its variational representation B
we have:

BDI,B � BDI ,B (33)

A.7 Projective Morphology

Given an input shape I with its variational representation I and B
a SE with its variational representation B we define a projection
operator to reach BDI ,B:

PBpxq � x�Bc�pxq
∇Bc�pxq

}∇Bc�pxq}
(34)

c� � argmin
c P R3

I pcq�0

Bcpxq (35)

We can show that using the same definitions from Sec. 3.4 for P8
D ,

but using an optimized centroid c� defined as the exact solution of
Eq. 9 or Eq. 35, we can reach the actual Dilation BDI ,B:

Projection Theorem. For x P R3:

P8
D pxq P BDI ,B (36)

The same holds for the erosion.

A.8 Point Morphology as a Sampled Projective Mor-
phology

We can think of our morphological centroid as a sampled approx-
imation of the projective morphology. We aim at reformulating
Eq. 35 by a kernel density estimation of this global optimization
problem with non linear constraints. We tackle this global optimiza-
tion using the mean shift algorithm [Cheng 1995] on a sampling of
its objective function. Thus, we replace Eq. 35 by:

c� � argmin
c P R3

I ppiq�0

¸
i

pBpipxq � γqωσ
�
}c� pi}2

�
(37)

This equation is a simple reformulation of Eq. 35 where the objec-
tive function Bcpxq and the constraint I pcq � 0 are replaced by
a new objective function based on weighted kernel density estima-
tion. The constraint is replaced by kernel density samples, and the

objective function by weights on theses samples. The global off-
set γ � min

x P R3
Bpxq ensures the positiveness of the weights, and

as such makes the objective a proper density. We found that using
Gaussian kernels also for the weights improves stability. Addition-
ally this also transform the initial minimization equation into the
following maximization problem:

c� � argmax
c P R3

I ppiq�0

¸
i

ωσ pBpipxq � γqωσ
�
}c� pi}2

�
(38)

As a final step we instantiate the surface model I by the implicit
form of a PSS model The new objective function of Eq. 38 can
be maximized through the mean shift procedure [Fukunaga and
Hostetler 1975; Cheng 1995].

ckpxq �
¸
i

ωσp}c
k�1pxq � pi}q ωσpBpipxqqpi (39)

@πi P Π, I ppiq � 0 (40)

A.9 Normals of Point Morphology

The normals of the morphological surfaces are computed by taking
the gradient of their implicit forms:

npxq � ∇Bc�pxqpxq � ∇Bc�pxq∇c�pxq (41)

We compute ∇c�pxq recursively through Eq. 39:

∇ck �
¸
i

ωk�1
i pi∇θk�1

i � ck
¸
i

ωk�1
i ∇θk�1

i (42)

ωk�1
i � ωσp}c

k�1 � pi}q ωσpBpiq (43)

∇θk�1
i � �

2

σ2
ppck�1 � piq

T∇ck�1 �Bpi∇Bpiq(44)


