
Moving Level-of-Detail Surfaces
CORENTIN MERCIER, LTCI, Télécom Paris, Institut Polytechnique de Paris, France
THIBAULT LESCOAT, LTCI, Télécom Paris, Institut Polytechnique de Paris, France
PIERRE ROUSSILLON, LTCI, Télécom Paris, Institut Polytechnique de Paris, France
TAMY BOUBEKEUR, Adobe Research, France
JEAN-MARC THIERY, Adobe Research, France

Input
40881 points

APSS 20 NN
2.78 µs/point

APSS global
850 µs/point

Ours
5.82 µs/point

Input
1031960 points

APSS 20 NN
5.40 µs/point

APSS global
67400 µs/point

Ours
30.9 µs/point

Fig. 1. Modeling Algebraic Point Set Surfaces using a fixed number of input nearest points results in unacceptable approximations far from densely sampled
regions. Our smooth approximation copes naturally with complex inputs featuring large missing parts and competes with global optimization approaches
while allowing for pointwise smooth projection and filtering.

We present a simple, fast, and smooth scheme to approximate Algebraic

Point Set Surfaces using non-compact kernels, which is particularly suited

for filtering and reconstructing point sets presenting large missing parts. Our

key idea is to consider a moving level-of-detail of the input point set which

is adaptive w.r.t. to the evaluation location, just such as the samples weights

are output sensitive in the traditional moving least squares scheme. We also

introduce an adaptive progressive octree refinement scheme, driven by the

resulting implicit surface, to properly capture the modeled geometry even

far away from the input samples. Similarly to typical compactly-supported

approximations, our operator runs in logarithmic time while defining high

quality surfaces even on challenging inputs for which only global optimiza-

tions achieve reasonable results. We demonstrate our technique on a variety

of point sets featuring geometric noise as well as large holes.

CCS Concepts: • Computing methodologies → Point-based models.

Additional Key Words and Phrases: Point-based modeling, MLS projections,

point set surfaces

ACM Reference Format:
Corentin Mercier, Thibault Lescoat, Pierre Roussillon, Tamy Boubekeur,

and Jean-Marc Thiery. 2022. Moving Level-of-Detail Surfaces. ACM Trans.

Authors’ addresses: Corentin MercierLTCI, Télécom Paris, Institut Polytechnique de

Paris, France, corentin.mercier@grosmi.net; Thibault LescoatLTCI, Télécom Paris, Insti-

tut Polytechnique de Paris, France, thibault@lescoat.fr; Pierre RoussillonLTCI, Télécom

Paris, Institut Polytechnique de Paris, France, roussillon.pierre@gmail.com; Tamy

BoubekeurAdobe Research, France, boubek@adobe.com; Jean-Marc ThieryAdobe Re-

search, France, jthiery@adobe.com.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

0730-0301/2022/5-ART130 $15.00

https://doi.org/10.1145/8888888.7777777

Graph. 1, 1, Article 130 (May 2022), 10 pages. https://doi.org/10.1145/8888888.

7777777

1 INTRODUCTION
Moving Least Squares (MLS) projection operators [Levin 1998, 2003]

offer an elegant unified framework to model Point Set Surfaces (PSS)

from unorganized point clouds [Alexa et al. 2001], with immedi-

ate application to point-based filtering and mesh reconstruction.

At their core, MLS operators take the form of iterative projection

procedures from R3 to R3, whose stationary set is the PSS. At each

iteration, a geometric primitive, e.g., a plane is optimized to fit the

input point set under a weighting kernel centered at the evaluation

position, before projecting this point onto the primitive. In terms

of quality, the resulting PSS is guaranteed to be smooth as long as

smooth global kernels are used.

Unfortunately, such kernels induce untractable computations,

even on inputs of moderate size, as the projection of a single point

has a𝑂 (𝑁) complexity, 𝑁 being the number of input samples. Con-

sequently, it is common to localize the support of the MLS projection

by gathering only the 𝑘 nearest neighbors (kNN) – this typically

breaks smoothness and creates holes (see Fig. 1).

Our objective is to design a point-wise operator that retains the

simplicity of MLS but scales efficiently to non-compact kernels and

reaches a robustness which is competitive with global optimiza-

tions [Huang et al. 2019; Kazhdan and Hoppe 2013] when it comes

to large missing parts in the input point set. To do so, we propose

a new MLS approximation scheme, introducing a moving level-of-
detail, devised for Algebraic Point Set Surfaces (APSS) [Guennebaud
et al. 2008]. In particular, we make the following contributions:

• we present a new hierarchical scheme for the efficient approx-

imate convolution of any nD point data set with a smoothly-

varying non-compact kernel running in 𝑂 (log(𝑁));

ACM Trans. Graph., Vol. 1, No. 1, Article 130. Publication date: May 2022.

HTTPS://ORCID.ORG/0000-0001-5985-0921
https://orcid.org/0000-0001-5985-0921
https://orcid.org/0000-0001-5985-0921
https://doi.org/10.1145/8888888.7777777
https://doi.org/10.1145/8888888.7777777
https://doi.org/10.1145/8888888.7777777

130:2 • C. Mercier, T. Lescoat, P. Roussillon, T. Boubekeur & J.-M. Thiery.

• we introduce an efficient world-space sampling scheme for

precise, fast, and memory-efficient sampling and meshing.

We demonstrate its use for point-based filtering and mesh recon-

struction of point sets presenting a significant amount of geometric

noise as well as large missing parts.

2 RELATED WORK
In this section, we discuss the most relevant works to our technique,

and refer the reader to recent surveys [Berger et al. 2013, 2017] for

a more general overview.

Point Set Surfaces. TheMoving Least Square (MLS) operator [Levin

1998] is a flexible scattering data approximation model, particularly

useful to model surfaces from unorganized point clouds [Alexa

et al. 2001; Amenta and Kil 2004; Levin 2003]. This operator usu-

ally comes in the form of a local projection of the ambient space

presenting good denoising capabilities [Levin 2003; Reuter et al.

2005] and fast enough to quickly reconstruct or render point-based

models [Alexa et al. 2001; Guennebaud et al. 2008]. While its original

definition involved a local least squares fit of a plane followed by

the optimization of a polynomial patch over the plane, its more re-

cent instances have simplified the process, by directly fitting simple

geometric primitives locally, using them as the projection support.

Hence, the various flavors of MLS projections differ mostly in the

type of primitives that is locally fitted, such as planes [Levin 2003],

spheres [Guennebaud et al. 2008; Guennebaud and Gross 2007] or

parabolic-cylinders [Ridel et al. 2015]. While the projection pro-

cedure may also account for per-sample Hermite data [Alexa and

Adamson 2009], a number of methods have been specially designed

to reproduce sharp features and salient mesostructures [Guillemot

et al. 2012; Öztireli et al. 2009; Reuter et al. 2005]. The underlying

surface defined by the MLS operator can be improved using local

features [Dey and Sun 2005] or gradient fields [Chen et al. 2013], and

even supports non-linear filtering such as morphological opening

and closing [Calderon and Boubekeur 2014]. In this paper, we focus

on algebraic point set surfaces (APSS) [Guennebaud et al. 2008; Guen-
nebaud and Gross 2007], which fit local algebraic spheres, making

the operator both robust and accurate while staying fast. However,

tractable performances are reached only when localizing the sup-

port of the operator, i.e., fitting the algebraic sphere over only a local

subset of the input point cloud – typically the 𝑘 nearest neighbors

(NN) – which forbids large hole filling and poorly performs with

poorly sampled objects.

Multi-level Partition of Unity (MPU). Given an input oriented

point set, the MPU method [Ohtake et al. 2003] aims at building an

implicit surface from locally-estimated quadratic functions, using

an octree-based partitioning. During the top-down octree construc-

tion, the subset of points belonging to a cell is approximated by a

quadric, subdividing recursively the cell when the residual error is

above a fixed tolerance. This results in a set of local implicit sur-

faces, smoothly blended together using a partition of unity to form

the whole object. While primitives are locally estimated from the

input point set, those are attached to the cells and not to individ-

ual query points as in PSS methods. Consequently, MPU does not

output a simple projection operator, and further polygonalization is

required even for visualization purposes. Xiao [2011] replaces the

local polynomial with the local algebraic spheres of APSS, located

at the centers of the nodes. However, this method inherits the afore-

mentioned limitations of MPU and somehow departs from MLS

techniques in its nature, as the resulting projection is performed

over the global implicit function.

Global Surface Reconstruction. The geometry processing literature

is rich with methods reconstructing a surface globally from an input

point set, with or without normals. Among them, the Poisson Surface
Reconstruction [Kazhdan et al. 2006] and its variants are a popular

choice in many 3D capture pipelines. These methods interpret the

input normals as a sampling of the gradient of the unknown solid’s

indicator function. A 3D vector field is then reconstructed from

this sampling and a Poisson equation is solved to obtain a scalar

function out of which a surface is contoured. This method was

further refined with the addition of a screening term [Kazhdan and

Hoppe 2013], taming the smoothing often occuring with the original

method. Another competing method, with results of equivalent

quality, was proposed by Calakli et al. [2011]. Their approach is

similar to the Poisson surface reconstruction, but instead of forcing

the implicit function to approximate the indicator function of the

volume, they enforce low Hessian energy of the function and obtain

smooth reconstructions as a result. More recently, deep learning

was introduced to global surface reconstruction by Hanocka et

al. [2020], building a self-prior inferred by a neural network to

iteratively shrink-wrap the convex hull of the input sampling. Other

approaches include the normal-free method of Mullen et al. [2010]

or more recently the works of Barill et al. [2018] and Lu et al.[2018].

We refer the reader to the survey by Berger et al. [2017] for an

extensive overview of this vast domain.

Finally, our approach can be seen as a Fast Multipole Method

(FMM) [Rokhlin 1985]. [Carr et al. 2001] is a popular global method

that uses FMM at its core to accelerate their global solver. This

method falls outside the scope of MLS surface methods: (i) their

fairness parameter is a penalty term balancing sample fitting with

minimal Hessian square norm whereas ours is a traditional fair-

ing kernel; (ii) they output a volumetric scalar function whereas

we output a projection operator; (iii) exploring their fairness pa-

rameter space requires recomputing a global (volumetric) system

each time from scratch, often requiring several minutes of computa-

tion, whereas our technique allows updating each sample projection

independently in real time.

3 MOVING LEVEL-OF-DETAIL SURFACES
We consider as input an oriented point set P = {pi, ni, 𝜎𝑖 }𝑖 (position,
normal, estimated area), and a smooth kernel H : R3 × R3 → R+.

For any point q in 3D space, APSS optimizes an algebraic sphere

𝑆𝑞 : R3 → R (a scalar field defined everywhere in R3
, whose

0-set is either a 3D sphere or an oriented 3D plane for 0-curvature

spheres) to P, and projects q onto its 0-set. The weight of each point

pi of P, describing its influence over q, is computed using H as

𝑤𝑖 = H(q, pi). Using this, an algebraic sphere 𝑆𝑞 is fitted at q:

𝑆𝑞 (X) := (𝑢0, u123, 𝑢4) · (1,X, ∥X∥2), (1)

ACM Trans. Graph., Vol. 1, No. 1, Article 130. Publication date: May 2022.

MLoD Surfaces • 130:3

with u123 ∈ R3 and 𝑢0, 𝑢4 ∈ R. 𝑆𝑞 should fit the weighted point

set (w,P) both in terms of positions (i. e., 𝑆𝑞 (pi) ≃ 0) and normals

(i. e., ∇𝑆𝑞 (pi) ≃ ni, with ∇𝑆𝑞 (X) = (u123 + 2𝑢4X)). Note that Eq. 1
captures adequately both "oriented 3D spheres" as well as oriented

3D planes. A sphere with center 𝑐 ∈ R3
and radius 𝑟 ∈ R is given by

{𝑋 s.t. ∥𝑋 −𝑐 ∥2 −𝑟2 = 0}, which is homogeneous to Eq. 1 (resulting

in 𝑢0 = ∥𝑐 ∥2 − 𝑟2, 𝑢123 = −2𝑐 , 𝑢4 = 1, and a non-normalized

gradient ∇ = 2(𝑋 − 𝑐)). Similarly, a plane passing through 𝑐 ∈ R3

with normal 𝑛 ∈ R3
is given by {𝑋 s.t. (𝑋 − 𝑐) · 𝑛 = 0} (resulting in

𝑢0 = 𝑐 · 𝑛, 𝑢123 = 𝑛, 𝑢4 = 0, and a normalized gradient ∇ = 𝑛).

Following Guennebaud et al. [2008], we use algebraic spheres
instead of geometric spheres as the former degenerates gracefully to

planes when 𝑢4 → 0 – as pointed above, 𝑢4 captures the curvature

of the algebraic sphere under appropriate normalization constraints

– and we first align the gradients {∇𝑆𝑞 (pi)} onto the normals {ni},
before adjusting the level-set to fit the positions:

(u123, 𝑢4) = argmin

∑︁
𝑖

𝑤𝑖𝜎𝑖 ∥∇𝑆𝑞 (pi) − ni∥2

𝑢0 = argmin

∑︁
𝑖

𝑤𝑖𝜎𝑖𝑆𝑞 (pi)2 with fixed (u123, 𝑢4)

As pointed out in [Guennebaud et al. 2008] (Section 3.3), this proce-

dure provides increased robustness compared to, e.g., fitting both

gradients and points at the same time.

This results in the following closed form expression for 𝑆𝑞 :
𝑢4 = 1

2

∑
𝑖 𝑤𝑖𝜎𝑖pi ·ni−

∑
𝑖 𝑤𝑖𝜎𝑖pi ·

∑
𝑖 𝑤𝑖𝜎𝑖ni/

∑
𝑖 𝑤𝑖𝜎𝑖∑

𝑖 𝑤𝑖𝜎𝑖 ∥pi ∥2−∥
∑

𝑖 𝑤𝑖𝜎𝑖pi ∥2/
∑

𝑖 𝑤𝑖𝜎𝑖

u123 = (∑𝑖 𝑤𝑖𝜎𝑖ni − 2𝑢4
∑
𝑖 𝑤𝑖𝜎𝑖pi) /

∑
𝑖 𝑤𝑖𝜎𝑖

𝑢0 = −
(∑

𝑖 𝑤𝑖𝜎𝑖pi · u123 + 𝑢4
∑
𝑖 𝑤𝑖𝜎𝑖 ∥pi∥2

)
/∑𝑖 𝑤𝑖𝜎𝑖 .

(2)

With 𝑆𝑞 in hand, one can obtain the projection q̄ by projecting q
onto 𝑆𝑞 , and define the normal nq̄ by taking the gradient of 𝑆𝑞 at q̄:{

q̄ = Project(q, 𝑆𝑞)
nq̄ = ∇𝑆𝑞 (q̄) / ∥∇𝑆𝑞 (q̄)∥

(3)

Finally, one can extract a surface by contouring the implicit func-

tion 𝑓 (q) = (q − q̄) · nq̄, e. g., by using the Marching Cubes tech-

nique [Lorensen and Cline 1987] on a uniform grid or the Dual

Contouring technique [Ju et al. 2002] on an adaptive octree.

Estimated areas. Our formulation is slightly different from the

one of Guennebaud et al. [2008] in the sense that we make use of

estimated local areas {𝜎𝑖 } to best approximate a spatial integral over

P (without changing the kernel), whereas they use an estimated

local density to parameterize the kernel locally (i. e., each input point

influences the space around it differently). In essence, both strategies

are designed to cope with variable density in the input point set

and avoid over-fitting highly-sampled regions. This mild change

has important practical consequences which make our approach

possible. Since all weights𝑤𝑖 are of the form𝑤𝑖 (𝜂) = H(pi, 𝜂), i)we
can relate reliably the weight and distance functions for monotonic

radial filter kernels H , and ii) as we discuss in Sections 3.1 and 3.2,

we can factorize the weights that are similar for samples located

roughly in the same regionwhen seen from far away. Both properties

are instrumental to the design of our algorithm and make it efficient.

3.1 Smooth approximation
Looking at Eq. 2, we can factorize the weights for points that simi-

larly influence q: ∀𝑖 ∈ 𝐼 ,𝑤𝑖 ≃ 𝑤 =⇒ ∑
𝑖∈𝐼 𝑤𝑖𝜎𝑖pi ≃ 𝑤

∑
𝑖∈𝐼 𝜎𝑖pi.

This trivial observation points to a simple algorithm for approxi-

mating the algebraic sphere 𝑆𝑞 fitting the weighted point set (w,P).
In a preprocess, we organize P into an octree, storing in each node

𝜂 the following 9D statistics that aggregate the geometry of its con-

tained input points {𝑖 ∈ 𝐼𝜂 }:

𝛿
node

(𝜂) =

𝜎 =

∑
𝑖 𝜎𝑖 ∈ R p𝛼 =

∑
𝑖 𝜎𝑖pi ∈ R3

n𝛼 =
∑
𝑖 𝜎𝑖ni ∈ R3 𝑝𝛽 =

∑
𝑖 𝜎𝑖 ∥pi∥2 ∈ R

𝑝𝑛𝛽 =
∑
𝑖 𝜎𝑖pi ·ni ∈ R

(4)

When computing 𝑆𝑞 at query point q, we traverse the octree, start-
ing from its root and descending into it iteratively, and aggregate

the statistics of a subset of nodes – our moving level-of-detail. Fol-
lowing common strategies [Barill et al. 2018; Greengard and Rokhlin

1987], we estimate this subset by stopping the descent when q is

sufficiently far from the nodes. Finally, we approximate 𝑆𝑞 using

the statistics and the weights we associate with each node.

Weight estimation. To associate a weight𝑤𝜂 with a given node

𝜂, we simply consider the average position of the points inside 𝜂

(p𝜂 = p𝛼 (𝜂)/𝜎 (𝜂)) and compute

𝑤𝜂 = H(q, p𝜂) (5)

More complex strategies involving the point distribution inside 𝜂

(e. g., using Gaussian Mixture Models) could be used, but it would

require integratingH against those, which is not feasible for arbi-

trary kernels. We found in our experiments that our simple strategy

offered good results, even for challenging inputs.

3.2 Algorithm
A simple traversal strategy could consist in stopping at a node if the

distance to its bounding sphere is larger than a given predetermined

threshold, and rely on its statistics to represent its entire sub-tree.

Similar binary decisions are for example used in [Barill et al. 2018]

to estimate the winding number of a surface around query points,

which is harmless in this case as they output an integer value, with

the approximation below the quantization error.

In our case, however, this simple strategy cannot

be used, as it results in non-smooth statistics, and

therefore in a non-smooth surface (e.g., the top of

the face in inset). We describe next a hierarchical

scheme well-suited to the blending of any nD data,

that we use to smoothly blend the statistics.

Smooth hierarchical partition of unity. By scaling the nodes’ bound-
ing spheres by the same factor 𝜆 > 1 (see Fig. 2, left), we construct

protection spheres {S(𝜂)} for all nodes {𝜂}, that strictly contain their
children and their protection spheres. We rely on these protection

spheres to design our hierarchical partition of unity.

When traversing the octree, we stop in a node if the query point

q is outside the protection sphere S(𝜂) of the node. Otherwise, if q
is inside S(𝜂), we blend the node and its children sub-trees 𝐶ℎ(𝜂)
statistics based on the respective distance to the protection spheres.

In this more complex case, we return the following statistics for the

ACM Trans. Graph., Vol. 1, No. 1, Article 130. Publication date: May 2022.

130:4 • C. Mercier, T. Lescoat, P. Roussillon, T. Boubekeur & J.-M. Thiery.

Protection spheres (solid)
Node weights (black) and sub-trees weights (colored):

Fig. 2. Node/subtrees local partition of unity illustrated in 2D. {𝜇𝑖 } (colored)
denote the subtrees of node 𝜂 (black). First: Bounding spheres (dotted) and
protection spheres (solid: scaled bounding spheres) of the parent node
(black) and one of its child nodes (red). Others: The respective distances to
the protection spheres induce a hierarchical partition of unity.

entire sub-tree:

𝛿tree (𝜂, q) =
∑︁

𝜇∈𝐶ℎ (𝜂)
𝛿tree (𝜇, q) (1 − 𝛾𝜇 (q)) (6)

+
∑︁

𝜇∈𝐶ℎ (𝜂)
𝛿
node

(𝜂) 𝛾𝜇 (q)
𝜎 (𝜇)
𝜎 (𝜂) H (q, p𝜂),

𝛾𝜇 (q) describing the two-sphere local blending illustrated in Fig. 2.

With 𝑑 (q, 𝑆) = ∥q − c∥ − 𝑟 the signed distance from the point q to a

sphere 𝑆 of center c and radius 𝑟 , we can write:

𝛾𝜇 (q) = Ω(𝑑 (q,S(𝜇)), 𝑑 (q,S(𝜂))) (7)

with Ω(𝑥,𝑦) =

0 if 𝑥,𝑦 ≤ 0 (i. e., q ∈ S𝜇)

1 if 𝑥,𝑦 ≥ 0 (i. e., q ∉ S𝜂)
𝐹Ω (𝑥/(𝑥 − 𝑦)) otherwise: 𝑦 < 0 < 𝑥

𝐹Ω (𝑢) = 𝑒 (−𝑒
(1/(𝑢−1)) /𝑢2)

Note that this scheme induces an infinitely dif-

ferentiable local partition of unity between the in-

terior of the child’s sphere S𝜇 and the exterior of the

parent’s sphere S𝜂 , because 𝐹Ω : [0, 1] → [0, 1] is
a strictly increasing function with null derivatives

(of all orders) at 0 and 1 (see inset). Proof of this

claim is given in Appendix A. Note that we also used

𝐹Ω (𝑢) = (1 − cos(𝜋𝑢))/2, which only results in a𝐶1
surface but we

did not observe visual artifacts in practice.

We summarize in Alg. 1 the pseudo-code of our technique and

we describe in Appendix B a detailed GPU implementation.

ALGORITHM 1: Computation of (q̄, nq̄) = Project(Point q)
𝛿 = 𝛿tree (root , q) // see Alg. 2
compute 𝑢0, u123,𝑢4 from 𝛿 // see Eq. 2

q̄ = Project(q, algebraic sphere (𝑢0, u123,𝑢4)) :
if (𝑢4 == 0) then

// q̄: project q on plane 𝑢0 + u123 · X = 0

else
c = −u123/(2𝑢4)
𝑟 =

√︁
max(0, ∥c∥2 −𝑢0/𝑢4)

// q̄: project q on sphere of center c and radius 𝑟
n = 2𝑢4q̄ + u123
nq̄ = n/∥n∥

ALGORITHM 2: Computation of 𝛿tree (Node 𝜂, Point q)
// returns the cumulative statistics for fitting an algebraic sphere to

the subtree rooted at node 𝜂

if 𝜂 is leaf then
// accumulate statistics over points in the leaf

return

∑
𝑖∈𝜂 H(q, pi) ∗ 𝛿node (𝑖)

else
if q ∉ S(𝜂) then

// q is sufficiently far from the node

return H(q, p𝜂) ∗ 𝛿node (𝜂)
else

// blend statistics between 𝜂 and its children 𝜇 (Eq.6)

return

∑
𝜇∈𝐶ℎ (𝜂) (1 − 𝛾𝜇 (q)) ∗ 𝛿tree (𝜇, q) +∑

𝜇∈𝐶ℎ (𝜂) 𝜎𝜇/𝜎𝜂 ∗ H(q, p𝜂) ∗ 𝛾𝜇 (q) ∗ 𝛿node (𝜂)

Analysis. We stress that in Eq. 6, one has to distinguish the node
statistics 𝛿

node
(computed following Eq. 4 and stored in the node)

from the tree statistics 𝛿tree that require a recursive evaluation. The
factor 𝜎 (𝜇)/𝜎 (𝜂) appears in Eq. 6 to account for that, while 𝜂 has to

be blended with its more detailed representation (all of its children),

there aremultiple independent local partitions of unity, one per-child,
and we expect each of them to represent a proportion 𝜎 (𝜇)/𝜎 (𝜂)
of the data. For example, if all points are located inside the same

sub-tree (i. e., 7 of the 8 children are empty), the summation is only

performed over this single sub-tree, and the partition of unity is

truly performed between the node and its only child.

Note also that Eq. 6 describes the case when q is outside the

protection sphere of 𝜂 adequately as well, since in this case for each

child 𝜇 we have 𝛾𝜇 (q) = 1, and since

∑
𝜇 𝜎 (𝜇)/𝜎 (𝜂) = 1, we obtain

𝛿tree (𝜂, q) = 𝛿
node

(𝜂)H (q, p𝜂).

3.3 Practical projection strategies
So far, from an input query point q we can compute an algebraic

sphere 𝑆𝑞 and project q on it. To retrieve the actual surface, one

needs to advect q along the following vector field:

f (0) = q ;

𝜕f
𝜕𝑡

(𝑡) = Project(f (t)) − f (t) (8)

A common strategy is to iteratively replace q with Project(q)
(i.e., setting Δ𝑡 = 1 in Eq. 8) for a fixed number of steps or until the

displacement 𝛿 𝑓 is small enough. Sadly, this scheme only performs

well near the surface, mainly because weights {𝑤𝑖 (q)} are almost

constant for ∥q∥ ≫ 𝐷 (i.e., P is seen as a single sphere from points

sufficiently far away).While projecting near the surface is still useful,

e.g., for denoising, to fully exploit non-compact kernels we need

to handle points from afar. We achieve this via an upper bound on

∥𝛿 𝑓 ∥ (in our case a tenth of the bounding box diagonal of P).

3.4 Practical non-compact kernels
While most related works advocate using Gaussian kernels, we

observe that they are inadequate for incomplete data. Indeed, the

tail of the Gaussian vanishes quickly, and it is often impossible

to find parameters providing the desired intent (see Fig. 3: one

cannot tune a Gaussian allowing for smooth surface completion

while retaining high-frequency geometric details). We thus promote

ACM Trans. Graph., Vol. 1, No. 1, Article 130. Publication date: May 2022.

MLoD Surfaces • 130:5

Input Gaussian Rational

mixture simple, higher 𝞼 singular higher 𝜺

Fig. 3. As they vanish too quickly, Gaussian kernels are not suitable when
approximating a surface with missing parts. Instead, Gaussian mixtures
or rational kernels are more robust to holes. Whereas all these kernels are
approximating, rational kernels can also be interpolating.

Input Classical Ours

Fig. 4. The classical way to derive an octree from a point cloud focuses only
on the samples locations and completely misses the holes. When meshing
the surface on such an octree [Ju et al. 2002], this yields a coarse or invalid
surface. Instead, we propose a new way to generate an octree that will
encompass the full surface.

heavy tail kernels, such as Gaussian mixtures or rational kernels:

HGM

{𝜎𝑖 } (q, p) =
∑︁
𝑖

𝜎−3𝑖 𝑒

−∥q−p∥2

2𝜎2

𝑖 ; HRat

𝜖,𝑘
(q, p) = (∥q−p∥2+ 𝜖)

−𝑘
2 (9)

Setting 𝜖 = 0 when usingHRat

𝜖,𝑘
results in an interpolating surface,

asHRat

0,𝑘
becomes singular on the input samples. Interestingly, one

can navigate continuously between interpolating (𝜖 = 0) and ap-

proximating (𝜖 > 0) surfaces. A simple yet effective strategy to set

appropriate parameters for HGM
is to take 𝜎𝑖 = 𝑎𝑖𝜎0 with 𝑎 > 1.

4 SURFACE EXTRACTION
Densely sampling the surface is key for multiple applications, such

as rendering it using splats. Perhapsmore importantly, it is necessary

for a fast and memory-bounded mesh extraction of the surface. Such

surface extraction is commonly done using Dual Contouring [Ju

et al. 2002] on an adaptive grid (an octree in 3D). However, the

usual way of preparing the octree – locating leaf nodes where input

points lie – is input-sensitive (densifying the octree around the input
pointset only) rather than output-sensitive (densifying the octree

around the expected output surface) [Zhao et al. 2021]; using the

resulting octree for contouring will yield artifacts such as those seen

in Fig. 4. As we target point-based modeling of surfaces arbitrarily

far away from input points, we need to adapt the preparation of the

octree.

projection
subdivision

projection
subdivision

Fig. 5. We refine an octree by alternating projection of the nodes centers
(and we keep only nodes containing the projections), and subdivision of all
nodes. This refinement process is repeated until a target depth is reached.

Thus we propose a simple, yet effective strategy to densely sample

the surface inside an adaptive octree that we construct in an iterative

manner, following these two simple observations:

• an octree cell in which a 3D point is projected contains most

probably part of the algebraic surface: we can refine the sam-

pling inside this cell in a hierarchical manner by simply sub-

dividing it and further investigating its children.

• an octree cell containing part of the surface is likely to have

neighboring cells containing parts of the surface, as the im-

plicit functions we construct are smooth (this observation

has for example motivated past research on implicit function

tracking [Bloomenthal 1988]).

As the surface might expand arbitrarily far outside the bounding

box of P, we need to be flexible in the generation of the octree; in

particular, we allow nodes to exist anywhere in space, and index

nodes via (𝑑, 𝑥,𝑦, 𝑧), with 𝑑 the depth of a node and (𝑥,𝑦, 𝑧) its in-
dex in the grid at depth 𝑑 . The initial root is (0, 0, 0, 0), and spatially

represents the bounding box of P. With this definition, our aim is

to generate nodes at depth 𝐷 following the surface, corresponding

to potentially multiple nodes at depth 0. Our key idea is to project

nodes, by projecting their center and retrieving the node correspond-
ing to the resulting position. We propose the following refinement

process: starting from nodesN0 at depth 0 (initially, only (0, 0, 0, 0)),
we obtain the nodes N𝑑 by alternating node projection and node

subdivision (Fig. 5). Some nodes inN𝑑 might not have an ancestor in

N0 (they are outside the starting nodes), notably in the case of large

holes in P. Hence, we add these unprocessed ancestors at depth 0

to N0 and refine them; this process is repeated until no new nodes

need to be added toN0. Since we want the final octree to have depth
𝐷 , we need to adjust the refinement depth 𝑑 . Initially, 𝑑 = 𝐷 , but we

adjust it following N0, as 𝑑 = 𝐷 − ⌈log
2
max(|N0 |𝑥 , |N0 |𝑦, |N0 |𝑧)⌉,

|N0 | 𝑗 denoting the extent of N0 along the 𝑗 axis, taking here the

input bounding box as unit system. This also means that we traverse

fewer and fewer nodes when extending N0, limiting the memory

and performance costs. Finally, we re-index the resulting nodes to

form an octree (only 1 root) of depth 𝐷 that closely follows the

surface. To create a mesh, we use Dual-Contouring [Ju et al. 2002]

on either this octree (our experimental setup) or an octree built from

its leaves after projection on the MLoD Surface.

5 EVALUATION
We make our implementation publicly available here: https://github.

com/CorentinMercier/MlodSurfaces.

ACM Trans. Graph., Vol. 1, No. 1, Article 130. Publication date: May 2022.

https://github.com/CorentinMercier/MlodSurfaces
https://github.com/CorentinMercier/MlodSurfaces

130:6 • C. Mercier, T. Lescoat, P. Roussillon, T. Boubekeur & J.-M. Thiery.

0 225 450

= 1.4

0 225 450

= 2.0

0 650 1300

= 2.0

Fig. 6. We project 100k points on P and show the histograms of the number
of nodes traversed per projection. As expected, more nodes are traversed
when𝜆 increases. Contrary to gathering the 20NN or the 500NN, ourmethod
does not suffer from extremely long traversals. Both our octree and the kd-
tree here have a maximum depth of 12.

Input λ = 1.4 λ = 2.0

0.00%

1.95%

Fig. 7. Our method is accurate w.r.t. global APSS, as shown here by the
distance between them, relative to the bounding box diagonal.

Table 1. Average time (𝜇𝑠) to project one point on the CPU. See additional
material for a more complete table.

Model Points 20 NN 100 NN MLoDS Global
Face 40881 2.78 5.79 5.82 852

Gargoyle 95435 1.11 4.56 12.7 3.00 × 10
3

Igea 134346 1.07 4.47 13.0 3.98 × 10
3

African Statue 220317 2.05 8.28 32.1 1.20 × 10
4

Bearded Man 499500 1.04 3.60 10.1 9.22 × 10
3

Eisbar 781865 5.75 14.6 24.6 4.41 × 10
4

Owl 1031960 5.40 13.2 30.9 6.75 × 10
4

Rhinoceros 1410356 6.28 18.1 32.9 8.70 × 10
4

Xyzrgb Dragon 3609455 5.06 7.21 8.65 1.70 × 10
4

Lucy 14027872 10.9 36.2 146 1.85 × 10
6

5.1 Accuracy and efficiency
As shown in Fig. 7, our method offers a smooth approximation of

APSS that is controlled by 𝜆: increasing 𝜆 provides more accurate

results, but with an increased computational cost.

By looking at the tree traversal behaviors between our method

and APSS with 20 NNs (Fig. 6), we can see that a NN search is fast

only for query points near the input samples. For distant queries,

such a search can traverse a very large number of nodes due to

branching, whereas our method terminates quickly, as nodes are

then deemed "uniform enough" to end the traversal.

Moreover, we observe that the number of traversed nodes depends

mostly on the sphere scaling factor 𝜆. Additional experiments (for

𝜆 up to 4) suggest that the number of traversed nodes follows a

complexity of 𝑂 (𝜆2). We find that 𝜆 = 2 gives good results in all

our experiments, with no perceptible improvements in the output

quality when increasing 𝜆, although this is dependent on the type

of kernel that is used.

Without holes

With holes

Input APSS 20 NN APSS global Ours

Fig. 8. Compared to standard APSS using 20 NNs, our approach is able to
reconstruct a surface on clean data as well as on missing data. Our results
are similar to the ones obtained with APSS global (cf. Fig. 7), with a faster
computation process. The model of Lucy (line 2) is at a reduced resolution
for APSS global due to its complexity (cf. Tab 1).

A
re

as

Incorrect

0

A
ng

le
s

Correct 0 0 0

Fig. 9. We show the histograms of triangle areas (top row) and angles
(bottom row) for the triangle meshes extracted using our octree (green) and
a standard octree (red). The 4 shapes are the ones shown in Fig. 8. We show
on the left close-ups of the surface meshes inside the Bear (Eisbar). Note
that the last entry for each area histogram captures all remaining areas.

As expected, we observe in practice a complexity of 𝑂 (log(|P|))
for a fixed value of 𝜆 (Tab. 1).

5.2 Resilience to missing data
We analyze our approach on synthetic point sets and real-life scans

featuring uneven sampling and large missing parts, notably by ar-

tificially removing parts of the samples on some examples. Our

operator remains faithful to global APSS, while the NN approach

suffers from obvious instabilities (Figs. 1 and 8). Regarding contour-

ing, our octree refinement process (Section 4) allows us to remain

ACM Trans. Graph., Vol. 1, No. 1, Article 130. Publication date: May 2022.

MLoD Surfaces • 130:7

Depth 6
← traverse
← regularize

Depth 8
← traverse
← regularize

100,000 points

572.5 ms
351.3 ms

40,387 nodes

8331.1 ms
6710.8 ms

633,963 nodes

30,650 points

225.4 ms
55.6 ms

3,245 nodes

2034.7 ms
406.4 ms

48,967 nodes

2,947 points

321.1 ms
200.1 ms

23,417 nodes

4168.4 ms
3391.7 ms

369,551 nodes

21 points

980.3 ms
189.1 ms

18,690 nodes

6295.8 ms
1994.7 ms

233,532 nodes

Output

Fig. 10. Even for very small portions of the unit sphere, our octree generation
algorithm still enables a faithful point cloud upsampling. The traversal
time corresponds to our project and divide exploration strategy, while the
regularization time includes grading and regularizing the octree.

largely insensitive to input sampling (see Fig. 10). In particular, there

is a 1 to 1, 000, 000 variation factor of the input bounding box volume

between the shown inputs, although they all yield the same output.

This validates that our approach efficiently investigates the 3D space.

This is critical, as we cannot in practice make any assumption on

the extent of the surface.

We show in Fig. 9 histograms of angles and triangle areas for the

models shown in Fig. 8 built with our adaptive octree and a usual

octree, both using our adaptive octree root. The angles are mostly

distributed around 45 and 90 degrees, which is expected from a dual

contouring approach (that extracts quads that are later triangulated).

Our approach avoids extremely large triangles on inputs featuring

missing data (Bear and Rhino). We do not focus on mesh quality

in our work, and existing remeshing approaches allow for efficient

and fast mesh improvement, provided that an efficient projection
operator allows reprojecting vertices on the surface [Botsch and

Kobbelt 2004]. These approaches preserve the input topology, and

require therefore correct topology of the input. While we do not

guarantee this (which is a research domain on its own), we mostly

avoid the artifacts obtained when contouring an implicit surface

on an octree prepared using input samples featuring missing data

(too coarse in some regions). This point is illustrated in the insets of

Fig. 9 (left), which show the mesh connectivity of the Bear Model

(Eisbar) using both approaches.

5.3 Robustness to noise
To study how resilient to noise our method is, we artificially de-

graded artifact-free inputs by introducing noise both on the posi-

tions and on the normals of the samples, as well as holes (Fig. 11).

Our experiments suggest that our method is more sensitive to posi-

tion noise than to normal noise, especially in the presence of large

holes in the data. This sensitivity remains rather modest, however,

even far away from the input samples, contrary to what has been

previously reported in the literature for APSS [Berger et al. 2013].

This difference can be explained simply: the nearest neighbor ap-

proach only considers a few samples, making it sensitive to noisy

samples, whereas we rely on all samples to fit the algebraic spheres.

no noise position noise normal noise

In
pu

t
la

rg
er

ke
rn

el
Fig. 11. Results on inputs degraded with a Gaussian noise applied on the
positions and normals.

5.4 Application to surface mesh reconstruction
While surface reconstruction is not the main focus of our paper, we

briefly compare our meshing results with Screened Poisson Recon-

struction (SP) [Kazhdan and Hoppe 2013], Multi-level Partition of

Unity (MPU) [Ohtake et al. 2003], and the machine learning based

approach Point2mesh [Hanocka et al. 2020] (Fig. 12). Overall, SP

yields accurate results, and we achieve similar quality in general.

MPU often results in holes or outliers in the output, which is espe-

cially visible in Fig.12 on the last two lines. Point2mesh [Hanocka

et al. 2020] presents notable artifacts on all reconstructions, despite

long computation times. Overall, surface reconstruction methods

sometimes struggle on incomplete data and are rather sensitive to

input sampling, as shown on Fig. 12 (see more in supplementary

material) and pointed out by recent work [Zhao et al. 2021].

5.5 Application to point set filtering
Finally, we showcase our operator for point set filtering, an ap-

plication for which the compared global methods, whose input

parameters are precision-related only, are not suitable (Fig. 13).

For completeness, we also compare to the standard 𝑘NN-based

APSS approach and demonstrate that ultimately, to allow for arbi-

trary filtering, it is essential to consider the entire input.

Such filtering is key for applications such as multi-resolution de-

formations [Nader et al. 2014], or point multi-resolution descriptors

for data analysis [Mellado et al. 2012]. We expect that our ability to

efficiently filter point sets will impact both applications.

6 LIMITATIONS, AND FUTURE WORK
Our approach can be further developed in several ways.

ACM Trans. Graph., Vol. 1, No. 1, Article 130. Publication date: May 2022.

130:8 • C. Mercier, T. Lescoat, P. Roussillon, T. Boubekeur & J.-M. Thiery.

Input Point2mesh MPU Poisson Ours

Fig. 12. Comparison of our surface reconstruction with Point2mesh, MPU,
and Poisson.

16.2
µs/pt

15.9
µs/pt

15.8
µs/pt

16.5
µs/pt

15.0
µs/pt

13.1
µs/pt

12.0
µs/pt

11.4
µs/pt

larger kernel

O
ur

s

1.35
µs/pt

1.29
µs/pt

1.34
µs/pt

1.29
µs/pt

1.27
µs/pt

1.28
µs/pt

1.27
µs/pt

1.27
µs/pt

20
kN

N

0.38
µs/pt

1.66
µs/pt

12.8
µs/pt

106
µs/pt

1072
µs/pt

336
µs/pt

339
µs/pt

338
µs/pt

larger ball and kernel

ba
ll

larger tolerance

M
P

U

lower depth

Po
is

so
n

Fig. 13. Our approach allows for efficient large-scale continuous filtering of
3D point sets.

First, our traversal criterion only relies on the geometry of the

protection spheres and the location of the evaluation point. This

criterion could be refined by taking the distribution of the points

inside the nodes into account.

Second, while we have studied how large support kernels can be

used for the filtering of point sets and their robust surface extraction

(in particular, far away from the input samples), our methodology

could be used for the parametric design of smooth skeletons. Sev-

eral existing techniques extract the medial axis of point sets using

growing spheres fitting the data [Rebain et al. 2019] or clustering

input samples advected inside the surface [Cao et al. 2010; Huang

et al. 2013], and we think that our technique can be used for the

smooth, parametric fitting of maximally-inscribed spheres as well,

thus allowing for interactive shape modeling applications such as

skeleton design and interactive quad mesh modeling ([Ji et al. 2010]).

Finally, our approach does not support sharp features or geo-

metric priors, whereas [Guennebaud and Gross 2007] extend their

original APSS formulation to handle creases and boundaries for in-
stance. This sometimes prevents obtaining flat sharp surfaces where

might be expected (see the bottom of the Owl and the Bear models

in Fig. 8 and 12 for example).

7 CONCLUSION
We have presented moving level-of-detail Surfaces, a smooth scheme

for efficiently approximating the convolution of multi-dimensional

data against a smooth spatial kernel, and used it to compute efficient

approximations of Algebraic Point Set Surfaces. We have demon-

strated that the use of ad-hoc kernels that are simple to manipulate,

such as Gaussian Mixtures and Rational Singular kernels, allows

for intuitive continuous point set filtering as well as high-quality

surface extraction of input point sets featuring large missing data,

which are typical of real-life scanned data. Our approach competes

with recent global surface extraction techniques while retaining all

advantages of MLS local techniques such as the ability to project

any 3D point on the surface in a smooth manner independently.

Being entirely agnostic to the input weighting kernel, our approach

opens a route to real-time point-based modeling by formulating the

problem through the design of parametric kernels modulating the

point set surface.

REFERENCES
Marc Alexa and Anders Adamson. 2009. Interpolatory point set surfaces - convexity

and Hermite data. ToG 28, 2 (2009), 20.

M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva. 2001. Point set

surfaces. In Proceedings Visualization, 2001. VIS ’01. 21–29, 537.
Nina Amenta and Yong Joo Kil. 2004. Defining point-set surfaces. In ToG, Vol. 23. ACM,

264–270.

Gavin Barill, Neil G Dickson, Ryan Schmidt, David IW Levin, and Alec Jacobson. 2018.

Fast winding numbers for soups and clouds. ToG 37, 4 (2018), 43.

Matthew Berger, Joshua A Levine, Luis Gustavo Nonato, Gabriel Taubin, and Claudio T

Silva. 2013. A benchmark for surface reconstruction. ToG 32, 2 (2013), 20.

Matthew Berger, Andrea Tagliasacchi, Lee M Seversky, Pierre Alliez, Gael Guennebaud,

Joshua A Levine, Andrei Sharf, and Claudio T Silva. 2017. A survey of surface

reconstruction from point clouds. In Computer Graphics Forum, Vol. 36. Wiley

Online Library, 301–329.

Jules Bloomenthal. 1988. Polygonization of implicit surfaces. Computer Aided Geometric
Design 5, 4 (1988), 341–355.

Mario Botsch and Leif Kobbelt. 2004. A remeshing approach tomultiresolutionmodeling.

In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry
processing. 185–192.

Fatih Calakli and Gabriel Taubin. 2011. SSD: Smooth signed distance surface recon-

struction. Computer Graphics Forum 30, 7 (2011), 1993–2002.

Stéphane Calderon and TamyBoubekeur. 2014. PointMorphology. ToG (Proc. SIGGRAPH
2014) 33, 4, Article 45 (2014), 45:1–45:13 pages.

Junjie Cao, Andrea Tagliasacchi, Matt Olson, Hao Zhang, and Zhixun Su. 2010. Point

Cloud Skeletons via Laplacian-Based Contraction. In Proc. of IEEE Conference on
Shape Modeling and Applications’10. 187–197.

J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and

T. R. Evans. 2001. Reconstruction and Representation of 3D Objects with Radial

Basis Functions. In Proc. SIGGRAPH (SIGGRAPH ’01). 67–76.

ACM Trans. Graph., Vol. 1, No. 1, Article 130. Publication date: May 2022.

MLoD Surfaces • 130:9

Jiazhou Chen, Gael Guennebaud, Pascal Barla, and Xavier Granier. 2013. Non-oriented

MLS Gradient Fields. Computer Graphics Forum 32, 8 (Aug. 2013), 98–109.

Tamal K Dey and Jian Sun. 2005. An Adaptive MLS Surface for Reconstruction with

Guarantees.. In Symposium on Geometry processing. 43–52.
Leslie Greengard and Vladimir Rokhlin. 1987. A fast algorithm for particle simulations.

Journal of computational physics 73, 2 (1987), 325–348.
Gaël Guennebaud, Marcel Germann, and Markus Gross. 2008. Dynamic Sampling and

Rendering of Algebraic Point Set Surfaces. Computer Graphics Forum 27, 2 (2008),

653–662.

Gaël Guennebaud and Markus Gross. 2007. Algebraic Point Set Surfaces. In ACM
SIGGRAPH 2007 Papers (SIGGRAPH ’07). New York, NY, USA.

Thierry Guillemot, Andrès Almansa, and Tamy Boubekeur. 2012. Non Local Point Set

Surfaces. In Proceedings of 3DIMPVT.
Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. 2020. Point2Mesh: A

Self-Prior for Deformable Meshes. ToG 39, 4, Article 126 (July 2020), 12 pages.

Hui Huang, Shihao Wu, Daniel Cohen-Or, Minglun Gong, Hao Zhang, Guiqing Li, and

Baoquan Chen. 2013. L1-medial skeleton of point cloud. ToG 32, 4 (2013), 65–1.

Zhiyang Huang, Nathan Carr, and Tao Ju. 2019. Variational Implicit Point Set Surfaces.

ToG 38, 4 (july 2019), 124:1–124:13.

Zhongping Ji, Ligang Liu, and Yigang Wang. 2010. B-Mesh: A Modeling System for

Base Meshes of 3D Articulated Shapes. Computer Graphics Forum 29 (09 2010),

2169–2177.

Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. 2002. Dual contouring of hermite

data. In ToG, Vol. 21. ACM, 339–346.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson surface re-

construction. In Proceedings of the fourth Eurographics symposium on Geometry
processing, Vol. 7.

Michael Kazhdan and Hugues Hoppe. 2013. Screened poisson surface reconstruction.

ToG 32, 3 (2013), 29.

David Levin. 1998. The approximation power of moving least-squares. Technical Report.
Math. Comp.

David Levin. 2003. Mesh-Independent Surface Interpolation. Geometric Modeling for
Scientific Visualization 3 (01 2003).

William E Lorensen and Harvey E Cline. 1987. Marching cubes: A high resolution 3D

surface construction algorithm. In ACM siggraph computer graphics, Vol. 21. ACM,

163–169.

Wenjia Lu, Zuoqiang Shi, Jian Sun, and Bin Wang. 2018. Surface Reconstruction Based

on the Modified Gauss Formula. ToG 38, 1 (2018), 2.

Nicolas Mellado, Gaël Guennebaud, Pascal Barla, Patrick Reuter, and Christophe Schlick.

2012. Growing Least Squares for the Analysis of Manifolds in Scale-Space. Comp.
Graph. Forum 31, 5 (2012), 1691–1701.

Guy M Morton. 1966. A computer oriented geodetic data base and a new technique in

file sequencing. (1966).

Patrick Mullen, Fernando De Goes, Mathieu Desbrun, David Cohen-Steiner, and Pierre

Alliez. 2010. Signing the unsigned: Robust surface reconstruction from raw pointsets.

In Computer Graphics Forum, Vol. 29. Wiley Online Library, 1733–1741.

Georges Nader, Gael Guennebaud, and Nicolas Mellado. 2014. Adaptive Multi-scale

Analysis for Point-based Surface Editing. Computer Graphics Forum 33, 7 (2014),

171–179.

Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter Seidel. 2003.

Multi-level partition of unity implicits. Vol. 22.
A Cengiz Öztireli, Gael Guennebaud, and Markus Gross. 2009. Feature preserving point

set surfaces based on non-linear kernel regression. In Computer Graphics Forum,

Vol. 28. Wiley Online Library, 493–501.

Daniel Rebain, Baptiste Angles, Julien Valentin, Nicholas Vining, Jiju Peethambaran,

Shahram Izadi, and Andrea Tagliasacchi. 2019. LSMAT least squares medial axis

transform. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 5–18.

Patrick Reuter, Pierre Joyot, Jean Trunzler, Tamy Boubekeur, and Christophe Schlick.

2005. Point set surfaces with sharp features. (03 2005).

Brett Ridel, Gael Guennebaud, Patrick Reuter, and Xavier Granier. 2015. Parabolic-

cylindrical moving least squares surfaces. Computers and Graphics 51 (June 2015),
60–66.

Vladimir Rokhlin. 1985. Rapid solution of integral equations of classical potential

theory. Journal of computational physics 60, 2 (1985), 187–207.
Chun-Xia Xiao. 2011. Multi-Level Partition of Unity Algebraic Point Set Surfaces. J.

Comput. Sci. Technol. 26, 2 (March 2011), 229–238.

Tong Zhao, Pierre Alliez, Tamy Boubekeur, Laurent Busé, and Jean-Marc Thiery. 2021.

Progressive Discrete Domains for Implicit Surface Reconstruction. In Computer
Graphics Forum, Vol. 40. Wiley Online Library, 143–156.

A SMOOTHNESS OF THE LOCAL PARTITION OF UNITY
This is the proof that the function 𝐹Ω (𝑢) = 𝑒 (−𝑒

(1/(𝑢−1)) /𝑢2)
from

Equation 6 is a strictly increasing function with null derivatives at

all orders at 0 and 1.

Lemma A.1. 𝐹Ω admits null derivatives of any order in 0
+ and 1−.

Proof. As 𝐹Ω (𝑢) = 𝑒

(
−𝑒

1

(𝑢−1)
𝑢2

)
, 𝐹 ′Ω (𝑢) = 𝐹Ω (𝑢)

2𝑒
1

(𝑢−1) −𝑢 𝑒

1

(𝑢−1)
(𝑢−1)2

𝑢3
.

It is clear, by recurrence, that derivatives of all orders will be

composed of products of 𝐹Ω (𝑢)/𝑢𝑛 and
𝑒 (1/(𝑢−1))

(𝑢−1)𝑚 , (𝑛,𝑚) ∈ N2.
In 𝑢 = 0

+
, 𝐹Ω (𝑢) dominates (𝑒−∞ tends quickly to 0) over 1/𝑢𝑛 ,

and thus 𝐹
(𝑘)
Ω (0+) = 0, ∀𝑘 .

In 𝑢 = 1
−
, 𝑒 (1/(𝑢−1)) dominates (𝑒−∞ tends quickly to 0) over

1/(𝑢 − 1)𝑚 , and thus 𝐹
(𝑘)
Ω (1−) = 0, ∀𝑘 . □

Lemma A.2. 𝛾𝜇 (𝑞) is smooth everywhere.

Proof. For a point q outside 𝑆𝜇 and inside 𝑆𝜂 , we have that:

𝛾𝜇 (q) = Ω(𝑑𝜇 (q), 𝑑𝜂 (q)), with Ω(𝑥,𝑦) = 𝐹Ω (𝑥/(𝑥 − 𝑦)), 𝑑𝜇 (q)
(resp. 𝑑𝜂 (q)) denoting the signed distance from 𝑞 to the sphere 𝑆𝜇
(resp. 𝑆𝜂). It follows that

𝜕𝛾𝜇 (q) = 𝐹 ′Ω

(
𝑑𝜇 (q)

𝑑𝜇 (q) − 𝑑𝜂 (q)

)
[
𝜕𝑑𝜇 (q) (𝑑𝜇 (q) − 𝑑𝜂 (q)) − 𝑑𝜇 (q) (𝜕𝑑𝜇 (q) − 𝜕𝑑𝜂 (q))

(𝑑𝜇 (q) − 𝑑𝜂 (q))2

]
By recurrence, it is straightforward to see that derivatives of any

order of 𝛾𝜇 (q) are products of 𝐹 (𝑘)
Ω , which go to 0 as q tends to 𝑆𝜇

(𝐹
(𝑘)
Ω (0+) = 0 ∀𝑘 > 0) or when q tends to 𝑆𝜂 (𝐹

(𝑘)
Ω (1−) = 0 ∀𝑘 > 0).

The derivatives vanish therefore quickly enough to match the null

derivatives of𝛾𝜇 (q) at the boundary of the domain (𝛾𝜇 (q) is constant
for q ∈ 𝑆𝜇 and for q ∉ 𝑆𝜂). Additionally, it is clear that the derivatives

of the term on the right side are all well-posed: The only point 𝑞

where this scheme could result in a non-differentiable partition of

unity is at the center of S𝜂 (where 𝑑𝜂 (q) is continuous only), but
by construction this point is strictly inside S𝜇 and thus outside the

domain of utility of 𝐹Ω (𝑑𝜇 (q) < 0 and 𝛾𝜇 (q) = 0 here).

Finally, note that this derivation would remain valid for any other

function 𝐹Ω exhibiting the mentioned properties. □

B GPU IMPLEMENTATION
We present here our CUDA implementation of the octree traversal

as well as the projection operator.

B.1 Octree traversal
The octree is traversed on the GPU in an unrolled recursion using a

while loop. Traversal is done both ways as values computed from

the bottom of the tree are needed for the evaluation of the statistics.

Each thread computes the statistics corresponding to one point

to project, and then compute the projection of the point. This is

presented in Alg. 3. An example of a traversal is shown on a binary

tree (instead of an octree for a clearer explanation) in Fig. 14. Each

node and arrow color corresponds to a line in Alg. 3. When reaching

a stopping condition (a leaf, a point outside an external bounding

box, or in-between two bounding boxes), necessary elements of

the tree are evaluated and then results are added at every level

until coming back to the main node, which will contain the correct

ACM Trans. Graph., Vol. 1, No. 1, Article 130. Publication date: May 2022.

130:10 • C. Mercier, T. Lescoat, P. Roussillon, T. Boubekeur & J.-M. Thiery.

1

first child father

return

father

previous
child's
brother

first child father

previous
child's
brother

1

32

654

87

2

father

3

4

5

6

7

8

9
Statistics[1]
Current_child[1]

Depth 1

Depth 2

Statistics[2]
Current_child[2]

Depth 3

Statistics[3]
Current_child[3]

Depth 4
Statistics[4]

Fig. 14. Example of a tree traversal. Nodes are traversed following the
colored arrows. Colors on arrows and nodes correspond to the color of the
pseudo-code in Alg.3.

evaluation for the point being projected. This means that each thread

needs to store the statistics at each possible depth.

ALGORITHM 3: Stopping conditions and branching of the GPU

traversal.

Node node = root

Point point = point to project

while true do
if (node is a leaf) then

Compute leaf stats

if (node is the root) then
return

else
node = father

else
if (point is far enough from node) then

Compute node stats

if (node is the root) then
return

else
node = father

else
if (stats from a child 𝜇 is known) then

Blend child 𝜇’s and node stats

if (child has a brother) then
node = child’s brother

else
if (node is the root) then

return

else
node = father

else
node = node’s first child

Project points according to the statistics at root depth

0 40000 80000 N
0

35

70

Time (ms)

W
ith

ou
t M

or
ton

With
 M

orto
n

Ordering

0 40000 80000 N
0

200

400

W
ith

ou
t M

or
ton

With
 M

orto
n

Ordering

Fig. 15. Projecting 𝑁 points, with and without ordering points following
the Morton order. Even though ordering points using the Morton code is
not free, doing so enable us to project points consistently faster.

B.2 Performances and memory coherency
In order to be able to do the traversal, the cumulated statistics and

the last child traversed have to be known at each depth (except

the child for the leaves). These values are illustrated in Fig.14 with

𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 and 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑐ℎ𝑖𝑙𝑑 respectively.

The cumulative 9D statistics of one level are encoded with 9 32-bit

floats, requiring 288 bits of local memory per depth. Maximum depth

is fixed at 12, which seems to be a good compromise in terms of

precision and speed. This means that a single thread needs enough

registers for 12 times the statistics and 11 integers for the children.

These statistics are necessary at each level. Indeed, the example

described in Fig. 14 needs to store the statistics at depth 1 and 2

when going through nodes 3, 5, and 6 as the statistics of node 2 were

previously computed and added into Statistics[1].

The octree is stored in global memory in breadth-first order, even

if traversal occurs in depth-first order. This is done so that as lots of

points are evaluated at the same time, the first threads at a given

depth will be loading from global memory values from neighboring

nodes that will be likely to be used by other threads. To improve

memory latency – which is the bottleneck in our implementation –

the kernel parameters and the first depth levels are stored in shared

memory. It does not result in a major improvement but we still

project points a little faster by about 0.7%.

When projecting many points in parallel, we first sort them using

the Morton code [Morton 1966], to favor traversal coherency among

concurrent threads. Figure 15 shows the average time on 10 itera-

tions of the GPU projection using the Morton order and not using

it. We notice a great improvement using the Morton order, even

when including the time to compute it on the CPU. However, when

projecting a reduced number of points (less than 10000 points), it is

a little faster not to order the points, which seems natural as almost

all points will be projected at the same time, so their order does not

matter.

ACM Trans. Graph., Vol. 1, No. 1, Article 130. Publication date: May 2022.

	Abstract
	1 Introduction
	2 Related Work
	3 Moving Level-of-Detail Surfaces
	3.1 Smooth approximation
	3.2 Algorithm
	3.3 Practical projection strategies
	3.4 Practical non-compact kernels

	4 Surface extraction
	5 Evaluation
	5.1 Accuracy and efficiency
	5.2 Resilience to missing data
	5.3 Robustness to noise
	5.4 Application to surface mesh reconstruction
	5.5 Application to point set filtering

	6 Limitations, and future work
	7 Conclusion
	References
	A Smoothness of the local partition of unity
	B GPU implementation
	B.1 Octree traversal
	B.2 Performances and memory coherency

