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Abstract—We introduce a non local point set surface model
for meshless geometry processing. Compared to previous ap-
proaches, our model better preserves features by exploiting self-
similarities present in natural and man-made 3D shapes. The
basic idea is to decompose 3D samples into scalar displacements
over a coarse smooth domain. Then, considering the displace-
ment field stemming from the local neighboring set of a given
point, we collect similar functions over the entire model and
define a specific displacement value for the point by the mean of
similarity-based weighted combination of them. The underlying
scale-space decomposition allows for a wide range of similarity
metrics, while scalar displacements simplify rotation-invariant
registration of the local sample sets. Our contribution is a non
local extension of all previous point set surface models, which
(i) improves feature preservation by exploiting self-similarities,
if present, and (ii) boils down to the underlying (local) point set
surface model, when self-similarities are not strong enough. We
evaluate our approach against state-of-the-art point set surface
models and demonstrate its ability to better preserve details in
the presence of noise and highly varying sampling rates. We
apply it to several data sets, in the context of typical point-
based applications.

Keywords-Point Set Surfaces; Non-Local methods; Recon-
struction; Filtering;

I. INTRODUCTION

With the democratization of 3D sensors, generating high
resolution surfaces from real objects has never been so
easy. The typical output of the capture stage comes as
an unstructured 3D point set, merged by aligning several
range maps, and exhibits noise, holes, outliers and quickly
varying sampling ratios. These defects influence strongly the
quality of the subsequent surface mesh reconstruction, which
motivates the use of intermediate mesh-less representations.
Thus, the so-called point-based geometry processing meth-
ods have been progressively introduced in the pipeline, to
improve as much as possible the data quality before taking
any decision on its (e.g., meshed) structure, such as its global
topology or local connectivity.

To fill the gap between unstructured raw point clouds
and high quality meshes, Point Set Surfaces (PSS) and
its numerous variants have proved to be instrumental in
the definition of mesh-less surface models. Given a 3D
point cloud, where each sample contains a 3D position and,
potentially, a normal vector, the most popular PSS models
are defined as the stationary set of R3 under a moving least

square (MLS) scattered data approximation [23] which fits
locally a simple primitive (e.g., plane, sphere) to the cloud.

Various extensions of the seminal PSS definition [5] have
been proposed, to improve robustness in the presence of
holes [17], better preserve shape convexity [4] or singular
features such as sharp creases [14]. However, all these
models share the same basic idea by defining the surface at a
given location according to the local variation of the point set
around this location only. Unfortunately, low sampling rates
and noise stricly bound the amount of information which
can be reconstructed from such a purely local point of view.

This problem bares similarities with image denoising,
which may also locally lack information to reconstruct a
smoother image while preserving important features con-
vincingly. Indeed, one elegant solution to this ill-posed
problem is to consider the self-similarity present in natural
images with a non-local mean (NLM) filtering process [9]:
the basic idea is to reconstruct the signal at a point using
potentially distant samples having a similar local structure
(i.e., neighborhood).
Not only image denoising, but also more ill-posed image
resolution enhancement problems [33], [27] benefit from
non-local image reconstruction models (like in inpainting
[7] or random sampling [13])
This inspires our work and we propose a new PSS model

Figure 1. Left: Scanned point set Dragon (413k points) reconstructed
using our NLPSS definition. Right: Two closeup views of the NLPSS
reconstruction (left) and original scanned data (right).

which extends all existing ones by introducing a non-local
formulation able to exploit the surface self-similarity present
in natural and artificial shapes. Our Non-Local PSS (NLPSS)
model is defined by means of a weighted mean of local
surface patch descriptors, where weights are related to an in-



trinsic similarity measure between pairs of such descriptors.
A scale-space analysis allows to go from the unstructured
point cloud to a coarsely structured surface where intrinsic
surface descriptors can be defined, that capture even the
finest scale details present in the point cloud.

II. BACKGROUND

Point Set Surfaces.: Moving Least Squares (MLS) are
a class of functional scattered data approximation meth-
ods [29] extended by Levin [22], [23] to the case of shapes
approximation and used by Alexa [5] to define a mesh-less
surface representation: Point Set Surfaces (PSS). Essentially,
they are defined as the stationary set of an iterative projection
operator. At each step, a plane is fitted locally near the
evaluation point by a nonlinear minimization of the square
distance to the samples. A bivariate polynomial, parameter-
ized over the plane, is then fitted to the samples and the
projection of the evaluation point onto this local surface
is used to initiate the next step. This simple projection
procedure can be used to remove noise, classify outliers and
resample the point cloud. Its implicit form allows to extract
a polygonal surface using various meshers, such as the
Marching Cubes algorithm [24] or the Restricted Delaunay
Triangulation [8].

Amenta et al.[6] showed that the non-linear minimization
and the polynomial approximation were not mandatory
to obtain a valid PSS: instead, one can simply average
positions, while still providing a smoothly varying signed
distance function, thus allowing for an implicit representa-
tion of the surface. Adamson et al. exploited this idea in
the Simple Point Set Surface (SPSS) model [2], considering
samples embedding normal vectors, and estimating local
projection planes with simple weighted local combinations
of positions and normals. As usual in point-based graphics,
a local principal component analysis [18] allows to equip
samples with normal estimates.

When the point cloud is not dense enough w.r.t. the
operator support size, the plane fitting procedure becomes
unstable. Guennebaud et al. addressed this problem by re-
placing the plane by an algebraic sphere [17], introducing the
Algebraic Point Set Surface (APSS) model, later improved to
constrain the gradient of the algebraic spheres to samples’s
normals [16].

The problem of sharp edge preservation was addressed
by [14], introducing an implicit definition of the MLS
projection operator (IMLS). While most PSS models have
a tendency to shrink volumes and do not allow to control
the local convexity of the resulting surface, the Hermite
Point Set Surfaces [4] (HPSS) model solves this problem
with an hermite combination scheme by considering the
projection of the evaluation point on each local plane de-
fined by neighboring sample’s position and normal vectors.
Finally, the Robust Implicit Moving Least Square (RIMLS)
operator [26] uses a kernel regression method allowing to

adjust iteratively the weight of each sample. As a result,
outliers have less impact and features are better preserved
than with previous PSS variants.

All these local PSS models define the reconstruction scale
– and therefore the smoothing effect – with the support size
of the spatial kernel used to weight neighboring samples
contribution to the projection primitive fitting procedure.
This kernel may either be gaussian or polynomial [32].

Our approach is orthogonal to these models in the sense
that it can extend any of them by bringing non-local sample
information in the evaluation of a point, exploiting the
object self-similarity when available while degenerating to
the original operator otherwise.

Non-Local Filtering.: Feature-preserving denoising is
usually addressed efficiently using the Bilateral Filter, orig-
inally introduced for images [30] and which uses both
spatial and range proximity weights to perform a local
sample combination at each pixel. The resulting anisotropic
diffusion process better preserves edges than pure low-pass
(e.g., Gaussian) filters and can be defined for meshes [15],
[19] and point sets [20] as well. Unfortunately, using weights
based on the similarity between neighborhing samples is not
reliable in a number of configurations – in particular when
using large support sizes – and leads to overflow phenomena
above edges.

Buades et al. [9] address this problem by introducing the
notion of Non-Local Means [9] (NLM) in the context of
image filtering. The basic idea is to filter a pixel by averaging
its value with the pixels having a similar neighborhood.
It assumes that images are self-similar and that the noise
has zero mean. This approach and its extensions offer
better results than local filters, such as the bilateral one,
with numerous classes of images. Extending this class of
filters to 3D surfaces requires the definition of suitable
local descriptors and similarity measures thereof. Adams
et al. [1] propose to define the descriptors as sets of local
density histograms over a noisy signal, where the latter is in
turn defined as the difference between the original surface
and a smoother (e.g., laplacian-filtered) version. Wang et
al. [31] define a local frame using the covariance matrix.
They use a combination of prefiltered points weighted by
the similarity of patches defined by surface interpolations.
Meanshift is used to reduce the neighborhood size of the
non-local combination. Morigi et al. [25] define a non-local
surface diffusion flow with the mean curvature values as
patch values.

Due to the lack of any structuring information, adapting
non-local means denoising to point sets is a difficult task.
Schall et al. [28] address this problem by using a regular grid
and apply a similar scheme as the non local image filtering.

Deschaud et al. [10] generalise to any point set by
considering a local frame defined by two eigenvectors cor-
responding to the largest eigenvalues of the local covariance
matrix. The descriptor is defined by the vector of the MLS



(a) Noisy point set (b) Scale space (c) Displacement map (d) Projection definition

Figure 2. Summary of our algorithm: Starting from (a) a noisy point set P containing points pi and their normals ni, we define (b) two surfaces from the
scale-space of a given PSS operator: a coarse-scale surface St0 (in green) and a fine-scale surface St1 (in blue). (c) The coarse scale decomposes P into
a base surface and a noisy scalar displacement m(pi) beween St0 and pi. (d) The projection ΠNL(x) of a point x over the non-locally reconstructed
surface (in red) is obtained by first projecting x over St0 , and then extending this projection along the same direction, by an amount mNL(x) that is
obtained as a weighted average of the scalar displacement values m(pi), where larger weights are allocated to the points pi whose neighborhood is similar
to that of x. Comparing such neighborhoods requires the construction of patches around each point pi ∈ P and a similarity measure between them, as
detailed in figure 3. Note that the scalar displacement in (c) is only known at irregular locations. Here the fine-scale surface St1 becomes instrumental,
since it allows to resample all patches in a normalized local grid.

regression coefficients. Observing that such a parametriza-
tion is not stable enough to be used efficiently, Digne et
al. [11] propose to decompose the point set by an iterative
mean curvature motion filter into a smooth signal and a
height vector field. Only the latter is used (after radial-basis
function interpolation) when comparing two patches. Thus,
the resulting similarity measure is only sensitive to local
variations of the surface.

Our non local surface definition is more general than the
previous approaches: we do not restrict our work to surface
mesh denoising or point set denoising in the sense that we
propose a new PSS operator, suitable for reconstruction,
filtering, enhancement and more general processing of un-
organized point sets. Consequently, point set denoising is an
interesting property of our surface definition but can not be
seen as the final purpose of our work.

III. NON LOCAL PROJECTION

Throughout the paper we consider as input a set of
samples P = {pi,ni} with pi ∈ R3 the sample’s position
and ni ∈ R3 its normal vector. Let’s consider x ∈ R3 the
evaluation point. We consider the almost orthogonal MLS
projection as defined by Adamson and Alexa [3]:

MLSP : R3 → R3,x→ Π(x) (1)

They are based on a projection function Π(x) of x onto
a locally weighed least squares primitive Q (e.g., plane for
SPSS, algebraic sphere for APSS):

Π(x) = x− f(x)n(x) (2)

f(x) is the implicit distance between x and its projection
on Q and n(x) is the stationary MLS normal defined by Q
at this location. The scale at which Q is fitted to P w.r.t. x
is typically controlled by a parameter t, which relates to the
support size of some underlying spatial weighting kernel.

This general definition can be instantiated for the case of
SPSS for instance with:

n(x) =

∑
pi∈P wt(x,pi)ni

||
∑

pi∈P wt(x,pi)ni||

f(x) =< x− c(x),n(x) >

c(x) =

∑
pi∈P wt(x,pi)pi∑
pi∈P wt(x,pi)

and wt(x,pi) a weighting kernel. We typically choose
wt(x,pi) = 1

Zt(x)
g( 1

t ‖x − pi‖) with g a compactly sup-
ported, piecewise polynomial function and Zt(x) chosen to
ensure unit sum

∑
pi∈P wt(x,pi) = 1. The parameter t

directly controls the scale captured by each MLS projection
and can somehow be seen as a filtering parameter: varying t
decomposes the PSS at different scales. We call respectively
Πt(x), f t(x) and nt(x) the projection operator, the implicit
distance and the normal defined by this PSS operator at scale
t.

A. General Structure of the Algorithm

With a sufficiently large scale t, we can decompose the
PSS into a coarse smooth surface St0 and a fine residual
scalar displacement field m(pi)n

t0(pi) containing features
contaminated by noise.

Our key idea is to use a non local method to remove
the noise of the residual scalar field, and simultaneously
compute the projection (interpolation) at a fine scale for any
point x.

We can use any PSS operator to define the coarse surface
St0 at the large scale t0. Then the NLPSS operator is
defined by adding to St0 a fine scalar displacement field
mNL(x)nt0(x), where mNL(x) is defined as a non local
approximation of the residual distance m(x) between the



(a) (b)

Figure 3. Patch definition: (a) Creation of patch of size l centered in
Πt0 (x) sampled on a tangent plane defined by nt0 (x). (b) The patch
values are computed using St1 (in blue). Color values represent the local
differences between St0 and St1 .

coarse surface and a reconstruction of P . Consequently, we
express our NLPSS projection as:

ΠNL(x) = Πt0(x)−mNL(x)nt0(x) (3)

All steps of our algorithm are summarized in figure 2.

B. Displacement map definition

The scalar displacement field or residual distance between
the coarse surface St0 and P is defined for x = pi ∈ P as

m(pi) =
〈
pi −Πt0(pi), n

t0(pi)
〉

= f t0(pi) (4)

Such a distance is defined only for pi ∈ P and can be noisy.
In order to denoise these values and to extend this

definition to any point x we consider a non local weighted
average of m(pi):

mNL(x) =
∑
pi∈P

wNL(x,pi)m(pi) (5)

where wNL(x,pi) is a similarity measure between the local
neighborhoods of the two points x and pi.

C. Similarity measure definition

In order to compare point cloud patches we shall resample
them in a normalized fashion.

In order to construct a patch descriptor for the scalar
field centered in xt0 = Πt0(x), we define a normalized
2D coordinate system on the plane tangent to St0 at xt0
with the horizontal axis pointing in a normalized orientation
θ(xt0) to be specified shortly. After suitable rescaling of
this coordinate system we obtain a set D = [−n, n]2 ∩ Z2,
of (2n + 1) × (2n + 1) points located on a l × l square
For (i, j) ∈ D, each point xi,j of the patch has a value
Mxt0

(i, j) corresponding to the displacement value m(xi,j).
As explained previously, we need to reconstruct a specific

value at each xi,j . We propose to use the PSS St1 at fine
scale t1 � t0 and define Mxt0

as :

Mxt0
(i, j) = f t1(xi,j) for (i, j) ∈ D. (6)

Mxt0
represents the increment (with respect to the coarse

surface St0 ) of a fine scale surface patch of St1 which is a
minimally denoised and interpolated version of P .

We choose l ≈ t0
3 so that the distance between the points

xi,j and St0 is negligible compared to the values Mxt0
. The

definition is summarized in figure 3.
Finally in order to choose θ(xt0) in such a way that the

patch Mxt0
is rotation invariant, we define an arbitrarily

oriented set D̃ and the corresponding patch M̃xt0
. This

allows to compute the intrinsic alignment angle θ(xt0) in
the surface tangent plane (i.e., around the surface normal)
by considering the gradient at xt0 :(

dGu(xt0)
dGv(xt0)

)
=

∑
i,j

(
−i
−j

)
e

(
− i

2+j2

σ2
l

)
M̃xt0

(i, j)

θ(xt0) = atan2(dGu(xt0), dGv(xt0)) (7)

where σl ≈ 3l is the variance of the gaussian function
and atan2 is the arctangent function that returns an angle
between [0, 2π[. Let’s consider y, z ∈ R3 × R3. We define
the distance between two patches by:

d(y, z) =
1

2n+ 1
‖Myt0

−Mzt0
‖2 (8)

and the corresponding non local weight by :

wNL(y, z) =
1

ZNL(y)
e

(
− d(y,z)

2

h2

)
(9)

where h is a parameter that defines how similar two patches
are, and the normalization constant ZNL(y) ensures that∑

pi∈P wNL(y,pi) = 1. The non local weights of all point
descriptors to a reference descriptor are shown in figure 4.
Finally, we define our NLPSS operator as :

ΠNL(x) = x− fNL(x)nt0(x) (10)

where fNL(x) corresponds to the implicit distance:

fNL(x) = f t0(x)−
∑
pi∈P

wNL(x,pi)f
t0(pi) (11)

Interestingly enough, our formulation can be easily mod-
ified to boil down to a PSS projection, in the absence of
strong self-similarities in the data (which is rare). This
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(a) (b)

Figure 4. Similarity function to a point on an edge (a) and a point on a
plane (b), indicated in grey in each case. Color values represent how similar
are all other points, from red (very similar) to blue (poorly similar).



(a) Noisy Point Set (b) SPSS (c) HPSS (d) APSS (e) RIMLS (f) NLPSS

Figure 5. Various reconstructions of the 2D star noisy point set.

is achieved by adding to the non-local weighting kernel
wNL, a spatial distance kernel wt (e.g., Wendland’s kernel)
multiplied by a small constant α.

w̃NL(x,pi) =
1

Z(x)
(αZt(x)wt(x,pi)+ZNL(x)wNL(x,pi))

As usual the normalization constant Z(x) is chosen to
ensure unit sum. Observe that when x is within a highly
represented structure the non-local term dominates, thus
improving denoising and resolution enhancement, whereas
if x lies on a rare patch, then the spatial term dominates,
ensuring better smooth interpolation of holes.

IV. EXPERIMENTAL EVALUATION

A. Implementation and performance

We have implemented our algorithm in C++ using a kd-
tree for fast neighborhoods queries in R3.

MLS operator choice. The above definition of our non
local operator requires a PSS projection operator for local
smoothing and interpolation at two scales. This provides
flexibility, and the results are affected by the choice of
this PSS operator. In the sequel we use the APSS [16]
for all experiments of NLPSS. This choice provides a
good compromise between smoothing at coarse scales and
feature preservation at fine scales. More feature preserving
operators, like RIMLS were discarded because of artifacts
and instabilities that may affect patch comparison.

Coarse scale. The coarse scale t0 provides a base area
for our algorithm and its residual noisy scalar field. It must
be selected such that changes in noise affect the scalar field
only but not the base surface. The choice for t0 depends on
the amount of noise present in the point set, while ensuring
a minimal size concurring to repetitive surface structures. In
practice, we choose a scale between 10 and 20 times the
local points spacing.

Fine scale. The fine scale t1 provides a fine approximation
of the surface to create patches. For small values, the
patches will not sufficiently approximate the point set to
be interesting enough. If t1 is chosen equal to t0 all patches
will be similar. Thus, we should choose this scale sufficiently
small (compared to t0) to approximate the data of the point
set. Typically, we choose t1 between 2 to 4 times the local
point spacing.

Non local weight function. Our non local weight function
has three parameters: the non-local radius h, the radius l and
the number n of points in each resampled patch.

The value h determines the degree of similarity of the
point set. The optimal value must be chosen depending
on the amount of noise and standard deviation values of
scalar fields. For small values, denoising will be poor, since
the scalar field will tend to take the value of the nearest
neighbor in the patch distance. On the contrary for high
values, denoising will be too strong, and the scalar field
will take the same value everywhere, thus providing little
detail enhancement with respect to the smooth surface St0 .

The radius l of the patch should be chosen (like the
coarse scale t0) depending on the size of the features present
in the point cloud. We cannot choose l too large because
the approximation of the coarse surface by a tangent plane
would no longer be correct. If we choose l too small, the
resulting surface will tend to stick to the values of the nearest
points mNL(pi). In practice, we choose l between 0.5 and
3 times the local spacing of points.

The number n of points of the patch is used to describe
more accurately the local variation of the surface. It must
be chosen large enough to adequately describe the surface.
The number of points is strongly linked to the speed of the
algorithm. In practice, we use patch size 5 × 5 which is a
good time/quality compromise.

Performance. As our algorithm has a quadratic complex-
ity, the number of projections per second is lower than that
of conventional PSS algorithms (table I). Several parameters
influence this computation time. The projection on the coarse
surface at the scale t0 spends a lot of time because it requires
finding a large number of neighbors. Much time is lost due
to the creation of patches that must be projected onto the
surface defined on a fine scale t1. Nevertheless, we can
accelerate these two steps by using a ball-tree for faster
search of nearest neighbors as defined in [16].

The bottle-neck of our algorithm is, as for any non-local

Input point set size 25000 173000 413194
Nb of projections /s 6383 689 143

Table I
ARRAY REPRESENTING THE EVOLUTION OF THE NUMBER OF NLPSS
PROJECTIONS PER SECOND RELATIVE TO THE INPUT POINT SET SIZE.



(a) Original (b) SPSS (c) HPSS (d) APSS (e) RIMLS (f) NLPSS

Figure 6. Various reconstructions of the 3D scanned point set Ramesses (50k points). Up: reconstructions, Down: Closeup of the reconstruction.

method, the computation of the weights for each pair of non-
local patches. In general, it can be accelerated by reducing
the size of the search for nearest neighbors to a smaller
neighborhood, and this is a common practice in 2D imaging.
Unfortunately in 3D, unlike in the 2D case, this idea causes
a loss of quality of the resulting surface.

Several algorithms have proven their ability to speed up
this research [1]. We plan to adapt them to our algorithm in
future work.

B. Analysis of Quality

Conventional PSS operators try to extract a surface from
a local neighborhood. This constraint has obliged them to
make a compromise between noise removal and feature
preservation.

This compromise becomes apparent in figure 6 where a
scanned point set is reconstructed by various PSS operators.
We can notice that SPSS tends to smooth features too much,
HPSS exaggerates the noise structure of the object. The
APSS must be used at small filtering scales to prevent it from
completely removing features of the object. Unfortunately
at such scales, it cannot completely remove the noise. To
prevent excessive smoothing of curved areas while extracting
the features of the object, the RIMLS used small filtering
scales but this has the effect of exaggerating local noisy
structures.

In comparison with these operators, our NLPSS succeeded
in generating a surface that is both denoised and feature-
preserving.

Our non-local surface definition is more general than the
combination a non-local point filtering [10], [11] with an
existing surface reconstruction model. The fundamental dif-
ference between both approches is visible in Figure 7 where
the surface is reconstructed using the two different schemes:
non local point denoising followed by APSS reconstruction
on one side and our NLPSS surface reconstruction on the
other side. Although the first scheme succeeds at moving

points while exploiting self-similar information, it cannot
reconstruct the surface doing so. On the contrary, our NLPSS
models reconstruct the surface at any point exploiting self-
similarity and redundant structures in the point cloud. Sim-
ilarly, a third scheme reconstructing a surface first before
applying a non-local mesh denoising [1], [31] does not
exploit self-similarity at the fullest.

As shown figure 8, in the case of sparse and noisy clouds,
existing PSS models can hardly generate a correct surface
at small filtering scales. To solve this problem, conventional
PSS models increase the level of filtering which has the
effect of deleting all the fine-scale information present in the
cloud. In contrast our NLPSS is capable of generating a more
stable surface. This property is due to the use of (i) a coarse-
scale base surface that defines the topological structure of
the PSS and (ii) the non-local averaging of fine details that is
capable of denoising them in a feature preserving way, and
adding them back to the coarse-surface without introducing
spurious surface structures like in other conventional PSS
models. Moreover, figure 5 and 8 demonstrates that our
definition is very efficient on non uniformly sampled and
noisy data.

C. Discussion and Limitations

It is also important to note that the results of our operator
will be better for highly self-similar point clouds. However,
in the absence of self-similarity our NLPSS will have
identical behavior as the underlying local PSS operator used
to define it.

Moreover, our non-local definition may be corrupted by
oscillations or ”halos” around the edges of objects. This
problem is common with non-local 2D methods. Recent
solutions to this phenomenon are described in [21]. The
orientation computation can be noise sensitive for gradients
near zero which can be fixed using tensors. Finally, in
our current formulation, as the displacement function is
represented with a bivariate scalar field, fine and coarse



Patch Size

(a) Noisy point set

(b) NL point denoising + APSS

(c) NLPSS

Figure 7. (a) A point set corrupted by noise and holes. (b) The surface is
defined using APSS from a non local denoising of the noisy point set. (c)
The surface is defined using our NLPSS without pre-denoising. The patch
size used by non local algorithms is represented by the red box and the
number of samples per patch is 83.

surfaces are expected to be homeomorphic. This usually
holds with the typical scales we use in practice.
D. Applications

We propose four different applications for our algorithm.
Filtering. As all PSS algorithms, our NLPSS can be used

to define a filtered point set. Thus, for each point pi from the
noisy point set we associate the filtered version ΠNL(pi).
The set of projected points ΠNL(pi) corresponds to the
filtered point set. Figure 9 shows a result of our NLPSS
filtering.

Reconstruction. One of the main interests of PSS opera-
tors is that they can define a mesh from the definition of the
implicit function associated with this PSS. We define our
NLPSS surface as the zero set of the implicit distance fNL.
We can compute a mesh of the surface by using a marching
cube algorihm. Figure 8(c) shows a result of our NLPSS
reconstruction.

Details enhancement. In order to illustrate the potential
of our NLPSS in surface editing we consider the following
extension of our non-local projection:

fNL(x) = f t0(x)− β(x)
∑
pi∈P

wNL(x,pi)f
t0(pi) (12)

where β(x) is a continuous scalar field that describes for any
x how much of the fine-scale detail fNL(x) is added to the
smooth surface St0 . The user paints over the surface slowly
varying scalar values β(x) for any x of the smooth surface.

(a) Noisy point set (b) RIMLS (c) NLPSS

Figure 8. Reconstruction of the 3DStar model with RIMLS and NLPSS
from a non uniformly sampled and noisy point set.

(a) Noisy point cloud (b) NLPSS

Figure 9. Pyramid (120k points) from [12] (noisy point cloud) denoised
using our NLPSS.

β > 1 results in detail enhancement, β ∈ (0, 1) results in
surface smoothing between St0 and the NLPSS, whereas
negative values of β produce a reversed detail enhancement.
An illustration can be seen figure 10.

Outlier detection can be performed by filtering the point
set with our NLPSS definition. For any pi of the point set
we can extract the associated scalar value fNL(pi). If we
consider a max value fmax, outliers can be defined as :

pout = {pi, fpi > fmax)} (13)

The value fmax can be set manually to correspond to the
desired level of detection.

V. CONCLUSIONS

In the last few years, research in local PSS models and
their associated algorithms has been intense and are now
reaching a point of maturity by exploiting local structure,
and prescribed feature-preservation. In order to take PSS
models to the next level, we propose to introduce statistical
information on the fine structures present in a particular
shape and that we want to preserve.

This work is a first attempt to define a PSS model that
learns and exploits non-local self-similarities of the surface.
We propose to define a suitable local signal and a similarity
measure adapted to unstructured point sets by structuring
the point set via a scale-space representation at two scales.
The coarse scale provides an intrinsic local reference system,
and the fine scale is used for resampling on a regular grid.
Once the similarity between local patches is established the
reconstructed point set is obtained by a non-local weighted
average of the residual distances between points of the point
set and the coarse-scale surface.

Our experiments show that our NLPSS definition is more
general than non local denoising, better preserves repeating
features of the point set, and is very efficient on non
uniformly sampled and noisy data.

Our future work will incorporate an explicit consideration
of sharp features, acceleration using a suitable indexing
structure for patch descriptors and alternative patch simi-
larity metrics. The quality of the reconstruction, as well as
the denoising ability of our NLPSS operator can also benefit



(a) (b) (c)

Figure 10. Details enhancement: (a) Armadillo (170k points) leg with a
positive β(x). (b) Armadillo models enhanced by our detail enhancement.
(c) Armadillo leg with a negative β(x).

from recent improvements in 2D non-local denoising meth-
ods [21]. Adapting such improvements (like aggregation and
collaborative filtering) to the 3D case is, however, not a
straightforward task.
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