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Figure 1: Left — Dragon Model: Our progressive simplification of the medial axis filters the input shape at low scales (scale 1.85), and
provides an efficient ordering of its features at large scales (scales 3.36 and 5.34). Top row shows the filtered medial axis, bottom row shows
the polar (resp. interpolated) spheres in dark (resp. light) orange. Right: additional filtered medial axes.

Abstract

The Scale Axis Transform provides a parametric simplification of
the Medial Axis of a 3D shape which can be seen as a hierarchical
description. However, this powerful shape analysis method has a
significant computational cost, requiring several minutes for a sin-
gle scale on a mesh of few thousands vertices. Moreover, the scale
axis can be artificially complexified at large scales, introducing new
topological structures in the simplified model. In this paper, we
propose a progressive medial axis simplification method inspired
from surface optimization techniques which retains the geometric
intuition of the scale axis transform. We compute a hierarchy of
simplified medial axes by means of successive edge-collapses of
the input medial axis. These operations prevent the creation of arti-
ficial tunnels that can occur in the original scale axis transform.As
a result, our progressive simplification approach allows to compute
the complete hierarchy of scales in a few seconds on typical input
medial axes. We show how this variation of the scale axis transform
impacts the resulting medial structure.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Hierarchy and geometric transfor-

mations;
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1 Introduction

In computer graphics applications, a 3D shape is typically mod-
elled by its boundary, for which a number of representations exist
and can be classified in either explicit (e. g., meshes, splines, points)

or implicit (e. g., level sets, radial basis function) schemes. Medial
structures such as the Medial Axis Transform [Blum 1967] (MAT)
are located at the frontier between these two main classes of rep-
resentations: the shape boundary is described by an inner structure
together with a function conveying locally the volume of the shape.
Such medial representations are particularly useful for shape analy-
sis, see the work of Siddiqi et al. [Siddiqi and Pizer 2008] for more
details.

The MAT M of a 3D surface S is probably the most popular
medial structure. This transform computes the set of “medial”
spheres, contained in S, with at least two contact points with S.
The spheres’ center form the medial axis, which is made of 2-
dimensional sheets, curves and single points, while a radius func-
tion describes, at each point, the maximally inscribed sphere. In this
paper, we focus on polygonal surface meshes for which each con-
nected component of Ms is composed of triangles and/or edges.

The lack of stability of the MAT (i. e., small changes in the surface
usually result in drastic changes in the medial axis), prevents from
using it directly in applications (e. g., shape matching) and a spe-
cific filtering step is usually necessary. One popular method for this
filtering operation is to simply remove spheres based on the angle
formed by their two closest boundary points w.r.t. their center [At-
tali and Montanvert 1996]. Alternatively, some methods rely on
the circumradius of the two closest boundary points to define the
importance of a sphere [Chazal and Lieutier 2005].

The Scale Axis Transform [Giesen et al. 2009] [Miklos et al. 2010]
(SAT) is a third approach targetting the filtering of the medial axis
and relies on a spatially-varying importance measure of the fea-
tures of the input shape. The SAT can be summarized as follow:
(i) computation of the medial axis M s of the input surface S; (ii)
scaling of the medial spheres of Ms by a factor s (the main in-
put parameter); (iii) extraction of the corresponding surface S’; (iv)
computation of the medial axis Mg/ of S&’; (v) scaling of the me-
dial spheres of Mg/ by a factor 1/s. Intuitively, a sphere of Ms
is likely to be filtered during the scaling step if a significantly big-
ger sphere is close-by. The importance of a feature is then defined
relatively to the size of the nearby geometry. In practice, the SAT
generates simplified medial axes, with coarseness controlled by the
scale parameter s. The topological events that can occur during the
scaling step of the SAT are of two kinds: either a scaled sphere .S;
with radius sri absorbs a smaller scaled sphere S> of radius sr2
(Simplification, see Fig. 3 left), or two distincts spheres .S and S
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Figure 2: Overview: Starting from a closed input surface (left), its medial axis is extracted (middle left) and simplified progressively by
collapsing its edges iteratively (middle to right), constructing a medial axis hierarchy in a bottom-up fashion which can be quickly browsed.
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Figure 3: Left: Simplification. Scaling the spheres by a factor s
results in the absorbsion of Sa. Right: Enrichment. The scaling
results here in the creation of a tunnel between S1 and Ss.

create a tunnel in the reconstructed surface when they touch each
other (Enrichment, see Fig. 3 right). Formally, the various topolog-
ical events occuring during the computation of the scale axis cannot
be computed pair-wise only. Their exact computation involves all
spheres to detect precisely if a grown sphere is covered (even par-
tially) by the others, or if the point tangent to the two spheres at the
creation of the tunnel is covered by another sphere (in which case
no tunnel is created).

The main limitation of the SAT is threefold: first, computing a sin-
gle scale requires the construction of an entire surface and the ex-
traction of a specific medial axis, which prevents navigating easily
the derived hierarchy in a reasonable amount of time; second, tun-
nels are likely to appear when the scale factor is too large, thus
complexifying the topology of the medial axis instead of simplify-
ing it; third, SAT spheres are not a subset of the medial axis ones.

We address these three problems by proposing an efficient medial
axis simplification process which is based on the SAT importance
metric, but which decimates the medial axis iteratively using an
edge-collapse operator inspired from surface optimization [Garland
and Heckbert 1997], without requiring any intermediate surface re-
construction/MAT during the process. As a result, a full hierarchy
of nested medial structures can be generated in few seconds on typ-
ical inputs, and browsed interactively. As the edge-collapse is a
decimation operator, no tunnels are created and each level can be
expressed relatively to the next finer one and vise-versa (see Fig. 1).

2 Progressive Medial Axis Filtration

We summarize our approach in Fig. 2: starting from a closed sur-
face S, we extract its medial axis M s using the same strategy as
Miklos et al. [2010] and then simplify it progressively using of suc-
cessive edge-collapses. The medial axis is stored in the data struc-
ture proposed by De Floriani et al. [2004], that allows to collapse
edges of a non-manifold mesh efficiently. The resulting nested hi-
erarchy guarantees that each of its levels is a simplification of the
previous one and can be browsed interactively by the user.

The metric that guides the filtration focuses on the Simplification
events introduced in Sec. 1 and omits the Enrichment events.

In the following, v; denotes a vertex of M s, and represents a me-
dial polar sphere with center p; and radius 7;; e;; denotes an edge
of M linking v; and v;. Our medial axis filtration algorithm is
listed in Alg. 1, and has practical runtime and memory complexities
of O(|Ms|log(|Ms])).

Algorithm 1 Progressive Medial Axis Filtration.

Require: Ms = {{v;},{e;;}} the medial axis of S
Require: Q a priority queue of edges
Require: R an empty ordered list of edge-collapses
for all edge e;; do
Q < e;; with cost ¢;;
end for
while O not empty do
eij < Q.top() withr; < 7; ; Q.pop()
if v; valid and v; valid then
collapse e;; — Vv
R+ [R,[eij = vj]]
mark v; as invalid
for all neighbor v, of v; do
Q +— €jk with cost Ckj
end for
end if
end while
return R

One core idea of this paper is to define the cost that orders the edge
collapses by the scale at which the largest sphere absorbs the other
one:
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After inserting all possible edge collapse in Q, we prune the ele-
ment with the smallest cost iteratively and collapse the correspond-
ing edge towards the largest sphere. Each time an edge is collapsed,
the neighborhood of the created vertex is updated, and correspond-
ing edge-collapses are inserted into the queue. Edges that were
incident to the deleted vertex are invalidated in Q by invalidating
the collapsed vertex. We stop when no edge remains in Ms.

Similar to progressive meshes [Hoppe 1996], we record the set of
deleted triangles and edges at each step of the simplification, con-
structing the nested hierarchy as an ordered list R where a medial
axis at level k can be updated to level k£ + 1 (resp. & — 1) using the
k'™ (resp. k — 1'") element of R. As a result, the hierarchy can be
traversed in real time, in both directions, using R only to obtain a
specific scale s.
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Figure 4: Medial axis hierarchy extracted from various 3D shapes, with the input in grey, the medial axis (MA) and three different scales (s)
obtained with our progressive simplication method. For illustration purpose, some medial axes are shown in wireframe.

INPUT SURFACE MEDIAL AXIS OURS — ALL OURS SAT
(#V / #T) (#V [ #T | #E) SECS. || SCALES (SECS.) || SCALE H H (SEcs.)
Chair (9935/19894) | (1014760/2289594/0) 627.90 68.23 2.32 1.02 1.20  (51.22)

4.99 1.61 3.30 (13.1)
17.38 2.50 | 12.77 (0.33)
Lady (19990 /39976) | (243400 /532503 / 0) 75.70 15.20 1.35 1.65 2.11  (16.18)
1.95 5.18 5.17 (5.39)
3.59 7.95 7.66 (0.43)
Amphora  (14859/29734) | (1419187309993 /0) 42.87 11.15 1.18 1.39 315 (13.84)
1.32 372 | 452 (9.18)
1.57 6.05 6.77 (5.43)
Plane (6797 /13590) | (253578 /562181 /0) 71.78 15.10 1.83 0.52 1.32 (17.38)
3.58 2.46 3.59 (3.27)
6.57 9.54 9.90 (0.77)

Table 1: Timings for the computation of the complete simplification hierarchy, and Hausdorff distances (H) between surfaces reconstructed
Jfrom various scales to the input surface. Timings for the computation of the Scale Axis Transform and Hausdorff distance to the input surface
are given for each scale. Distances are expressed in percentages of the object’s bounding box diagonal. All timings are expressed in seconds.
The corresponding models are shown in Fig. 4.
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Figure 5: Side by side visual comparison with the Scale Axis Trans-
form (in purple).

3 Results

Fig. 4 shows various medial axes simplified at several scales. Tim-
ings of computation of the whole hierarchy are reported in Tab. 1,
along with the timings of computation of the Scale Axis Transform
for the visualized scales. We also provide Hausdorff distances to
the input surface for both methods. Since our technique is meant to
filter large parts of the medial axis at large scales, these are given
not to assess the quality of the simplification but rather to describe
the size of the features that were removed.

The ability to navigate through the complete hierarchy in real-time
allows the user to identify the key scales at which large features
are filtered. Those values are impossible to predict beforehand, as
illustrated by their variability in the presented examples.

As shown in Tab. 1, the computation of our all-scales simplification
nested hierarchy is of the same order than the computation of a SAT
for a single scale. Traversing the hierarchy and updating the medial
axis simplification level is done in real-time on an Intel Core2 Duo
running at 2.5 GHz with 4GB of main memory: going from 1 to
100.000 spheres takes a few milliseconds.

In Fig. 5 we illustrate the main differences with the SAT. Our pro-
gressive medial axis filtration behaves similarly to the SAT at low
scales, but allows to filter features of the input medial axis at very
large scales (10-30), for which the SAT does not provide useful in-
formation on the input shape [Miklos et al. 2010]. Even at medium
scales, the SAT complexifies the shape instead of simplifying it
(e. g., unwanted tunnels in the Hand model in Fig. 5-2"“ row).

The spheres contained in our simplified medial axes are a subset of
the polar spheres of the input medial axis. The primitives linking
them (triangles, edges) are however not part of the input medial
axis. Similarly to the SAT, our simplified medial axes can cross
the input surface at very large scales. Nonetheless, this behavior is
reduced with the proposed approach (see legs of the Raptor model
in Fig. 5 — scales 5.62 and 7.85). Last, on the contrary to the SAT,
our approach is free of computational parameters.

4 Conclusion

We have presented a technique for computing a progressive filtra-
tion of the medial axis, building upon the spatially-varying impor-
tance classification of the medial axis features introduced by the
Scale Axis Transform [Miklos et al. 2010]. Our simplification pro-
cess requires the computation of a single medial axis only, and pro-
gressively simplifies it using iterative edge-collapses, ordered by
this importance classification, until no edge remains. The output
of our technique is a nested hierarchy of medial structures that can
be browsed interactively. Compared to the scale axis transform, a
large number of level-of-detail medial structures can be quickly ex-
tracted, while we ensure the simplification of the medial axis at each
step. Last, the information carried out by large simplification scales
is pertinent and the algorithm is free of computational parameter.
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