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Fig. 1. From left to right: the standard per-channel linear mipmapping (baseline), our method (MIPNet), the groundtruth and the level of detail used for shading.
Our learning-based approach allows to preserve the appearance of this anisotropic material unseen during training. Small, medium, and big shaderballs have

respectively small, medium, and large uv repetitions.

We present MIPNet, a novel approach for SVBRDF mipmapping which
preserves material appearance under varying view distances and lighting
conditions. As in classical mipmapping, our method explicitly encodes the
multiscale appearance of materials in a SYBRDF mipmap pyramid. To do so,
we use a tensor-based representation, coping with gradient-based optimiza-
tion, for encoding anisotropy which is compatible with existing real-time
rendering engines. Instead of relying on a simple texture patch average for
each channel independently, we propose a cascaded architecture of multi-
layer perceptrons to approximate the material appearance using only the
fixed material channels. Our neural model learns simple mipmapping filters
using a differentiable rendering pipeline based on a rendering loss and is
able to transfer signal from normal to anisotropic roughness. As a result, we
obtain a drop-in replacement for standard material mipmapping, offering a
significant improvement in appearance preservation while still boiling down
to a single per-pixel mipmap texture fetch. We report extensive experiments
on two distinct BRDF models.

Authors’ addresses: Alban Gauthier, LTCI, Télécom Paris, Institut Polytechnique de
Paris, France, albangauthier25@gmail.com; Robin Faury, Adobe Research, France,
faury@adobe.com; Jérémy Levallois, Adobe Research, France, levalloi@adobe.com;
Théo Thonat, Adobe Research, France, thonat@adobe.com; Jean-Marc Thiery, Adobe
Research, France, jthiery@adobe.com; Tamy Boubekeur, Adobe Research, France,
boubek@adobe.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

0730-0301/2022/12-ART246 $15.00

https://doi.org/10.1145/3550454.3555487

CCS Concepts: « Computing methodologies — Reflectance modeling;
Texturing.

Additional Key Words and Phrases: Material Appearance, Mipmaps, Machine
Learning

ACM Reference Format:

Alban Gauthier, Robin Faury, Jérémy Levallois, Théo Thonat, Jean-Marc
Thiery, and Tamy Boubekeur. 2022. MIPNet: Neural Normal-to-Anisotropic-
Roughness MIP mapping. ACM Trans. Graph. 41, 6, Article 246 (Decem-
ber 2022), 13 pages. https://doi.org/10.1145/3550454.3555487

1 INTRODUCTION

Real-life materials display a diverse set of appearances that continu-
ously vary with the distance to the observer. In computer graphics
applications, accurately representing such a variety of appearances
has been the focus of physically based rendering (PBR), from which
the microfacet-based material model originatedshading (PBS), based
on the microfacet model. It is considered an industry standard [Bur-
ley 2012; Karis 2013] for many real-time engines. The rendering
of physically based materials relies on a set of spatially varying
bidirectional distribution functions (SVBRDF), queried efficiently at
runtime, that allows the reproduction of a wide range of material
appearances.

However, efficiently rendering materials in constrained real-time
scenarios requires material information to be encoded at a given
scale for a given distance of observation. This loss of generality
prevents efficient and accurate renderings, especially when zoom-
ing out. The pixel-to-texel ratio decreases with the distance, with
one pixel covering a larger patch of the surface where textures are
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mapped onto. This phenomenon leads to sampling artifacts char-
acterized by temporal flickering and aliasing, illustrated by Moiré
patterns or staircase effects.

Traditional anti-aliasing techniques for color textures rely on
mipmapping [Williams 1983]. The method’s underlying assumption
is based on a linear relationship between texels in the textures to
prefilter and the final rendered pixel. This prefiltering method is
widely available on current graphics APIs and eliminates most of the
typical rendering artifacts mentioned above. Unfortunately, using
mipmapping independently and on various texture types, e.g., con-
taining geometric information such as the normal and displacement
maps, is erroneous. In their survey, Bruneton and Neyret [2012]
state that the relationship between these material attributes and the
final rendering is non-linear.

When looking at a material from afar, what were considered
as macro- or meso-scale details become microscopic details (with
respect to the distance of observation), that yield a new source of
roughness of the surface. Several methods [Olano and Baker 2010;
Hery et al. 2014; Dupuy et al. 2013] address this issue by transferring
bump map (i.e., normal or displacement) information into roughness.
However, the shading model used for the transfer is based on the
Beckmann [1963] normal distribution function (NDF) and assumes a
gaussian distribution of slopes at all scales, which is not compatible
with the more commonly used GGX distributionTrowbridge-Reitz
[1975] (often referred to as GGX [Walter et al. 2007]) distribution.
This hypothesis fails for many PBR materials (e.g., highly structured)
that exhibit a wide variety of geometric statistics depending on the
distance to the observer. In addition, it has been noticed previously
[Estevez et al. 2019] that the GGX lobe, being based on a Cauchy
distribution, has undefined mean and variance. To circumvent this
issue, Patry [2020] uses a heuristic based on the SGGX paper [Heitz
et al. 2015] to linearly downsample SGGX matrices, of which the
GGX distribution is a special case. This heuristic fails for many
in-the-wild SVBRDF which exhibit strong patterns is their normal
maps.

Our goal is to provide the best possible mipmap to a given integra-
tor compatible with PBR materials description, using no extra space
for texture at the shading stage than classical MIP mapping. To
remain fully compatible with existing real-time rendering engines
and their PBR materials description, we aim at computing a mipmap-
ping operator that improves upon the de-facto standard 4-to-1-texel
linear average, without requiring expensive computations when
processing a given input SVBRDF. Specifically, we design this oper-
ator to preserve the main characteristics of standard mipmapping,
which are (i) low storage cost and (ii) low computation time of the
randomly-accessible created mipmaps.

To that end, we propose to replace the simple mipmapping op-
erator with a learned downsampling filter based on a multilayer
perceptron cascade, which learns information transfer across level-
of-details, and allows for generalization over unseen materials. To
do so, we employ a differentiable rendering pipeline along with a
rendering loss. Each input texture patch is given as input to the
neural architecture which concurrently downsamples each channel
of the SVBRDF. The result is fed to the renderer and compared to a
multisampled groundtruth computed on the fly.
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We focus our efforts on two anisotropic BRDF models to account
for appearance changes at varying scales, namely Cook-Torrance
[1982] with the GGX and Beckmann variants for the normal distribu-
tion functions (NDF), and the Anisotropic PhongAshikhmin-Shirley
[2000] (a.k.a. Anisotropic Phong) model. These models grant a wider
variety of highlights, especially for isotropic materials which show-
case anisotropic behavior when viewed from afar (see Fig. 1).

Our contributions are (i) an efficient pipeline for learning mipmap-
ping filters requiring no data preparation for training, (ii) a neural ar-
chitecture encoding anisotropic appearance and generalizing on un-
seen materials, and (iii) a tensor-based formulation for anisotropic
BRDF distributions which is well-suited for differentiable pipelines
and trilinear interpolation.

2 PREVIOUS WORK

Texture minification. Mipmapping was first introduced by Willia-
ms [1983] and provides an efficient solution to approximate multi-
ple samples at runtime by precomputing a prefiltered image pyra-
mid using Box, Gaussian, Lanczos or Kaiser filters [Akenine-Moller
et al. 2018]. At rendering time, this mipmap pyramid is accessed
using trilinear interpolation and often considers the anisotropy of
the pixel footprint in texture space [Manson and Schaefer 2012].
Our method aims at providing an image pyramid for each SVBRDF
map by carefully crafting a downsampling kernel. Image downsam-
pling methods optimize kernels based on image features at multiple
scales [Kopf et al. 2013] or using the SSIM metric [Oztireli and Gross
2015]. In our framework, downsampling kernels are learned using
a neural network which allows for generalization across multiple
materials.

Normal map filtering. Normal distributions can be approximated
using a single isotropic or anisotropic lobe. Schilling [1997] iden-
tified that roughness information can be derived from the normal
map and encodes normal aggregates in a covariance matrix, while
Olano and North [1997] use a single 3D Gaussian lobe. Later, Toksvig
[2005] proposed to compute the width of the NDF based on the ac-
cumulated normals’ length. Since a single lobe is often not enough,
many previous works proposed to encode the NDF into multiple
lobes. Han et al. [2007] propose a framework which generalizes
previous works on the topic [Fournier 1992; Tan et al. 2005] and
encode averaged information into spherical harmonics (SH) or von
Mises-Fisher (vMF) distributions. Such techniques require a cus-
tom shading while we provide a drop-in replacement for standard
mipmapping.

The most recent and widely adopted techniques, LEAN [Olano
and Baker 2010], LEADR [Dupuy et al. 2013] and Pixar’s Bump to
Roughness [Hery et al. 2014], make use of additional maps encoding
geometric statistics, namely the mean and/or variance of the normal
map or displacement map, which behave well with classic mipmap-
ping. They use an anisotropic Beckmann distribution to represent
the appearance at all scales and assume that the small-scale geome-
try contained in the normal map follows gaussian statistics. This
assumption does not hold for many materials and is incompatible
with other BRDF distributions such as Phong or GGX. We propose
a comparison between our model learnt on the Beckmann model
and LEADR, which limitations are further discussed in Sec 4.



Patry [2020] recently proposed a SGGX-based filtering, compati-
ble with GGX distribution, to filter anisotropic specular maps. The
GGX distribution is shown to be a special case of the SGGX distri-
bution, which is encoded using a tensor-based representation. The
original paper [Heitz et al. 2015] provides a parameter estimation
algorithm to convert a given NDF into SGGX matrix parameters.
However, they show that linear interpolation of matrix parameters is
a good approximation of this algorithm. Hence, Patry propose to lin-
early filter SGGX matrix parameters extracted from an anisotropic
GGX distribution at runtime. The eigenvalues and eigenvectors of
the filtered matrix are extracted and fed to a classical anisotropic
GGX distribution. We take inspiration from their method and use a
tensor-based representation which behaves well with linear filter-
ing. However, we avoid the eigenvalue decomposition which leads
to artifacts for extreme tensor value configurations. We propose a
comparison between our model learnt on the GGX distribution and
their work in Sec 4, which we call SSGT (Samurai Shading at Ghost
of Tsushima)

Rendering high-resolution normal maps. Efforts have been made to
render microstructures such as glints or scratches, since they require
higher resolution normal maps which result in highly complex NDFs.
Offline as well as real-time [Zirr and Kaplanyany 2016; Chermain
et al. 2020; Tan et al. 2022] techniques have been proposed for this
task. Such methods focus on a specific appearance problem we are
not addressing. Please refer to Zhu et al. [2022] for a complete related
work on the topic.

Reflectance filtering. More generally, previous work addressed
multiscale appearance preservation by filtering at the shading level.
Please refer to Bruneton and Neyret [2012] for a review on the topic.
Becker and Max [1993] proposed a method to smoothly transition
between displacement, bump mapping and BRDF in a unified frame-
work. Later, efforts were put on the representation of aggregated
BRDFs. Claustres et al. [2007] used wavelet encoding, while Tan et al.
[2008] generalized the scope of their previous work on Gaussian
mixture model. Xu et al. [2017] proposed a framework to encode
SVBRDF and normals into BRDF mipmaps, and to filter the latter
in real-time. Heitz et al. [2013] proposed to address the non-linear
behavior of rendering color textures mapped onto surfaces. More
recently, Wu et al. [2019] focused on appearance preservation of
displaced surfaces by jointly prefiltering the displacement map and
the SVBRDF. These techniques require engine modifications to be
applied in a real-time context. Putting SVBRDF aside, several works
proposed to tackle volume filtering [Loubet and Neyret 2017; Zhao
et al. 2016] or study the effect of filtering when dealing with BTF
data [Jarabo et al. 2014].

When rendering materials at different scales, aliasing occurs, es-
pecially for highly specular materials. Several works [Tokuyoshi and
Kaplanyan 2021; Chermain et al. 2021] proposed to tackle Geomet-
ric Specular Antialiasing when rendering highly specular materials.
These techniques can be applied as a post-process to our method,
but do not focus on SVBRDF prefiltering.

Differentiable rendering. Recent advances in differentiable ren-
dering pipelines allow to optimize rendering data (interpretable or
implicit) so that its appearance matches the final pixel colors. This is
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done by backpropagating gradients of an image-based loss through
the rendering pipeline. Several material acquisition methods have
been proposed [Deschaintre et al. 2018; Guo et al. 2020; Zhou and
Kalantari 2021] which allow for SVBRDF parameters recovery using
a rendering loss. These methods allow to create the SVBRDF map
at a single scale, and do not solve the challenge of mipmapping the
SVBRDF.

Even though SVBRDF maps can be computed explicitly, Kuznetsov
et al. [2021] propose to encode material appearance in a level-of-
detail pyramid of neural textures, which are fed to a decoder net-
work. By using two multilayer perceptrons (a Neural Offset Module
and a Texture Decoder) along with a Neural Texture Pyramid, they
encode complex material information which can be queried in real
time. However, this technique is not fit for traditional rasterization
pipelines. The Neural Texture Pyramid creates a material specific
implicit representation which is tied to the MLP Decoder to output
radiance information. Rainer et al. [2019] proposed to learn BTF and
BRDF [Rainer et al. 2020] encoding using fully-connected multilayer
perceptrons. Neural Radiance Fields [Mildenhall et al. 2020] allow to
encode spatio-angular radiance information inside a volume using
a differentiable framework. This method has been extended to sup-
port mipmapping [Barron et al. 2021] and SVBRDF-like parameters
[Boss et al. 2021]. However, NeuMIP and Radiance Field-like solu-
tions do not tackle SVBRDF prefiltering, but rather encoding shape
and appearance into a neural network, possibly at multiple scales.
We stress that we aim at preserving the structure and content of
interpretable SVBRDF maps so that they can directly be used inside
current renderers without requiring any engine code modification.

Hasselgren et al. [2021] proposed a pipeline to concurrently sim-
plify geometry and textures using an appearance-based framework.
Their work automates the task of decimating geometry manually.
The method allows to transfer geometric details of the mesh in the
normal and displacement maps (via joint shape-appearance simpli-
fication) and is able to construct a per material mipmap pyramid.
Their method is only fit for a couple composed of a geometry and
some maps, hence is incapable of any generalization over a similar
dataset. Our work aims at using the learned downsampling kernels
for other materials to prevent a lengthy optimization.

3 METHOD
3.1 Training from anisotropic SVBRDF models

To demonstrate our technique, we focus on two commonly used
BRDF models: the Cook-Torrance microfacet model along with the
anisotropic GGX [Walter et al. 2007] and Beckmann [1963] micro-
facet distributions, using the ShlickSchlick [1994] Fresnel term and
the uncorrelated Smith shadowing-masking term [Heitz 2014]; and
the Ashikhmin-Shirley model [2000]. Our mipmapping framework
takes as input the base color, normal, metallic, height (or displace-
ment) and two roughness maps along with an anisotropy angle map.
When the input material is isotropic, the two roughness maps are
identical and the angle map contains only 0-degree angles. The base
color map contains both diffuse albedo and specular information
and is modulated by the metallic map. This results in a linear rela-
tionship between diffuse albedo, specular color, and the resulting
radiance. On top of influencing the shading for viewpoints above
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Fig. 2. Overview of our training process. Mipmap levels LoD; are generated using a cascaded architecture of multilayer perceptrons. The cascade of networks
takes as input a height map h, a normal map (nx, ny), and the roughness map which provides the initial tensor coefficients (a, b, ¢). The height, metallic and
baseColor maps are linearly downsampled and used along with the outputs of the cascade to be rendered (using random light w; and view w, directions) and
used in the final loss term. This cascade is composed of successive blocks of H4 and Hp (circled in dotted orange) which architectures are detailed in the top
right corner. Hp requires a larger capacity than H4 because of its higher dimensional input. The groundtruth is computed using the full resolution input

SVBRDF.

the surface, the height channel impacts the coarse geometric aspect
of the shape through the definition of its silhouettes. For this reason,
we rely on well-established geometric simplification methods for
the height channel and use as baseline the de facto standard linear
mipmapping. Thus we focus our efforts on mipmapping the remain-
ing maps that most influence the shading at different scales, namely
normal and roughness.
We follow those well-established common good practices:

(1) We interpolate (and average trilinearly when rendering from
the created mipmaps) the linearly-perceptual roughness o
instead of the roughness r. Burley [2012] suggests indeed that
a = r? remaps correctly the roughness in [0, 1], resulting in
a progressive linear behavior for the remapped roughness.

(2) We forbid too small values for the roughness, to avoid numer-
ical instabilities when using GGX or Beckmann distributions
with point lights. Following Lagarde and de Rousiers [2014],
we enforce r > €, = 0.045, resulting in ¢ > ¢4 = ef =~ (0.002.

(3) Because we aim at mipmapping (and averaging) non-axis-
aligned roughness values, we use a tensor-based represen-
tation. Since the angle-based representation is not unique
(adding = to the angle results in the same anisotropy, and
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isotropic tensors have undefined angles by definition), av-
eraging 4 of those representations during mipmapping (or
rendering using the mipmaps) is an ill-defined operation,
while averaging the tensors is well-defined. This common
observation motivated among others the SGGX-based filter-
ing [Patry 2020], to which we compare our technique in this
paper.

Following these last observations, we encode the anisotropic
linearly-perceptual roughness as a symmetric 2 X 2 tensor:

0 a c
at) R (c b) ’
Given this definition, note that A? has the same eigenvectors as A,
and its eigenvalues are the squared eigenvalues of A:

T
)<
We provide in Appendix A the expressions for the anisotropic

GGX, Beckmann and Ashikhmin-Shirley models using this repre-
sentation, which we use in our renderer and learning architecture.

ap
0

T ._
Yy

A=Ry ( (1)

2
ay 02
0 oy

A% =R, ( 2)



When learning (or mipmapping, or averaging) the (a, b, ¢) chan-
nels of A, we have to ensure that those correspond to physically-
plausible roughness values (i.e., the eigenvalues of A): ¢4 < a < 1.
We derive the following constraints on A’s trace, determinant, and
eigenvalues:

det(A) = ab — ¢® = apa; > eg
trace(A) =a+b=ap+a; > 2¢4
€x < a=cos?(y)ay +sin’(y)ay < 1
€x < b =sin(y)ap + cos®(y)ay < 1
Constraining the largest eigenvalue to be less than 1 leads to:
a+b+ \/m ‘e

2
<(1-a)(1-b)

Similarly, constraining the smallest one to be larger than €, leads
to:

a+b—+/(a—b)2+4c?
>eq &

¢ < (a-€a)(b-e)
In summary, the following constraints need to be met:
eg<ac<l 3)
€a<bs<1 )

¢ < min(ab - €2, (1-a)(1-b), (a—€x) (b—€)) = Py (5)

IN

To ensure these, we propose a simple projection procedure, which
leads to good results in practice in our observations. We first clamp

a and b within [eg, 1], before clamping ¢ within [—‘/c?nax, A CCoax

Note that this projection is not an orthogonal projection onto the
space of valid (a, b, c) tensor channels, but it is close enough in
practice for our application scenarios. Note also that the first two
conditions on (a, b) ensure that anax is positive, which makes our
procedure valid for any input (a, b, ¢) channels. These bounds en-
sure physically-plausible roughness values, and result in increased
stability of gradient-based optimizations, as they prevent the BRDFs
we consider (see Appendix A) from taking negative or infinite (un-
defined) values.

3.2 Mipmapping
We define the BRDF as a function f : X, wj, 0o € RY x Q? — RS,
where x is a vector of d material parameters. For a texel at position
p € R?, the k! h level-of-detail of a SVBRDF pyramid is expressed as
follows:
LoDy : p € R? — LoD (p) € RY (6)

Classic mipmapping relies on a simple texel average per channel.
This supposes that there is a linear relationship between the SVBRDF
maps and the BRDF. However, as described by Bruneton and Neyret
[2012], it is not the case in general. We aim at finding a translation-
invariant kernel H, which computes any texel at LoDy from LoDy _,
and LoDy_1, such that for any level-of-detail k, and position p:

LoD (p) = H ({LoDg_y (Pr—_2(p)) , LoDg_1 (Pr_1(p)}) (7)
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where P (p) € R? covers the footprint of texel p in LoDy.

We can construct the mipmap by applying the kernel over all
patches of the i — 2th and i — 1" levels and get the level i. To do so,
we learn a kernel model to minimize the difference between rendered
values. Given a SVBRDF at base level LoD, we minimize the L;
distance over all positions p between the ground truth radiance of
the material computed from averaged radiance values corresponding
to the footprint of p, called GT, and the rendering of a single sample
per pixel radiance at position p. We define the rendering loss Ly,]
to minimize as follows:

Low = ). > > Li(popnwo), st ®)

k>1peLloDk w;i,wo€Q
Ly (p, wi, o) = ||f (LoDg (p) , @i, o) — GT (p, wj, &)0)”1, )

1
HPo)) xe%:(p)f (LoDy (x), wi, wo)  (10)

GT (p, wi, o) =
For the computation of LoD1, only LoDy is required. Note that
our loss depends on the actual BRDF model used for rendering, but
any model which supports differentiation can be used beyond the
ones we chose to illustrate our approach.

3.3 Overview

Neural architecture. Our normal-roughness downsampling ker-
nels are implemented as a cascade of multiple fully-connected MLPs
(see Fig.2): Hy and Hp, which downsample at half and quarter
resolution, respectively. In all of our experiments, we use four occur-
rences of the networks H4 and Hp (i.e., the orange block in Fig. 2
is repeated four times). To better capture the anisotropic behavior
of certain materials, each network is required to process anisotropic
data, even when these are missing from the base LoD. We here
follow the common assumption that isotropic materials may appear
as anisotropic when seen from afar. Compared to a single-level ar-
chitecture (Sec. 3.4), our cascade grants each network visibility over
complex multiscale phenomena which only appear progressively in
the LoD, while being efficient even if shallow (Sec. 3.5). Enforcing
network compactness — by limiting the size and the number of the
hidden layers of the MLPs to a minimum - leads to better general-
ization [Goodfellow et al. 2016], prevents material overfitting and
offers faster training and inference. Hence, we apply the networks
on small local texel footprints to keep the number of weights to a
minimum. H4 processes 2x2 patches of material parameters, where
Hp takes as inputs three patches of size 4x4, 2x2 and 1x1. Also,
we noticed faster convergence when learning differences from the
averaged maps. Hence, we use the linearly downsampled versions
of LoDy and LoD1 in addition with the network output to compute
LoD; and LoDy, respectively.

SVBRDF processing. Our pipeline aims at concurrently downsam-
pling normal and anisotropic roughness maps through our learned
kernels. We provide patches of the full resolution maps once to Hg,
which outputs a 2x downsample. This output is fed a second time
to H,, which results in a 4x downsample. Hp gets the original, 2x
and 4x downsampled maps as input and produces a 4x downsample.
The metallic and albedo maps are linearly downsampled at half
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Fig. 3. Simplified, single resolution training pipeline.

and quarter resolution and provided to the renderer, along with the
downsampled normal and roughness maps from the first output of
H, and the ones from Hp. This allows to render a texture patch
at half and quarter of the original resolution. The height is down-
sampled linearly and is used to compute the light position in the
rendering pass. Alternatively, height downsampling can optimize
for error quadrics [Garland and Heckbert 1997; Trettner and Kobbelt
2020].

Physically-based renderer. We implement a differentiable physica-
lly-based renderer in PyTorch. As input, we provide the downsam-
pled material maps, as well as a lighting setup. We render materials
on a plane viewed perpendicularly which eases UV (texels)/screen
(rendered pixels) mapping. Tonemapping the radiance is common
to prevent numerical instabilities for gradient descent optimization
methods [Deschaintre et al. 2018; Kuznetsov et al. 2021; Hasselgren
et al. 2021]. We compute the rendering loss after tonemapping be-
cause our aim is to optimize mipmaps according to the perceived
appearance, rather than the raw responses. The operator is inter-
changeable in the training, and can adapt to the downstream im-
plementation to which the mipmaps will be fed. We tested multiple
tonemappers for learning our mipmapping filters and found out
a simple Reinhard [2002] worked better than e.g., a logarithmic
tonemapper as used by Kuznetsov et al. [2021].

Training loss. We divide our loss in a sum of terms computed
on the tonemapped radiance values of our renders, where Loss;
corresponds to the computation of level-of-detail LoD;. Each loss is
computed as the L; per-pixel distance between ground truth and
mipmapped renderings. To compute the groundtruth, we render
materials with a 1:1 pixel to texel ratio at the original SVBRDF
resolution. The rendering is then bilinearly downsampled until it
reaches the target resolution for the corresponding loss.

3.4 Single-resolution neural architecture

To warm up, let us first discuss the use of a single 2x downsampling
kernel Hy4 (see Fig. 3). This pipeline learns LoD; from LoDy only.
The inference for creating the mipmap pyramid is straightforward:
each level of detail LoD;;1 is computed from the previously given
level LoD; using Hy.

This model already provides improvements over a simple average
of all maps in the SVBRDF mipmap pyramid, even when using a
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small number of network parameters (2 fully connected hidden lay-
ers, both of size 16). The network is able to generalize over unseen
materials when trained with a sufficient number of materials. Simi-
larly to LEAN and LEADR, we observe a transfer from normal to
roughness where the variance among normals over a patch is high.
However, this simplified model suffers from several artifacts. When
applied successively at each level of the pyramid, the network tends
to accumulate errors across previously unseen LoDs. Additionally,
this architecture cannot reliably create effects in the mipmap, which
were not present in the input, such as anisotropy. Indeed, such ef-
fets are not present in the training set. This motivates our cascaded
architecture, where 4 learns to handle such data as input on top
of outputting it.

3.5 Multi-resolution neural architecture

Our full architecture (Fig. 2) is designed to make FHy4 learn to output
complex effects such as anisotropy as well as treat it robustly as
input, even when these effects are not present in the first level-of-
detail, but emerge progressively from the mesostructures convolved
at higher mip levels. Rather than simply learning jointly several
levels of the mipmap (which we evaluate in Sec. 4), we introduce
a two-level network Hp jointly trained with H4 (orange dotted
group in Fig. 2) that learns to best account for two-scale descriptors
and offers a robust cascaded inference mechanism.

Our final multi-resolution architecture requires a 4x4 footprint for
the computation of a single texel in the coarser mipmap levels, which
makes the model compact enough to allow for robust generalization
capabilities, and fast enough at mipmap inference (less than a second
for the whole pyramid).

Architecture hyper-parameters. In our experiments, we found that
setting 4 to be composed of 2 hidden layers of size 512 and Hp of
3 layers of size 1024 resulted in high-quality results and a good gen-
eralization behavior, indicating that our model is compact enough
to avoid overfitting.

3.6 Training setup

Ground truth training data. We train our model with a ground
truth computed just-in-time, in the sense that no precomputation is
required prior to training. In our implementation, we use the same
rendering pipeline for training and computing the ground truth,
since differentiation can simply be disabled for the latter.

Training details. We noticed that training the network using only
a few light directions leads to an unstable training. To improve
convergence, we use up to 32 sample points of the Hammersley
sequence distributed on the hemisphere. We use batches of size
16 using 32 X 32 texture patches to compute the loss. We adopt a
learning rate of 0.0001 along with an Adam [2015] optimizer.

4 RESULTS

In this section we compare our technique with previous work, both
with methods performing generic on-the-fly SVBRDF mipmapping,
and with methods relying on per-material optimizations. We report
quantitative comparisons in Table 1 and illustrate our main results
in Figure 4 for the Ashikhmin-Shirley model, and in Figures 5 and 6
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Fig. 4. Renderings of materials using the Ashikhmin-Shirley model under varying view conditions. We compare our method to the standard linear mipmapping
(baseline) on four challenging materials (more in additional material). Every second row shows the pixel-wise ILIP deviation to the groundtruth, as well as a
false color image depicting the mipmap LoD used for rendering (with trilinear filtering).

Table 1. Quantitative comparisons between the baseline, our method and
the competition on each BRDF variant. The train set is composed of 1104
different materials from 14 categories. The test set is composed of 100
materials, identified as the most difficult (given by baseline error). The best
result for each comparison is highlighted in bold.

train set (error x1073) | test set (error x1073)
ALIP | L1 [MSE | ILIP | L1 [ MSE
baseline | 44.19 9.76 1 67 15.3 1.93
GGX SSGT 52.66 | 12.47 1.4 73.32 | 17.59 | 2.07
ours 43.33 9.77 0.8 64.55 | 14.69 | 1.54
baseline | 49.76 11.57 1.49 75.23 18.37 | 2.94
Beck. | LEADR | 108.19 | 25.56 | 3.12 | 154.23 | 44.36 | 8.95
ours 49.4 11.5 1.11 | 72.07 | 17.19 | 2.12
baseline | 53.24 | 11.64 1.6 78.64 | 1832 | 2.78
ours 52.32 | 1142 | 1.28 | 76.33 | 17.52 | 2.3

BRDF | method

for the Cook-Torrance model with the GGX and Beckmann NDFs.
These figures feature results of the materials from several point
of views to showcase the main effects appearing in the created
mipmaps. Note that we provide all these scenes along with our
viewer as additional material.

Our method relies on an offline preprocessing step, which op-
timizes the weights of our neural networks. The training of this
model was performed on 1104 materials using 40 epochs, taking
approximately 3h per epoch using a Nvidia V100 GPU, and requires
less than 2Go of VRAM. The test set is composed of 100 materi-
als unseen during training. Once trained, our model generates the
prefiltered version of any given material with linear complexity in
the number of texels. Our (unoptimized) python implementation
takes less than a second to generate the full mipmap for 4096 X 4096
SVBRDF maps.

4.1 Comparison to generic SVBRDF mipmapping

We compare our method with state-of-the-art techniques which
generate materials mipmaps consumed by standard shading integra-
tors and report quantitative comparisons in Table 1. We compare
between a baseline, MIPNet and two competitor techniques for the
Cook-Torrance model with GGX and Beckmann NDFs. For the base-
line, we use the common 4-to-1 texel averaging implemented by
glGenerateMipmap in OpenGL [Khronos Group 2022]. For the com-
petitors, we compare with SSGT [Patry 2020] for the GGX model
and LEADR [Dupuy et al. 2013] for the Beckmann model. As our
method, these techniques can process a material instantaneously. To
the best of our knowledge, only the baseline has been used so far to
produce a mipmap pyramid for the Ashikhmin-Shirley model. In the
next paragraphs, we evaluate the ability of our method to preserve
the material appearance at different scales, under various point-
of-views and lighting directions compared with their respective
competitors.

Comparison with the baseline. We present renderings of our ap-
proach compared to the baseline in Figures 4, 5 and 6. The baseline
tends to produce wrongly concentrated highlights due to the under-
estimated roughness (see materials I, II, IIT and IV in Fig. 4, materials
II and VI in Fig. 5, and materials I, II, I, IV and V in Fig. 6). In
addition, the baseline creates bright isotropic specular spots which
do not capture anisotropy (see material IV in Fig. 4, materials II
and VI in Fig. 5, and material VI in Fig. 6). Note that our method
performs similarly to the baseline on simple materials which show-
case relatively flat normal maps, since the transfer from normal to
anisotropic roughness is then limited. In this case, our method out-
puts flat normal maps, which do not affect the roughness filtering,
similarly to the baseline. Finally, note that our approach improves
on average over the baseline, but some specific regions can still be

ACM Trans. Graph., Vol. 41, No. 6, Article 246. Publication date: December 2022.
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Fig. 5. Renderings of materials using the GGX model under varying view conditions. We compare our method to the standard linear mipmapping (baseline)
and main competitor specialized in GGX material mipmapping (SSGT) on six challenging materials (more in additional material). Every second row shows the
pixel-wise ALIP deviation to the groundtruth, as well as a false color image depicting the mipmap LoD used for rendering (with trilinear filtering).

better treated by the baseline (see Fig. 1, bottom part of the front
shaderball, for a flagrant example). We provide renders from multi-
ple viewpoints (both in terms of view angles as well as distance to
the scene) in the supplementary materials.

GGX: comparison with SSGT. We provide renderings using our
technique for the GGX distribution in Fig. 5, in which we compare
our results with the baseline and with SSGT [Patry 2020] which is
specialized in GGX distributions mipmapping.

We remind that with SSGT, the anisotropic roughness and the
normal are packed into a 3 3 symmetric tensor (sharing similarities
with our roughness encoding on that point), and this representation
is mipmapped. At shading time, the local normal is extracted from

ACM Trans. Graph., Vol. 41, No. 6, Article 246. Publication date: December 2022.

the mipmapped linearly-interpolated tensor as its largest eigenvec-
tor, and the 2 X 2 roughness tensor as the orthogonal part to the
normal.

While we observe in practice a behavior closer to the groundtruth
than the baseline on many examples, this technique can extract
strongly biased lobes on challenging materials, where the normal
map features strong discontinuities (materials II, III, and IV in Fig. 5),
and is often further away from the groundtruth than the baseline on
this type of examples. Our results consistently feature the overall
anisotropy effects appearing when the scene is rendered from fur-
ther away on these challenging examples. Note that we still observe
cases where our approach leads to incorrect results on some view-
points. We analyze this phenomenon in the limitations section (see
Section 5). More results can be found in the supplementary material.



LEADR Ours Groundtruth

Baseline

Baseline

I) Leather Polyurethane

Baseline LEADR Ours Groundtruth Baseline

LEADR

1I) Bull Leather

LEADR

MIPNet: Neural Normal-to-Anisotropic-Roughness MIP mapping + 246:9

LEADR QOurs Groundtruth

Baseline

Ours Groundtruth

III) Plastic Rubber Wet

Ours Groundtruth Baseline LEADR Ours Groundtruth

-\

o b PN

1V) Coastline Rock

LoD 0 1 2 3

V) Dirty Metal Plates

5

VI) Car Paint

6 7 8 10

Fig. 6. Renderings of materials using the Beckmann model under varying view conditions. We compare our method to the standard linear mipmapping
(baseline) and main competitor specialized in Beckmann distributions mipmapping (LEADR) on six challenging materials (more in additional material). Every
second row shows the pixel-wise LIP deviation to the groundtruth, as well as a false color image depicting the mipmap LoD used for rendering (with trilinear

filtering).

Beckmann: comparison with LEADR. We present our results on the
Beckmann distribution in Fig. 6, in which we compare our results
to the baseline and to the LEADR technique [Dupuy et al. 2013],
which is the current state-of-the-art in Beckmann distributions
mipmapping. This method uses two maps encoding the statistics of
the normal (or displacement) map. Note that this model is not well-
suited for the use of both normal and displacement maps (which
often encode complementary signals): the filtering is performed on
either one of them, but not both.

As can be seen, the baseline features biased anisotropic effects
on most examples (most noticeable on materials I, IV, V), similarly
to the LEADR technique (most noticeable on materials I, IT, III, VI).
As can be seen, LEADR exhibits biased anisotropic effects on some

examples (most noticeable on materials I, II, ITI, VI). As expected, the
examples on which LEADR fails to capture the anisotropy (and per-
forms worse than the baseline) are the ones where the normal map
features geometric statistics that strongly deviate from Gaussian
distributions. This is indeed the main hypothesis made by LEADR.
More results can be found in the supplementary material.

4.2 Comparison to per-material optimization methods

We also compare our method with techniques that compute materi-
als level of details using per-material optimizations. We report in
Figure 7 qualitative comparisons and timings for processing a single
material. With respect to these two methods, we achieve reasonable

ACM Trans. Graph., Vol. 41, No. 6, Article 246. Publication date: December 2022.
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Fig. 7. Qualitative comparison, using the GGX model, with offline material
preprocessing methods NeuMIP [Kuznetsov et al. 2021], and AutoLoD [Has-
selgren et al. 2021]. For this example, preprocess takes less than a second
for our method while requiring 90 minutes for NeuMIP and 25 minutes for
AutoLoD (10k iterations).

material appearance preservation while being 3 to 4 orders of mag-
nitude faster for the mipmap generation. More visual comparisons
are available in the supplemental material.

NeuMIP. We compare renderings of Kuznetsov et al. [2021] using
the trained weights and rendering code kindly provided by the au-
thors, with the same materials they trained their model on. Note that
a quantitative comparison is impractical since their MBTF has been
learned on path-traced rendering and using an unspecified shad-
ing model. NeuMIP must train a different model for each material,
taking approximately 45 minutes per material with neural textures
of resolution 512 X 512. NeuMIP also requires a neural module at
material evaluation time, making its integration in a path-tracing
engine not straightforward.

AutoLoD. Hasselgren et al. [2021] propose a differentiable frame-
work to modify the geometry and shading models by optimizing a
rendering loss for a given collection of view and light conditions.
We modify their publicly available implementation to better match
our context, by adding an anisotropic GGX model and disabling
the optimization of the geometry, the albedo map, and the metallic
map. AutoLoD uses an expensive per-object optimization, requiring
around 1h and 11GB of VRAM on a Quadro RTX 6000, for a mate-
rial with resolution of 1024 x 1024 (20k iterations with a learning
rate of 0.003). The main drawback of AutoLoD resides in its heavy
optimization, which is strongly tied to a single material and does
not allow generalization.

5 DISCUSSION & FUTURE WORK

Normal-to-roughness transfer. Fig. 8 showcases an example of
normal-to-roughness transfer between level-of-details. The base
level maps (LoDy) are shown on the left. In the middle, the tensor
coeflicients show anisotropy — a is stronger than b which denotes
stronger axis-aligned roughness. The resulting renderings (right)
produce a natural vertical highlight in our result, compared to the
artificially round highlight in the baseline (which originates from
independently averaging normal and roughness).

Training strategies. Multiple strategies for material mipmapping
are made possible with our method. First, we consider overfitting
the training on a single material SVBRDF. This results in better
appearance than standard mipmapping in general but sometimes
fails to preserve the appearance for the unseen LoDs of the pyra-
mid. Another strategy consists in pretraining the architecture on
multiple materials and fine-tuning the weights of the network on
each material separately. We observe a consistent improvement

ACM Trans. Graph., Vol. 41, No. 6, Article 246. Publication date: December 2022.

baséliné

Fig. 8. Transfer between maps: From isotropic SVBRDF parameters (left,
normal map and roughness from base LoD), our method is able to generate
mip levels which reveal information transfer from normal to roughness and
anisotropy creation (middle: generated maps from LoD3), responsible for the
elongated highlight in the rendering (right, top linear mipmapping, bottom
ours) in accordance with the groundtruth (not shown).
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Fig. 9. Qualitative comparison of the number of occurrences of H# and
Hg blocks used during training using the same batch size for the two

experiments. With only a single occurrence (i.e., no repetition of the orange
block in Fig. 2), the network fails to learn anisotropy which appears at
various level-of-details (see groundtruth), often after the first level. With
four occurrences (four repetitions of the orange block in Fig. 2), anisotropy
is better learned, by providing gradients of losses computed with further
level-of-details.

over the material overfitting which supposes a regularization in-
duced by optimizing over diversified examples. The choice of the
dataset is critical for a good generalization, and an alternative to a
broad, all material generalization consists in specializing networks
by materials categories.

Choice of Loss. Our experiments demonstrate a better conver-
gence using a per-pixel L1 loss as well as better appearance preser-
vation across LoDs according to the ILIP metric. We tried an opti-
mization based directly on ILIP, but this led to poorer convergence
and quality in the final output.

Ablation. While designing the cascaded architecture, we focused
on the quality of the visual appearance as well as the loss value
during training. Fig. 9 showcases the quality of mipmapped mate-
rials for a single occurrence and four occurrences of H# and Hg
blocks in the cascaded architecture, which provides better general-
ization and visual quality. We also provide the loss graph of multiple



Groundtruth
(GGX)

Fig. 10. Limitations of our approach. Top left: While we couple the mipmap-
ping of roughness and normals in our method, mipmapping the albedo
channel separately does not allow reproducing the base color shift observed
in the groundtruth. Bottom left: Some very challenging materials might
require several lobes to accurately depict the behavior seen from afar. Right:
We observe some failure cases for GGX.

trainings with varying network parameters (width and depth) in
the supplementary material.

Failure cases. Fig. 10 (right column) showcases two examples that
stand out as failure cases of our approach on the GGX model, where
we clearly see that the SSGT approach produces better results than
ours. These results are probably due to the low number of sam-
ples in the learned groundtruth for such highly specular materials
(roughness smaller than 1le-2 in the original maps), which creates
fireflies and prevents smooth gradients to be computed.

Dedicated architectures for material models. Our cascaded neu-
ral model is designed to efficiently mipmap materials based on an
anisotropic GGX/Beckmann NDF or the Ashikhmin-Shirley model.
The case of sheen [Burley 2012], layered [Weier and Belcour 2020]
and iridescent [Belcour and Barla 2017] materials would be interest-
ing to study.

Mipmapping the albedo and metallic channels. We focused on
the mipmapping of the normal and roughness values for several
SVBRDF models. While it is commonly accepted in the literature to
mipmap the albedo channel separately — there is no real consensus
on the case of the metallic channel - we believe that coupling the
mipmapping of all channels might help mimicking more complex
behaviors appearing at different scales (see Fig. 10, top left).

Single lobe vs many lobes. As showcased in Fig. 10 (bottom left),
fitting a single lobe can prove insufficient to adequately represent
the complex radiance distributions emerging at coarse scale (see
also Fig. 5, examples III and IV). The use of a single anisotropic
lobe is motivated by our choice of remaining compatible with most
rendering systems, and by the low storage requirements resulting
in high performance renderings. Still, our method is stable under
the expressivity power of a single anisotropic lobe on complex se-
tups such as cross-shaped micro-structures (see specific examples
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in the supplementary materials). We plan to investigate the fitting
of several distributions (akin to layered materials), similar to Tan
et al. [2022] who proposed to tackle the MIPmapping of normal map-
based microstructures in the context of real-time rendering. How-
ever, we anticipate that optimizing for the precise number of lobes,
for a given material, in a gradient-based optimization framework as
well as interpolating between the levels of such representations at
runtime will prove particularly challenging.

Multiresolution expression power. We noticed during our experi-
ments that restricting the computation footprint to a standard 2 X 2
footprint (i.e., using combination of 4 texels to compute one texel in
the next mipmap level) was insufficient to efficiently mipmap com-
plex materials for their use with rich lighting. In our work, we have
considered a 2-resolution computation architecture using a 4 X 4
texel footprint to compute the mipmaps after the second LoD. This
choice led to efficient mipmap synthesis for large 4K SVBRDFs. It
would be interesting to study whether increasing the texel computa-
tion footprint and the number of resolutions used helps mipmapping
SVBRDFs even more precisely (using for example a 8 x 8 texel foot-
print, corresponding to a 3-resolution computation architecture, or
a 16 x 16 texel footprint corresponding to 4-level computation ar-
chitecture). We envision that training a heavy architecture followed
by simplification of the optimized network could allow for efficient
synthesis of the mipmap levels while making use of geometric de-
scriptors optimized at many resolutions.

Conclusion. We presented a cascaded neural model to learn down-
sampling kernels for computing a SVBRDF mipmap pyramid. Our
method generalizes over unseen materials and better preserves the
appearance of the materials at multiple distances of observation,
with the particular behavior of giving rise to anisotropic roughness
in the mip levels, which captures salient mesostructures. Overall,
our approach is a drop-in replacement for standard MIP mapping,
requiring no modification to the host rendering engine.

ACKNOWLEDGMENTS

The authors would like to thank Chloé Paliard for proofreading and
helping with the experiments, and Elie Michel for discussing about
the mathematical formulation of the problem.

REFERENCES

Brent Burley. Physically-based shading at disney. In ACM SIGGRAPH 2012 Courses,
SIGGRAPH ’12, New York, NY, USA, 2012. Association for Computing Machinery.

Brian Karis. Real shading in unreal engine 4. In ACM SIGGRAPH 2013 Courses, SIG-
GRAPH ’13, New York, NY, USA, 2013. Association for Computing Machinery.

Lance Williams. Pyramidal Parametrics. SSGGRAPH Comput. Graph., 1983.

Eric Bruneton and Fabrice Neyret. A survey of nonlinear prefiltering methods for
efficient and accurate surface shading. IEEE Transactions on Visualization and
Computer Graphics, 18(2):242-260, 2012.

Marc Olano and Dan Baker. Lean mapping. 13D ’10, pages 181-188, New York, NY,
USA, 2010. Association for Computing Machinery.

Christophe Hery, Michael Kass, Junyi Ling, and Pixar Animation Studios. Geometry
into shading. In Pixar Technical Memo 14-04. 2014.

Jonathan Dupuy, Eric Heitz, Jean Claude Iehl, Pierre Poulin, Fabrice Neyret, and Victor
Ostromoukhov. Linear efficient antialiased displacement and reflectance mapping.
ACM Transactions on Graphics, 32(6), 2013.

Petr Beckmann and Andre Spizzichino. The Scattering of Electromagnetic Waves from
Rough Surfaces. Pergamon Press, 1963.

TS Trowbridge and Karl P Reitz. Average irregularity representation of a rough surface
for ray reflection. JOSA, 65(5):531-536, 1975.

ACM Trans. Graph., Vol. 41, No. 6, Article 246. Publication date: December 2022.



246:12 « Alban Gauthier, Robin Faury, Jérémy Levallois, Théo Thonat, Jean-Marc Thiery, and Tamy Boubekeur

Bruce Walter, Sr Marschner, Hongsong Li, and Ke Torrance. Microfacet models for
refraction through rough surfaces. Eurographics, pages 195-206, 2007.

Alejandro Conty Estevez, Pascal Lecocq, and Clifford Stein. A Microfacet-Based Shadow-
ing Function to Solve the Bump Terminator Problem, pages 149-158. Apress, Berkeley,
CA, 2019.

Jasmin Patry. Samurai shading in ghost of tsushima. In ACM SIGGRAPH 2020 Courses,
New York, NY, USA, 2020. Association for Computing Machinery.

Eric Heitz, Jonathan Dupuy, Cyril Crassin, and Carsten Dachsbacher. The sggx mi-
croflake distribution. ACM Trans. Graph., 34(4), 2015.

R. L. Cook and K. E. Torrance. A reflectance model for computer graphics. ACM Trans.
Graph., 1(1):7-24, jan 1982. ISSN 0730-0301.

Michael Ashikhmin and Peter Shirley. An anisotropic phong brdf model. Journal of
graphics tools, 5(2):25-32, 2000.

Tomas Akenine-Moller, Eric Haines, Naty Hoffman, Angelo Pesce, Michat Iwanicki,
and Sébastien Hillaire. Real-Time Rendering 4th Edition. A K Peters/CRC Press, Boca
Raton, FL, USA, 2018.

Josiah Manson and Scott Schaefer. Parameterization-Aware MIP-Mapping. Eurographics
Symposium on Rendering 2012, 31(4), 2012.

Johannes Kopf, Ariel Shamir, and Pieter Peers. Content-adaptive image downscaling.
ACM Transactions on Graphics, 32(6), 2013.

A. Cengiz Oztireli and Markus Gross. Perceptually based downscaling of images. ACM
Transactions on Graphics, 34(4), 2015.

Andreas Schilling. Towards real-time photorealistic rendering: challenges and solu-
tions. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware, pages 7-15, 1997.

Marc Olano and M North. Normal distribution mapping. Univ. of North Carolina
Computer Science Technical Report, pages 1-7, 1997.

Michael Toksvig. Mipmapping Normal Maps. Journal of Graphics Tools, 10(3):65-71,
2005.

Charles Han, Bo Sun, Ravi Ramamoorthi, and Eitan Grinspun. Frequency domain
normal map filtering. ACM Transactions on Graphics, 26(3), 2007.

Alain Fournier. Filtering normal maps and creating multiple surfaces. Technical
Report TR-92-41, Department of Computer Science, University of British Columbia,
Vancouver, BC, Canada, 1992.

Ping Tan, Stephen Lin, L Quan, B Guo, and HY Shum. Multiresolution Reflectance Fil-
tering. Proceedings of the Sixteenth Eurographics Conference on Rendering Techniques,
pages 111-116, 2005.

Tobias Zirr and Anton S. Kaplanyany. Real-time rendering of procedural multiscale
materials. Proceedings - 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, 13D 2016, pages 139-148, 2016.

X. Chermain, B. Sauvage, J. M. Dischler, and C. Dachsbacher. Procedural Physically
based BRDF for Real-Time Rendering of Glints. Computer Graphics Forum, 39(7):
243-253, 2020.

Haowen Tan, Junqiu Zhu, Yanning Xu, Xiangxu Meng, Lu Wang, and Ling-Qi Yan. Real-
time microstructure rendering with mip-mapped normal map samples. Computer
Graphics Forum, 41(1):495-506, 2022.

Jungiu Zhuy, Sizhe Zhao, Yanning Xu, Xiangxu Meng, Lu Wang, and Ling-Qi Yan. Recent
Advances in Glinty Appearance Rendering. Computational Visual Media, 2022.
Barry G. Becker and Nelson L. Max. Smooth transitions between bump rendering
algorithms. Proceedings of the 20th Annual Conference on Computer Graphics and

Interactive Techniques, SSIGGRAPH 1993, pages 183-189, 1993.

Luc Claustres, Loic Barthe, and Mathias Paulin. Wavelet encoding of BRDFs for real-time
rendering. Proceedings - Graphics Interface, pages 169-176, 2007.

Ping Tan, Stephen Lin, Long Quan, Baining Guo, and Heung Yeung Shum. Filtering
and rendering of resolution-dependent reflectance models. IEEE Transactions on
Visualization and Computer Graphics, 14(2):412-425, 2008.

Chao Xu, Rui Wang, Shuang Zhao, and Hujun Bao. Real-Time Linear BRDF MIP-
Mapping. Computer Graphics Forum, 36(4):27-34, 2017.

Eric Heitz, Derek Nowrouzezahrai, Pierre Poulin, and Fabrice Neyret. Filtering color
mapped textures and surfaces. Proceedings of the Symposium on Interactive 3D
Graphics, pages 129-136, 2013.

Lifan Wu, Shuang Zhao, Ling Qi Yan, and Ravi Ramamoorthi. Accurate appearance pre-
serving prefiltering for rendering displacement-mapped surfaces. ACM Transactions
on Graphics, 38(4), 2019.

Guillaume Loubet and Fabrice Neyret. Hybrid mesh-volume LoDs for all-scale pre-
filtering of complex 3D assets. Computer Graphics Forum, 36(2):431-442, 2017.
Shuang Zhao, Lifan Wu, Frédo Durand, and Ravi Ramamoorthi. Downsampling scat-
tering parameters for rendering anisotropic media. ACM Transactions on Graphics,

35(6):1-11, 2016.

Adrian Jarabo, Hongzhi Wu, Julie Dorsey, Holly Rushmeier, and Diego Gutierrez. Effects
of approximate filtering on the appearance of bidirectional texture functions. IEEE
Transactions on Visualization and Computer Graphics, 20(6):880-892, 2014.

Yusuke Tokuyoshi and Anton S Kaplanyan. Stable Geometric Specular Antialiasing
with Projected-Space NDF Filtering. Journal of Computer Graphics Techniques, 10(2):
31-58, 2021.

ACM Trans. Graph., Vol. 41, No. 6, Article 246. Publication date: December 2022.

Xavier Chermain, Simon Lucas, Basile Sauvage, Jean-Michel Dischler, and Carsten
Dachsbacher. Real-Time Geometric Glint Anti-Aliasing with Normal Map Filtering.
Proceedings of the ACM on Computer Graphics and Interactive Techniques, 4(1):1-16,
2021.

Valentin Deschaintre, Miika Aittala, Fredo Durand, George Drettakis, and Adrien
Bousseau. Single-image SVBRDF capture with a rendering-aware deep network.
ACM Transactions on Graphics, 37(4), 2018.

Yu Guo, Cameron Smith, Milos Hasan, Kalyan Sunkavalli, and Shuang Zhao. Material-
GAN: Reflectance Capture using a Generative SVBRDF Model. ACM Transactions
on Graphics, 39(6), 2020.

Xilong Zhou and Nima Khademi Kalantari. Adversarial single-image svbrdf estimation
with hybrid training. Computer Graphics Forum, 2021.

Alexandr Kuznetsov, Krishna Mullia, Zexiang Xu, Milos Hasan, and Ravi Ramamoorthi.
Neumip: Multi-resolution neural materials. Transactions on Graphics (Proceedings of
SIGGRAPH), 40(4), July 2021.

Gilles Rainer, Wenzel Jakob, Abhijeet Ghosh, and Tim Weyrich. Neural BTF Compres-
sion and Interpolation. Computer Graphics Forum, 38(2):235-244, 2019.

Gilles Rainer, Abhijeet Ghosh, Wenzel Jakob, and Tim Weyrich. Unified Neural Encoding
of BTFs. Computer Graphics Forum, 39(2):167-178, 2020.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for
view synthesis. In ECCV, 2020.

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-
Brualla, and Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-
aliasing neural radiance fields. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 5855-5864, 2021.

Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Barron, Ce Liu, and Hendrik P.A.
Lensch. Nerd: Neural reflectance decomposition from image collections. In IEEE
International Conference on Computer Vision (ICCV), 2021.

Jon Hasselgren, Jacob Munkberg, Jaakko Lehtinen, Miika Aittala, and Samuli Laine.
Appearance-driven automatic 3d model simplification. In Eurographics Symposium
on Rendering, 2021.

Christophe Schlick. An inexpensive brdf model for physically-based rendering. In
Computer graphics forum, volume 13, pages 233-246. Wiley Online Library, 1994.

Eric Heitz. Understanding the masking-shadowing function in microfacet-based brdfs.
Journal of Computer Graphics Techniques (JCGT), 3(2):48-107, June 2014.

Sébastien Lagarde and Charles de Rousiers. Moving frostbite to pbr. In ACM SIGGRAPH
2014 Courses, SIGGRAPH ’14, New York, NY, USA, 2014. Association for Computing
Machinery.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

Michael Garland and Paul S Heckbert. Surface simplification using quadric error metrics.
In Conference on Computer Graphics and Interactive Techniques, pages 209-216, New
York, NY, USA, 1997. ACM.

P Trettner and L Kobbelt. Fast and robust qef minimization using probabilistic quadrics.
Computer Graphics Forum, 39:325-334, 2020.

Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda. Photographic tone
reproduction for digital images. ACM Trans. Graph., 21(3):267-276, jul 2002.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
ICLR (Poster), 2015.

Khronos Group. Opengl 4.6 core profile. https://www.khronos.org/registry/OpenGL/
specs/gl/glspec46.core.pdf, 2022. [Online; accessed 13-May-2022].

Philippe Weier and Laurent Belcour. Rendering layered materials with anisotropic
interfaces. Journal of Computer Graphics Techniques (JCGT), 9(2):37-57, June 2020.

Laurent Belcour and Pascal Barla. A Practical Extension to Microfacet Theory for the
Modeling of Varying Iridescence. ACM Transactions on Graphics, 36(4):65, July 2017.

A TENSOR-BASED ANISOTROPIC MODELS

In this section, we note (¢, b) the axis-aligned tan- n_g
gent and bitangent vectors (whereas ty, b, denote
the rotated tangent and bitangent vectors), n the
normal, w; the unit vector pointing to the light,
wo the unit vector pointing to the camera, o, the v )
half vector (wp = (wi + wo)/|lwi + woll), and (6, $) the spherical
coordinates of unit vectors w in the frame (n, ty, b,) (see inset), as
well as y*(x) = 1 for x > 0 and 0 otherwise the Heavyside function.

The height-correlated masking and shadowing function G for the
GGX and Beckmann distributions is given by

_ Xt (i - op) )t (wo - wp)
1+Aw; +Aw,

G:

(11)


https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf

A.1  Anisotropic GGX distributions

DEGX

The normal distribution is given by:

x*(wp - n)

2
t- 2 b, - 2
(%ﬂL%ﬂL(n.wh)z)

pOGX
To o,

_ X (wp - n) (12)

ol -BT-A%.-B-wy, 2
JTdet(A) (hdeT + (n . wh)z

xH(op - n)

5
+(n- wh)z)

m det(A) (‘ ﬁef(;‘;;i

where we use det(A) = apa;, and BT = (t,b) € R3*2.
We rewrite the masking-shadowing for the GGX distribution:

GGGX _ 2(wi - wp) (o - @p) (13)
(@i - o) AGTX + (w0 - wp) AGTX

AGEX =\/wa-BT JT A2 J-B-wx+(n-ox)?  (14)

~JIA-T-B- sl + (n- wx)?

where x = i or o in the previous equation, and J := (0,1;1,0) €
R?*2 swaps both lines of the matrix at its right side.

A2 Anisotropic Beckmann distributions
We use the following common approximation [Walter et al. 2007;

Heitz 2014] (where x = i or o in the following):

1-1.2598,+0.396&,

AB L1-Giox) 3.5352,+2.181&,2 if & < 1.6
“x Gi(wx) 0 otherwise
e =y Jcos(9e)2a? + sin(p)2a?
=———  IlA-J-B-
sn(0%) lA-J wxl;
£, = 1 cos(0x)
*Tactan(0y) AT B oxll
B xH(wp - n) tan®(6 )c032(¢h)a2 +sin2(¢h)af
=—2 1~ _exp(—tan
oy ay cos*(0p,) P h i a?

A-B-wy

"7 det(A) cost(0,) < P\~

xH(wp - n) (

A3 Anisotropic PhongAshikhmin—ShirIey distributions

We use s; = 2 and s = —5. This equivalence is motivated in [Olano

and Baker 2010] to best match the anisotropy profiles of Phong
and Beckmann distributions. The specular term of Ashikhmin and

MIPNet: Neural Normal-to-Anisotropic-Roughness MIP mapping « 246:13

Shirley [2000] is then given by:

Vst +1) (sp+1) (n-wp)
81 (wp - wi)max ((n- w;i), (n-we))

ol BT -A%.B-w),
(n . wh) (l—cosz(Qh))dct(Az)

st (ty-wp) >+, (by-wp)?
1—(n4(ah)2

Ps (C‘)i9 wO) =

_ Ydet(A?) +tr(A?) +1
B 8 det(A) (wp, - wi) max ((n - w;), (n o))

A-B-wp
em(Qh) det(A)

_ Ydet(A?) +tr(A?) +1
B 8 det(A)

(n- wp)
(wp - wi) max ((n - w;), (n - wo))
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