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Figure 1: Left to right: an actor performing in the capture setup; one of sixteen views from the camera array; reconstructed T-shirt geometry;
the real T-shirt is replaced by a rendering of the captured geometry with different appearance characteristics.

Abstract

A lot of research has recently focused on the problem of capturing
the geometry and motion of garments. Such work usually relies
on special markers printed on the fabric to establish temporally co-
herent correspondences between points on the garment’s surface at
different times. Unfortunately, this approach is tedious and prevents
the capture of off-the-shelf clothing made from interesting fabrics.

In this paper, we describe a marker-free approach to capturing gar-
ment motion that avoids these downsides. We establish temporally
coherent parameterizations between incomplete geometries that we
extract at each timestep with a multiview stereo algorithm. We then
fill holes in the geometry using a template. This approach, for the
first time, allows us to capture the geometry and motion of unpat-
terned, off-the-shelf garments made from a range of different fab-
rics.

CR Categories: I.3.3 [COMPUTER GRAPHICS]: Pic-
ture/Image Generation—Digitizing and scanning; I.3.5 [COM-
PUTER GRAPHICS]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems; I.4.1
[IMAGE PROCESSING AND COMPUTER VISION]: Digitiza-
tion and Image Capture—Imaging geometry.
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1 Introduction

Capturing the geometry of moving garments and other cloth is a
problem that has recently seen a significant amount of research in-
terest. One goal of such research is to provide a data-driven alter-
native to cloth simulation in much the same way motion capture
provides an alternative to character animation. Perhaps more im-
portantly, cloth capture promises to become an indispensable tool

for postprocessing and augmenting live action sequences with com-
puter rendered content.

Consider, for example, a live action sequence in which the texture
or material properties of a garment are to be changed in post produc-
tion (see Figure 1). In order for synthetic surface texture to move
correctly with the real cloth geometry, it is not only necessary to
capture the 3D shape of the garment in each time step, but also
to establish a temporally consistent parameterization of the surface
that prevents the texture from floating on it.

For this reason, the state of the art in cloth and garment capture
is to use markers printed on the garment to simultaneously track
geometry and parameterization. The need for such markers unfor-
tunately makes existing cloth capture approaches unattractive for
several reasons. First, the effort to create garments with unique
marker patterns can be prohibitive for some applications. Second,
the types of fabrics on which markers can be printed are typically
limited, making it difficult to capture fabric-specific differences in
garment motion. However, the characteristic differences between,
say, silk, cotton, and fleece, are precisely the reason why one would
want to capture cloth as opposed to simulating it. A key goal of our
work is thus to capture the motion of specific existing garments,
with a specific design, and made from a specific fabric.

In this paper, we present a marker-free approach to garment capture
that realizes this goal of capturing off-the-shelf garments. We use
a multiview stereo approach for obtaining initial garment geometry
for each time step. Although this initial geometry can have a sig-
nificant number of holes, by leveraging low fabric stretch and uti-
lizing the topology of the scanned garments, we are able to produce
a parameterization of the geometry that is consistent across time,
without explicitly tracking motion. This temporally consistent pa-
rameterization helps us fill the holes in the geometry, producing a
high quality final result. A detailed overview of our method is pro-
vided in Section 3.

2 Related Work

This section describes related methods for cloth capture and pro-
vides a short overview of geometry processing techniques related
to our work.

2.1 Cloth and Garment Capture

Over the last several years, techniques for capturing the motion of
cloth have evolved from methods for tracking a single cloth sheet
to systems for reconstructing full garments under complex motion.



Sheets of cloth and partial garments: Early work on this topic
focused on single sheets of cloth with existing textures [Pritchard
and Heidrich 2003; Scholz and Magnor 2004], or small subsets of
a full garment with patterns that were custom-printed onto the fab-
ric [Guskov et al. 2003]. Hasler et al. [2006] use an analysis-by-
synthesis approach that sets their method apart from the other work.
They too, however, rely on markers in the form of patterned cloth.

This early work identifies the basic task of combining the geometry
of the cloth with a temporally coherent parameterization and intro-
duces the use of markers as a solution to this problem. Capturing
full garments with large areas of occlusion is, however, significantly
more challenging.

Full garments: A first solution to this problem was proposed by
Scholz et al. [2005], who suggested a special marker pattern com-
posed of a matrix of colored dots, in which each 3× 3 neighbor-
hood of dots is uniquely identifiable. A simple thin-plate approach
was used to fill any holes in the geometry. White et al. [2007] im-
proved on these results by thoroughly analyzing the design of suit-
able marker patterns. They also improve on the hole filling, using
a new data-driven technique. This work is currently the state of the
art in garment capture and produces excellent results. However, like
the work by Scholz et al., White et al.’s method requires custom-
tailored garments made from fabric on which the marker patterns
have been printed. It thus cannot deal with arbitrary off-the-shelf
clothing.

Markerless approaches: Recently, some markerless capture
techniques were proposed, albeit with a somewhat different focus
than ours. Bhat et al. [2003] capture the motion of sheet samples
made from different fabric to estimate parameters for a cloth sim-
ulation. Rosenhahn et al. [2007] focus on estimating the pose of a
human wearing a garment using an analysis-by-synthesis approach
similar to Hasler et al. [2006]. While they do show some approx-
imate skirt geometry, they do not discuss how to capture the ex-
act shape of complicated garments in the presence of occlusions.
In a recent paper, Hernandez et al. [2007] propose a photometric
stereo approach for capturing deformable geometry using garments
as an example. While their approach is technically marker-free,
they require patterned cloth mesostructure such as knitting patterns
to compute optical flow. They do not discuss how to handle occlu-
sion, and due to the interaction of differently colored light sources
it is not clear how to extend their method to 360◦ surround capture.

Face capture: The overall design of our garment capture system
has similarities to facial capture systems such as [Zhang et al. 2004]
or [Bickel et al. 2007]. However, garment capture is fundamentally
a different problem due to inherent oclusions and chaotic folding
and rippling nature of fabrics.

Unlike previous methods, our technique is able to reconstruct high
resolution models of full garments under normal human motion
without the need for printed on-surface markers or high-frequency
surface texture. In this sense our effort is analogous to the push
for markerless methods in traditional motion capture (e.g. [Cheung
et al. 2005; de Aguiar et al. 2007]).

2.2 Related Geometry Processing Techniques

From a geometry perspective, garment motion capture can be posed
as a problem of tracking a deformable surface over time. Recently,
two solutions have been presented for this problem, starting from
an initial set of point clouds [Wand et al. 2007; Mitra et al. 2007].
While Wand et al. reconstruct both the geometry and temporal cor-
respondences, and Mitra et al. register the point clouds without
computing explicit correspondences, both methods assume that the
motion is locally rigid. Therefore, these methods would not per-
form well for cloth capture.

Establishing temporal correspondences between acquired frames of
a moving surface requires a bijective mapping, commonly referred
to as cross-parameterization [Kraevoy and Sheffer 2004] or inter-
surface mapping [Schreiner et al. 2004], between the frames. In this
paper, we use the term consistent cross-parameterization of multi-
ple frames to mean a cross-parameterization from-frame-to-frame
that maps a point in one frame to the same point, subject to motion,
in all other frames. We also say that meshes are compatible if they
have the same connectivity and an explicit vertex correspondence.
Most methods for cross-parameterization and compatible remesh-
ing of surfaces rely on accurate user-provided correspondences for
a set of markers on the surfaces [Allen et al. 2003; Schreiner et al.
2004; Kraevoy and Sheffer 2004; Anguelov et al. 2005; Kraevoy
and Sheffer 2005]. This manual positioning of markers is imprac-
tical for hundreds or thousands of frames produced by a capture
process, which is the main reason why existing cloth capture ap-
proaches rely on printed markers.

In contrast, we establish a consistent cross-parameterization be-
tween acquired frames of a moving surface through the use of a
small number of off-surface anchors computed on-the-fly, using
user-assisted keyframing when necessary. Thus we no longer need
markers printed on the fabric.

3 Overview

Our method for markerless garment capture consists of four key
components, illustrated in Figure 2:

Acquisition: We deploy a unique 360◦ high-resolution acqui-
sition setup using sixteen inexpensive high-definition consumer
video cameras. Our lighting setup avoids strong shadows by using
indirect illumination. The cameras are set up in a ring configuration
in order to capture the full garment undergoing a range of motions.

Multiview Reconstruction: The input images from the sixteen
viewpoints are fed into a custom-designed multiview stereo recon-
struction algorithm [Bradley et al. 2008] to obtain an initial 3D
mesh for each frame. The resulting meshes contain holes in re-
gions occluded from the cameras, and each mesh has a different
connectivity.

Consistent Cross-Parameterization: We then compute a con-
sistent cross-parameterization among all input meshes. To this end,
we use strategically positioned off-surface anchors that correspond
to natural boundaries of the garment. Depending on the quality of
boundaries extracted in the multiview stereo step, the anchors are
placed either fully automatically, or with a small amount of user
intervention.

Compatible Remeshing and Surface Completion: Finally, we
introduce an effective mechanism for compatible remeshing and
hole completion using a template mesh. The template is constructed
from a photo of the garment, laid out on a flat surface. We cross-
parameterize the template with the input meshes, and then deform it
into the pose of each frame mesh. We use the deformed template as
the final per-frame surface mesh. As a result, all the reconstructed
per-frame meshes have the same, compatible, connectivity, and the
holes are completed using the appropriate garment geometry.

In Sections 4 to 7 we elaborate on the components of our method.
We then show results in Section 8, and conclude with a discussion
of the method.

4 Acquisition

This section describes our acquisition setup, including the hard-
ware, calibration, and synchronization.

Cameras. Our acquisition setup consists of sixteen high-
definition Sony HDR-SR7 video cameras, mounted in a ring around
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Figure 2: Overview of our technique.

the actor wearing the garment to be captured. External and inter-
nal camera parameters are calibrated using ARTag markers and the
automatic calibration technique by Fiala and Shu [2005].

The cameras record 29.97 frames per second, stored as approxi-
mately sixty fields per second on camera-internal hard drives. We
convert each field to a full resolution image using a simple spatio-
temporal de-interlacing technique applied to the missing scanlines.
Our method weights spatial interpolation higher in regions with fast
motion, and uses simple temporal interpolation where there is no
motion. A pixel I(x,y, t) on a missing scanline is reconstructed as

I(x,y, t) = w ·
I(x,y, t −1)+ I(x,y, t +1)

2
+

(1−w) ·
I(x,y−1, t)+ I(x,y+1, t)

2
,

where w is a Gaussian function of the difference I(x,y, t − 1)−
I(x,y, t +1), a choice that is inspired by the Bilateral filter [Tomasi
and Manduchi 1998]. The final data stream is in the form of sixteen
high-resolution (1920×1080) images, captured at sixty images per
second.

Synchronization. Since all cameras operate independently, and
cannot be synchronized using any external trigger, software syn-
chronization needs to be applied in a post-process. We use a
moving-object synchronization method. At the beginning of each
capture sequence we rotate our ARTag calibration grid approxi-
mately 360◦ on a manually operated turn table over a period of ten
seconds. Each camera auto-detects the grid in each frame and the
amount of rotation is used to determine a temporal offset. Although
this method yields offsets with sub-frame precision, we choose to
round the offsets to the nearest integer field. At sixty fields per
second, we observe that artifacts due to sub-field synchronization
differences are not noticeable during moderately fast motion. For
high speed motion, optical flow could be computed from frame to
frame for each camera and the sub-frame offset could be used to
interpolate between frames. We leave such interpolation for future
work.

Lighting. Some care has to be taken in the lighting setup as well.
As in all movie and video shots, bright illumination is necessary to
avoid noise and motion blur by reducing both the camera gain and
the exposure time. Moreover, direct illumination by a few bright
spot-lights causes hard shadows that exceed the dynamic range of
the cameras, thus preventing geometry reconstruction in the shad-
owed regions. The ideal illumination is therefore bright, diffuse
lighting, not unlike that used on movie sets.

Figure 3: Acquisition setup.

To achieve this goal, we devised the indirect lighting setup depicted
in Figure 3. The outer ring of our setup is lined with white cloth,
which we use as a diffusing reflector. Sixteen inexpensive 500W
halogen lights are placed inside the ring, pointing outwards at the
cloth. This setup results in a bright, uniform illumination of the ring
interior.

5 Multiview Reconstruction

The captured and processed images are used as input for a mul-
tiview stereo reconstruction algorithm that we developed for this
purpose. Our method, which is described in full detail else-
where [Bradley et al. 2008], was specifically designed to work well
with the relatively small number of views available in our setup.
According to the Middlebury multiview stereo evaluation [mview ;
Seitz et al. 2006], this method is currently the best multiview algo-
rithm for such datasets in terms of both precision and performance.

For the sake of completeness, we give a brief outline of our algo-
rithm in the following. The algorithm has two stages, binocular
stereo on image pairs, followed by surface reconstruction. Figure 4
shows a diagram of the individual stages.

Figure 4: Multiview reconstruction: starting from a set of depth

images, a 3D point cloud is generated (PN ), simplified (PS), filtered
(PF ) and meshed.

The binocular stereo part of our algorithm creates depth maps from
pairs of adjacent viewpoints. After rectifying the image pairs, we



observe that the relationship between the views causes distortions
of the comparison windows. We compensate for these distortions
by employing a scaled-window matching technique. The compen-
sation improves the quality, especially in high curvature regions and
for sparse viewpoints (i.e., large baselines). The depth images from
the binocular stereo pairs are converted to 3D points and merged
into a single dense point cloud.

The second part of the algorithm aims at reconstructing a triangle
mesh from the initial point cloud. Instead of implicit reconstruc-
tions, which smoothly interpolate over holes but introduce stretch
in doing so, we prefer reconstruction methods that keep the holes
so that they can be filled based on parameterization information
generated further down our pipeline. We first use a hierarchical
vertex clustering approach to eliminate excessive sampling density.
After downsampling, the simplified point cloud still contains some
noise. Unlike other methods, which integrate noise removal into the
meshing algorithm, we control noise removal explicitly in a sepa-
rate phase. The processed samples are finally triangulated using an
improved version of the method by Boubekeur et al. [2005].

All stages of the algorithm are designed to scale well. The output
of the reconstruction is a triangle mesh for each video frame. Even
though our multiview stereo algorithm is the state of the art for
sparse views according to the Middlebury benchmark, significant
holes remain in occluded and saturated image regions. The subse-
quent stages of our cloth capture system therefore have to robustly
deal with missing data in the cross-parameterization between the
frames, as well as fill in the missing regions from a template. Fig-
ure 5 shows the multiview reconstructed frames from three different
garments in motion, along with the final reconstruction result after
all stages of our algorithm.

Figure 5: Result of multiview reconstruction for different garments
(middle row). One of the sixteen input images is shown above each
result, and the final reconstruction after parameterization and com-
pletion is shown below.

6 Consistent Cross-Parameterization

The next step of our method constructs a consistent cross-
parameterization between the incomplete per-frame meshes. In or-
der for cloth capture to be useful, the parameterization needs to
capture the motion of the garment, mapping a point on the garment
at one frame to the position of the same point on the subsequent
frame. Inconsistencies in the mapping are likely to lead to visible
artifacts such as “floating” texture on the garment surface. We have

Figure 6: Off-surface anchor vertices are used to establish bound-
ary correspondences between the tetrahedral base mesh (left) and
the different frames of the same garment (right).

no explicit information on the motion of the garment, and estimat-
ing such motion is quite challenging. Instead we rely on geometric
properties of the garments to compute a consistent parameteriza-
tion. Many real fabrics exhibit very low stretch in regular use (see
e.g. [Goldenthal et al. 2007]), and thus we can assume that a consis-
tent parameterization of garments is (nearly) isometric. Moreover,
since most garments exhibit no rotational symmetries, such an iso-
metric parameterization is unique. A key insight of our work is
therefore that we can obtain a consistent parameterization between
frames simply by finding an as-isometric-as-possible, i.e. stretch-
minimizing, parameterization between the per-frame meshes, in-
stead of employing some form of tracking.

Several of the cross-parameterization methods reviewed in Sec-
tion 2 can process incomplete meshes. However, in our application
we face additional challenges due to the large number of frames
to be processed. We cannot manually add markers in every frame
to assist the parameterization, nor can we employ computation-
intensive approaches such as the work by Anguelov et al. [2005]
or Schreiner et al. [2004].

In order to parameterize the meshes in a reasonable time frame,
we use the base mesh approach [Praun et al. 2001; Schreiner et al.
2004; Kraevoy and Sheffer 2004; Kraevoy and Sheffer 2005]. A
base mesh (Figure 6, left) is a low-resolution mesh whose ver-
tices correspond to a consistent set of marker vertices on the input
meshes. In base mesh parameterization, each mesh is mapped to
the base, such that the marker vertices map to the corresponding
base vertices. This provides a cross parameterization between the
inputs, where a map from one mesh to another is given by combin-
ing the map from the first mesh to the base with the inverse map
from the base to the second mesh. In all previous methods, the
on-surface marker vertices are manually specified by the user for
each input mesh. As mentioned before, it would be infeasible in
our setting to provide such markers manually for all frames. How-
ever, we observe that garments, in contrast to generic geometric
models, have distinct, identifiable, topology with several boundary
loops. For instance a T-shirt has four boundaries: a neckline, two
sleeves and a waistline. Our algorithm identifies the corresponding
boundaries across all frames, as discussed in Section 6.1, and asso-
ciates a floating, off-surface anchor vertex with each boundary (see
Figure 6). The anchors replace the on-surface markers in the base
mesh construction and subsequent parameterization (Section 6.2).

In general, even when using a base mesh for stretch-minimizing
cross-parameterization, we need to measure and optimize the
stretch directly between the input meshes, a fairly time-consuming
process. However, given two meshes that are isometric, mapping
both of them using stretch-minimization to the same base mesh,
we can expect the maps to be nearly identical, resulting in a nearly
isometric map between the input meshes. Even in the presence of
holes, careful design of a low-stretch base mesh parameterization
algorithm, discussed in Section 6.2, allows us to compute cross-
parameterizations that are consistent across the entire sequence by



parameterizing the meshes independently to the base. This makes
our method fast enough to be used in practice and allows for parallel
processing of individual frames.

6.1 Positioning Off-Surface Anchors

The off-surface anchors in our setup correspond to the natural
boundaries of the processed garment and are mapped to the vertices
of the base mesh during parameterization (Figure 6). The anchors
are placed manually for the first frame of each video sequence and
are updated over time to follow the motion. Each anchor is updated
automatically, except where the multiview algorithm has failed to
reconstruct a sufficient amount of geometry on the corresponding
mesh boundary (see Figure 7, right). As mentioned in Section 5,
missing geometry can be a problem due to occlusion and the rela-
tively small number of cameras.

Figure 7: Garment boundary tracking. Left: the automatic method
correctly chooses the red ellipse based on confidence, size and tem-
poral similarity. Center: using confidence alone, the green ellipse
would be incorrectly chosen. Right: the boundary loop contains
very little of the actual garment boundary and user-assisted track-
ing is required.

Automatic boundary tracking. We observe that boundary loops
of typical garments have an approximately elliptical shape. Given
an elliptical approximation of each boundary, the corresponding an-
chor is placed a fixed distance away from the ellipse center with an
associated normal vector pointing away from it. The normals are
used in the hole filling process, as discussed in Section 6.2. To
find the best fitting ellipse, we use a variant of the RANSAC al-
gorithm [Fischler and Bolles 1981]: for each boundary loop of the
mesh that corresponds to a garment boundary, we iteratively choose
six boundary vertices at random and then fit an ellipse to these ver-
tices. The confidence for any given ellipse is calculated using the
number of boundary vertices that agree with that ellipse. The selec-
tion of a best fitting ellipse is further guided by size and temporal
similarity to the position of the corresponding ellipse in the pre-
vious frame. The number of RANSAC iterations required in our
setting is on the order of

(

n
6

)

, where n is the length of a typical
boundary. Missing portions of the geometry such as sections un-
der the arm, which are often not captured by the multiview stereo
algorithm, can cause significantly prolonged boundary loops. As
a result, 50K to 100K iterations may be required per boundary for
such frames, taking fifteen to thirty seconds per frame.

Anchor positions and normals are smoothed in time using Gaus-
sian smoothing. Figure 8 shows the resulting anchors for a short
sequence of a garment undergoing motion. The anchors with nor-
mals are shown for each frame, and the garment geometry is shown
for one frame of the sequence. This method can deal with sig-
nificant missing geometry on the boundary, as shown in Figure 7
(left). However, for degenerate boundaries such as the one shown
in Figure 7 (right), the automatic positioning fails. A short consec-
utive sequence of poor frames can still be handled gracefully, as the
method will auto-detect and skip over the problematic boundaries
when no suitable ellipse is found. However, this technique cannot
recover from sequences with a large number of consecutive unrec-
ognizable boundaries.

Figure 8: Automatic off-surface anchor positioning across a se-
quence of frames. Anchor vertices are shown in red, while normals
are shown in blue. Front view (left) and top view (right).

User-assisted boundary tracking. For sequences where the au-
tomatic anchor placement fails for a larger number of consecutive
frames, we have developed a semi-automatic alternative. For a
number of keyframes, the user chooses an ellipse for each bound-
ary from a selection of high-confidence ellipses determined by the
RANSAC algorithm. Choosing an ellipse from a precomputed
set typically takes about 10 seconds per boundary. In between
keyframes, the anchor positions are interpolated using splines. The
required density of keyframes depends on the speed of motion; for
fast motions, a keyframe approximately every 30 frames (1/2 sec-
ond) yields good results.

6.2 Base Mesh Parameterization

For each input garment sequence we first construct a base mesh
and then map the per-frame meshes onto the base. The base is con-
structed by positioning the vertices at the locations of the corre-
sponding anchors in a canonical pose (Figure 6, left). Given the
common base, we compute a stretch-minimizing parameterization
of each mesh onto the base using the computed anchors.

As an initialization step, a small cone is
created around each anchor, with the apex
pointing in the direction of the anchor nor-
mal (right). These cones are used later-
on to facilitate smooth hole completion.
Since our parameterization method mostly
follows the work by Kraevoy and Shef-
fer [2005], we focus our description on the differences with their
method and refer the interested reader to their paper for more de-
tails.

The algorithm first segments the mesh into charts corresponding
to the base mesh facets and constructs an initial parameterization
by mapping each chart to the corresponding facet. Since the anchor
cones form separate connected components, we triangulate the gaps
between them and the corresponding boundaries before computing
the segmentation. Given the initial parameterization, the method it-
erates between re-triangulating the holes in the mesh, including the
gaps between the anchor cones and the actual surface, and reparam-
eterizing the mesh onto the base. The main goal of the process is to
parameterize the mesh onto the base with minimal stretch.

During re-triangulation, Kraevoy and Sheffer [2005] first triangu-
late holes on the base, and then project the new vertices back to 3D
using a Laplacian type formulation that minimizes

∑
i

(Pi − ∑
j∈N(Pi)

ωi jPj)
2
, (1)

where Pi are the projected vertices with neighborhood N(Pi), and
ωi j are the normalized mean value weights [Floater 2003] from the



base embedding. This formulation creates a membrane type sur-
face, filling the holes in 3D with C0 continuity along hole bound-
aries (Figure 9, center). The discontinuities along the boundaries
lead to a sub-optimal estimation of the actual hole shape and area
and increase the parameterization stretch. We rectify this prob-
lem by introducing additional terms (P′

i −∑ j∈N(P′
i )

ωi jPj)
2 into the

minimized functional in Equation 1 for the vertices P′
i on the hole

boundary. While the 3D positions of these boundary vertices re-
main fixed, the new terms influence the positions of the hole ver-
tices adjacent to them. The additional terms effectively eliminate
the discontinuities across hole boundaries, creating a C1 effect (Fig-
ure 9, right).

Note that the membrane reprojection is suitable for establishing the
base mesh parameterization, but is not always sufficient for final
garment hole completion. Filling holes in complex geometric re-
gions, such as armpits, using the generic membrane generates over-
smoothed geometry (Figure 12, left). We address this problem in
Section 7, with a template-based remeshing and surface completion
technique.

Figure 9: Smooth hole completion during parameterization. Left:

an incomplete T-shirt. Center: C0 membrane. Right: C1 mem-
brane. The membranes are rendered in lighter tones for visualiza-
tion.

Since the geometry connecting the anchors to the mesh is iteratively
updated as the parameterization improves, any inaccuracy in the
anchor position is automatically corrected, thus the anchors need
not be placed as accurately as on-surface markers. Therefore, our
anchor-based parameterization is fairly robust to noise and artifacts
in the input meshes.

The result of the base mesh parameterization method for two input
frames is illustrated in Figure 10. Thanks to the near-isometry be-
tween the frames, the natural boundaries on the normal maps are
well aligned. Once each mesh has been parameterized onto the
common base, a trivial cross-parameterization is established be-
tween all frames.

7 Compatible Remeshing and Surface Com-

pletion

The acquired garment frames typically have numerous holes, which
are filled with a C1 continuous membrane during the parameteri-
zation. For final reconstruction, these membranes work well for
flat or convex regions, but generate an oversmoothed surface in
saddle-like regions (see Figure 12). One option for replacing the
membrane with more realistic geometry is data-driven hole filling
[White et al. 2007]. White et al. complete hole geometry using
the mapping from other input frames that do not contain the hole.
However, some regions of the garment may be occluded in all in-
put frames. For this reason, we use a template mesh, which we
generate by “inflating” a photo of the garment to provide a more
faithful geometry completion. Additionally, we establish common,
compatible connectivity by using the template triangulation for all
frames.

Template construction. We construct a template mesh from a
single photo of the garment, laid out on a flat surface (Figure 11,

Figure 10: Two frames parameterized onto the base mesh, illus-
trated as normal maps (top row: front view, bottom row: back
view). The charts corresponding to the base mesh faces are shown
on the garments. Again, hole regions are rendered in lighter tones.

Figure 11: Template construction. A photo of the garment (left) is
inflated to 3D.

left). The silhouette of the garment is extracted from the image and
the interior is triangulated [Shewchuk 1996] creating a 2D mesh.
The mesh is duplicated for the back surface, and garment bound-
aries are indicated by the user with brush strokes.

The 2D mesh is then inflated into 3D, using a variant of the iterative
physical simulation approach of Mori et al. [2007]. Each iteration
consists of two steps. First, every face is moved slightly in its nor-
mal direction, to mimic the effect of internal pressure. Then the
length of each edge is adjusted to preserve the stretch of the ma-
terial. In the work of Mori et al., material stretching is prevented
while compression is tolerated, a desired effect for their applica-
tion. For our garment template, we wish to prevent both stretch and
compression. Thus, we modify the second step of the algorithm to
include a compression prevention condition. In this step, the dis-
placement dvi

of a vertex vi is computed as a weighted sum of the
forces (ti j) from the neighboring edges (Ei):

dvi
=

∑ei j∈Ei
{A(e.le f t f ace)+A(e.right f ace)}ti j

∑ei j∈Ei
{A(e.le f t f ace)+A(e.right f ace)}

(2)

ti j =







0.5 · (v j − vi) ·
|vi−v j |−li j

|vi−v j |
if |vi − v j| ≥ li j

0.5 · (vi − v j) ·
li j−|vi−v j |

li j
if |vi − v j| < li j

, (3)

where A( f ) is the area of a face f and li j is the length of an edge
ei j in the initial 2D mesh. This formulation differs from Mori et al.
in Equation 3, where the first condition is for preventing stretch and
the second condition is for preventing compression.

A template is created only once for each garment. The constructed
template of a T-shirt is shown in Figure 11.

Remeshing and completion The cross-parameterization of the
input meshes will be used for consistent texture mapping and tem-



Figure 12: Initial C1 smooth membrane (left) and result of surface
completion using the template from Figure 11 (right).

poral smoothing of the geometry. Thus, we require that the meshes
for all frames be compatible, i.e., have the same connectivity and
explicit vertex correspondence. This is achieved by projecting the
uniform triangulation of the template mesh onto each frame.

The template is parameterized onto the base mesh in the same way
as the input frames establishing a mapping between them. This
mapping is sufficient for remeshing each frame with the template
connectivity by simply mapping the vertices of the template to each
frame. However, for the hole regions in each frame we prefer to use
the geometry of the template instead of the membrane. We there-
fore use the mapping from the template onto each frame to map
only those vertices of the template that map to the original frame
geometry. To obtain the position of the remaining vertices, we de-
form the template into the pose of the frame, using the mapped
vertex positions as constraints. We use the deformation method of
Sheffer and Kraevoy [2004], although other algorithms could be
used instead. Figure 12 shows the result of the completion for one
frame. This technique produces a compatible, uniform triangula-
tion of the whole frame sequence, while completing the holes with
surface patches that match the captured garment.

Finally, the frame sequence is smoothed in the temporal domain
using Gaussian smoothing to remove temporal noise.

8 Results

The results of different garment captures are shown in Figures 13-
18. We are able to render the captured geometry separately, as a
replacement of the original garment, and as an augmentation to the
original video frame. Our technique is, to our knowledge, the first
method that is able to produce all three of these results from a single
capture. In particular, augmentation would not be possible without
markers remaining visible in most of the previous work. We en-
courage the reader to view the full sequences in the video.

Figure 13 shows different frames from a T-shirt sequence. This is
the same T-shirt that was used in illustrations throughout the paper.
Due to boundary issues discussed in Section 6, the user assisted an-
chor placement had to be employed for parts of this sequence. Note
that this garment is rather tight, and the actor’s stomach motion is
correctly reconstructed.

For a fleece vest, shown in Figure 14, off-surface anchors were
placed entirely using the automatic boundary tracking technique.
We also note that the multiview algorithm produced only small
holes for the vest, unlike the large holes caused by occlusion on
the T-shirt. As a consequence, we were able to reconstruct the vest
without creating a template mesh. Instead, a compatible remeshing
was achieved by performing a uniform triangulation on the base
mesh and then projecting the geometry to each frame. The fleece
vest also illustrates that we can indeed capture garments made from
different fabrics. While it would be relatively straightforward to
print marker patterns onto the cotton fabric of the T-shirt, produc-
ing patterned fleece is not as easy, due to the fuzzy nature of this
fabric. Note that this fuzziness does not prevent reconstruction of
features such as folds with our method.

Figure 16: Capture results for two frames of a large T-shirt. Input
images (top) and reconstructed geometry (bottom).

Figure 17: Capture results for two frames of a pink dress. Input
images (top) and reconstructed geometry (bottom).

A different T-shirt is shown in Figure 16. The user assisted anchor
placement was also used for this sequence. This garment is larger
and more loosely fitting than the others, resulting in more ripples,
which our capture method successfully reconstructs.

Two full-body garments were also reconstructed, demonstrating the
versatility of our approach. A pink dress is shown in Figure 17, and
a blue dress in Figure 15. For the pink dress, off-surface anchors
were placed with the automatic boundary tracking method, while
the user-assisted method was used for the blue dress.

Figure 18 shows another result of garments made from different
fabric, in this case a long-sleeve nylon-shell down jacket. Anchor
placement in this case was again partially manual.

Processing a sequence from captured video to the final result re-
quires approximately one hour per frame, which can be easily par-
allelized. The majority of the time is spent in the multi-view recon-
struction step, since our input data is in the form of high-definition
video and we establish dense correspondences between images. A
typical frame for the T-shirt data sets reconstructs over a million
surface points, which are used to construct an initial triangulation
with over 100K vertices. The very large resolution is required at
this point in order to preserve high-frequency detail in the garments,
particularly since the mesh reconstruction is non-uniform. The re-
meshed sequences typically have around 20K vertices.

9 Conclusion

In this paper, we have presented the first method for markerless
capture of full garments and demonstrated its viability on a number
of examples. Our acquisition and reconstruction methods generate
per-frame meshes that capture the complex, changing structure of
garments during human motion. Our parameterization and com-



Figure 13: Capture results for five frames of a T-shirt. From top to bottom: input images, captured geometry, T-shirt is replaced in the
original images.

Figure 14: Capture results for a fleece vest. From left to right: one input frame, captured geometry, vest is replaced in the original image,
the scene is augmented by adding a light source and making the vest more specular.

Figure 18: Capture result for a long-sleeve nylon-shell down jacket
.

pletion algorithms leverage fabric incompressibility and garment
topology to consistently parameterize the frame sequences and gen-
erate realistic garment geometry and motion faithful to the input.

Our system has two main limitations. First, while our technique can
handle significant occlusions, we do not handle situations where the
garment surface comes in contact with itself, e.g. in case a sleeve
touches the torso. The initial multiview reconstructions in these sit-
uations can contain incorrect surface topology, which is not handled
in the subsequent process. For this reason, the actors were asked to
keep their arms away from their torso. Second, the necessary spa-
tial and temporal smoothing steps in order to produce noise-free
results tend to remove the fine details in the geometry. As a result,
the reconstructed garments appear to have fewer wrinkles than the
original input images. Despite these limitations, we believe that
our method greatly advances the current state-of-the-art in garment
capture.

We used our method to reconstruct several different garments, with
and without sleeves. In the future we would like to test it on more
types of garments. For example, pants have only three boundary
loops rather than the four boundaries of the examples in this paper.
Such different types of garments will require a different structure
for the base mesh. In the case of pants, the base mesh would be
composed of two co-planar triangles, one for the front, and one for

the back. While we have not yet investigated such garments, we do
not foresee any fundamental difficulties in processing them.

Another area of future work is the replacement of the boundary
tracking method by a fully automatic method. We believe that it
may be possible to use 2D image segmentation results to improve
the reliability of the 3D anchor positions even in cases where the
multiview stereo algorithm has not produced clean boundaries.
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