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Figure 1: From left to right: input photo (4096× 4096 pixels), SVBRDF maps (albedo, normal, roughness, height, ambient occlusion)
reconstructed with our method, rendering of the reconstructed material and rendering with a constant albedo to visualize the extracted
geometry.

Abstract
We propose a hybrid method to reconstruct a physically-based spatially varying BRDF from a single high resolution picture of
an outdoor surface captured under natural lighting conditions with any kind of camera device. Relying on both deep learning
and explicit processing, our PBR material acquisition handles the removal of shades, projected shadows and specular highlights
present when capturing a highly irregular surface and enables to properly retrieve the underlying geometry. To achieve this,
we train two cascaded U-Nets on physically-based materials, rendered under various lighting conditions, to infer the spatially-
varying albedo and normal maps. Our network processes relatively small image tiles (512× 512 pixels) and we propose a
solution to handle larger image resolutions by solving a Poisson system across these tiles. We complete this pipeline with
analytical solutions to reconstruct height, roughness and ambient occlusion.

Keywords: Material Capture, SVBRDF, Shadow Removal,
Deep Learning, Dataset Synthesis, Delighting

1. Introduction

Digital materials provide 3D objects with a realistic appearance
by describing how light interacts with them. One popular way to
model such materials is through spatially varying bidirectional re-
flectance distribution functions (SVBRDF) which supply, at each
point of the 3D surface domain, the parameters of an underlying
pointwise reflectance model, as well as information about the geo-
metric mesostructures. In our work, we target standard models for
Physically-Based Rendering (PBR material) that rely on a micro-
facet BRDF model based on the GGX normal distribution function.
Such models parameterize appearance with a collection of 2D tex-
ture maps that associate each texel to reflectance (diffuse albedo,

roughness) and mesogeometric (normal, height, ambient occlusion)
values.

Previously, capturing such materials from real samples implied
complex hardware setup, with for instance multiple calibrated pho-
tos taken under controlled lighting [PF14]. Recently, a new trend
emerged thanks to advances in machine learning (see Section 2)
where a single, uncalibrated e.g., smartphone photo of the sam-
ple is used to reverse-engineer the individual components of its
SVBRDF. Indeed, the vast majority of such methods require the
photo to be taken with a flash to help a neural architecture drawing
cues from the reflectance and mesogeometric properties of the sam-
ple. This turns out to be extremely efficient for indoor scenarios, for
SVBRDF that exhibit moderate midscale geometric features and a
certain degree of stationarity which copes acceptably with a low
resolution output. However, when it comes to outdoor scenarios,
some assumptions fall short. First, the camera flash may have no

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0002-5998-3932
https://orcid.org/0000-0001-5985-0921


R. Martin, A. Roullier, R. Rouffet, A. Kaiser & T. Boubekeur / MaterIA: Single Image High-Resolution Material Capture in the Wild

effect, with lighting being dominated by the sky and/or the sun.
Second, geometric mesostructures may express a greater variety of
relative scales and features. Third, practical use cases in the indus-
try require fairly high resolution captures since a small sample, e.g.
a forest ground or a cliff wall, may simply tile poorly and unrealis-
tically. In this paper, we propose a single image method to address
such outdoor material capture scenarios.

Aiming for high resolution material capture quickly faces the
neural dimensionality problem: even with extremely large compute
resources, the neural capacity should focus on the most ill-posed as-
pects of the outdoor scenario if high resolution, e.g. 1024² to 4096²
pixels is expected in the SVBRDF maps. The prominent presence
of strong geometric mesostructures as well as outdoor lighting con-
ditions has two consequences that dominate the problem: first the
material sample may exhibit strong self-shadowing and second the
geometric structure often exists at multiple scales in the same sam-
ple. For this reason, we propose a hybrid method, where a neural
architecture is employed on the most challenging aspects of the
problem, and scalable numerical methods are used on easier tasks.
More precisely, on the reflectance side, we focus on delighting the
input image to bootstrap the material extraction while, on the meso-
geometric side, we focus on reconstructing the normal field of the
material sample. In essence, we create a cascaded neural architec-
ture where we start by designing a neural network to separate the
irradiance and the specular contribution while recovering the mate-
rial’s albedo map, before running a second neural net, conditioned
on the output of the first, devised to reconstruct the normal map in a
multiscale fashion. The last step of our method recovers the remain-
ing height, roughness and ambient occlusion maps using standard
numerical methods.

We deployed our approach in a commercial application designed
for users without extensive technical background nor advanced
equipment in capture or photography, where ease of use and pro-
ductivity are fundamental. This context influences our final imple-
mentation, designed towards better performance (see Section 4),
and our design choices, to ensure that minimal assumptions are
taken on the input image in terms of capturing device, lighting
and quality. Such "wild" capture use cases include forest grounds,
stone walls and rock cliffs, taken at daylight without constraint on
the weather, with an ordinary camera device and without flash light-
ing. Still, our method can also be used on any similar picture, e.g.
from the internet.

Contributions

We propose a SVBRDF acquisition method from a single image
that targets highly-irregular materials captured in a natural light-
ing environment, where self-cast shadows have to be removed. Our
main contributions are:

Hybrid reconstruction: we designed a deep neural architecture to
resolve the most ambiguous tasks – namely delighting the input
picture and extracting the geometric gradients, while relying on
explicit numerical methods to deduce the remaining SVBRDF
channels. As such, the available neural capacity is dedicated to
the most ill-posed problems and, combined with our tiling ap-
proach, helps scaling to high-resolution inputs.

Synthetic dataset generation: we describe a method to generate
large collections of SVBRDF materials starting from a smaller
set of procedural material graphs that provide realistic varia-
tions. We do so by varying their hyper-parameters following a
Gaussian distribution centered on their presets and amplifying
this data set by piling distributions of objects fetched from large,
material-specific atlases.

Illumination decomposition: we decompose the delighting pro-
blem into the prediction of the irradiance and specular contri-
bution to compute the albedo. In addition, an enhancer map is
predicted to improve the delighting of saturated areas (darkest
shadows and specular spots).

Cascaded neural architecture: we propose a cascaded U-Nets
approach that exploits the result of the delighting stage as a clue
for the geometry estimation. More precisely, the geometry U-Net
uses the output irradiance map of the delighting U-Net to predict
the normal map.

Seamless high-resolution outputs: we propose a seamless recon-
struction from tiles of the albedo and normal maps in the gradi-
ent domain by solving a Poisson system, combined with a multi-
scale blending to reduce ambiguities at the scale of a tile.

We report on important implementation details, based on NVidia
CuDNN and Tensor Cores, which allowed us to ship our method in
a large-audience creative product.

2. Related Work

Image Translation. The task of converting one image into another
has benefited greatly from progress in deep-learning based image
segmentation, and the advent of the U-Net architecture [RFB15]
specifically. Based on a sequential encoder-decoder, it was the first
deep network to recompute a full sized output from a latent code
while preserving the high frequencies of the input, thanks to skip
connections mapping the encoded input features to the decoded fea-
tures at each scale. This architecture can be used to generate a mod-
ified version of the input image, by simply adapting the loss func-
tion. Hence, most work presented below, including our approach,
relies on the U-Net to predict the attributes of the object or material
to capture. In particular, in our work, we use a pixel-level loss for
all tasks as we are interested in preserving as much fidelity to the
input as possible.

Shadow Removal and Intrinsic Image Decomposition. As our
method is tailored to capture a material under natural lighting con-
ditions, one of the tasks we aim at solving is to remove the shad-
ows from the picture, which is a long standing problem in com-
puter vision and computer graphics [SSL12]. While early results
of shadow removal from a single picture were promising for single
object scenes [FHLD05; LEN10], Qu et al. [QTH*17] and Wang
et al. [WLY18] recently introduced learning-based methods to per-
form this task on more complex scenes. However, in their work the
shadows are cast by large objects outside of the picture’s field of
view and the target is not an albedo free of any lighting information,
which is what we seek. Wang et al. [WLY18] use cascaded UNets
to perform the shadow removal task conditionally to the shadow
mask detection, which we take inspiration from and show that it
helps recovering an accurate representation of the material geome-
try.
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Intrinsic image decomposition, namely the separation of natu-
ral images into reflectance and shading components, is close to
our proposal of predicting the irradiance and specular contribution
maps in order to compute the final albedo map. This task was tack-
led by many researchers, starting with the work of Weiss [Wei01]
based on image sequences, up to recent unsupervised learning
based methods [JWK*17; MCZ*18; LYYL20]. In the single im-
age context, some approaches propose to leverage a prior geom-
etry estimation of the scene to predict the reflectance and shad-
ing [LHL*20]. Yu et al. [yu_2019] are going further by introducing
an inverse renderer and tackling outdoor scenes, while most work in
the area focuses on indoor scenes, or even on a single object. How-
ever, these methods assume a Lambertian scene and do not handle
the specular highlights. The extracted reflectance often lacks the
contrast, sharpness, and fine grain detail of a material albedo.

Single-View Shape Capture. Methods to capture objects from a
single image often extract the appearance properties of the object
in addition to its shape, represented by a depth or normal map.

An early line of work focused on the estimation of the shape and
the reflectance map of an object in a picture, while assuming knowl-
edge of either shape or lighting conditions [Woo80; Mar98] or
Lambertian reflectance [JA11]. Recently, Rematas et al. [RRF*16]
use two U-Nets to respectively infer the shape map and the re-
flectance map, with supervision on both. The reflectance map is
further factored out into BRDF parameters and illumination map
in a follow-up paper [GRR*18]. Liu et al. [LCY*17] use a dif-
ferentiable rendering layer to add further supervision over renders
obtained with the predicted parameters, compared to ground truth
materials. Although, these approaches share by design the limita-
tion of only modeling constant, non-spatially varying BRDFs.

Recent work introduces the estimation of spatially varying
BRDF parameters in addition to the object shape. On top of us-
ing a rendering loss and estimating lighting parameters, Li et
al. [LXR*18] propose to train one U-Net per material channel,
where encoders are shared. Similarly to our work, this is made
possible by the use of a large scale synthetic dataset. In the last
two years, a number of improvements have been proposed, in-
cluding training jointly with relighting [SC20], two shot cap-
ture [BJK*20], multiple polarized inputs [DLG21] and multi-scale
architecture [LWSJ21].

While able to capture variations of color and roughness, these
methods remain focused on small objects photographed under flash
lighting and are not designed to handle the large scope of details
seen in high quality digital materials. In addition, the use of flash-
light, while being better suited to capturing specular properties, can
deteriorate portions of the input by saturating highly specular areas
and preventing a total recovery of the underlying material. In our
unconstrained scenario, we want to avoid both the need for flash
lighting and its destructive effect on the input, although the un-
controlled natural light makes the recovery of material properties a
harder task.

Single-View Material Capture. Methods specifically tailored for
the acquisition of SVBRDF maps consider the observed object as
a flat surface. This task is closer to image translation, as there is no
ambiguity between the object’s shape (a flat surface) and the local

geometry of the material at the surface of the shape. See [GGG*16]
for an overview of early results of SVBRDF capture. Recent works
on acquisition from a single picture have shown good results us-
ing deep learning approaches, often by making assumptions on the
material or imposing constraints on the capture process, such as the
distance to the sample or the type of light source.

In particular, a first line of work focuses on the translation of
one input image into multiple material channels. A single model
is used to capture a variety of materials in a single feed-forward
pass, which is fast and well suited to real-time use cases. Li et
al. [LDPT17] estimate diffuse albedo and normal maps using a U-
Net like architecture, as well as a single value for the specular level,
estimated with a convolutional network. They alleviate the lack of
labeled data with a self-augmentation scheme where predictions are
used to create new input renders. Deschaintre et al. [DAD*18] pre-
dict SVBRDF maps from a single flash-lit image. They augment
the U-Net architecture with a global features track to propagate in-
formation from non-burnt areas and mitigate the remaining specu-
lar spot artifacts from the flash. They match differentiable renders,
although their large high quality dataset, produced with a new on-
the-fly material blending method, would be well suited to direct
supervision. Materials for Masses [LSC18] uses a U-Net with one
common encoder but multiple decoders, and supervises jointly on
the ground truth PBR maps and differentiable renders. It uses a
specific map with radial coordinates to compensate for the degra-
dation of the input by the required flashlight. Guo et al. [GLT*21]
mitigate such saturated pixels at the level of network features, by
handling the specular highlights within the convolution operation.
Tini [Tin20] presents competitive results on the estimation of the
normal map, including a Gaussian blending scheme to stitch over-
lapping tile predictions. More recently, Zhou et al. [ZK21] propose
an adversarial loss, in the spirit of Pix2Pix [IZZE17]. They require
flash-lit inputs but use their light position estimation to generate dif-
ferentiable renders, supervised with another adversarial loss. Mar-
tin et al. [MMP19] propose a single-input high-resolution delighter
that produces an albedo map for outdoor scenarios, that we take
inspiration from.

Other approaches use iterative optimization to estimate mate-
rial maps, such as the seminal work from Aittala et al. [AAL16]
which assumes that the material is stationary and requires the use
of the flashlight during the acquisition. Their work only matches
the statistics of the input and does not provide a pixel-wise trans-
lation. Also featuring an iterative approach, Gao et al. [GLD*19]
obtain the material parameters by optimizing the latent space of an
encoder to match differentiable renders, starting from multiple in-
put images. MaterialGAN [GSH*20] pushes the idea further by us-
ing a StyleGAN [KLA21] architecture instead of the usual encoder-
decoder. Deschaintre et al. [DDB20] process tiles of large resolu-
tion inputs by fine-tuning a version of their original network, pre-
trained on natural non-flash lit examples, with multiple close-up
images. Although refinement iterations lead to high fidelity cap-
ture, they add a strong time constraint and are slower than direct,
feed-forward approaches.

Still starting from a photo input, some methods extend the cap-
ture process by generating new samples of the input material. Zhao
et al. [ZWX*20] train a generator to estimate the material parame-
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Figure 2: Method overview. High-resolution input from a camera is split into 512×512 tiles, from which the albedo and normal maps are
inferred by two cascaded U-Nets before being stitched back together and seamlessly reconstructed. A downscaled version of the input is
also processed through the same network to get the low frequencies of the normal map. High-resolution and low-resolution normals are then
blended, before deducing the height, ambient occlusion and roughness maps.

ters but also expand them spatially, although their method requires
training the model for each input. Henzler et al. [HDMR21] pro-
pose a unique model to handle the capture and the generation over
an infinite spatial extent for a variety of materials. They only match
texture statistics, which limits their approach to capturing stochas-
tic textures. Last, inverse procedural modeling methods [HDR19;
SLH*20] have recently shown impressive results in generating the
material graph itself from a single picture, but do not match the
input pixel-wise, nor address the geometric mesostructures, and as-
sume flashlight capture as well as access to a large database of ma-
terial graphs at runtime.

The methods described above focus on retrieving the SVBRDF
of a material. As such, they are not considering self-projected shad-
ows and, while providing good results on flat materials, may not
perform as well on irregular material geometries, frequent in out-
door scenarios. Additionally, the use of the flashlight is often a con-
straint of the capture, while we consider natural, unconstrained out-
door lighting, where flash lighting has no effect because of either
the environment light or the distance to the material. Besides, most
existing methods are trained on 256×256 pixels image inputs, and
do not address the question of larger input sizes, up to 4K.

3. High-resolution Material Acquisition

3.1. Overview

Our method reconstructs a digital material from a single photo in
the form of an SVBRDF modelled as a collection of five 2D tex-
ture maps. These maps define, at each location on a surface, the
reflectance attributes of a microfacet model [CT82; Kar13] based
on the GGX normal distribution function [WMLT07], as well as
the geometric components of the material. More precisely, they in-
clude the diffuse albedo and the roughness of the BRDF as well as
the normal and the displacement (or height) value of the material
mesostructure. Last, an ambient occlusion map is computed from
the height map. Our method (Fig. 2) starts by inferring the albedo
map through a Delighter U-Net (or D-UNet), before inferring the

normal map through a Geometry U-Net (or G-UNet) using the out-
put of the Delighter U-Net. We run it on a per-tile basis where
512× 512 pixels tiles are processed before recovering the high-
resolution output by interpolating in the gradient domain. Height,
roughness and ambient occlusion maps are analytically deduced in
the final stage, providing a complete PBR material.

3.2. Dataset

Although our goal is to reconstruct a PBR material from a photo-
graph, creating training pairs using real photographs as input and
accurate corresponding SVBRDFs is a very tedious process. In-
deed, in the case of highly irregular materials, getting an albedo
map with no remaining shade in the occluded regions requires a
manual cleaning with no guarantees on its correctness. This would
also require many captures to get enough variations in the data and
lighting conditions in order to obtain a representative dataset. In-
stead, using synthetic data to train a neural network has proven to
be effective and reliable, as shown by Li et al. [LSC18] and De-
schaintre et al. [DAD*18]. Nonetheless, care must be taken to en-
sure the realism of the synthesized data and the representativeness
of our target domain – outdoor materials. To that end, we propose
a dedicated data synthesis pipeline based on parametric materials.

Initial Dataset We initiate our dataset with a collection of para-
metric material graphs in the Substance 3D format [Ado21]. Each
such parametric material is described by a directed acyclic graph
that outputs the different channels of an SVBRDF, and exposes
a set of high-level parameters to control procedural variations.
We selected the graph set to cover outdoor categories (grounds,
stones, terracottas, plasters, concrete/asphalt). Across most mate-
rial databases – including ours – the geometric information is in-
consistently balanced between the height map and the normal map.
To mitigate this issue, we compute a reliable version of the normal
map, to use as ground truth, by blending the normal derived from
the height map and the raw normal map produced by the material
graph.
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Figure 3: Two examples of synthetic training sets. Left to right:
Input (material rendered under specific lighting), target albedo, ir-
radiance map, specular contribution map, normal map.

Dataset augmentation Tweaking parameters of procedural mate-
rials in their allowed ranges can actually produce highly unrealistic
materials, which require a time-consuming manual cleaning pass,
making iterations on the dataset very inefficient. Consequently, to
generate a wide variety of realistic materials, we adopt a conserva-
tive strategy by sampling parameter variations following a Gaus-
sian distribution centered on the values of presets defined in the
material graph by its creator, with a variance equal to 5% of the pa-
rameter range. This provides enough variability while preserving
the overall aspect of the material, as originally designed.

Furthermore, real life outdoor scenes rarely offer "clean" mate-
rials to capture, and often exhibit a certain complexity due to the
presence of multiple objects that collectively form the appearance
of a ground or a cliff – and this is precisely this realistic appearance
that we aim at capturing. Such layouts often cause sharp edges and
strong cast shadows that we want to show to our neural architec-
ture during training. Therefore, we amplify our data set by splatting
small assets such as stones, leaves, or wood sticks using a blue-
noise distribution over each base material. These assets are fetched
from atlases and designed on a per-category basis to preserve se-
mantics of the synthetic output (see Fig. 4).

We produce 14 renders of each material in 2048× 2048 pixels
using a set of seven HDR environment maps, while varying their

Figure 4: Atlas splatting on synthetic materials. Top: examples of
atlases (albedo map). Bottom: Final renders of atlas splatting on
grounds, provoking strong shadows.

Figure 5: Complete network architecture: two UNets are cas-
caded, G-UNet being conditional to the output of D-UNet.

horizontal rotation. These lighting condition samples are drawn
from a parametric HDR environment map which is itself modelled
as a parametric graph and simulates natural lighting conditions with
a sun light at different times of day and a diffuse sky. The color
temperature of the sun and sky are also slightly varied during the
rendering to increase the robustness of the delighting to color shift-
ing in illuminated and shadowed parts. Our real-time renderer uses
image-based lighting and ray tracing to generate, in addition to the
final image, the irradiance and specular contribution maps. These
are used as ground truth maps during training to learn to decou-
ple the contribution of light and material properties, as presented in
Section 3.3.

Last, we proceed with a final data augmentation step by rotating,
flipping, scaling, and finally cropping our images to a 512× 512
resolution – the input resolution of our neural nets. Ultimately,
starting from roughly 350 parametric material graphs, we gener-
ate 2100 materials, resulting in 30000 renders and finally around
240000 training tuples of 512× 512 pixels (see one example in
Fig. 3), with for each tuple the rendered material used as input and
a set of ground truth maps (albedo, irradiance, specular contribution
and homogenized normal) used for supervision.

3.3. Network architecture

Our network is a deep convolutional neural network made of two
cascaded UNets, the Delighter (D-UNet), focused on recovering the
albedo, and the Geometry extractor (G-UNet), focused on retriev-
ing the normal map, leveraging the Delighter’s output (see Fig. 5).

The delighter uses the illumination decomposition formula in or-

Figure 6: D-UNet architecture.
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der to recover the albedo, starting from the input:

input = albedo∗ irradiance+ specular (1)

This decomposition helps to disambiguate the captured color, by
splitting it into the intrinsic reflectance of the captured material
(albedo) and the irradiance and specular highlights produced by
the incident lighting. We reverse this formula to deduce the albedo
given the input, irradiance and specular contribution, and introduce
the enhancer map as follows:

albedo =
input + enhancer− specular

irradiance
(2)

The role of our enhancer map is to enhance the input, that is
possibly quantized or clamped and may lack information in the
saturated and darkest areas. Ground truth irradiance and specu-
lar contribution maps are available in our dataset, but there is no
ground truth for the enhancer, which brings slights modifications
to the input in order to rectify the damaged areas, thus mitigating
the instability of the division by the irradiance map. D-UNet (see
Fig. 6) takes as input a 512×512 lit RGB image and is composed of
five levels of convolutional blocks on each side of the latent space.
It predicts three maps: irradiance, specular contribution, and en-
hancer. Fig. 12 shows the evolution of the Delighter, starting with
a direct albedo prediction, introducing the irradiance and specular
maps, and finally adding the enhancer map.

The input of G-UNet is the concatenation of the input image
and the predicted irradiance map, leading to a six-dimensional in-
put (see Fig. 5). It outputs the X and Y components of the normal
vector, the Z component being deduced. G-UNet is shallower than
D-UNet, with four levels of convolutional blocks and fewer feature
maps in the deepest layers. The cascaded UNets approach allows
to use the semantic information provided by the irradiance map as
a clue to recover the geometry. The complete architecture of these
two networks is given in Section 1 of the supplemental material.

We use a combination of all the output maps to compute the loss,
each one being based on the L1 norm between the prediction and
the ground truth map. We first train the Delighter UNet with the
following loss function:

loss = λalossalbedo +λslossirradiance +λhlossspecular (3)

where λa is set to 1.0, λs and λh are set to 0.7 in our experiments,
to give slightly more importance to the error in the albedo map as
it corresponds to the final target. Once the training has converged,
we freeze the weights of the first UNet and train the second one
to retrieve the normal map. To encourage the network to infer a
normal map with sharp edges, we multiply the L1 error image by
a weight map which is inversely proportional to the Z component
of the ground truth normal, in order to give more importance to
normals pointing further from the inverse view direction.

We found that using a Bounded ReLU as activation function with
a threshold of 6 helps the network to converge, by preventing per-
turbations in the input signal to accumulate across the layers. We
use nearest neighbor upsampling in the decoding part, and mirror
padding at all stages to reduce artifacts at the boundaries of each
512×512 tile.

Figure 7: Seamless albedo reconstruction. Left: input picture from
camera (1024× 1024 pixels). Middle: output albedo tiles stitched
together, with visible seams. Right: seamless Poisson solving.

3.4. Reaching high-resolution

While existing deep learning methods usually operate on small in-
put images, often limited to 256× 256 pixels due to memory and
speed limitations, an artist would typically need at least 2048×
2048 pixels to produce a valuable material. To tackle the ability
to extract a material from a high-resolution picture, we propose a
method that processes small tiles separately, associated to a merg-
ing strategy to produce high-quality results.

Seamless blending in the gradient domain. We first split the in-
put image into 512× 512 pixels tiles without overlap, and predict
the albedo and normal maps for each tile using our network. We
then stitch all the predicted tiles together to recover a full resolu-
tion albedo and normal, and solve the Poisson equation to remove
the seams between tiles on each resulting image, as an application
of Poisson Image Editing [PGB03]. For the albedo map, we use the
color gradients as the guidance field, and provide the entire image
borders as the boundary values for the Poisson equation, which is
solved on each color component separately. The normal map carries
unit vectors, for which XYZ components cannot be be interpolated
separately. Therefore, we convert the normal vector into particu-
lar angular coordinates, θ being the angle from the Z axis along
XZ plane, between − π

2 and π

2 , and ϕ being the angle formed by Y
axis and OP (see Fig. 8). This representation leverages the fact that
normals are pointing up, and avoids any modulo 2π in the gradient
computation:

x = sin(θ)sin(ϕ)
y = cos(ϕ)
z = cos(θ)sin(ϕ)

↔
{

θ = atan2(x,z)
ϕ = acos(y)

(4)

φ
     θ

     
     

x       

y

z       

P

Figure 8: Angular coordinates used for the Poisson reconstruction
of the normal vectors.
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We compute the gradient of each angular coordinate separately
and solve the Poisson equation in this space.

This process removes the seams appearing when all output tiles
are stitched together by smoothing the gradients, and allows the
acquisition of a high-resolution material. This method works par-
ticularly well for the albedo because the tiles are from the same
material and present a color consistency at their boundaries (see
Fig. 7).

The result for the normal map is more dependent on the size of
the portrayed features and the positions of seams. The results are
satisfactory for small features, but when features exceed the tile
size or are located across two tiles, the high ambiguity at the tile
scale can make the network fail at recovering the geometry. In ad-
dition, Poisson solving can introduce low-frequency gradient arti-
facts that lead to unwanted geometry once converted into a height
map through integration.

Multi-scale blending of the normal map. To mitigate this issue,
we adopt a multi-scale approach to first obtain low frequency ge-
ometry information and then blend it with the high frequency de-
tails. We downscale the input image into a unique 512× 512 im-
age, that we process with the same network as the tiles, to get a
low-resolution normal map. The large scale components of the ma-
terial’s geometry are entirely contained in this low-resolution nor-
mal map, that we blend with the seamless high-resolution normal
as follows:

normal = α (normalHrH f −normalHrL f )+(1−α) normalLrU p
(5)

where α is the frequency balance parameter, normalHrH f is the
seamless output at the resolution of the input image, normalHrL f is
obtained from normalHrH f after removing high frequencies, i.e. by
downscaling to 512× 512 pixels then upscaling to the input reso-
lution, and normalLrU p is the 512×512 predicted normal upscaled
to the input resolution (see Fig. 9).

Figure 9: Multi-scale normal blending. a) Input high-resolution
picture from camera (2048×2048 pixels); b) Normal inferred from
high-resolution input, where large features have not been recov-
ered; c) Low resolution input, after downscale at 512× 512 pix-
els; d) Low-resolution normal inferred from low resolution input; e)
Resulting high-resolution normal (2048×2048 pixels) after multi-
scale blending (α=0.5), containing both low-frequency geometry
and high-frequency details.

3.5. Full SVBRDF recovery

Our two cascaded U-Nets, coupled with seamless reconstruction,
predict full resolution albedo and normal maps, which are the most
ambiguous ones in outdoor scenarios, consuming the full neural
capacity of the system. Then, the height map is computed from
the normal map, through a normal integration following Durou et
al. [DC07]. This method implies solving a Poisson system using
normal divergence as the guidance field. The ambient occlusion
map is computed using HBAO (Image-Space Horizon-Based Am-
bient Occlusion) [BSD08]. The displacement factor to consider for
this computation is exposed to the user.

We estimate the roughness map using an approximation that
models the relationship between the normal distribution function
and the actual surface exposition to outdoor conditions. Essentially,
we link the local geometry of the surface to the roughness value
through the normalized curvature estimate H and the ambient oc-
clusion A:

roughness = max(1,(1−H)+(1−A)) (6)

Our insight is that salient edges are more likely to be exposed,
and thus polished, so the lower their roughness becomes. Similarly,
accessibility (AO) is correlated to surface exposure, hence rough-
ness. This formulation allows recovering fine grain roughness in-
formation from the middle range variations of curvature and ambi-
ent occlusion. This is clearly a crude approximation, but it is com-
monly used by 3D artists in material creation workflows. This for-
mulation is illustrated in Fig. 1 of the supplemental material.

Our method allows estimating the roughness variation induced
by the high and low frequency geometry of the captured material,
considering how much a surface is exposed, however, as we do
not constrain the incident lighting at capture time, we cannot be
sure to have enough specular information in the input to deduce the
overall roughness value. Consequently, we adjust the global rough-
ness value by moving the mid-grey value of the roughness map
histogram, which is exposed to the user, as well as the roughness
variation range.

Overall, the user controls the process using the ambient occlu-
sion factor (displacement), the mid roughness value and roughness
variation amount, as well as the balance α between the low and
high frequencies of the normals.

4. Results

4.1. Visual quality

Figure 10 presents an inference result run on synthetic data. Our
model successfully recovers albedo and material geometry and al-
lows, after computing the remaining PBR channels, for a realistic
render of the extracted virtual material that is very close to the in-
put picture. We can observe that our estimated roughness brings
the final material appearance closer to ground truth in the render-
ing, although there is clearly room for improvement. More results
of prediction on synthetic renderings can be found in Section 3.1 of
the supplemental material.

In addition, we have created a test set dedicated to checking the
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Figure 10: SVBRDF reconstruction on the synthetic test set (2048×2048 pixels), predicted from the render in top-right. The resulting render
(bottom-right) allows ensuring that the whole SVBRDF channels are close enough to the ground truth. Our model successfully removes the
shadows and the specular highlights from the input image, and provides a result close to the ground truth albedo, with details and contrast
preserved. The material geometry is also well recovered in the normal map including sharp edges. While the local effect of light is well
removed, we observe some global color drift, where the predicted albedo has an average color closer to the input than to the ground truth.
This shows that our network can not always decouple the intrinsic material color from that of the environment, which is a complex semantic
task, the global environment color being highly dependent on the location of the capture and type of material.

visual quality of the network output on a selection of real captures.
For this purpose, we have aggregated 120 pictures of grounds and
stones taken in the context of photometry and photogrammetry, us-
ing several camera devices, under various lighting conditions and
scales. We show four of these results in Fig. 11, additional samples
in Figure 3 of the supplemental material, and the whole test set is
also available as supplemental material.

4.2. Evaluating predictions

We evaluate the quality of the network prediction using three met-
rics: Mean Squared Error, Mean Absolute Error, and SSIM Error,
comparing the predicted maps to the ground truth ones (see Tab. 1).

4.3. Ablation study

We started our work on the Delighter UNet by predicting directly
the albedo map without the intermediary irradiance and specular
maps. The dataset was first made of procedural materials, rendered
with greyscale environment maps to avoid color shifting due to the

Metric Input/GT albedo Albedo pred/GT Normal pred/GT
MAE 0.07671 0.0507 0.0406
MSE 0.0150 0.00631 0.0049
SSIM 0.3834 0.240 0.263

Table 1: Average metrics computed on the entire test set: Mean
Average Error (MAE), Mean Square Error (MSE) and Structural
Similarity (SSIM). The Input/GT albedo metric represents how dif-
ferent the input image is from the target ground truth albedo.

color temperature of the environment map light. Results are satis-
fying on inputs with small shadows and with a neutral color tem-
perature. Fig. 12 shows two failure cases of this version, presented
in column b).

We make the hypothesis that the network needs more capacity to
interpret the effect of light on the material color. Hence, we train
it to infer an irradiance map and a specular map, by designing the
predicted albedo as the result of the illumination decomposition
formula presented in Section 3.3:

albedo =
input− specular

irradiance
(7)

However, with no ground truth associated to these illumination
maps, the loss can only be computed on the target albedo, leading
to unexpected information in the predicted irradiance and specular
maps, even though the resulting albedo has reasonable quality on
most examples. In addition, this decomposition does not solve the
failure cases (see column c) of Fig. 12) and this version tends to
shift towards red colors in the darkest shadows.

These results highlight several issues with this dataset. First, us-
ing grayscale environment maps prevents the network from learn-
ing the effects of color temperature of the sun and sky on lit and oc-
cluded parts. Second, this dataset lacks examples of large shadows
cast by small objects such as stones and wood sticks. We then re-
worked this dataset to include colored environment maps, material
augmentation using atlases (see Section 3.2) and generation of the
ground truth irradiance and specular maps associated to each ren-
der. We changed the loss to a combination of the error on the pre-
dicted irradiance, specular, and albedo maps. Column d) of Fig. 12
shows a better delighting on three examples. The shadows are bet-
ter removed and the overall contrast of the albedo is increased.
However, as the illumination decomposition involves a division by
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Input Predicted maps Orthographic render Perspective render

Figure 11: MaterIA results on four real use cases. Left: Input picture in 4096× 4096 pixels, taken with a smartphone in natural lighting
condition. Second column: Predicted albedo, normal map, roughness, height and ambient occlusion. Last two columns: Resulting material
rendered with an environment map that reproduces closely the lighting environment of the capture. Our model generalizes well on these real
pictures (left) and allows capturing a complete high-resolution PBR material (second column) that can be synthetically lit with no shadows
artifacts and a convincing recovery of the geometry, as can be assessed from the new generated shadows (right).

the irradiance map, the results can be unstable in the darkest areas,
where saturated pixels can appear. This is also caused by the miss-
ing information in the input in saturated areas (darkest shadows and
specular spots).

The final Delighter architecture adds a third output called the en-
hancer map, whose role is to help recover information in these sat-
urated areas. The enhancer map has no ground truth and is added
to the input before applying the illumination decomposition. Col-
umn e) presents the results of this last Delighter version and shows
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a) b) c) d) e) (Ours)

Figure 12: Ablation study on the delighting. a) Input picture from camera (512× 512 pixels). b) Delighter UNet [MMP19] trained at
predicting directly the albedo map, using the initial dataset made of materials rendered with greyscaled environment map, without atlas
augmentation. c) Modification of b) to predict an irradiance and a specular output, with no supervision on these maps. The loss is computed
on the resulting albedo only, which leads to a lack of constraint on the irradiance and specular outputs, and unsatisfying delighting results.
d) Reworked dataset with colored environment maps and atlas augmentation, and ground truth irradiance and specular maps generated. The
Delighter is trained at predicting the irradiance and specular maps, with a loss involving these two maps only. The albedo is deduced using
the light decomposition formula (detailed in 3.3). The last row is a zoom of the second row and allows to observe some saturated pixels in the
darkest areas, in the form of chromatic aberrations. e) Adding the enhancer map as third output map of the Delighter network mitigates the
issues in the darkest areas. The loss becomes a combination of irradiance, specular and resulting albedo. This is our final Delighter network.

that the aberrations visible in column d) have disappeared, while
producing comparable delighting results.

4.4. Comparison to existing work

Albedo pred/GT Normal pred/GT
Method RMSE SSIM RMSE SSIM

[YLD*18] 0.166 0.613 0.119 0.484
[DAD*18] (no flash) 0.223 0.598 0.135 0.507
[DAD*18] (our data) 0.166 0.589 0.135 0.496

[Tin20] – – 0.106 0.592
Ours 0.126 0.722 0.104 0.630

Table 2: Average metrics computed on 28 ray-traced synthetic ren-
ders at 1024× 1024 pixels with ground truth maps: Root Mean
Square Error (RMSE, lower is better) and Structural Similarity
with a kernel of 7 (SSIM, higher is better). Deepbump [Tin20] only
extracts a normal map, hence the missing Albedo metric. Examples
of input images used to compute these metrics are given in Figure
2 of the supplemental material.

In order to evaluate the quality and robustness of our method
against state of the art, we compare our SVBRDF extraction with
three existing methods from Ye et al. [YLD*18], Deschaintre et
al. [DAD*18] and Hugo Tini [Tin20]. For each method, we pro-
vide a quantitative evaluation of the predicted albedo and normal
against the ground truth maps (Table 2). We also show qualitative
results for predicted albedo and normal (Fig. 13) as well as renders
(Fig. 14).

For the method of Deschaintre et al. [DAD*18], we use the net-
work trained with directional lighting and sky dome [DDB20], that
we call "no flash", so the results are closer to our work. In ad-
dition, we trained this same network and renderer on the mate-
rial maps generated using our method, that we call "our data", to
highlight the added quality brought about by our data augmenta-
tion approach. However, we can notice that the lack of displace-
ment in the renderings produced by this method during the training
prevents removing the strong shadows, even when trained on our
atlas-augmented material dataset. Overall, we can observe that our
method provides a significant improvement in the visual quality of
the resulting SVBRDF.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



R. Martin, A. Roullier, R. Rouffet, A. Kaiser & T. Boubekeur / MaterIA: Single Image High-Resolution Material Capture in the Wild

[Y
L

D
*1

8]
[D

A
D

*1
8]

(n
o

fla
sh

)
[D

A
D

*1
8]

(o
ur

da
ta

)
[T

in
20

]
O

ur
s

Figure 13: Comparison of predicted albedo and normal maps for different methods. For both of these real examples, we can see that our
method recovers well delighted albedo maps, and provides a normal map with both large scale features and small details. On the left, the
very strong sun light leads to some remaining soft shadows in our albedo, which might be visible when rendering it with novel views or lights.
While some other methods achieve a result similar to ours for one map or the other, none of them reach a high quality for the two maps. More
results of predicted maps are given in Figure 4 of the supplemental material.

The normal maps of Tini [Tin20] are comparable to our recon-
structed geometry in both high and low frequency, but we also pro-
vide basecolor and additional SVBRDF parameters. In some ex-
amples, the normal maps of Tini have slightly stronger gradients,
in particular when mixing flat and bumpy areas, such as pebbles in

grass (Fig. 14, left) or in mud (Fig. 5 of the supplemental material,
left).

As our albedo extraction using illumination decomposition can
relate to the intrinsic image decomposition domain, we compare
our method to three intrinsic image decomposition approaches, Yu
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Figure 14: Comparison of SVBRDF acquisition and resulting renders for different methods on two real samples. Top row: input photo.
Then, for each method, from left to right: extracted SVBRDF maps (albedo, normal, roughness) as well as height and ambient occlusion
maps computed with the same process as our method, resulting material rendered on a sphere, clay render on a plane. Thanks to the well-
delighted albedo and accurate normal map, our method allows correct rendering of the input material in new lighting conditions. The white
clay renders highlight the high quality geometry recovered by our method. More renders are given in Fig. 5 of the supplemental material.

et al. [yu_2019], Liu et al. [LYYL20] and Luo et al. [LHL*20].
Fig. 15 shows that these methods have a tendency to produce flat
solid colors and do not preserve the high frequency details in the
resulting reflectance. This is suitable for the image manipulation
domain which benefits from large flat regions, but not for the ma-

terial reconstruction domain, where the albedo map is expected
to contain higher frequency content for realistic rendering. Fig. 16
shows that our albedo and normal recovery results in a better ge-
ometry interpretation than the reflectance and normal extraction of
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Figure 15: Comparison of our delighting method with three
intrinsic image decomposition methods, on three real examples.
From top to bottom: input photos, results of [yu_2019], [LYYL20],
[LHL*20] and ours. For each method, we ran the pretrained net-
work available online and show the resulting reflectance. We can
observe that [yu_2019] and [LYYL20] methods produce somehow
blurry results with unexpected color artifacts, while [LHL*20] pre-
diction is closer to the expected output. However, it lacks contrast
and fine grain details that are required for the albedo of a SVBRDF
material, and that our method preserves well.

Luo et al. [LHL*20]. As such, our material-specific data set could
be applied to such intrinsic decomposition methods.

4.5. User study

In order to evaluate the quality of our material extraction from the
point of view of 3D artists, we ran a user study by asking 21 artists
to rank the predictions and subsequent renderings given by four
compared methods. To compute normalized scores, we assign a
score of 1.0 to the first ranked method, 0.6 for the second, 0.3 for
the third, and 0.0 for the last one. Then, we average these scores
over all users and examples, to get the final scores in Table 3. In
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Figure 16: Comparison to [LHL*20] for the geometry compo-
nents extraction, on the second example of Fig.15. Only the albedo
and normal predictions are used for our method, the height map
is computed from the normal map the same way for both methods,
and a constant roughness has been set. [LHL*20] does not predict
a proper geometry of the captured material.

addition, screenshots of the survey sent to users are given in Figure
6 of the supplemental material.

4.6. Implementation details and performance

We use the Tensorflow framework in Python [MAP*15] to train
our model. Our network requires around 20GB of memory dur-
ing the training stage. We use an NVidia Quadro GV100 GPU for
the training, and it takes around five days to get a fully converged
model. To deploy our model into the commercial application, we
implemented our network using a C++ API based on native CUDA
and CuDNN libraries. We export the weights of the network from
Tensorflow as a binary file, that is read by the C++ API when the
network is built. We also developed optimized CUDA kernels for
the operations that are not natively available in CuDNN .

The Poisson equation is solved using the Intel®MKL Poisson li-
brary, using the color gradients as vector fields for the albedo, and
the spherical coordinates gradients for the normal map. We run the
following process for both albedo and normal maps. The gradients

Method Albedo Normal
[YLD*18] 0.38 0.03

[DAD*18] (no flash) 0.48 0.38
[Tin20] – 0.77

Ours 0.75 0.73

Table 3: User study scores for different methods, averaged over
10 material extraction examples and 21 survey responses. Deep-
bump [Tin20] only extracts a normal map, hence the missing
Albedo score. While we can see that the albedo predicted by our
method is largely preferred by artists, our normal map has a score
similar to Deepbump, which shows that both method extract an ac-
curate geometry from the input.
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Step Duration (ms)
Inference high-resolution (16×512×512 tiles) 0.75
Inference low-resolution (single 512×512 tile) 0.7

Poisson solving on albedo and normal 1.0
Multi-scale normal blending 0.2

Height computation 1.0
AO and Roughness computation 0.5

Table 4: MaterIA performance from a 2048× 2048 pixels input
picture on a NVidia Quadro GV100 GPU.

of the prediction in the horizontal and vertical axes are computed
for each tile and channel in a dedicated CUDA kernel, then stitched
together similarly to the predicted tiles. We define the boundary of
the Poisson equation as the one-pixel border of the entire image,
and set the Dirichlet boundary condition using the predicted values
(RGB values for the albedo and angular coordinates for the nor-
mal). We set the gradient to zero at the boundary of all tiles in the
considered direction; e.g. we set a zero gradient for all pixels of
the right border in the horizontal gradient, and respectively for the
bottom border in the vertical gradient. Finally, acquiring the full
SVBRDF from a 2048× 2048 pixels picture takes around 4 sec-
onds, with the time breakdown shown in Tab. 4.

5. Limitations and future work

Our solution shows limitations in the predicted normal map if the
low-resolution and high-resolution inferences are opposite. In that
case, blending them cancels the relief and leads to unsatisfactory
results. We plan to rework the network architecture to condition
the high-resolution inference to the low-resolution result. Adopt-
ing a multi-scale approach directly within the network architecture
should also remove the need for post-process blending. Also, using
a synthetic dataset made of material renders introduces a bias in
the data learned, and even if we found out that our model general-
izes pretty well on real pictures, we know that some realistic effects
cannot be represented in 2.5 dimensions, in particular the shadows
cast by small objects that are not directly on the floor, like twigs for
instance. Last, we would like to investigate network compression
to reduce the memory footprint of our network once deployed.

Capturing a material in the wild implies having the most flexible
setup, in particular for the lighting conditions. This would make a
roughness map prediction very unstable as the input may not con-
tain any meaningful information allowing to determine the material
roughness. This is why we adopted this roughness approximation
based on the curvature and ambient occlusion, combined with a
user input to adjust the global range. Our method, although not ac-
curate and requiring user input, provides satisfactory results in the
targeted domain of outdoor materials.

Our method is not designed to extract SVBRDF from metallic
objects. As we work in the roughness/metallic workflow (see in-
troduction), the albedo used to train our delighter network is not
split between diffuse and specular maps, hence cannot be used to
estimate a metallic map. Predicting the latter could be the object of
further research, as our data creation pipeline allows to generate a
metallic map from procedural materials.

6. Conclusion

We proposed a method which evolves state-of-the-art in high-
resolution SVBRDF capture from a single outdoor image, inter-
leaving deep learning and explicit non-learned formulations. Our
method successfully removes the shadows coming from the light-
ing while preserving the contrast of the input, resulting in a high
quality albedo map. As such, our method leverages domain learn-
ing to solve the under-constrained problem of delighting, while us-
ing the full capacity of single-task specialized networks. The de-
composition of the albedo map following the illumination, i.e. into
irradiance and specular contribution maps, helps the network to
understand the semantics of the image. Exploiting this semantic
information by concatenating the predicted irradiance map to the
input of the normal map inference shows good results at recovering
the geometry. Moreover, our multi-scale post-processing of the nor-
mal map leads to well-preserved low and high frequencies, that re-
flect in a height map reproducing faithfully the captured geometry.
Eventually, the fast computation of the roughness, even though not
fully accurate, shows good results allowing the addition of small
details in the light reflection when rendering the captured PBR ma-
terial. Additionally, our procedural data generation and augmenta-
tion strategy effectively produced a huge and realistic dataset of
synthetic materials, with in particular the atlas splatting strategy
overcoming the lack of highly irregular materials. Last, our tiling
approach reduces the memory footprint while processing high reso-
lution inputs, with a seamless reconstruction for high quality result-
ing materials. Last, we optimized our model using NVidia CuDNN
and deployed it within a widely used software product.
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