
Moving Level-of-Detail Surfaces – Additional Material
CORENTIN MERCIER, LTCI, Télécom Paris, Institut Polytechnique de Paris, France
THIBAULT LESCOAT, LTCI, Télécom Paris, Institut Polytechnique de Paris, France
PIERRE ROUSSILLON, LTCI, Télécom Paris, Institut Polytechnique de Paris, France
TAMY BOUBEKEUR, Adobe Research, France
JEAN-MARC THIERY, Adobe Research, France
CCS Concepts: • Computing methodologies → Point-based models.

Additional Key Words and Phrases: Point-based modeling, MLS projections,
point set surfaces

ACM Reference Format:
Corentin Mercier, Thibault Lescoat, Pierre Roussillon, Tamy Boubekeur,
and Jean-Marc Thiery. 2022. Moving Level-of-Detail Surfaces – Additional
Material. ACM Trans. Graph. 1, 1 (May 2022), 4 pages. https://doi.org/10.
1145/8888888.7777777

1 EXTENDED COMPARISONS

1.1 Comparing quality
In the main paper, we showed comparisons with global APSS (tak-
ing the whole input point set when fitting the surface) and APSS
using k-nearest neighbors. We add here a comparison of 20 nearest
neighbors, 200 nearest neighbors, global APSS, and our approach in
Fig. 1. It is clear in this figure that increasing the number of neigh-
bors will not be enough to reconstruct a huge missing part like here
the back of the head, whereas the global approach as well as our
approach are able to fill-in the hole, albeit with global APSS being
much slower. In Figures 2 & 3, we also include comparisons to other
methods: Screened Poisson Reconstruction [Kazhdan and Hoppe
2013], Point2Mesh [Hanocka et al. 2020], MPU [Ohtake et al. 2003],
MPU-APSS [Xiao 2011] and VIPSS [Huang et al. 2019].
Overall, Screened Poisson Reconstruction [Kazhdan and Hoppe

2013] yields faithful surfaces from the input point set, the reconstruc-
tion quality is very good, sometimes better than APSS. However, it
cannot be used for filtering : the parameter best suited for such a
goal is the reconstruction depth, which does not allow continuous
filtering (see paper). We use the implementation of the authors with
the Dirichlet boundary type. We vary the depth for the filtering
figure of the article.

Authors’ addresses: Corentin MercierLTCI, Télécom Paris, Institut Polytechnique de
Paris, France, corentin.mercier@grosmi.net; Thibault LescoatLTCI, Télécom Paris, Insti-
tut Polytechnique de Paris, France, thibault@lescoat.fr; Pierre RoussillonLTCI, Télécom
Paris, Institut Polytechnique de Paris, France, roussillon.pierre@gmail.com; Tamy
BoubekeurAdobe Research, France, boubek@adobe.com; Jean-Marc ThieryAdobe Re-
search, France, jthiery@adobe.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0730-0301/2022/5-ART $15.00
https://doi.org/10.1145/8888888.7777777

Input APSS 20 nn APSS 200 nn APSS global Ours

Fig. 1. Comparison with APSS with different number of neighbors.

Often, using MPU [Ohtake et al. 2003] results in holes or outliers
in the output, whereas our method does not suffer from such prob-
lems. This is especially visible in Fig 2 for the models of the children
and the one under it. We used the implementation of the authors
with the following parameters : 6 minimum samples (recommended
value), quality of fit (fit_epsilon) of 0.005 (recommended value to
retrieve details), radius of the sphere of 1.0 (covering parameter,
typical value) and a grid resolution of 256 for the ray marching grid.
We vary the quality of fit parameter for the filtering figure of the
article.

MPU-APSS [Xiao 2011], while being similar to our method, does
not allow to "project" the surface into holes for shape completion,
as can be seen in Fig. 3 for the polar bear model. We solve this
issue for MLoDS with the adaptive octree that we build (see main
article). Moreover, MPU-APSS loses the multi-scale view of the
shape compared to MPU as only one kernel is used. As the author
do not provide an implementation, we reimplemented the approach
based on the method described in the paper. We use the same kernel
than in our approach with an epsilon parameter of 0.0002 as the
precision criterion.
VIPSS [Huang et al. 2019] does not run on the large point sets

that we use for our comparisons, so we down-sample the input (to
7000 points) to be able to run this method. This is not the intended
case from the authors, which probably explains why the output is
not satisfying. Indeed, they do not use the normals and compute
them in a first step. We used the authors’ implementation with
the following parameters : lambda value of 0 (a few others were
tested with worst results) and a 100 voxels wide grid for the implicit
surfacing (recommended value, increasing it did not improve the
results).

Point2Mesh [Hanocka et al. 2020] was run using 25000 iterations,
regardless of the point set. The resulting meshes are not smooth,
and they feature multiple problems such as triangle inversion or
invalid surfaces (particularly visible in meshes with natural "holes",
such as the suitcase in Fig.2). The output would probably be better
with more iterations, but it would have taken too much time, as the
25000 iterations for every model already took several days to finish.
The implementation we used was the one from the authors.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2022.

HTTPS://ORCID.ORG/0000-0001-5985-0921
https://doi.org/10.1145/8888888.7777777
https://doi.org/10.1145/8888888.7777777
https://orcid.org/0000-0001-5985-0921
https://orcid.org/0000-0001-5985-0921
https://doi.org/10.1145/8888888.7777777

2 • C. Mercier, T. Lescoat, P. Roussillon, T. Boubekeur & J.-M. Thiery.

N/A N/A

Input APSS 20 NN VIPSS Point2mesh MPU MPU-APSS Poisson APSS global Ours

Fig. 2. Comparison with different methods. N/A is displayed when we were unable to obtain a result.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2022.

MLoD Surfaces Additional Material • 3

N/A

N/A

N/A N/A

N/A N/A N/A N/A

Input APSS 20 NN VIPSS Point2mesh MPU MPU-APSS Poisson APSS global Ours

Fig. 3. Comparison with different methods. N/A is displayed when we were unable to obtain a result.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2022.

4 • C. Mercier, T. Lescoat, P. Roussillon, T. Boubekeur & J.-M. Thiery.

CPU time (𝜇𝑠) GPU time (𝜇𝑠)
Model Points 20 NN 100 NN MPU-APSS MLoDS GlobalAPSS MLoDS Global APSS
Guitar 10007 1.44 ± 0.07 6.67 ± 0.12 0.66 ± 0.05 32.24 ± 1.69 614.69 ± 24.45 2.91 ± 0.17 8.22 ± 0.19
Face 40881 2.78 ± 0.28 5.79 ± 0.42 0.43 ± 0.05 5.82 ± 0.31 851.87 ± 9.91 0.48 ± 0.02 25.25 ± 0.24
Dinosaur 56195 1.45 ± 0.10 6.82 ± 0.16 0.46 ± 0.04 28.62 ± 2.01 3049.67 ± 16.41 2.76 ± 0.16 50.04 ± 0.23
Lord quasimodo 57264 1.43 ± 1.05 5.55 ± 1.21 3.37 ± 0.13 18.13 ± 0.84 2259.44 ± 12.89 1.84 ± 0.07 41.23 ± 0.40
Daratech 61460 3.51 ± 0.08 16.28 ± 0.12 2.89 ± 0.09 71.19 ± 8.56 8719.35 ± 60.22 6.94 ± 0.69 113.17 ± 1.58
Dancing children 71265 1.12 ± 0.53 4.48 ± 0.64 12.05 ± 1.63 13.32 ± 0.61 2334.96 ± 28.60 1.40 ± 0.05 47.35 ± 0.41
Anchor 85127 0.66 ± 0.06 2.77 ± 0.14 15.43 ± 0.23 7.47 ± 0.50 1332.92 ± 52.77 0.85 ± 0.05 51.63 ± 0.42
Gargoyle 95435 1.11 ± 0.36 4.56 ± 0.52 18.75 ± 0.35 12.68 ± 0.48 3000.82 ± 1.72 1.40 ± 0.05 63.58 ± 0.48
Suitcase 99886 0.91 ± 0.32 3.43 ± 0.50 3.76 ± 0.17 9.93 ± 0.63 1958.61 ± 13.12 1.05 ± 0.05 64.22 ± 0.38
Igea 134346 1.07 ± 0.28 4.47 ± 0.40 1.17 ± 0.08 12.98 ± 0.72 3978.08 ± 19.56 1.39 ± 0.06 93.70 ± 0.57
Armadillo 172974 2.26 ± 0.12 10.97 ± 0.16 0.91 ± 0.06 39.43 ± 2.83 15971.80 ± 41.18 3.83 ± 0.18 220.64 ± 1.23
African Statue 220317 2.05 ± 0.39 8.28 ± 0.40 0.85 ± 0.09 32.07 ± 2.34 11956.50 ± 21.60 3.03 ± 0.19 200.38 ± 1.03
Napoleon 495000 1.29 ± 0.20 5.00 ± 0.24 5.74 ± 0.19 15.20 ± 1.34 12165.80 ± 23.29 1.64 ± 0.14 344.54 ± 2.02
Bearded Man 499500 1.04 ± 0.26 3.60 ± 0.36 0.97 ± 0.16 10.07 ± 1.01 9223.72 ± 18.41 1.28 ± 0.14 320.86 ± 3.53
Eisbar 781865 5.75 ± 1.09 14.62 ± 0.46 13.69 ± 0.25 24.56 ± 1.89 44060.40 ± 154.45 2.16 ± 0.16 696.79 ± 7.69
Owl 1031960 5.40 ± 4.55 13.15 ± 4.67 1.96 ± 0.17 30.90 ± 2.42 67452.00 ± 168.53 2.46 ± 0.18 1076.94 ± 23.67
Dragon 1180060 2.04 ± 1.90 5.60 ± 2.40 27.46 ± 0.27 37.32 ± 2.80 26116.10 ± 85.07 4.26 ± 0.35 776.88 ± 5.51
Rhinoceros 1410356 6.28 ± 6.60 18.05 ± 6.75 45.51 ± 0.51 32.87 ± 2.79 86970.40 ± 137.95 3.39 ± 0.22 1418.64 ± 10.01
Xyzrgb Dragon 3609455 5.06 ± 10.66 7.21 ± 11.82 108.28 ± 0.94 8.65 ± 1.90 17003.30 ± 642.83 1.77 ± 0.57 2078.57 ± 25.93
Lucy 14027872 10.94 ± 4.35 36.19 ± 3.92 N/A 146.31 ± 32.32 1850291.25 ± 1284.64 16.24 ± 0.85 45532.1 ± 4580.6

Table 1. Average time to project one point (mean + standard deviation). The MPU-APSS timings are obtained using our implementation of the method. Lucy
was unable to finish for memory reasons.

The N/A present in Fig. 2 and Fig. 3 correspond to models for
which the given method was unable to finish, either for memory
reasons or because the code crashed.

1.2 Comparing computation time
We used a GTX 1080Ti and a Xeon E5-1650 v4 (3.6𝐺𝐻𝑧, 12 threads)
for all our tests.
First, we compare timings for APSS-related methods in Table 1,

namely the time to project one point onto the surface. As seen in
the main paper, our method approaches the speed of using a few
neighbors but with the same quality as using the full input point-set.
The latter (Global APSS) is multiple orders of magnitude slower,
making is ill-suited for moderately large inputs (see Fig. 4). MPU-
APSS [Xiao 2011] can often be even faster than using 20 nearest
neighbors, albeit with a notable cost in quality. Our GPU implemen-
tation reduces by an order of magnitude the computation time to
project one query point, compared with the CPU implementation.

0 90000 180000 | |

100

300

Time (ms)

Global APSS

Fast APSS

Fig. 4. While the time to project 100000 points is in O(|P |) for GlobalAPSS,
it is in O(log(|P |)) for FastAPSS.

Although we do not have precise timings for other methods com-
pared in these additional materials, we observed that Screened Pois-
son Reconstruction [Kazhdan and Hoppe 2013] is in general very
fast to determine a surface from the input point-set. MPU [Ohtake
et al. 2003] is also quite fast in general.

The slowest methods were VIPSS [Huang et al. 2019] – which runs
in O(𝑁 3), with 𝑁 the size of the input – and Point2Mesh [Hanocka
et al. 2020] – which required 25000 iterations. For numerous test
models, these methods took multiple days to complete.

REFERENCES
Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. 2020. Point2Mesh:

A Self-Prior for Deformable Meshes. ACM Transactions on Graphics (TOG) 39, 4,
Article 126 (July 2020), 12 pages. https://doi.org/10.1145/3386569.3392415

Zhiyang Huang, Nathan Carr, and Tao Ju. 2019. Variational Implicit Point Set Sur-
faces. Trans. Graph. 38, 4 (july 2019), 124:1–124:13. https://doi.org/10.1145/3306346.
3322994

Michael Kazhdan and Hugues Hoppe. 2013. Screened poisson surface reconstruction.
ACM Transactions on Graphics (ToG) 32, 3 (2013), 29.

Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter Seidel. 2003.
Multi-level partition of unity implicits. Vol. 22. ACM.

Chun-Xia Xiao. 2011. Multi-Level Partition of Unity Algebraic Point Set Surfaces. J.
Comput. Sci. Technol. 26, 2 (March 2011), 229–238.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2022.

https://doi.org/10.1145/3386569.3392415
https://doi.org/10.1145/3306346.3322994
https://doi.org/10.1145/3306346.3322994

	1 Extended comparisons
	1.1 Comparing quality
	1.2 Comparing computation time

	References

